Ahad Mirza
email: mirzaahad.baig@ist.ac.at

Danny Hendler
email: hendlerd@cs.bgu.ac.il

Alessia Milani
email: milani@labri.fr.

Corentin Travers
email: travers]@labri.fr.

Mirza Baïg

Mirza Ahad

A Baïg

Long-Lived Snapshots with Polylogarithmic Amortized Step Complexity

Keywords: CCS Concepts:, Theory of computation → Concurrent algorithms shared memory, atomic snapshot, max array, amortized step complexity

published or not. The documents may come L'archive ouverte pluridisciplinaire

INTRODUCTION

The snapshot object [START_REF] Afek | Atomic snapshots of shared memory[END_REF][START_REF] James H Anderson | Composite registers[END_REF][START_REF] Aspnes | Fast randomized consensus using shared memory[END_REF] is a fundamental abstraction in distributed computing since it allows a process to obtain a consistent view of a collection of shared memory locations while other processes are concurrently updating them.

Snapshot objects were used in the past for solving synchronization tasks such as consensus and approximate agreement [START_REF] Aspnes | Fast randomized consensus using shared memory[END_REF][START_REF] Attiya | Are wait-free algorithms fast[END_REF] and for implementing concurrent objects such as counters [START_REF] Aspnes | Wait-Free Data Structures in the Asynchronous PRAM Model[END_REF] and bounded timestamps [START_REF] Gawlick | Concurrent Timestamping Made Simple[END_REF]. In this paper we study the single-writer atomic snapshot (henceforth referred to simply as snapshot) object which allows each process to update its own component in a shared array (by invoking an Update operation) and to obtain an atomic view of all components (by invoking a Scan operation).

Wait-free snapshot can be implemented, using reads and writes only, in step complexity linear in the number of processes n [START_REF] Attiya | Adaptive and efficient algorithms for lattice agreement and renaming[END_REF][START_REF] Inoue | Linear-Time Snapshot Using Multi-writer Multi-reader Registers[END_REF]. A well-known result by Jayanti, Tan and Toueg [START_REF] Jayanti | Time and Space Lower Bounds for Nonblocking Implementations[END_REF] showed that this is tight, by proving a linear lower bound on the worst-case step complexity of obstruction-free implementations of a large class of shared objects that includes snapshots from operations in a set that includes (among some other operations) read and write.

Aspnes, Attiya and Censor-Hillel [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF] observed that the lower bound of [START_REF] Jayanti | Time and Space Lower Bounds for Nonblocking Implementations[END_REF] holds only when numerous operations are applied to the object and does not rule out the possibility of obtaining algorithms whose wort-case step complexity is sub-linear when the number of operations is bounded. Leveraging this observation, they presented constructions of several concurrent objects for which an operation's step complexity is polylogarithmic in n as long as the object's value is polynomial in n.

Their constructions are based on a new abstraction they introduced called a max register. A max register r supports a WriteMax(r ,v) operation that writes a non-negative integer v to r and a ReadMax(r) operation that returns the maximum value previously written to r . An m-bounded max register can assume values from {0, . . . , m -1}, for some integer m.

Building upon the m-bounded max register algorithm introduced in [3], Aspnes et al. [START_REF] Aspnes | Limited-Use Atomic Snapshots with Polylogarithmic Step Complexity[END_REF] presented the first wait-free snapshot algorithm with sub-linear worst-case step complexity. Specifically, their algorithm has O(log n) step complexity for Scan operations and O(log 3 n) step complexity for Update operations, in executions in which the number of update operations is exponential in n, both the worst-case and the amortized step complexities become linear in n.

Our contribution. The lower bound of [START_REF] Jayanti | Time and Space Lower Bounds for Nonblocking Implementations[END_REF] leaves open the question of whether there exists a snapshot algorithm with sub-linear amortized step complexity. In this paper, we answer this question in the affirmative. We present a waitfree, linearizable atomic snapshot algorithm whose amortized complexity is polylogarithmic in all executions, regardless of their length. This is the first wait-free snapshot algorithm that provides sub-linear amortized step complexity in all executions.

Our unbounded snapshot algorithm is largely inspired by the bounded snapshot algorithm of Aspnes et al. [START_REF] Aspnes | Limited-Use Atomic Snapshots with Polylogarithmic Step Complexity[END_REF]. The latter is based on a new data structure they defined and implemented called a 2-component max array. It consists of a pair of (left and right) bounded max registers and supports a MaxUpdate(side, v) operation that writes value v to either the left or the right max register, and a MaxScan() operation that returns a view consisting of the values of both components. 1 Since their snapshot algorithm uses bounded max registers and bounded max arrays, once the number of update operations exceeds this bound, it falls back to a linear step-complexity algorithm.

We replace every instance of a bounded max register used by their algorithm by an instance of an unbounded max register implementation with O(log n) amortized step complexity, recently presented by Baig et al in [START_REF] Mirza Ahad Baig | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF]. We also replace every instance of a bounded 2-component max array they use with an instance of a novel unbounded 2-component max array implementation that we present in this paper. Our unbounded 2-component max array implementation provides O(log 2 n) amortized step complexity in all executions. This algorithm and its analysis are our key technical contribution.

Aspnes and Censor-Hillel [START_REF] Aspnes | Atomic Snapshots in O (log 3 n) Steps Using Randomized Helping[END_REF][START_REF] Aspnes | Atomic Snapshots in O (log 3 n) Steps Using Randomized Helping[END_REF] presented a randomized snapshot algorithm in which each operation incurs O(log 3 n)

step complexity with high probability. Their implementation is based on randomized constructions of an unbounded max register and an unbounded 2-component max array, whose operation step complexities are, respectively, O(log n)

and O(log 2 n) with high probability. Our unbounded 2-component max array algorithm differs substantially from their conference version [START_REF] Aspnes | Atomic Snapshots in O (log 3 n) Steps Using Randomized Helping[END_REF] but is similar to the algorithm in their updated version [START_REF] Aspnes | Atomic Snapshots in O (log 3 n) Steps Using Randomized Helping[END_REF]. The key difference is that, whereas their algorithm employ a randomized helping mechanism, ours uses a deterministic helping mechanism, and is consequently deterministic. This, as well as additional differences between the two algorithms, result in much simpler linearizability proofs.

The rest of this paper is organized as follows. We present the system model we assume and additional required definitions in Section 2. In Section 3, we present our key technical contribution -an unbounded 2-component max array algorithm, and prove that it guarantees linearizability and polylogarithmic amortized step complexity when the values of its components are not increased "too quickly". In Section 4, we prove that by "plugging" our unbounded 2-component max array and the unbounded max register of [START_REF] Mirza Ahad Baig | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] into the snapshot algorithm of [START_REF] Aspnes | Limited-Use Atomic Snapshots with Polylogarithmic Step Complexity[END_REF], we obtain a linearizable snapshot with O((log 3 n)) amortized step complexity. The paper is concluded with a discussion in Section 5.

PRELIMINARIES

We consider a standard shared-memory model, where n crash-prone asynchronous processes communicate via shared registers, supporting only atomic read and write operations. A concurrent object implementation specifies the object's state representation and the algorithms processes follow when they perform operations supported by the object.

An execution is a series of steps performed by processes as they follow their algorithms, in each of which a process applies at most a single read or write operation to a register (possibly in addition to some local computation). The execution interval of a high-level operation is the interval between its invocation step and response steps.

Linearizability [START_REF] Maurice | Linearizability: A correctness condition for concurrent objects[END_REF] ensures that, for every completed operation in the execution E and some of the uncompleted operations, there is a point within the execution interval of the operation called its linearization point, such that the responses returned by operations in E are the same as the responses returned if all these operations were executed sequentially in the order determined by their linearization points. An object implementation is linearizable if all its executions are linearizable. An implementation is wait-free [START_REF] Herlihy | Wait-free synchronization[END_REF] if, in every execution, each correct process (i.e., a process that does not crash) completes each operation it performs within a finite number of steps.

A max register r supports two operations : a WriteMax(r ,v) operation that writes a non-negative integer v ≥ 0 to r and a ReadMax(r) operation that returns the maximum value previously written to r . A max register can be either bounded or unbounded. A bounded max register can assume values from {0, . . . , m -1}, for some integer m. An unbounded max register can store any non-negative integer. A single-writer snapshot object consists of n locations and supports two operations : Update(v) allows a process to store a value v in its location and Scan takes no input and returns n values (one for each location), such that the value corresponding to each location i is the value of the last Update operation by process i that has been linearized before the Scan operation. We say that a snapshot object is b-limited-use if the total number of Update operations that can be applied to it in any execution is at most b. If there is no such bound b, we say that the object is an unlimited-use snapshot object.

Amortized step complexity is defined as the worst case (taken over all possible executions) average number of steps performed by operations. It measures the performance of an implementation as a whole rather than the performances of individual operations. More precisely, given a finite execution E, an operation Op appears in E if it is initiated in E.

We denote by Steps(Op, E) the number of steps performed by Op in E and by Ops(E) the number of operations that appear in E. The amortized step complexity of an implementation A is then:

AvgSteps(A) = max E: finite execution of A Op ∈Ops(E) Steps(Op, E) |Ops(E)| .
The unbounded 2-component max array algorithm we present in Section 3 uses two instances of an unbounded max register due to Baig et al. [START_REF] Mirza Ahad Baig | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF], whose amortized step complexity is O(log n). However, the correctness and complexity of this unbounded max register algorithm are guaranteed only in executions in which its value is increased in increments of at most n. This notion is formalized by the following definition.

Definition 2.1 (ℓ-Bounded-Increment Execution). Let E be an execution and let M be an UnboundedMaxReg object.

We say that E is an ℓ-bounded-increment execution for M if for each operation op = WriteMax(v) on M in E, with v > ℓ, there exists an operation

op ′ = WriteMax(v ′) on M in E that precedes op, such that v -ℓ ≤ v ′ < v.
The pseudo-code of our unbounded 2-component max array implementation is presented by Algorithm 1. A UB-MaxArray object contains the following data components.

• MR left , MR right are two shared unbounded max registers [START_REF] Mirza Ahad Baig | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF], initialized to 0, representing the left and right max array component, respectively. Each such register encapsulates an array of bounded max registers and the subscript in the type UnboundedMaxReg n 2 indicates that the bound on each of them is n2 . As proven in [12, Theorem 10], the correctness of UnboundedMaxReg n 2 is guaranteed only in n-bounded executions, in which they have logarithmic amortized step complexity. • An infinite number of shared (m × m)-bounded 2-component max array objects [START_REF] Aspnes | Limited-Use Atomic Snapshots with Polylogarithmic Step Complexity[END_REF], denoted MA j , for all j ∈ N 0 .

All max arrays are initialized to ⟨0, 0⟩. MA j stores the modulo m residues of the left and right components of the implemented max array. For simplicity of presentation and without loss of generality, we assume that m is an integral power of 2. The left (resp. right) component of MA j stores the log m low-order bits of a value v l previously written to MR left (resp. value v r previously written to MR right), whereas j is the sum of the high-order bits of v l and v r . • ts i is an integer timestamp, accessed by process i only, whose value persists throughout the execution.

We now describe the MaxScan operation. A MaxScan operation S, performed by some process i, simply invokes the CompScan function and returns the view computed by the latter. CompScan consists almost entirely of the loop of lines 9-29. In each loop iteration, process i attempts to obtain a view ⟨l * , r * ⟩ by itself. If i succeeds, we say that ⟨l * , r * ⟩ is a direct view. As we prove, if CompScan fails in obtaining a direct view, then eventually a helping mechanism built into the algorithm will make available to it a view computed by another process; in this case, we call the view returned by CompScan (and then by S) an indirect view.

Each loop iteration starts by reading MR right (line 10), then MR left (line 11), and then MR right again (line 12). Lines 10-12 attempt to compute a snapshot of the high-level bits of MR left and MR right , hence we name their execution a high-level bits snapshot attempt. We say that the high-level bits snapshot attempt succeeds, if the high-order bits of the two values read from MR right are equal; otherwise we say that the high-level bits snapshot attempt fails. Successful high-level bits snapshot attempt: In this case, the condition of line 13 is satisfied and process i computes (line 14) an index h of a bounded 2-component max array object by summing up the high-order bits of the values read (in lines 10-12) from the two unbounded max registers. Then, i writes the low-order bits of value l, read from MR left (line 11), to the left component of MA h (line 15) and the low-order bits of the 2nd value, r 2 , read from MR right (line 12), to the right component of MA h (line 16). As we prove, when MR left is read in line 11, the sum of the high-order bits of MR left and MR right is h; this will be used to prove the correctness of the algorithm. Next, i invokes a MaxScan operation on MA h (line 17) and obtains a view ⟨ℓ ′ , r ′ ⟩ of the low-level bits. It then verifies (line 18) that the high-order bits still sum to h. If this is the case, then a direct view was successfully computed, so i proceeds to compute the left and right values by concatenating the high-order and low-order bits (line 19), writes the direct view together with a fresh value of i'th if ⌊ r 1 m ⌋ = ⌊ r 2 m ⌋ then ▷ If this was a successful high-level bits snapshot attempt 14:

i 1 ← ⌊ l m ⌋, i 2 ← ⌊ r 2 m ⌋, h ← i 1 + i 2 ▷
Compute the high-level bits of left and right sides and their sum

⟨ℓ ′ , r ′ ⟩ ← MaxScan(MA h) ▷ Obtain from MA h a view of the low-level bits of both components 18: if ⌊ ReadMax(MR left) m ⌋ = i 1 ∧ ⌊ ReadMax(MR right) m ⌋ = i 2 then ▷ If the sum of the high-level bits of MR left ,MR right is still h 19: l * ← i 1 • m + ℓ ′ , r * ← i 2 • m + r ′ ▷ Compute
if ∃j : (h0[j] = (t s0, s0)) ∧ (h1[j] = (t s1, s1
)) ∧ (t s1 > t s0 + 1) then ▷ A view that can be used is available Failed high-level bits snapshot attempt: A high-level bits snapshot attempt fails if the condition in line 13 is false or, if it is true, but the condition in line 18 is false. In either of these cases, i attempts to obtain an indirect view via the helping array. In order to amortize the steps incurred by the helping mechanism against those taken by the attempts to obtain a direct view, a collect of the helping array (which consists of copying all of its entries and incurs a linear number of steps) occurs only when the number of failed attempts is an integral multiple of ⌊n/log 2 m⌋ (incurring altogether, as we show, a linear number of steps). If exactly ⌊n/log 2 m⌋ failed attempts were performed by the current instance of CompScan (line 23), then it performs a first collect of the helping array H and stores the result in a local variable (line 24). It then increments the number of failed attempts (line 29) and proceeds to the next loop iteration. Otherwise, this is not the first collect of the helping array done by the current instance of CompScan (line 25), so it stores the result of the new collect to a second local variable (line 26) and then checks if there exists an entry H[j] that was written to (by process j) at least twice since the first collect was computed (line 27). If this is the case then, as we prove, the value stored in the second component of H[j] of the new collect is a view that can be used by S, so CompScan returns it (in line 28). Otherwise, i increments the number of failed attempts (line 29) and proceeds to the next loop iteration.

The MaxUpdate operation is very simple. It receives two argument -a value v to write to the implemented max array and the side to which v should be written. It first writes v to MR side (line 4) and then invokes CompScan (line 5).

Once CompScan returns, so does MaxUpdate (line 6), disregarding the view returned by CompScan.

In what follows, unless stated otherwise, we only consider executions that are n-bounded-increment for both MR left and MR right . As we prove in Section 4.1, this is the case for all executions in which our unbounded 2-component max array is used by the snapshot algorithm of [START_REF] Aspnes | Limited-Use Atomic Snapshots with Polylogarithmic Step Complexity[END_REF].

Linearizability

We refer to the instance of CompScan invoked by an instance of a MaxScan or a MaxUpdate operation Op as Op's CompScan instance. For presentation simplicity, we sometimes refer to steps taken by Op's CompScan instance as the steps of Op.

Operations are linearized according to the following linearization rules.

(1) A MaxScan operation that returns a direct view is linearized when its last invocation of MaxScan(MA h) (line 17) before it returns occurs .

(2) Let S be a MaxScan operation that returns an indirect view s 1 (line 28) after reading it from some entry j of the helping array (line 26 write occurs, then W is linearized at s. If there are several write operations that are linearized at s, then their internal order is the order in which they wrote to MR side .

Claim 1. Let S be a CompScan instance that returns an indirect view s 1 . Then there is a CompScan instance S ′ such that s 1 is a direct view of S ′ and its last execution of lines 10-19 is within the execution interval of S.

Proof. Let S be a CompScan instance by process i that returns an indirect view s 1 (line 28). It follows that there is a CompScan instance S ′ by some process j i that wrote s 1 to H[j] (line 21) before returning a direct view (line 22). From lines 23-28, the value of the first component of H[j] (j's timestamp) increased by at least 2 between when S read it in line 24 and when it read it in line 26. From the code of the CompScan function, process j executes lines 10-19 between every two consecutive increments of its timestamp (line 20 Proof. We prove the lemma by showing that every operation that completes in the execution is linearized at some point within its execution interval. The following cases exist.

(1) Let S be a MaxScan operation that returns a direct view (line 22). Then S is linearized according to rule 1 when its CompScan instance invokes MaxScan(MA h) (line 17). The lemma follows since this is a step performed by a function called by Op.

(2) Let S be a MaxScan operation by process i that returns an indirect view s 1 (line 28). Then the lemma follows from Claim 1.

(3) Let W be a MaxUpdate side operation that appears in the execution. If W completes, the claim follows from Claim 2. Otherwise, from linearization rule 3, W cannot be linearized before it writes to MR side (line 4), hence it cannot be linearized before it starts. This completes the proof. □

Recall that we refer to the value of the log m low-order bits of a value v as v's low-order bits. We refer to the value of the binary representation of ⌊v/m⌋ as v's high-order bits.

Observation 1. The high-order bits of the values of MR left and MR right are monotonically increasing.

Proof. The values of MR left and MR right are monotonically increasing because of the semantics of a max register, hence the high-order bits of their values are monotonically increasing as well. □ Observation 2. The values i 1 and i 2 computed in line 14 are, respectively, the high-order bits of MR left and MR right when l is read in line 11.

Proof. From the semantics of a max register and the computation in line 14, i 1 is the high-order bits of MR left when it is read in line 11. i 2 is the value of the high-order bits of MR right when l is read in line 11, because it is read from MR right both before and after line 11 (in lines 10, 12), from Observation 1, and from the its computation in line 14. □ Observation 3. Whenever an index h is computed in line 14 as the sum of i 1 and i 2 , the same values of i 1 and i 2 are used.

Proof. Follows immediately from

□ Claim 3. Let E = E 0 • s 0 • E 1 • s 1 • E 2
• s 2 be an execution, where:

• s 2 is a step in which a CompScan function instance S returns a direct view ⟨l * , r * ⟩ (line 22).

• s 1 is the step in which S executes (for the last time before s 2) a MaxScan in line 17 and received a view ⟨ℓ ′ , r ′ ⟩.

• s 0 is the step in which S executes (for the last time before s 1) line 11.

Then ⟨l * , r * ⟩ is O's value when s 1 occurs.

Proof. From lines 10-14 and Observations Proof. For each i,

1 ≤ i ≤ K, let R i (respectively L i) denote the value of max register MR right (respectively MR left)
the first time it is read in iteration i at line 10 (respectively, line 11). Similarly, let R ′ i (respectively L ′ i) denote the value of max register MR right (respectively MR left) the last time it is read in iteration i, at line 12 or line 18 (respectively, at line 11 or line 18). As iteration i is unsuccessful and since successive values read from a max register are monotonically increasing, we have

L i m < L ′ i m or R i m < R ′ i m .
Moreover, since iteration i + 1 starts after iteration i, for every i,

1 ≤ i ≤ K -1, L ′ i ≤ L i+1 and R ′ i ≤ R i+1 . Let ℓ denote the number of iterations i for which L i m < L ′ i m . Hence, L 1 m + ℓ ≤ L ′ K m , from which it follows that (ℓ -1) • m + 1 ≤ L ′ K -L 1 .
Similarly, denoting the number of iterations i for which

R i m < R ′ i m by r , we have that (r -1) • m + 1 ≤ R ′ k -R 1 .
Note that ℓ + r ≥ K. For each side s ∈ {left, right}, the value stored in MR s may be modified only by an instance of a MaxUpdate(s, v) operation. Specifically, each instance of MaxUpdate(s, v) may change the value of MR s to v when performing line 4.

As the value of MR left increased by at least (ℓ -1) • m + 1 during these K unsuccessful iterations, it follows from our assumption that E is b-bounded-increment for MR left that at least . Since r + ℓ ≥ K, denoting the number of instances of MaxUpdate that start during S by W , we get: Proof. It suffices to prove that CompScan functions are wait-free. Let E be a b-bounded increment execution and let K be an integer such that

W ≥ (ℓ -1) • m + 1 b + (r -1) • m + 1 b ≥ (ℓ -1 + r -1) • m + 2 b ≥ (K -2) • m b □ In the following, for each i, 1 ≤ i ≤ n,
(K -2)m b ≥ 2n + 1.
We show that every instance of the CompScan operation in E, performed by a correct process, terminates after performing

at most K + 2 n log 2 m
loop iterations. Assume towards a contradiction that there is an instance of CompScan, by some process i, that performs K + 2 n log 2 m iterations and does not terminate. We partition the loop iterations of S to three intervals: I 1 that consists of the first

Step Complexity Analysis

Let E be a finite n-bounded-increment execution in which processes execute operations on an unbounded 2-max array object O. We now prove an O(log 2 n) upper bound on the amortized step complexity of E, formally defined as follows :

AmtSteps(E) = ops ∈Ops(E) nsteps(op, E) |Ops(E)| ,
where Ops(E) is the set of instances of MaxUpdate or MaxScan operations on O that take at least one step in E and nsteps(op, E) is the number of steps performed in E by the instance op.

Before proving the main Lemma 3.6, we need to introduce some notation and observations. We partition Ops(E) to two sets, W the set of instances of MaxUpdate operations and S, the set of instances of MaxScan operations. Each instance of MaxUpdate or MaxScan invokes the CompScan function. An instance of a CompScan consists in one or several loop iterations (lines 9-29). We denote by L the set of all loop iterations in E in which at least one step is taken.

We further partition L = L u ∪ L s ∪ L nt into three sets: Recall that a completed iteration is said to be successful if a direct view is returned at line 22, and unsuccessful otherwise.

• L s is the subset of iterations that complete and are successful;

• L u is the subset of iterations that complete and are unsuccessful and;

• L nt is the subset of iterations that do not complete.

For every iteration I ∈ L s ∪ L u , we define:

• proc(I), the process that performs I .

• index(I) = r 1 m + ℓ m , where r 1 and ℓ respectively denote the values read from MR r iдht and from MR l ef t at lines 10 and 11 during I . This is well-defined, since every complete iteration applies these read operations to MR r iдht and MR l e f t . Also, from lines 10-17, if I accesses an underlying bounded 2-component max array MA h , then index(I) = h holds.

We first observe that different unsuccessful iterations performed by the same process never have the same index:

Observation 6. ∀I I ′ ∈ L u s.t. proc(I) = proc(I ′) : index(I) index(I ′).
Proof. Suppose WLOG that iteration I precedes iteration I ′ and both are performed by process i. As I is unsuccessful, the high-order bits of the value stored in MR right or MR left (or both) change between when they are read in I and when they are read in I ′ . From Observation 1, it follows that index(I) < index(I ′). □

For any given op ∈ Ops(E), in the corresponding instance of CompScan (if any), at most a single loop iteration does not complete or is successful. This proves the following observation 7.

Observation 7.

|L s | + |L nt | ≤ |W | + |S |.
To compute AmtSteps(E), we need to count the number of steps performed in instances of operations on the low level max registers and m-bounded 2-max array objects. We denote by nsteps(O, op, σ), where σ is a sequence of steps and op is an operation supported by object O, the number of steps in σ that are performed in the instances of op. Similarly, we denote by Ops(O, op, σ) the set of instances of operation op on O for which at least one step is a step of σ .

For n-bounded increment executions, the amortized complexity of the max register implementation in [START_REF] Mirza Ahad Baig | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] is O(log n).

Therefore, for each side ∈ {left, right},

nsteps(MR side , WriteMax, E) + nsteps(MR side , ReadMax, E) |Ops(MR side , WriteMax, E)| + |Ops(MR side , ReadMax, E)| = O(log n).
Hence, O∈ {MR left ,MR right },op∈ {WriteMax,ReadMax} nsteps(O, op, E)

O∈ {MR left ,MR right },op∈ {WriteMax,ReadMax} |Ops(O, op, E)| = O(log n). (1)
We will thus count together steps performed in WriteMax and ReadMax instances on MR left and MR right . For op ∈ {WriteMax, ReadMax}, let nsteps(MR, op, σ) = nsteps(MR left , op, σ)+nsteps(MR right , op, σ) and Ops(MR, op, σ) = Ops(MR left , op, σ)∪ Ops(MR right , op, σ). Equation (1) can thus be rewritten as follows:

op∈ {WriteMax,ReadMax} nsteps(MR, op, E)

op∈ {WriteMax,ReadMax} |Ops(MR, op, E)| = O(log n). (2)
Lemma 3.6. If m = Θ(n c), where c ≥ 2 is a constant, then the UnLimMaxArray implementation of Algorithm 1 has amortized step complexity of O(log 2 n) in any execution E that is n-bounded-increment for both MR left and MR right .

Proof. Since E is n-bounded-increment for both MR left and MR right , Equations (1) and (2) hold. We thus have:

Let h * = r * m + ℓ * m , where r * and ℓ * are respectively the value of MR right and MR left at the end of E. As E is n-boundedincrement for both MR right and MR left , at least mh * n MaxUpdate instances appear in E. Hence,

h * ≤ n|W | m . (6)
Recall that L u is the set of unsuccessful iterations I ∈ L that complete. From Observation 6, unsuccessful iterations with the same index are performed by distinct processes. Hence, |L u | ≤ nh * , from which it follows by combining Observation 7, Equation (6) and the fact that

|L| = |L u | + |L s | + |L nt |: |L| ≤ n 2 |W | m + |W | + |S |. (7)
Therefore, by combining Equations (4) and (5), the bound on |L| of Equation (7), and recalling that m = Θ(n c), for some constant c ≥ 2, we obtain: The resulting pseudo-code is presented in Algorithm 2. For simplicity, we assume that n is an integral power of 2. An UnLimSnapshot object encapsulates a balanced binary tree with n leaves. Each process i is uniquely associated with a leaf, denoted leaf i . Each node u is associated with an infinite array u.views, each entry of which is intended to store a partial snapshot. More precisely, a non-⊥ entry stores a partial snapshot of the components of the processes whose associated leaves are the leaves of the tree rooted at u. In particular, leaf i .views stores the sequence of inputs of the updates performed by process i. The index of the entry of u.views containing the most recent partial snapshot is stored in the parent node. To that end, each internal node v contains an unbounded 2-component max array v.MA, whose implementation is described by Algorithm 1. The left component of v.MA stores the index of the most recent partial snapshot on the array views of the left child. Similarly, the right component stores the index for the array views of the right child of v. As the root has no parent, an additional unlimited max register root.MR stores the index associated with the root.

For each array u.views, the index of the most recent partial snapshot is actually the number of instances of Update performed by the processes whose associated leaves are in the sub-tree rooted at u. When process i performs an instance of Update, it first increments a persistent local variable count i , which keeps track of the number of Update instances performed by i (line 2). The new value is then written to the first ⊥-entry of leaf i .views whose index is count i (line 4).

Process i then propagates the new value of its component in the partial snapshots stored in the nodes on the path from its leaf to the root. For each node u in this path, process i obtains by performing a MaxScan on u.MA the indexes lptr and rptr of the most recent partial snapshots stored in the left and right children of u (line 9). It then reads the corresponding entries of the views arrays of the children (lines [START_REF] Attiya | Time and Space Lower Bounds for Implementations Using k-CAS[END_REF][START_REF] Attiya | Are wait-free algorithms fast[END_REF] to form a new partial snapshot, which is stored at index s = lptr + rptr in u.views (line 13). The new index s is then reported into the appropriate component of the max array associated with u's parent (line 8) (or, if u is the root, into the max register root.MR, in line 14). Consistency of partial snapshots (and also the full snapshots stored in the root) follows from the semantics of max arrays.

A Scan instance first obtains the index ptr of the last fully propagated snapshot by reading the max register root.MR (line 16) and then returns the snapshot stored in the corresponding entry of root.views (line 17). (lpt r , r pt r) ← MaxScan(u .MA) ▷ Get the indexes of the most recent partial snapshot stored at the children

Correctness and complexity Analysis

We first prove that every execution E of Algorithm 2 is n-bounded increment for all the unbounded max registers used by the algorithm, i.e., the components of the unbounded max-array and the unbounded max register at the root.

Lemma 4.1. Let u be an internal node in the tree and h ≥ 1 denote its height. The 2-component max register u.MA is accessed by at most 2 h processes, and for each side, increments of the unbounded max register of u.MA of that side are

2 h-1 -bounded.
Proof. For the first part of the lemma, we note that the only processes that perform MaxUpdate or MaxScan operations on u.MA are those processes whose associated leaf is in the tree rooted at u. There are at most 2 h such leafs.

The proof of the second part is by induction on the height of the nodes. For the base case, let u be a node whose height is 1. Let side ∈ {left, right}. Since the height of u is 1, there is only a single process i that performs instances of MaxUpdate(u.MA, side, v) operations. In each of these instances, the value written is the initial value of the local variable ptr when the loop starts (line 5). Initially, ptr is set to the value of the persistent local variable count i (line 4), which is incremented by 1 in each invocation of MaxUpdate(u.MA, side, v) by i (line 2). Therefore, increments on the components of the 2-component max array u.MA are 1-bounded.

For the induction case, let h ≥ 1 and suppose that the lemma holds for every node whose height is at most h. Let x be a node whose height is h + 1. Let us consider a MaxUpdate instance with input v on the left side of x .MA (the proof for the right side is similar). We denote by ins x this instance. We first introduce some notations:

• For a node u of the tree, let T u be the tree rooted at u.

• Given a node u of tree, let P(u) be the set of processes i whose associated leaf leaf i is a leaf of T u .

• For each process j ∈ P(x .left), let C j the be set of instances of Update operations performed by process j that have completed before ins x starts.

We establish the following claims:

(

1) v ≤ j ∈P (x .left) |C j | + 2 h-1 .
(2) There is a value v ′ , such that j ∈P (x .left) |C j | ≤ v ′ and v ′ was written to the left side of x .MA before ins x starts.

From these claims, v -

2 h-1 ≤ v ′ follows. If in addition v ′ < v or v ≤ 2 h-1
, increments on the left side of x .MA are 2 h-1 -bounded. Otherwise, let W denote the set of values w ≥ v that were written to the left side of x .MA before ins x starts. Among these values, let w * be the value whose write starts first. w * is well-defined since W ∅. By applying claims (1) and (2) to w * , there exists a value w * ′ such that w * -2 h-1 ≤ w * ′ and whose write to the left side of x .MA precedes the write of w * . Hence, w * ′ W . Therefore, as v ≤ w * , we have v -2 h-1 ≤ w * -2 h-1 ≤ w * ′ < v, from which it follows that increments of left side of x .MA are 2 h-1 -bounded.

We observe that, for every non-root node u in T x , the Lemma follows from IH. Hence, for every such node u, u.MA is a linearizable 2-component max array. We can thus consider each instance of MaxScan or MaxUpdate performed on it as atomic. To prove claim (1), we note that it follows from the code that v is at most the sum of the values of the count j variables when ins x starts, for all processes j that are associated with a leaf of the tree rooted at x .left. For each such j, count j is at most the number of Update instances by j that have completed before ins x starts, together with possibly a single on-going instance. Hence, v ≤ j ∈P (x .left) count j ≤ j ∈P (x .left) |C j | + 2 h-1 .

To prove claim (2), let C = j ∈P (x .left) C j and let I denote the set of MaxUpdate instances performed in an Update instance belonging to C on a 2-component max array u.MA where u is a non-root node in T x . Finally, for any non-root node u of T x , let (L u , R u) be the value of u.MA immediately after the last MaxUpdate instance on u.MA in I.

Claim 5. For any non-root node u of T x , j ∈P (u .left) |C j | ≤ L u and j ∈P (u .right) ≤ R u .

Proof. The proof is by induction on the height of the node.

• Base case. Let u be a non-root node in T x whose height is 1. Let i ℓ and i r be the processes associated with its left and right child, respectively. After the last MaxUpdate instance in I on u.MA, by i ℓ , the value stored in the left side is |C i ℓ |. Similarly, the value stored in the right side after the last instance in I of MaxUpdate on u.MA is |C i r |. Hence, as the value stored on each side never decreases, |C i ℓ | ≤ L u and |C i r | ≤ R u .

• Induction step. Let u be a non-root node in T x whose height is h ≥ 1. We show that j ∈P (u .left) |C j | ≤ L u .

The proof for the right side is similar. Let u ′ denote the left child of u, and let w ′ ℓ and w ′ r be respectively the last instance in I of MaxUpdate performed on the left and right side of u ′ .MA, respectively. Assume that w ′ r occurs after w ′ ℓ (the other case is symmetric). By definition of I, w ′ r is performed in an instance of Update that Let u be a non-leaf node in the tree, and let h u denote its height. Recall that P(u) is the set of processes i whose associated leaf leaf i is in the tree rooted in u. From the pseudo-code, each process i ∈ P(u) performs a constant number of operation instances on u.MA in each instance of Update. By Lemma 4.1, for each side, increments of u.MA

In each Update instance by process i, for each visited node u in the tree, a constant number of accesses to the array u.views are made by process i. In a Scan instance, only the array views associated with the root is accessed. Hence, as each Update instance visits O(log n) nodes:

It thus follows from equations (9), (10) and (11) that

A 2 -

 2 component max array consists of a left and a right max registers and supports two operations. The MaxUpdate(side,v) operation receives two arguments: side specifies whether the left or the right array component should be written, and v is the value to be written to that component. The MaxScan operation returns a view of the max array -a pair of values where the left (resp. right) pair-value contains the maximum value written to the left (resp. right) component by a MaxUpdate operation that was linearized before the MaxScan. An (m 1 ,m 2)-bounded 2-component max array can assume values from {0, . . . , m 1 -1} in its first component and values from {0, . . . , m 2 -1} in its second component, for some positive integers m 1 , m 2 . Each component of an unbounded 2-component max array can store any non-negative integer.

Algorithm 1 2 : 4 :r 1 ←r 2 ←

 12412 Unbounded 2-component Max Array UB-MaxArray, code for process i Shared objects: MR left , MR right : UnboundedMaxReg n 2 registers, initially 0 ▷ Unbounded max registers [12] for left & right components MA j : an (m × m)-bounded 2-component max array for each j ∈ N 0 , initially ⟨0, 0⟩ ▷ 2-component max array objects [4] H[1..n]: array of n registers, initially [(0, ⟨0, 0⟩), . . . , (0, ⟨0, 0⟩)] ▷ Each entry consists of a timestamp and a values-pair Persistent local variables for process i: t s i : integer, initially 0 ▷ Timestamp used for helping 1: function MaxScan() return CompScan() ▷ Invoke utility function, return the view it returns 3: function MaxUpdate(side , v) WriteMax(MR s id e , v) ▷ Write input to the MR object corresponding to side while true do ▷ Loop until a view is obtained 10: ReadMax(MR right) ▷ First read of the MR object corresponding to the right side 11: l ← ReadMax(MR left) ▷ Single read of the MR object corresponding to the left side 12: ReadMax(MR right) ▷ Second read of the MR object corresponding to the right side 13:

c ← c + 1 ▷

 1 Increment iterations number counter timestamp (a local variable initialized to 0 in line 8) to its entry in the helping array (lines 20, 21) and returns the direct view (line 22).

 (K -2)m b instances of MaxUpdate operations that start during the execution interval of S.

 WriteMax operations on MR left occur during S. As WriteMax operations on MR left are only invoked in MaxUpdate(left, v) operation instances and each such instance invokes WriteMax operations on MR left only once, it thus follows that at least (ℓ-1)•m+1 b instances of MaxUpdate(left, -) operations have started during S. Similarly, the number of instances of MaxUpdate(right, -) operations is at least (r -1)•m+1 b

n log 2 m

 2 iterations, I 2 that consists of the next K iterations and I 3 that consists of the n log 2 m remaining iterations.As S does not terminate, every iteration in I 2 is unsuccessful. Therefore, by the choice of K, it follows from lemma 3.4 that at least one process j starts 3 instances of MaxUpdate in this interval. Hence, at least two instances of MaxUpdate by the same process start and complete in I 2 . Therefore, by Observation 5, there exists j, 1 ≤ j ≤ n, j i, such that h[j].ts + 2 ≤ h ′ [j].ts, where h and h ′ respectively denote the values of the help array H at the beginning and at the end of I 2 .In the last iteration of I 1 , each entry of array H is copied to the local array h0 (line 24). Since the value of each entry H [ℓ].ts is monotonically increasing, h0[j].ts ≤ h[j].ts. Furthermore, the array H is copied to the local array h1 every n log 2 m iterations (lines 25-26). Thus, this occurs in some iteration in interval I 3 , since I 3 consists of n log 2 m consecutive iterations. In that iteration, once the local array h1 has been updated (line 26), we have h ′ [j].ts ≤ h 1 [j].ts. Hence, h0[j].ts + 2 ≤ h1[j].ts and S terminates (lines 27-28).□

 op ∈Ops(E) nsteps(op, E) = O w ∈W nsteps(MR, WriteMax, w)+ I ∈L nsteps(MR, ReadMax, I) + nsteps(MA index (I) , WriteMax, I) + nsteps(MA index (I) , MaxScan, I) + |L| n log 2 m n . (3) Indeed, an instance of a MaxUpdate operation on the high-level unbounded 2-max array consists in an instance of a WriteMax operation applied to either MR left or MR right , followed by an instance of CompScan in which one or more iterations of the while loop are performed. Similarly, an instance of a MaxScan operation consists in one or more loop iterations of an instance of CompScan. Each step in iteration I is (1) either performed in an instance of a ReadMax on MR left or MR right , or (2) performed in an instance of WriteMax or MaxScan on MA index (I) , or (3) is a Write to an entry of the shared helping array. Additionally, at most every n log 2 m iterations, an instance of Collect is performed on H , which incurs O(n) additional steps for every such iteration. The m-bounded 2-max array algorithm in [4] has O(log m) and O(log 2 m) worst case complexities for WriteMax and MaxScan operations, respectively. Hence, op ∈Ops(E) nsteps(op, E) = O w ∈W nsteps(MR, WriteMax, w) + I ∈L nsteps(MR, ReadMax, I) + |L|(log 2 m + log m) . (4) Each instance of MaxUpdate calls WriteMax on an unbounded max register once, and in each iteration I ∈ L, the number of invocations of ReadMax operation on unbounded max registers is upper-bounded by a constant. It thus follows from Equation (2) that: w ∈W nsteps(MR, WriteMax, w) + I ∈L nsteps(MR, ReadMax, I) = O |Ops(MR, WriteMax, E)| + I ∈L Ops(MR, ReadMax, I) log n = O (|W | + |L|) log n .

Theorem 3 . 7 .

 37 op ∈Ops(E) nsteps(op, E) = O (|W | + |L|) log n + |L| log 2 m = O (|W | + |S |) log 2 n .Hence,AmtSteps(E) = O (|W | + |S |) log 2 n |Ops(E)| = O (|W | + |S |) log 2 n |W | + |S | = O(log 2 n), which concludes the proof. □ If m ≥ n 2 ,then Algorithm 1 is a wait-free linearizable n-process implementation of an unbounded 2-component max array, with amortized step complexity of O(log 2 m), in any execution E that is n-bounded-increment for both MR left and MR right . Proof. Follows from Lemmas 3.1, 3.3, 3.5 and 3.6. □ 4 WAIT-FREE SNAPSHOT WITH POLYLOGARITHMIC AMORTIZED STEP COMPLEXITY Aspnes et al. present implementations of both a limited-use and an unlimited-use single-writer snapshot[START_REF] Aspnes | Limited-Use Atomic Snapshots with Polylogarithmic Step Complexity[END_REF]. We obtain an unlimited-use single-writer snapshot with polylogarithmic amortized step complexity by making the following simple changes in their limited-use algorithm: We replace every instance of a bounded max register used by their algorithm by an instance of an unbounded max register implementation of[START_REF] Mirza Ahad Baig | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF]; we also replace every instance of a bounded 2-component max array they use with an instance of the unbounded 2-component max array implementation of Algorithm 1.

10 :

 10 lview ← u .left.views[lpt r] ▷ Read partial snapshot from left child 11: rview ← u .right.views[r pt r] ▷ Read partial snapshot from right child 12: pt r ← lpt r + r pt r ▷ New index 13: u .views[pt r] ← lview • rview ▷ Concatenate left and right child partial snapshots 14: WriteMax(root.MR, pt r) ▷ Report index of last fully propagated snapshot 15: function Scan() 16: pt r ← ReadMax(root.MR) ▷ Get index of most recent full snapshot 17: return r oot .views[pt r] ▷ Return most recent full snapshot

are 2 h

 2 u -1 bounded. Since the max register implementation of Algorithm 1 has O(log 2 n) amortized complexity in n-bounded-increment executions (Lemma 3.6), we have:nsteps(u.MA) = O i ∈P (u) U i log 2 nTherefore, u: node of the treensteps(u.MA) = O 1≤h ≤log n u:h u =h i ∈P (u) U i log 2 n = O 1≤i ≤n U i log 3 n .

 u: node of the treensteps(u.views) = O 1≤i ≤n U i log n + |S | .

□Theorem 4 . 4 .

 44 op ∈Ops(E) nsteps(op, E) = nsteps(root.MR) + u: node of the tree nsteps(u.views) + nsteps(u.MA)= O (|S | + 1≤i ≤n U i)(log n + log 3 n) .Therefore,AmtSteps(E) = O(log 3 n). The UnLimSnapshot implementation of Algorithm 2 is an unlimited-use, wait-free and linearizable implementation of a single-writer snapshot with O(log 3 n) amortized step complexity.Proof. Lemmas 4.1-4.2 show that in any execution of Algorithm 2, increments to each side of each 2-max array or to the max register root.MR are n-bounded. Hence, the unbounded max register implementation of[START_REF] Mirza Ahad Baig | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] and the unbounded 2-max array implementation of Algorithm 1 are linearizable when used by Algorithm 2. The correctness proof of the limited-use single-writer snapshot algorithm of[START_REF] Aspnes | Limited-Use Atomic Snapshots with Polylogarithmic Step Complexity[END_REF] (Section 4.1) does not rely on the fact that the max registers and max arrays it uses are bounded and thus holds also for Algorithm 2, where they are unbounded. Thus, Algorithm 2 is a linearizable implementation of an unbounded single-writer snapshot. The implementation is also wait-free, since each base object it uses is wait-free and each instance of Scan or Update accesses a bounded number of such objects. Finally, the amortized complexity follows from Lemma 4.3. □

 2 • A shared helping array H[1..n]. Entry H[i] is used by process i for helping other processes to complete their MaxScan operations. Each entry consists of two fields. The first is a monotonically increasing timestamp incremented by process i before each write to H[i]. The second is a (2-component) view computed by i.

). It follows that the last execution of lines 10-19 by S ′ is contained within the execution interval of S. □ Claim 2. Let E be an execution and let W be a MaxUpdate side operation that appears in E. Then if W completes in E, it is linearized within its execution interval. Proof. From linearization rule 3, W cannot be linearized before it writes to MR side (line 4), hence it cannot be linearized before it starts. Assume towards a contradiction that W completes in E but is not linearized before it completes. If W completes in E after its CompScan instance returns a direct view, then it reads MR side (line 11 or line 12) and then writes to MA h with side side (line 15 or 16) in E after it writes to MR side (line 4). It follows from linearization rule 3 that W is linearized either when it executes line 15 or line 16, or before that -a contradiction. Assume, then, that W 's CompScan instance returns an indirect view s 1 . In this case, from Claim 1, there is a CompScan instance S ′ such that s 1 is a direct view of S ′ and the last execution of lines 10-19 by S ′ is within the execution interval of W 's CompScan instance, hence it follows W 's write to MR side (line 4). Thus, from linearization rule 3, W is linearized either when S ′ writes to MA h with side side (line 15 or 16) for the last time in E or before that, hence it is linearized within its execution interval. This is a contradiction.

□

Lemma 3.1. The order specified by linearization rules 1-3 respects the real-time order of operations that appear in the execution.

 Observations 1,[START_REF] James H Anderson | Composite registers[END_REF]. □ Based onObservation 3, in what follows we refer to the values i 1 ,i 2 used for computing index h in line 14 as the left and right high-order bits corresponding to h, respectively. Also, we let O denote the implemented max array object. We let val(MA j .left) (resp. val(MA j .right)) denote the value of O's left (resp. right) component of MA j . Definition 3.2. Let E be an execution. Let MA h be O's bounded 2-component max array object with the highest index such that a MaxUpdate operation to at least one of MA h .left or MA h .right appears in E, or MA 0 if no MaxUpdate operations to any MA object appear in E. We say that MA h is O's active two-component max array (or simply active array) after E.We let active(O, E) denote index h. We define O's value after E as follows:• If no MaxUpdate operations to any MA object appear in E then O's value after E is ⟨0, 0⟩.• Otherwise, O's value after E is ⟨val(MA h .left) + i 1 • m, val(MA h .right) + i 2 • m⟩, where i 1 and i 2 are the left and right high-order bits corresponding to h.

Observation 4. The value of active(O, E) is monotonically increasing. Proof. Immediate from Definition 3.2 and Observations 1, 3.

) was first written in E in line 4, then read in E from MR left in line 11 (resp. from MR right in lines 10,12) and then its low-order bits were written in E to the left (resp. right) side of MA h in line 15 (resp. line 16), from linearization rule 3, a WriteMax operation that wrote l * (resp. l *) to MR left (resp. MR right) was linearized in E and l * (resp. r *) is the maximum such value. □ Lemma 3.3. The order specified by linearization rules 1-3 respects the semantics of the 2-max array object.Proof. From Claim 3, every CompScan instance that returns a direct view returns O's value at some point during its execution interval. From Claim 1, this is also the case for a CompScan instance that returns an indirect view. Consequently, from Claim 3, every view returned by a MaxScan instance is O's value at some point during its execution interval. The MaxScan operation invokes CompScan and returns the response of that invocation. A MaxUpdate operation writes once to MR left or MR right and then invokes CompScan. To show wait-freedom, it therefore suffices to prove that the CompScan function is wait-free.An instance of a CompScan operation consists of one or more iterations of the while loop (lines 9-29). We say that a loop iteration is unsuccessful if either the test on line 13 or on line 18 fails. Otherwise, we say that the iteration is successful. In a successful iteration that completes, the conditions of both tests are satisfied, a view is returned at line 22, and the instance of CompScan terminates. Note that a view may also be returned in an unsuccessful iteration, if help is received (line 28).Lemma 3.4. Let E be a b-bounded-increment execution for both MR left and MR right . Let S be a CompScan instance in E. If K ≥ 2 unsuccessful loop iterations are performed in S, there are at least

	lemma now follows from Claim 4.	□
	3.2 Wait-freedom	
	A	

1,2, no write to an MA h ′ object, for h ′ > h, appears in E before s 0 . From the code, CompScan can only reach lines 19-22 if the condition of line 18 is satisfied. It follows, once again from Observations 1,2, that no write to an MA h ′ object, for h ′ > h, appears in E before s 1 . Since S writes to MA h (lines 15-16) in E before s 1 , it follows that h is O's active array when s 1 occurs. The claim now follows from Definition 3.2, line 19 and the semantics of a max array MaxScan operation. □ Claim 4. Let E be an execution and let ⟨l * , r * ⟩ be O's value after E. Then l * (resp. r *) is the maximum value written by a WriteMax instance to MR left (resp. MR right) that was linearized in E, or 0 (resp. 0) if no such WriteMax instance exists. Proof. If no WriteMax instance (to neither MR left or MR right) was linearized in E then it follows immediately from Definition 3.2 and linearization rule 3 that O's value after E is ⟨0, 0⟩. Assume otherwise. From Definition 3.2, l * = val(MA h .left) + i 1 • m (resp. r * = val(MA h .right) + i 2 • m), where h is active(O, E) and i 1 (resp. i 2) is the (unique) value of the left (resp. right) high-order bits associated with h. From lines 10-16, l * (resp. r *) is the largest value read in E from MR left (resp. MR right) whose low-order bits were then written to the left (resp. right) side of MA h . Moreover, from the definition of h, l * (resp. r *) is the largest value read from MR left (resp. MR right) in E whose low-order bits were later written in E to the left (resp. right) side of any MA object. Since l * (resp. r *

 we denote by H [i].ts and H [i].view the first and second member of the couple stored in H [i].Observation 5. Let S be an instance of a CompScan function by process i that completes. Let h and h ′ denote the value of the array H when S starts and ends, respectively, then the following holds:h[i].ts + 1 = h ′ [i].ts or ∃j, 1 ≤ j ≤ n : h[j].ts + 2 ≤ h ′ [j].ts.Proof. We first note that any write to H [j].ts increments it (lines 20-21), thus, for all j, the value of H [j].ts is monotonically increasing. Consider the last loop iteration of S. If S returns a direct view, i.e. it returns at line 22, then H [i].ts is incremented at line 20 and this is the only write to H [i].ts during the execution interval of S, hence the observation follows. Otherwise, S returns an indirect view at line 28. In that case, the condition of line 27 is satisfied, so there exists j such that h 0 [j].ts + 2 ≤ h 1 [j].ts. h 0 [j].ts and h 0 [j].ts, h 1 [j].ts are the values of H [j].ts at two different points during the execution interval of S. The observation now follows from the monotonicity of H [j].

□ Lemma 3.5. In any b-bounded increment execution, Algorithm 1 is wait-free.

 Algorithm 2 Unlimited-Use Snapshot UnLimSnapshot, code for process i The root of the tree root.MR: UnboundedMaxReg n 2 register, initially 0 ▷ Unbounded max register[START_REF] Mirza Ahad Baig | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] associated with the root of the tree Persistent local variables for process i: count i : integer, initially 0 ▷ Number of Updates performed by i leaf i : (constant) unique leaf of the tree associated with process i

	Shared objects:
		for each internal node u of a balanced binary tree with n leaves:
		u .MA UB-MaxArray, initially (0, 0)	▷ Unbounded 2-component max array (Algorithm 1)
		u .views[0...] unbounded array, initially [⊥, . . .]	▷ Each entry is intended to store a partial snapshot
		u .parent, u .left, u .right	▷ Parent, left and right child of node u
		for each leaf u:
		u .views[0...] unbounded array, initially [⊥, . . .]
		u .parent	▷ Parent node of node u
	root ▷ 1: function Update(v)
	2:	count

i ← count i + 1 ▷ Keep track of the number of Updates by process i 3: u ← leaf i ▷ Dedicated leaf for process i 4: pt r ← count i ; u .view[count] ← v; ▷ Store input in a fresh entry 5: while u r oot do ▷ Loop until root is reached 6: Let side ∈ {left, right } be s.t. u .parent.side = u ▷ Identify on which side of the parent the current node is 7: u ← u .parent ▷ Climb to parent node 8: MaxUpdate(u .MA, side, pt r) ▷ Report the index of the most recent partial snapshot 9:

Aspnes et al. [4] refer to these components at 0 and 1 and define different operations for updating each of them, but other than this syntactic difference, our definition of a max array is identical to theirs.

In the initial configuration, both MR left and MR right are 0 and so are the values of both components of each MA j object.

We presented an n-process deterministic wait-free single-writer snapshot algorithm from reads and writes. We proved that the algorithm is linearizable and has O(log 3 n) amortized step-complexity. This is the first deterministic nonblocking read/write snapshot algorithm with sub-linear amortized step complexity in all executions. Since Ω(log n) is a lower bound on the amortized complexity of counters [10,12], and as counters can be easily implemented using a single-writer snapshot object, Ω(log n) is also a lower bound on the amortized complexity of snapshot. Closing the gap between the lower and the upper bounds is an open question for future research.

* Research done while Ahad was an intern at LaBRI supported by UMI Relax. † Supported in part by ISF grant 380/18. ‡ Supported in part by ANR projects

A. Baïg, D. Hendler, A. Milani, and C. Travers completes. Hence, it is followed by an instance of MaxScan (at line 9), and in the following iteration of the loop (lines 12 and line 8) the sum s of the values in the scan is written to the left side of u.MA. As the instance of MaxScan follows the last instance of MaxUpdate in I performed on u ′ .MA, s ≥ L u ′ + R u ′ . Therefore, by the induction hypothesis, s

As the values stored on the left side of u.MA never decrease, it follows that L u ≥ j ∈P (u .left) |C j |. □

Let w ∈ I be the last MaxUpdate instance performed on x .left.MA. As w is performed in an Update instance that terminates before ins x starts, it is followed by a MaxScan instance on x .left.MA, and the sum σ of the pair of values returned by the scan is then written to the left side of x .MA.

Moreover, the write of σ on the left side of x .MA terminates before ins x starts, as it is performed in an Update instance that terminates before ins x starts. Taking v ′ = σ completes the proof of claim [START_REF] James H Anderson | Composite registers[END_REF]. □ Proof. Our goal is to bound:

where Ops(E) is the set of instances of Update and Scan operations that appear in E, and for each operation instance op, nsteps(op, E) is the number of steps taken in this instance.

We partition Ops(E) as follows:

where S is the set of instances of Scan and, for each i, 1 ≤ i ≤ n, U i is the set of Update instances initiated by process i.

Given an object X, we denote by nsteps(X) the total number of steps taken by all the instances of operations on X. We thus have:

From Lemma 4.2, increments of the max register root.MR are n-bounded. The max register implementation in [START_REF] Mirza Ahad Baig | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] has O(log n) amortized complexity in n-bounded-increment executions. Since in each instance of Update or Scan at most a single instance of an operation on root.MR is performed (at line 14 or at line 16), we have: