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Abstract

Many two-phase flows relevant to natural and industrial applications are char-

acterized by high density ratios and high shears at the interface. These pecu-

liarities make numerical simulations of such kind of flows still challenging. In

particular, incompressible Level-Set/Volume-of-Fluid -based solvers are affected

by the onset of diverging spurious velocities close to the interface. In this paper

a new strategy, able to overcome these numerical instabilities, is described for

staggered Cartesian grids. In order to achieve a consistent mass-momentum

advection, a new auxiliary continuity equation is introduced and resolved along

the momentum equations in the velocity control volumes. The mass fluxes

are evaluated through the Volume-of-Fluid color function and directly used to

calculate the momentum convective term. Several high-density test cases (the

density ratio going from 103 to 106) are presented: the new algorithm shows

significant improvements in stability and accuracy over the standard velocity

based advection methods, together with a very low increase in computational

time, estimated at 5%÷10%. Therefore, it is suitable to simulate more complex

and realistic high density ratio two-phase flows, such as the breakup of a liquid

jet in cross-flow here described.
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1. Introduction

Two-phase flows are ubiquitous in industrial and scientific applications and,

consequentially, they are the focus of many computational studies. Simulating

such kind of flows is still a great challenge in particular because of the sharp

jumps in fluid properties and the singular surface tension force that leads to

a discontinuity in pressure across the interface. These discontinuities make

particularly difficult the discretization of the governing equations.

Usually, the governing equations for single-phase incompressible flows are

solved by the so-called projection method of Chorin [1]. In this method a tem-

porary velocity field is first predicted from momentum equation by ignoring the

pressure gradient. A pressure Poisson equation is solved to enforce a divergence-

free velocity field by correcting the predicted velocity field. In order to facilitate

the decoupling between velocity and pressure, a staggered grid (MAC, Marker

And Cell) is generally used. This kind of grid makes trivial the discretization

of the equations using finite difference or finite volume schemes 1.

This method can be adapted to the two-phase flows in the one-fluid formu-

lation (i.e. the various fluids are treated as one fluid with variables material

properties, by taking into account proper jump conditions at fluids interface,

see Tryggvason et al. [2]). Thus, a classical incompressible two-phase interfacial

solver is built from the following steps:

• advection of the interface;

• evaluation of the fluid properties jumps at the interface;

• resolution of the prediction velocity equation;

1Finite volume schemes are however trickier to implement, as different overlapping control

volumes are defined on a MAC grid
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• resolution of the Poisson pressure equation;

• update of the velocity field.

It is known that this kind of solvers suffers of numerical stability problems

in case of high density and shear ratios between phases. Indeed, huge spurious

velocities may appear near the interface leading to non physical results or, worse,

to a diverging computation.

One reason may come from the resolution of the prediction equation in terms

of velocity rather than in terms of momentum. As the velocity is continu-

ous across the interface, this approach avoids the discretization of interfacial

density discontinuity. As no momentum conservation is imposed, special tech-

niques must be used to preserve the stability of the computation: accurate

near-interface velocities must be defined by extension technique (Nguyen et al.

[3]) in order to avoid errors in the momentum transfer (Sussman et al. [4], Xiao

[5]). Raessi and Pitsch [6] were among the first to highlight the importance of

a conservative formulation of momentum. They recalled the conclusion of Park

et al. [7], who explicitly demonstrated the advantages of resolving a momentum

prediction equation instead of a velocity equation.

The second reason comes from the staggered location of the grid. Pressure

and phase indicator functions are located on the cell centers, while velocity

components lie on the cell faces, see Fig. 1, leading to staggered control volumes

for continuity and momentum equations: Rudman [8] highlighted the numerical

errors arising from this particular situation, labelling as "inconsistent" the mass

and momentum equations solved each one on its own control volume. Indeed,

no relation exists between mass and momentum fluxes as they are not defined

on the same faces.

The concept of numerical "consistency" in this particular problem has been

referred to by several other authors. Raessi and Pitsch [6] defined: "Next, we

further explain how using a consistent flux density yields a tight coupling be-

tween the mass and momentum transports."; Ghods and Herrmann [9] wrote:

"Consistent mass and momentum advection was achieved by solving the conser-
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vative form of the momentum advection term with mass flux densities obtained

from the volume-of-fluid-method."; and, finally, Owkes and Desjardins [10] spec-

ified: "All convective fluxes are computed with the same mass fluxes despite the

staggered grid arrangement,which is required for a consistent and conservatives

scheme". Within this work, "consistency" will therefore refer to the solving of

continuity and momentum equations on the same control volumes, using the

mass fluxes to compute the relative momentum fluxes.

A clever solution to the consistency problem has been proposed by Rudman

[8]. The salient feature of Rudman’s method is to get a consistent estimate of

the density fluxes, namely ρV (being ρ the density and V the velocity vector),

on the faces of each staggered control volume, which appear in the discretization

of the convective terms ∇·ρV⊗V . To achieve consistency, a mesh twice as fine

as the velocity-pressure grid is defined for the color function. This arrangement

allows density fluxes to be known at the correct location, i.e. at a velocity cell

face lying across two pressure cells faces. The mass fluxes are then used for both

continuity and momentum equation, thus ensuring consistency.

This technique is nonetheless quite expensive, since a finer sub-grid is re-

quired. To avoid the sub-grid interface advection, Bussmann et al. [11] adapted

the Rudman’s method to unstructured collocated grid. An adaptation of the

Rudman’s algorithm to one grid for MAC variables collocation is presented in

Vaudor et al. [12]. The main idea is to solve the mass balance on each half

computational cell in order to evaluate the mass flux on the cell faces, where

the velocity components are located, and then use the final PLIC-computed cell-

centered density to estimate the unknown fluxes. Similarly, Fuster et al. [19]

developed a CIAM-based VOF method in which the density fluxes are employed

to compute relative momentum fluxes. To achieve consistency, the momentum

equations are solved on each staggered control volume by recreating in each of

those the necessary color fraction data.

LeChenadec and Pitsch [13] proposed another VOF approach to solve the

conservative form of the incompressible two-phase NSE. Their method is based

on a geometric VOF type integration of the convective flux of momentum that
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Figure 1: Schematic representation of a 2D staggered grid: pressure is cell-centered

collocated while the velocity components are face-centered collocated. The grey area

represents the pressure pi,j control volume, while the blue and the green squares define,

respectively, the control volume considered for the x and the y velocity components,

i.e. ui+ 1
2
,j and vi,j+ 1

2
. Dashed lines delineate the sub-grid used by Rudman for VOF

advection.

preserve monotonicity for the density, momentum and velocity fields. This treat-

ment uses a Lagrange-Remap method, whose critical aspect is the deformation

of the mesh cells during the remapping step to transfer the information from the

Lagrangian to Eulerian coordinate system. To get around this problem, they

triangulate each mesh elements, thus increasing a lot the computational cost.

Owkes and Desjardins [10], instead, described an innovative, second order accu-

rate, un-split and conservative VOF scheme, designed to guarantee consistency

between the interface and the momentum transport through the construction of

second-order density fluxes. Both the VOF and the momentum fluxes are geo-

metrically treated by means of the construction of flux polyhedra. Nonetheless,

the consistency is still achieved by a Rudman-like sub-grid approach, in which

expensive un-split fluxes are computed on a twice finer mesh.

The problem of the inconsistencies between mass and momentum transport

affects both VOF and Level-Set (LS) methods, see Scardovelli and Zaleski [14]

and Sethian [15]. Many strategies were adapted to LS methods too. Raessi
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and Pitsch [6] used geometric arguments to compute the momentum-density

fluxes by considering the LS field at two subsequent time instants in order to

take into account the temporal evolution of the interface. This method is only

limited to one- and two-dimension problems without a clear description of the

construction of the non-diagonal fluxes. Desjardins and Moureau [16] developed

two methodologies for improving high density ratio two-phase flows simulations.

The first method is essentially based on an adaptation of Rudman’s method

to LS: they evaluate the density fluxes on the cell faces from the LS function

advection scheme and, then, use these fluxes to construct the momentum fluxes.

The second method, instead, is based on a two-velocity Ghost Fluid Method

(GFM, for details on the original method see Fedkiw et al. [17]). Ghods and

Herrmann [9] overcomes the generation of artificial momentum in presence of

large density ratio in LS simulations by proposing a three-dimension algorithm

applicable to the unstructured, collocated, finite volume formulation of NSE.

They use a temporary mass balance discretized by operators consistent with

those of the momentum equation, in order to obtain a predicted density ant thus

recover the updated velocity. Their approach is neither mass nor momentum

conservative: the key idea is to make mass and momentum solutions consistent.

Patel and Natarajan [18] proposed an hybrid staggered/non-staggered frame-

work to solve multiphase flows on unstructured grids. They payed attention to

the consistency of their continuity-momentum resolution by "invoking identi-

cal schemes for convective transport of volume fraction and momentum in the

respective discrete equations". Their scheme has proven to be second-order ac-

curate, bounded and stable for arbitrary high density ratios. The key aspect

of their discretization is the resolution of a face-normal momentum equation on

each cell face. The relative control volume is composed by the union of the two

cells sharing the face, so that, on all the faces, continuity fluxes are known from

the cell-centered continuity equation.

In this paper a numerical method to efficiently and consistently solve the

incompressible, two-phase continuity and momentum equations on staggered

(MAC) grids is proposed. The approach is based on a Coupled Level-Set/Volume-

6



Of-Fluid Method (CLSVOF, Sussman and Puckett [20] and Menard et al. [21]),

and it is meant to deal with high density ratio simulations with strong shear-

ing flows, such as assisted atomization. The main idea is inspired by the work

of Rudman [8], Ghods and Herrmann [9] and Desjardins and Moureau [16].

The salient feature of the method is to solve on each staggered momentum

component control volume an auxiliary continuity equation to get a predicted

density discretely consistent with the solution of momentum equation. To solve

such continuity equation, the equivalence between mass and VOF highlighted

by Rudman [8] is used. However, unlike the Rudman’s method, the proposed

approach does not require an additional twice finer grid, achieving similar con-

sistency properties in a more efficient way: practical test will show an increase

in CPU time of less than 10% compared to a classical CLSVOF-velocity based

solver. As the algorithm is based on a CLSVOF-PLIC approach, mass conser-

vation is better than pure Level-Set methods. Relative mass errors are typically

between 10−4 ÷ 10−14, a satisfying value for all practical purposes, although

machine accuracy is seldom achieved.

The whole algorithm has been implemented and tested in the ONERA DY-

JEAT code (see Couderc [22], Zuzio and Estivalèzes [23], Zuzio et al. [24] and

Xavier et al. [25]). Several test cases are presented, from simpler academical

case to a realistic atomizations application. The results show the robustness of

the solver for extremely high density ratios, as well as the ability to preserve

liquid and gaz kinetic energies.

The paper is organized as follows: in §2 a review of the governing equations

and of the numerical schemes is presented; in §3 the new algorithm is described

in details; its capabilities are shown in §4 by means of some classical high den-

sity ratio test cases; then, an application to the atomization process is shown in

a simulation of a water jet in cross-flow. §5 briefly illustrates some CPU perfor-

mances of the new algorithm. Finally, some concluding remarks are drawn in

§6.
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2. Two-phases Navier-Stokes solver

2.1. Physical model

The one-fluid formulation of the incompressible NSE, Eqs. (1)-(2),is here

adopted. A single set of equations is used to describe the motion of the two

fluids present in the domain, by locally defining the fluid properties:

∇ ·V = 0 (1)
∂V

∂t
+∇ · (V ⊗V) =

1

ρ

(
∇ · ¯̄T + f

)
(2)

In this paper the vectors will be noted by bold symbols, the tensors with an

additional double bar hat. V = [u, v, w]T is the velocity field, f contains the

external forces like gravity, ρg. ¯̄T is the stress tensor ¯̄T = −p¯̄I + ¯̄D where p is

the hydrodynamic pressure and ¯̄D = µ
(
∇V + (∇V)

T
)
is the viscous stress. In

the one-fluid formulation, both the density, ρ(φ,C), and the viscosity, µ(φ,C),

are function of the fluid occupying the computation cell, so they are function of

the Level-Set, φ, and of the VOF color function, C. The interface Γ separates

the two considered fluids, in our cases a gas, indicated by the subscripts g,

and a liquid, indicated by the subscript l. In absence of phase change, the

velocity field is continuous across Γ, i.e. [V]Γ = 0, where [·]Γ = (·)l − (·)g is the

jump operator. The presence of the surface tension leads to a discontinuity in

the normal stresses that is translated into a pressure jump, while the different

viscosities impose a jump on the gradient of velocity:

n ·
[
pI + µ

(
∇V + (∇V)

T
)]
· n = σκ, (3)

t ·
[
µ
(
∇V + (∇V)

T
)]
· n = 0. (4)

where σ is the surface tension, κ is the interface curvature, n is the interface

normal vector and t the tangential one.

2.2. Interface tracking

In addition to the Navier-Stokes Eqs. (1)-(2), the kinematics of the gas-

liquid interface has to be solved as well, in order to identify at each time instant

8



the fluids into the domain and to define their material properties. In this work

the CLSVOF method described by Sussman and Puckett [20] and Menard et al.

[21] is used 2. Two advection equations have to be solved: one for the transport

of the VOF color function, C, Eq. (5), and one for the LS function, φ, Eq. (6).

∂C

∂t
+ V · ∇C = 0 (5)

∂φ

∂t
+ V · ∇φ = 0 (6)

The transport equation of C is equivalent to the equation of mass conservation

for an incompressible flow. Indeed, being 0 ≤ C ≤ 1 a marker function defining

the liquid volume present in each computational cell (if C = 1 the cell is com-

pletely occupied by liquid while if C = 0 the cell is completely occupied by gas),

Eq. (5) represents under the condition (1) the conservation of the mass of each

phase. The main idea of CLSVOF method is to benefit from the advantage of

both LS and VOF strategies: the VOF method minimizes the mass loss, while

the LS method keeps an accurate and smooth description of the geometrical

properties of the interface, i.e. the interface normal vector, n, and curvature, κ.

n =
∇φ
‖∇φ‖

(7)

κ = ∇ ·
(
∇φ
‖∇φ‖

)
(8)

Eq. (7) and (8) are discretized by second-order central differencing. The cou-

pling between LS and VOF is based on the definition of the VOF color function,

C, as a function of φ, in each computational cell. Following the methodology

presented in Sussman and Puckett [20] and Menard et al. [21], a PLIC (Piece-

wise Linear Interface Calculation) reconstruction of the interface φR in each

mixed cell is performed from the existing Level-Set field φ. The initial value

of C can be analytically computed by geometric relations, given here by means

of the VoFTools of Lopéz and Hernandez [26], and then updated by Eq. (5).

2A WENO5-RK3 pure Level-Set approach from Couderc [22] is available as well, and is

used for comparisons in §4.1 and §5
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The VoFTools package of FORTRAN subroutines provides geometrical and an-

alytical tools to perform the two basic operations involved in a VOF method:

the volume truncation and the enforcement of local volume conservation. The

authors demonstrated that these tools reduce the difficulties associated with

the highly complex geometrical operations involved in PLIC-VOF methods es-

pecially in 3D.

The LS function and the VOF color function are advected simultaneously

using a second-order Strang-Splitting from Strang [27]. The Eqs. (5)-(6) are

solved in the following form proposed by Puckett et al. [28]:

∂C

∂t
+∇ · (VC) = (∇ ·V)C, (9)

∂φ

∂t
+∇ · (Vφ) = (∇ ·V)φ, (10)

where C and φ on the right-hand side are implicitly treated in each sweep step in

order to ensure the discrete conservation of such quantities. Since φ is a smooth

function, the fluxes presented in Eq. (10) are easily evaluated by means of a

classic finite volume scheme (Sussman and Puckett [20]), while the C fluxes are

computed through geometrical computations, i.e. the polyhedron truncation

procedure presented in Lopéz and Hernandez [26]. In this way the VOF fluxes

represent exactly the amount of liquid crossing the cell faces. An example is

reported in Fig. 2 where the evaluation of the 2D VOF flux on the right face of

cell (i, j), Gx
i+ 1

2 ,j
, is shown. If VOL is the volume of the liquid corresponding to

the shaded trapezoid bordering the cell face at i + 1
2 , the flux crossing the cell

face (i+ 1
2 , j) in the time unit ∆t and advected by the velocity ui+ 1

2
is given by

Gxi+ 1
2 ,j

=
VOL

|ui+ 1
2
|∆t∆y

· ui+ 1
2

(11)
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Figure 2: Geometric representation of the VOF flux in x-direction through the cell

face (i+ 1
2
, j) in the case where ui+ 1

2
,j > 0.

The updated VOF is used to offset the value of the LS in order to assure the

local and global mass conservation.

At the end of each interface advection step tn + ∆t → tn+1, the Cn+1 and

φn+1 field are obtained. The updated fluids material properties ρn+1 and µn+1

can then be evaluated, and used to solve Eq. (2) as well as compute the jump

conditions. Details on the actual computation of mixed cells density will be

given in §3: the PLIC reconstruction φR,n+1 allows the accurate computation

of density on any control volume by using simple arithmetic averaging:

ρ = Cρl + (1− C)ρg (12)

The pressure-velocity de-coupling is detailed in the following section.

2.3. Navier-Stokes solver

As stated in §1, the one-fluid formulation of NSE allows to use the nu-

merical methods developed for single-phase flows with the interface tracking of
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CLSVOF. In the DYJEAT code, the governing equations are solved by means

of the classical Chorin’s projection method (see Chorin [1] for details) on stag-

gered Cartesian uniform meshes. Within a time-step (or a Runge-Kutta sub-

iteration), the interface tracking and the projection steps are performed sequen-

tially: Eq.s (10) and (9) are solved to obtain the interface location and thus the

material properties at tn+1. Subsequently, the NSE solve is performed.

The first step of the Chorin’s projection method provides a non divergence-

free velocity field by resolving the so-called prediction Eq. (13), obtained from

momentum Eq. (2) without considering the pressure term:

V∗ = Vn + ∆t

(
Vn · ∇Vn +

1

ρn+1
∇ · (2µn+1 ¯̄Dn) +

1

ρn+1
f

)
(13)

The original non-consistent discretization of Eq. (13) is a finite-difference dis-

cretization using fifth-order WENO schemes for the convective terms.

The viscous term is treated explicitly and is here discretized by means of

the method presented by Kang et al. [29]. The effects of the surface tension

are taken into account in the Poisson equation by means of the GFM Fedkiw

et al. [17] through the discretization of the pressure jump across the interface.

In the GFM, ghost cells are defined on each side of the interface and appropriate

schemes are applied to extrapolate the jump conditions. In this way the interface

is treated as a sharp discontinuity and more accurate schemes are used for the

discontinuous variable discretization. As the treatment of the viscous term

described in Sussman et al. [4] is used, the pressure jump defined by the Eq. (3)

turns into [p]Γ = σκ, the jump of the normal component of the viscous stress

being already taken into account in the prediction equation. The pressure is

evaluated by solving the elliptic equation

∇ ·
(

1

ρn+1
∇pn+1

)
=
∇ ·V∗

∆t
(14)

This equation is solved by means of a Multigrid preconditioned Conjugate Gra-

dient method (MGCG), from Tatebe [30]. Finally, the divergence-free velocity

field is obtained by correcting the predicted one :

Vn+1 = V∗ + ∆t
1

ρn+1
∇pn+1 (15)
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The projection steps are repeated twice in a fully coupled second-order Runge-

Kutta predictor-corrector scheme, each sub-step re-evaluating the convective

velocity used to advect the CLSVOF and giving the final velocity (see Rudman

[8] and Vaudor et al. [12]):

Vn+ 1
2 = Vn + dt Fn

Vn+1 =
1

2
Vn+ 1

2 +
1

2
dt Fn+ 1

2

(16)

being F the discrete form of Eq. (13). The interested reader is referred to

Couderc [22] and Zuzio et al. [24] for more details on the actual implementation

in DYJEAT.

The new algorithm presented in §3 will replace the non linear convective

terms of Eq. (13) with a momentum equation consistent with an auxiliary

continuity equation. The continuous form for momentum pure advection can

therefore be written as:

(ρV)∗ = (ρV)n + ∆t ∇ · ((ρV)n ⊗Vn) (17)

3. Consistent Mass-Momentum transport (CMOM)

The objective of the consistent momentum transport (CMOM in this paper)

is to provide a more robust estimation of the convective component of V ∗ in

Eq. (13) when dealing with high density ratio two-phases flows. As seen in the

review of the existing methods §1, the convective term of momentum equation

has at first to be written in the conservative form. In consequence, the result of

this equation is an updated (ρV )∗, one component in each MAC staggered loca-

tion. Dividing this value by an opportune density ρ∗ should give the expected

convective part of V ∗.

One possible estimation for the velocity-cell-centered density ρ∗ could come

from the reconstructed PLIC interface φR,n+1 obtained after integration of Eq.

(9). If the PLIC line (plane in three dimensions) is integrated in half-cells,

an integral value ρn+1
i± 1

2

can be directly obtained by sum of the opportune con-

tributions. However, using this value still leads to non-consistent momentum
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updates: a simple high-density ratio test cases like the one presented in section

4.1 shows a diverging kinetic energy plot and the development of non-physical

velocities.

An effective solution of this problem of consistency (and independent of

the concept of conservation) is presented by Ghods and Herrmann [9], where

a temporary density ρ∗cv, computed on the MAC staggered location, is used to

compute each component of the predicted velocity, and then discarded. In the

present approach, the temporary density equations are solved together with mo-

mentum equations in a CLSVOF-PLIC framework, assuring better conservation

properties than a pure Level-Set approach. There is therefore no need for the

twice finer grid proposed by Rudman [8], thus improving the efficiency of the

algorithm with similar benefits.

The proposed momentum solving algorithm is based on the following steps:

• Definition of staggered temporary continuity equations.

• Definition of consistent staggered cells integral values.

• Definition of consistent staggered cells momentum fluxes.

• Velocity update.

Note that hereinafter the description of the new algorithm is given only for 2D

case, the 3D extension being straightforward.

3.1. Local mass equation

The aforementioned idea is to solve an auxiliary continuity equation in each

velocity component volume, V2 for u and V3 for v as shown in Fig. 3. This

gives a local predicted density ρ∗i , i = u, v, consistent with the corresponding

predicted momentum (ρu)∗ and (ρv)∗, see Eq.s (18)-(21);

ρ∗u = ρnu −∆t (∇ · (ρuV))
n (18)

(ρuu)∗ = (ρuu)n −∆t (∇ · (ρuVu))
n (19)

ρ∗v = ρnv −∆t (∇ · (ρvV))
n (20)

(ρvv)∗ = (ρvv)n −∆t (∇ · (ρvVv))
n (21)

14



In order to solve in a finite volume framework the resulting equations, integral

cell-centered values and face fluxes must be defined.

Cij, pij, ρij

vi,j+1/2 

ui+1/2,j 

i,j+1 

*

* i+1,j 

V1

V3

V2

Figure 3: Representation of the different control volumes considered in a 2D staggered

grid: V1 for the resolution of pressure/LS/VOF equation and V2 and V3, respectively,

for x-component and y-component of momentum.

3.2. Consistent cell integral values

The solution of Eqs. (18)-(21) in momentum control volumes implies the

determination of face-centered density values, ρu and ρv in Fig. 4, defined at

the same points where u and v are located.
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ρ
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φ > 0 
C = 1

ρ 

φ = 0
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u

Figure 4: Definition of the face-centered density values to be used into momentum

equations. The blue line represents the PLIC reconstruction φR on the pressure cell

centered on i, j.

As a finite volume discretization of Eqs. (18)-(21) is desired, ρu and ρv have

to be representative of the integral values in Eq.s (22)-(23):

ρu =
1

V2

∫
V2

ρ(x)dΩ (22)

ρv =
1

V3

∫
V3

ρ(x)dΩ (23)

Following the idea of Rudman [8], the color function C is computed on the

quadrants of a quad(oct)-tree subdivision of each mixed cell (four different values

of C are derived in 2D and eight in 3D for each computational cell). These values

are obtained from the PLIC reconstruction at the time step n, φR,n, using the

polyhedron truncation procedure provided by VoFTools (the same on which

is based the resolution of Eq. (9)). A sub-grid density is therefore computed
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using the arithmetic average of Eq. (12) on each sub-volume. The sought V2-V3

integral densities are given by sum of the opportune contributions: an example

is given by Eqs. (24)-(25), whose control volume is described in Fig. 5.

ρnu
i+1

2
,j

= 1
4 (ρn

i+ 1
4 ,j+

1
4

+ ρn
i+ 1

4 ,j−
1
4

+ ρn
i+ 3

4 ,j+
1
4

+ ρn
i+ 3

4 ,j−
1
4

) (24)

ρnv
i,j+1

2

= 1
4 (ρn

i− 1
4 ,j+

1
4

+ ρn
i+ 1

4 ,j+
1
4

+ ρn
i− 1

4 ,j+
3
4

+ ρn
i+ 1

4 ,j+
3
4

) (25)

Differently from the Rudman’s algorithm, no subgrid reconstruction is needed

to calculate the sub-cells densities appearing in Eq.s (24) and (25). Indeed, as

can be seen in Fig. 5, the linear PLIC reconstructions already known in the main

cells i, j and i + 1, j are used to evaluate the volume fraction in the sub-cells,

shown by the shaded area: Cn
i+ 1

4 ,j+
1
4

, Cn
i+ 1

4 ,j−
1
4

, Cn
i+ 3

4 ,j+
1
4

, Cn
i+ 3

4 ,j−
1
4

.
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Figure 5: Sub-grid VOF reconstruction and density values definition. The blue seg-

ments represent the PLIC reconstructions φR on the pressure cells i, j and i + 1, j.

The shaded areas correspond to the sub-grid volume fraction used to compute sub-

grid densities in Eq.s (24) and (25). The red marks show the intersections between

the PLIC reconstructions and the sub-cell faces.

From these sub-cells volume fractions, the corresponding densities are com-

puted using the generic Eq. (12). Therefore the main extra cost of the pro-

posed approach is the computation of the PLIC reconstructed intersection (the

red dots in Fig. 5) with the sub-cells, which was found nearly negligible. The

face-centered integral densities are advected along the momentum components,

which are themselves the product between the face-centered densities and the

face-centered velocity components (u, v), following Eq.s (18)- (21) in x- and

y-directions.

The following step is to evaluate the numerical fluxes on the staggered cells.
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3.3. Consistent flux evaluation

Assumed the equivalence between mass and VOF, the density fluxes, Gm =

ρV, can be directly derived from the VOF fluxes G. For example, at i+ 1
2 cell

face, the flux is defined as:

Gmi+ 1
2 ,j

= Gi+ 1
2 ,j
ρl + (1−Gi+ 1

2 ,j
)ρg (26)

where ui+ 1
2 ,j

is the face-centered convective speed. To evaluate such VOF fluxes,

the same geometrical computations used to resolve Eq. (9) in §2.2 are considered

but, in this contest, they are applied to different control volumes (i.e. V2 or V3

instead of V1). Hence, for example, considering the equations in the x-direction,

Eqs. (18)-(19), to compute the x-component of density flux ρuV through the

face (i, j) of V2, Gm,xi,j in Fig. 6, the VOF flux, Gxi,j , is required

Gxi,j =
VOL
|uc|∆t∆y

· uc (27)

where, if the convective speed uc = 1
2 (ui− 1

2 ,j
+ ui+ 1

2 ,j
) is positive, VOL is the

liquid volume limited by the dotted line of Fig. 6. In the same way is computed

Gm,xi+1,j , for which the convective velocity is uc = 1
2 (ui+ 1

2 ,j
+ ui+ 3

2 ,j
)

V2

G i+1/2, j-1/2
m,y

G i+1/2, j+1/2
m,y

u i-1/2, j u i+1/2, j u i+3/2, j 
i, j i+1, j

G i, j
m,x

G i+1, j
m,x

|uc| Δt

VOL

Figure 6: Representation of the mass fluxes in the u control volume, i.e. V2.
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The evaluation of the ρu fluxes in y-direction (ρuvc), G
m,y

i+ 1
2 ,j±

1
2

in Fig. 7,

is a bit trickier. Each one of these can be evaluated as the sum of two fluxes

crossing a face of dimension ∆x
2

Gm,y
i+ 1

2 ,j±
1
2

=
Gm,y
i+ 1

4 ,j±
1
2

+Gm,y
i+ 3

4 ,j±
1
2

2
(28)

For example, the VOF fluxes necessary to estimate Gm,y
i+ 1

4 ,j−
1
2

and Gm,y
i+ 3

4 ,j−
1
2

, are

given by

Gy
i+ 1

4 ,j−
1
2

=
VOL

|vi,j− 1
2
|∆t∆x

2

· vi,j− 1
2

(29)

Gy
i+ 3

4 ,j−
1
2

=
VOL

|vi+1,j− 1
2
|∆t∆x

2

· vi+1,j− 1
2

(30)

V2

G i+1/2, j+1/2
m,y

u i+1/2, j 
i, j i+1, j

G i, j
m,x

G i+1, j
m,x

v i, j-1/2 v i+1, j-1/2 

G i+3/4, j-1/2
m,y

G i+1/4, j-1/2
m,y

Δx/2
i, j-1 i+1, j-1

v i, j+1/2 v i+1, j+1/2 

G i+3/4, j+1/2
m,y

G i+1/4, j+1/2
m,y

G i+1/2, j-1/2
m,y

VOL

Figure 7: Evaluation of the x-component mass flux in y-direction, ρfcxvc.
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The momentum convective fluxes can be deduced at the same time of mass

fluxes by simply multiplying the latter for the appropriate advected velocity

component. Eq.s (31) and (32) show the update of both the x-component of

momentum and the associated auxiliary continuity equation, both discretized

on V2:

(ρu)∗i+ 1
2 ,j

= (ρu)ni+ 1
2 ,j
−∆t

[(
Gm,xi+1,j −G

m,x
i,j

∆x

)

+

(
Gm,y
i+ 1

2 ,j+
1
2

−Gm,y
i+ 1

2 ,j−
1
2

∆y

)]n+1

(31)

(ρuu)∗i+ 1
2 ,j

= (ρuu)ni+ 1
2 ,j
−∆t

[(
Gm,xi+1,j ũi+1,j −Gm,xi,j ũi,j

∆x

)

+

(
Gm,y
i+ 1

2 ,j+
1
2

ũi+ 1
2 ,j+

1
2
−Gm,y

i+ 1
2 ,j−

1
2

ũi+ 1
2 ,j−

1
2

∆y

)]n+1

(32)

Actually, since at each time-step the LS and VOF fields are available both at

tn and at tn+1, it is possible to evaluate the fluxes at different time instants,

i.e. Gnu, Gn+1
u and G

n+ 1
2

u . Practical test have shown that using the updated

φR,n+1 → Gn+1
u reconstruction gives more accurate results than other choices.

In Eq. (32), the advected ũ speed is obtained by a high order WENO5.

3.4. Velocity update

Once the continuity and momentum equations are solved, the auxiliary pre-

dicted densities are used to recover the predicted velocity components as in

Eq.s (33) and (34). The convective part of the predicted velocity, V ∗, is finally

computed as:

u∗i+ 1
2 ,j

=
(ρuu)

∗
i+ 1

2 ,j

(ρu)∗
i+ 1

2 ,j

(33)

v∗i,j+ 1
2

=
(ρvu)

∗
i,j+ 1

2

(ρv)∗i,j+ 1
2

(34)

The auxiliary densities ρ∗ are discarded at the end of each time-step.
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In order to compute Vn+1, the viscous part and the external forces have still

to be added to V∗, see Eq. (13). Subsequently, the predicted velocity V∗ is

projected into the subspace of divergence-free velocity after solving the pressure

Poisson equation, Eq.s (14) and (15). An important point is that the coefficient
1

ρn+1 appearing in the pressure equation has to be computed by the face-centered

densities evaluated by means of Eqs. (24)-(25), considering the VOF field at

time tn+1. Indeed, the source term of the pressure equation Eq. (14) depends on

the face-centered densities, as it is obtained by computing the divergence of the

predicted velocity fieldV∗. In the CLSVOF-WENO formulation, these densities

are obtained by Level-Set φn+1 based interpolations. In the CMOM algorithm,

any definition of the face-centered density values other than the one coming from

Eqs. (24)-(25) has shown to re-introduce consistency errors in the projection

step, Eq. (15). For the time integration of governing equation, a second-order

accurate Euler Predictor-Corrector scheme, already used in Rudman [8] and

Vaudor et al. [12], has been implemented. This method is compatible with

the geometric nature of the mass/momentum convective fluxes and consists in

two Euler steps. In the first step, the predictor step, the time integration is

performed on half time step, ∆t/2, in order to find the velocity Vn+ 1
2 . Such

velocity is then used in a second Euler step, the corrector step, in which the

full time step is considered, to approximate the convective velocity as well as to

compute the viscous stress tensor.

4. Validations and Results

4.1. Transport of a very-high density fluid sphere

This simple test case, originally proposed in Bussmann et al. [11], involves

the motion of a high-density fluid sphere, ρh, in a still lower-density fluid, ρl.

Purposefully, no surface tension nor viscous effects are taken into account: only

the convective and pressure terms contribute to the momentum equation. The

density ratio is set to be arbitrarily high, 106 in most literature examples (Ghods

and Herrmann [9], Raessi and Pitsch [6], LeChenadec and Pitsch [13], Vaudor

22



et al. [12]). Given the high density ratio, the influence of the ambient fluid

diminishes and the solution eventually approaches the rigid translation of the

sphere in a void. The behaviour of the solver in this test is therefore heavily

influenced by the discretization of the non linear convective terms of Eq. (17).

In particular, any inconsistency between the mass and momentum transport is

quickly amplified by the density jump, leading to erroneous deformations of the

sphere.

As the numerical method proposed in this paper is based on a split VOF

formulation, two different tests are presented. In the first, called the X-direction

case, the sphere is set in motion along the x-axis, so that the only non-zero mass

and momentum fluxes for the high-density fluid are those in the same direction,

effectively removing any error coming from the directional splitting. In the

second, called the XYZ-direction case, the initial velocity of the sphere is set

with all non-zero components, thus imposing a diagonal motion. Any splitting

effect should therefore appear in the second test case.

All the parameters in this test case are given in a non dimensional form. The

sphere, of radius R = 0.15 and density ρh = 106, is initially located at the center

of a cubic periodic domain of side L = 1. An initial velocity VX
0 = (10, 0, 0)

or VXY Z
0 = (10, 10, 10) is set inside the heavy fluid sphere, while the low-

density phase of density ρl = 100 is at rest. The theoretical solution of the

simulation is the returning of the sphere to its initial position, after tend = 0.1.

In consequence, the simulations are performed up to a full transit time, i.e. until

the sphere has returned to its initial position. The results will be presented in

non dimensional time t/tend. The examined results are the global shape, the

position error, and the evolution of the kinetic energy. As no gravity field is

imposed, the totality of the energy contained in the domain corresponds to the

initial kinetic energy. The reference values are the initial shape and position,

while the kinetic energy should prove to be conserved as the computation is

carried on.
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Comparison of numerical methods.

In this first set of simulations, performed in the x-direction, the classical velocity-

based WENO approaches used in the previous releases of DYJEAT, namely

the Level-Set/WENO (LS), an iso-contour correction variant (LS(ISO)) (as

defined in Couderc [22]) and the Coupled Level-Set/Volume-of-Fluid/WENO

(CLSVOF) are compared to the proposed Consistent Momentum approach

(CMOM). A fixed mesh of 323 is used, resulting in approximately 10 grid points

per diameter. This low resolution has been intentionally chosen as poorly solved

droplets appear routinely in atomization simulations. Mesh refinement effects

are shown in the following section for the CMOM scheme.

Fig. 8 presents a visualization of the four simulations results, namely the

Level-Set zero contour at tend, or a full transit. The initial condition is drawn

in grey; it represents for this test case the reference solution as well.

(a) LS (b) LS-iso (c) CLSVOF (d) CMOM

Figure 8: Sphere shapes after a full transit. Greyed out is the initial condition.

It is clear that all the previous velocity based formulations of the momentum

equation fail this test. The base Level-Set/WENO method loses much of the

initial mass, while the iso-contour correction erroneously adds mass in non-

physical deformations. The CLSVOF/WENO is only marginally more effective

in preserving a spherical shape. The proposed scheme is conversely able to

effectively maintain the initial shape. Fig. 9 presents the time evolution of

the normalized high density phase mass and kinetic energy. These values are

computed at each time-step. In the following computation, Ci,j,k(t) is the VOF

volume fraction in the (i, j, k)th cell at the time t and C0
i,j,k = Ci,j,k(t = 0) the
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initial condition:
M(t)

M0
=

∑
i,j,k Ci,j,k(t)∑
i,j,k C

0
i,j,k

. (35)

The kinetic energy is trickier to compute, as within the MAC discretization it

has to be computed by interpolating velocity components on the cell centers. A

cell-centered normalized kinetic energy variable is thus reconstructed as follows:

Vx,cc
i,j,k = (ui,j,k + ui−1,j,k) /2,

Vy,cc
i,j,k = (vi,j,k + vi,j−1,k) /2,

Vz,cc
i,j,k = (wi,j,k + wi,j,k−1) /2,

(36)

and subsequently by integrating on the whole computational domain as

K =
Ek(t)

E0
k

=

∑
m

∑
i,j,k

(
ρi,j,k(t) Vm,cc

i,j,k (t)
)2

∑
m

∑
i,j,k

(
ρ0
i,j,k Vm,cc,0

i,j,k

)2 , (37)
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Figure 9: Time history of mass and energy evolution for the high density ratio sphere

convection. Several numerical methods: (LS) Level-Set/WENO; (LS-iso) Level-Set

Iso-Contour/WENO;(CLSVOF) Coupled Level-Set/VOF/WENO; (CMOM) Conser-

vative momentum.

the density being evaluated as usually done by ρi,j,k = ρlCi,j,k+ρg (1− Ci,j,k).

It should be pointed out, however, that this energy is a derived variable involv-

ing arbitrary interpolations, so an exact conservation of the integral value is not

expected. A nearly constant value will be taken as a successful result from the

computations, as what the method aims to avoid are artificial energy sources or

dissipation due to incorrect ρV products. Fig. 9a shows the evident Level-Set

26



loss of mass, and while the iso-correction imposes a forced conservation, it has

been observed the strong non-physical sphere deformation. The CLSVOF be-

haves better, but the loss of the spherical shape seen in Fig. 8 starts to induce

a mass reduction towards the end of the sphere translation, of about 0.01%. It

is clear that further simulation time would lead all these methods to diverging

results. The proposed CMOM, on the other side, allows mass conservation up

to the eleventh decimal, in agreement with the visual qualitative analysis. The

kinetic energy plot, Fig. 9b, shows a similar behaviour: the Level-Set/WENO

methods show inconsistent energy values, the classical CLSVOF/WENO ex-

hibits a steady dissipative behaviour linked to the mass loss, while the proposed

CMOM finds out a steady kinetic energy value, with low level fluctuations of

amplitude lower than 10−5 ×K0.

CMOM: splitting and mesh refinement effects.

In this paragraph a more in-depth analysis of the CMOM scheme is presented.

In particular, mesh refinement and directional splitting effects are analysed.

Two test cases, X-aligned and XYZ-diagonal transport, are repeated for four

increasing meshes, 323, 643, 1283 and 2563. This corresponds to roughly 10, 20,

40 and 80 mesh cells per diameter. As already said in the introduction of this

section, the very high density ratio allows to consider the motion of the sphere as

a rigid translation. In a periodic domain, the sphere should maintain its initial

velocity and therefore return to its initial position after a full flow-through. On

the other hand, the gas velocity field is supposed to be heavily perturbed by the

droplet movement. The computed liquid position and velocity at t = tend = 0.1

can be therefore compared to the initial conditions to evaluate the advection

errors, induced by the numerical scheme. The initial velocity field is shown in

Fig. 10a on the z = 0 slice. The initial field involves VX
0 = (10, 0, 0) inside the

liquid and a two-cells halo away from the interface to avoid any initial liquid

momentum error, and zero elsewhere. The final field is shown in Fig. 10b. The

velocity inside the droplet kept its initial value. The gas velocity adapts to the

droplet movement to preserve continuity and momentum, thus generating a non-
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viscous wake. As the simulation is non-viscous, the fluid far from the droplet

remains therefore almost undisturbed. Fig. 11 presents the mesh convergence

effect on the velocity and density fields. For all the considered meshes, the initial

10 m.s−1 field is correctly conserved, Fig. 11a. The density jump, Fig. 11b, is

well captured by the Level-Set/VOF approach and shows the profile sharpening

with the increasing resolution.

(a) (b)

Figure 10: Velocity magnitude fields and vectors for the 323 mesh on the z = 0 slice,

at (a) initial and (b) final times. The droplet shape is outlined in black. Only some

of the vectors are shown for the sake of clarity.
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Figure 11: (a) x-velocity and (b) density profiles for three meshes, 323, 643 and 1283,

at the final simulation time tend.
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In order to quantify the performances of the method, the following error

norms are defined:

‖Err‖1 =
∑
i,j,k

|φt
end

i,j,k − φ0
i,j,k| (38)

‖Err‖2 =

∑
i,j,k

(
φt

end

i,j,k − φ0
i,j,k

)2

 1
2

(39)

‖Err‖∞ = max |φt
end

i,j,k − φ0
i,j,k| (40)

(41)

as well as the relative convergence rate:

q =
ln (Err2∆x)− ln (Err∆x)

ln(2)
(42)

Tables 1 and 2 and Fig. 12 present the error norms and the relative convergence

rates. Increasing the mesh improves the quality of the results, the convergence

rates being bracketed between the first and second order. A closer look at the

graph shows the better accuracy of the numerical method for the X-direction

transport, a foreseen behaviour as no splitting approximation is performed: all

the Y and Z fluxes are theoretically equal to zero for the dense phase. How-

ever, the gap seems to shrink for higher resolutions, as shown by the higher

convergence rates of the XYZ-direction transport.
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Figure 12: Position error of the sphere after a full flow-through. Two test cases, X-

direction and XYZ-direction advections. Three error norms are compared to first and

second-order mesh convergences.

X-Transport position error norms

Grid ‖Err‖1 q1 ‖Err‖2 q2 ‖Err‖∞ q∞

32 1.73e-03 - 2.15e-03 - 6.04e-03 -

64 4.94e-04 1.81 6.15e-04 1.80 1.79e-03 1.75

128 1.75e-04 1.50 2.22e-04 1.47 8.27e-04 1.12

256 5.64e-05 1.63 6.76e-05 1.71 3.37e-04 1.30

Table 1: Position error norms and convergence rates for the high-density sphere X-

Transport test case.
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XYZ-Transport position error norms

Grid ‖Err‖1 q1 ‖Err‖2 q2 ‖Err‖∞ q∞

32 4.55e-03 - 5.58e-03 - 1.39e-02 -

64 1.21e-03 1.91 1.54e-03 1.86 4.81e-03 1.53

128 3.32e-04 1.87 4.19e-04 1.88 1.68e-03 1.51

256 1.04e-04 1.67 1.39e-04 1.59 6.86e-04 1.30

Table 2: Position error norms and convergence rates for the high-density sphere XYZ-

Transport test case.

The following measurements concern the conservation of the normalized ki-

netic energy K (Eq. (37)) by the different meshes for the two test cases, plotted

in respectively Fig. 13 and Fig. 14.

Both graphs show a steady value of K, with small fluctuations depending on

the mesh size. These oscillations are stable in time and decrease strongly with

the mesh size, going from 0.01% to the seventh decimal for the finest mesh: the

mesh convergence rate for the oscillation amplitudes is between two and four.

The same behaviour is observed in both test cases. A temporal average value

‖Err‖ = |1−K| has been computed in order to perform a comparison with the

theoretical unity value, the results plotted in Fig. 15 and resumed in Table 3 as

well as the relative convergence rates.
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Figure 13: Normalized kinetic energy for the X-transport case, four meshes.
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Figure 14: Normalized kinetic energy for the XYZ-transport case, four meshes.
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Figure 15: Normalized kinetic energy errors of the high-density fluid sphere after a

full flow-through for the transport in X-direction and XYZ-direction. The errors are

compared to first and second-order mesh convergences.

X-Transport XYZ-Transport

Grid ‖Err‖ q ‖Err‖ q

32 5.95e-05 - 3.65e-05 -

64 2.43e-05 1.29 1.55e-05 1.24

128 8.10e-06 1.58 5.20e-06 1.58

256 2.30e-06 1.82 1.60e-06 1.70

Table 3: Normalized Kinetic energy errors and convergence rates for the high-density

fluid sphere in the X-advection and the XYZ-advection test cases.

The results show a very good conservation of the global kinetic energy, in

agreement with the conservation of the spherical shape as well as low positioning

errors after the full flow-through. The convergence rates are again between first

and second order, showing a very good improvements with the mesh refinement.

It has to be pointed out that even the coarsest meshes exhibit a good behaviour,

so that in low-resolution scenarios the code is expected to track reasonably well

33



very small structures without drastic mass losses. These results suggest that the

proposed numerical method is able to solve almost arbitrary high density ratio

flows 3 with good accuracy and mesh convergence behaviour as well as a robust

behaviour for low-resolved liquid structures. The splitting effects are visible but

they do not impact significantly the global performances of the code.

4.2. Static water drop in a uniform airflow

Here is reported a test case, already presented in Xiao et al. [31], that

represents a good and fast benchmark to demonstrate the advantages of the

new convective algorithm (CMOM) with respect to the classical Coupled Level-

Set/Volume of Fluid/WENO (CLSVOF) method. A drop of water, with a radius

R = 1.55 mm, is placed in a uniform air flow, Ug = 15.7 ms−1. The density

and the dynamic viscosity of the air and of the water are: ρg = 1.272 kgm−3,

µg = 1.86 × 10−5 kg (ms)−1; ρl = 1000 kgm−3, µl = 0.892 × 10−3 kg (ms)−1.

The drop is located at the center of a cubical domain of length 7.75 mm and

the considered grid is 643. In this simulation the surface tension coefficient

is purposely set equal to zero to avoid the related pressure jump across the

interface.

The pressure field referred to first time instants of the simulations, t =

4× 10−5s, is analysed. At this time, no wake region has yet formed behind the

drop, see Fig. 16, the drop is still spherical and its center should not have moved.

The pressure field, in these conditions, is similar to that produced by a gas flow

around a solid sphere: the pressure increases in the gas phase up to its maximum

value at the stagnation point, where V = 0, located at the drop interface (as

shown by Fig. 16). Inside the drop, the pressure should approach the linear

solution, since the pressure Poisson equation has a negligible source term due to

the small velocity in the liquid phase. In consequence, it should vary smoothly

between the higher values at the upstream and downstream stagnation points.

3Subsequent numerical tests whit density ratios up to 109 have been successfully carried

out.
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Moreover, the value of the pressure at the drop center should be similar to the

pressure imposed as outflow condition on the right side of the domain. Fig. 17

shows the pressure field on the xy plane at z = 0 obtained with the CMOM, Fig.

17a, and the classical CLSVOF method, Fig. 17b. In both cases the highest

pressure is reached at the front stagnation point, but the result obtained with

the CLSVOF presents some non-physical pressure jumps close to the interface

and a strong depression inside the drop. Such pressure jumps are due to the

momentum errors at the interface caused by the high density ratio that is not

taken into account by the classical discretization of convective terms. Because

of these errors, the interface of the drop is perturbed and appears irregular. Fig.

18a shows the pressure distribution in the x-direction at y = 0 and z = 0. With

the new algorithm, represented by the red line with circles, a smooth pressure

distribution is obtained even near the interface. The CLSVOF result, the blue

line with diamonds, instead, not only presents a non smooth pressure close to

the interface, see the insight of Fig. 18a, but is not able to correctly represent

the stagnation point: the velocity obtained at this location with this scheme is

one order of magnitude greater than the one evaluated with the new algorithm,

see the insight of Fig. 18b.
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Figure 16: Streamlines around a static water drop in uniform air flow at early times.

(a) CLSVOF-WENO (b) CMOM

Figure 17: Pressure distribution on a plane through the drop mid-section obtained

with (a) the classical CLSVOF-WENO algorithm, (b) the CMOM method.
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LSVOF
CMOM

(a) Velocity

LSVOF
CMOM

(b) Pressure

Figure 18: (a) Velocity and (b) pressure distribution in the x-direction at y = 0 and

z = 0. The insights report the distributions around the upstream stagnation point.

4.3. Rising bubble

This test case involves a gaseous bubble rising by the action of buoyancy

forces in a column of liquid. In this test, all the physical terms in Eq. (2) are

considered and relevant for the simulation. The proposed convection scheme is

used for the advection terms. An experimental investigation of various rising

bubble configurations has been proposed by Bhaga and Weber [32]. In this

work, air bubbles are formed in a large column containing an aqueous sugar

solution of varying concentration. The bubbles are classified by means of three

dimensionless groups:

Reynolds number, R =
ρUd

µ
(43)

Eötvös number, E =
ρgd2

σ
(44)

Morton number, M =
gµ4

ρσ3
(45)

being ρ the liquid density, U the terminal rise velocity, d the bubble diameter,

µ the liquid viscosity, σ the surface tension coefficient ans g gravity. Among

the available results, the authors Bhaga and Weber [32] propose photo-shots of
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the bubbles as well as a correlation approximating their terminal rising velocity.

At fixed Eötvös, variations of the Morton and Reynolds numbers were achieved

by modifying the sugar-water liquid viscosity. Simulations of two of these pro-

posed experiences are proposed by Owkes and Desjardins [10] by a mass and

momentum preserving un-split method based on the Rudman fine-mesh ap-

proach. The currently proposed single-grid CMOM method is tested against

both experiences and numerical simulations. Two test cases are considered, the

respective characteristics presented in Table 4.

Case Re Eo Mo

1 2.47 116 848

2 7.16 116 41.1

Table 4: Non-dimensional numbers for the rising bubble test cases.

For each test cases, two mesh converging simulations are performed. The

computational domain consists of a rectangular tank of size L = [8D×16D×8D],

being D the bubble initial diameter. The mesh size are respectively M128 =

Nx×Ny×Nz = [128×256×128] andM256 = Nx×Ny×Nz = [256×512×256].

Slip conditions are applied on all of the domain boundaries. The simulations

are performed until stabilization of the bubble shape and rise velocity. The nu-

merical terminal velocities are compared, as suggested by Owkes and Desjardins

[10], to the correlation proposed by Angelino Angelino [33], based on the same

experience :

U = KV m (46)

The coefficients K and m are obtained by least-square interpolation of experi-

mental data, leading to:

K = 25/(1 + 0.33 M0.29) (47)

m = 0.167/(1 + 0.34 M0.24) (48)
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A comparison is made with the two-grids approach of Owkes and Desjardins

Owkes and Desjardins [10] as well.

(a) Mo = 848 (b) Mo = 041

Figure 19: Comparison of the bubble shapes between the proposed numerical scheme

and the experimental visualizations of Bhaga and Weber Bhaga and Weber [32]. (a)

Case 1, Mo = 848, t ≈ 0.8 s in the simulation (b) Case 2, Mo = 41, t ≈ 0.3 s in the

simulation.

Fig. 19 shows a snapshot of the bubble profile once the steady-state solution

is well established, superposed to the experimental visualizations from Bhaga

and Weber [32]. The bubble profiles have been obtained by 2D slices cutting

through the bubble center, thus showing the inner cavity. Both shapes compare

very well with the experimental results. Similar qualitative results have been

obtained in Owkes and Desjardins [10]. 20 presents the time-histories of the

mean rise velocity Vrise. Its value has been obtained by integrating the vertical

component v of the velocity inside the bubble of volume Vbub at each time-step

by equation (49):

Vrise(t) =
1

Vbub

∑
i

vi(t)Ci(t)∆x
3 (49)

The graphs show the rise velocities attaining their steady-state values for both

mesh sizes, the higher Morton case (Case 1) showing a longer characteristic

settling time. For the Case 1, the velocity shows a steady increase in time. The

coarser mesh achieve a steady state solution at around t ≈ 0.6, while for the

finer mesh it takes a little longer, t ≈ 0.8. Numerical results are detailed in
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Table 5.

t [s]

V
ri

s
e
 [

m
.s

1
]

0 0.15 0.3 0.45 0.6 0.75 0.9
0.150

0.155

0.160

0.165

0.170

0.175

0.180

0.185

BhagaWeber

OwkesDesjardins
M128
M256

(a) Mo = 848

t [s]
V

ri
s

e
 [

m
.s

1
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.190

0.200

0.210

0.220

0.230

0.240

0.250

0.260

BhagaWeber

OwkesDesjardins
M128
M256

(b) Mo = 041

Figure 20: Time history of the bubble rise velocity by the proposed numerical scheme

with M128 and M256 meshes, comparison with terminal velocities from the experi-

mental measurements of Bhaga and Weber Bhaga and Weber [32] and the simulations

results of Owkes and Desjardins Owkes and Desjardins [10]. (a) Case 1, Mo = 848 (b)

Case 2, Mo = 41.

Case Rise Velocity [m.s−1]

Proposed scheme Owkes & Desjardins Bhaga & Weber

1 0.182 (M128) 0.175 0.181

0.181 (M256)

2 0.249 (M128) 0.251 0.230

0.246 (M256)

Table 5: Terminal velocities of the rising bubbles, Case 1 and 2, comparison with

literature results (Owkes and Desjardins [10] and Bhaga and Weber [32]) for the two

proposed meshes. Values rounded to the third decimal.

The experimental results are very well predicted by the present method. The
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resulting velocity of Case 1 achieve less than 0.5% relative difference compared

to the correlation (46), even with the coarser mesh. Results of Case 2 show a

global difference of about 7÷ 5% between numerics and experiences depending

on the mesh size. The presented results seem to agree with those of Owkes

and Desjardins [10], obtained with a different numerical method, even slightly

improving the velocity values.

Overall, the presented two-phase flow solver has proven capable to correctly

reproduce low Reynolds numbers flows dominated by viscous and capillary ef-

fects. The next step is to validate the new CMOM method against a more severe

atomization test case, where important momentum exchanges occur between the

two liquid phases.

4.4. Liquid jet in cross-flow

The transverse injection of a liquid jet in a high speed gaseous cross-flow

(LJICF) is applied in many engineering applications, like the air breathing

propulsion systems, since this technique allows to achieve good liquid/gas mix-

ing. For this reason such flow has been extensively studied both from the exper-

imental and numerical point of view. Although 3D unsteady simulations of a jet

in cross-flow have made encouraging progress in last years, they still represent a

very challenging problem in particular for the high liquid/gas density ratio char-

acterizing the flow. To reduce the numerical errors, indeed, many simulations

have been performed only at low density ratio, as for example in Behzad et al.

[34], Andreini et al. [35] or Herrmann [36]. High density ratio simulations can

however be found in Li and Soteriou [37] or Xiao et al. [38], where a particular

technique based on velocity extensions at the interface location allowed a robust

simulation of the assisted air-water atomization at ambient pressure.
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(a) q ≈ 7.5 (b) q ≈ 11.8

Figure 21: Two instantaneous visualizations of the liquid jet atomization from ONERA

experiences of Bodoc et al. [39] and Bodoc et al. [40].

Several dimensionless parameters can be chosen to classify the jet atomiza-

tion behaviour. In particular, the momentum flux ratio (50) and the cross-flow

Weber number (51):

q =
ρlu

2
l

ρgu2
g

(50)

We =
ρgu

2
gdj

σ
(51)

where uk is the average inflow velocity, ρk the gas density, σ the surface tension

coefficient for k = l, g and dj the jet diameter. Experimental observations of

non-turbulent jets in high cross-flow We, see Mazallon et al. [41], Mazallon

et al. [41] and Sallam et al. [42], have shown that We has mainly an impact

on the jet breakup, while q influences mostly the jet shape and its penetration,

without any significant effect on the breakup process. From Wu et al. [43],

Broumand and Birouk [44] and No [45], it is clear that in the liquid jet trajectory

the role of the momentum q is widely accepted as the predominant one. It is

straigtforward to understand that the bending of the main jet body is linked

to the momentum transferred between the high speed gas and the high density

liquid column. However, still important discrepancies exist between literature

correlations. For this reason, the present work attempts a comparison with the

particular experience of Bodoc et al. [39], where the liquid jet trajectories have

been evaluated for several values of q, obtained by varying the liquid injection

velocity. The aim of this test is not to fully investigate the atomization up to

the droplet formation, but rather to focus on the capability of the proposed
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scheme to reproduce the complex momentum exchange between gas and liquid

in a high density ratio (103) and strong shearing (ug/ul ≈ 60) configuration.

(a) (b)

Figure 22: (a) Schematic representation of the experimental test-bed ; (b) the green

box is the considered computational domain.

Fig. 22a shows a schematic representation of the experimental test-bed.

The green area represents the considered computational domain: it consists of

a rectangular channel in which the liquid jet is injected from a circular orifice on

the lower wall, see Fig. 22b. The domain dimensions are [Lx×Ly×Lz] = [40×

20×20] mm, representing the real height (but not the width) of the channel. The

exit diameter of the liquid nozzle is dj = 2 mm and it is located at 10 mm from

the left boundary where the air inflow is imposed. Note that, in the test-bed,

the gas flows through a converging section which ensures a laminar boundary

layer development. To sum up, the chosen boundary conditions of the numerical

domain are: inflow for the gas stream at xmin, slip at zmin and zmax, no-slip at

ymax and ymin boundaries, with the exception of the jet inflow, and free-outflow

at xmax. The Cartesian grid has been set to [Nx×Ny×Nz] = [1024×512×512]

in order to obtain a resolution of ∆x = 4 × 10−5 m, a cell size appropriate to

resolve the primary breakup of the jet. The considered fluid properties (air and

water) are presented in Table 6.
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Gas density ρg = 1.225 [kgm−3]

Liquid density ρl = 1000 [kgm−3]

Gas viscosity µg = 1.78× 10−5 [kg (ms)−1]

Liquid viscosity µl = 1.0× 10−3 [kg (ms)−1]

Surface tension σ = 7.2× 10−2 [N m]

Table 6: Gas and liquid dimensional properties.

A non-turbulent uniform-profile inflow has been used for the gas, as the

canalization ramp is supposed to minimize turbulence and boundary layers. For

the liquid, a more accurate inlet profile has been used to reproduce the water

injector. A RANS simulation of the injector has been performed in the work

of Thuillet [46]: the average injection velocity profile resulting from the RANS

has been injected in the DNS inflow condition. No velocity fluctuations have

been injected in the liquid flow, a point which should be probably addressed for

future simulations.

The trajectory of the jet heavily depending on this mechanism, simulations

for two air stream velocities, giving two values of q, have been performed, see

Table 7.

Case q We

1 7.5 144

2 11.8 92

Table 7: Cross-flow Weber and momentum flux ratio numbers.

Fig. 23 illustrates the evolution of the jet interface for the two simulations.

It is possible to notice many characteristics of a multimode/shear breakup de-

scribed in Mazallon et al. [41] and Sallam et al. [42], among others.
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(a) q = 7.5 (b) q = 11.8

Figure 23: Evolution of the cross-flow jet atomization, for the two values of q =

ρlu
2
l /ρgu

2
g, side view, three instants. The air flow is coming from the left side.

The breakup mechanism begins with the jet deflection in the cross-flow di-

rection, due to the aerodynamic force. Regular wavelike disturbances appear on

the windward surface of the deformed liquid jet. The propagation of these long

waves induces the liquid column breakup by means of the separation of liquid

packets undergoing further rupture. In a pure shear breakup regime the insta-

bilities wavelength are of the order of λ ≈ 0.1 dj Sallam et al. [42]; for lower We,

or bag/multi-modal breakup the wavelength approaches the diameter of the jet,

λ ≈ dj . In the presented simulations, those larger wavelength are clearly visible.

Smaller wavelengths can be hinted but do not seem to be relevant for the atom-

ization of the jet. It is possible that the absence of injected liquid turbulence
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and the confinement of the jet do not allow their development. However, the

instabilities wavelength do not influence the global jet trajectory. Conforming

to the numerical simulations presented in Xiao et al. [38] and Behzad et al. [34],

at the considered We, formation of ligaments is due to a pinching mechanism.

Indeed, in the initial phase of the liquid-gas interaction, because of the highWe,

liquid sheets are ejected in the span-wise direction, along the periphery of the

jet. These sheets elongate into ligaments undergoing further Rayleigh-Plateau

breakup.

x [m]

y
 [

m
]

(a) q = 7.5, instantaneous profile.

x [m]

y
 [

m
]

(b) q = 11.8, instantaneous profile.

x [m]

y
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m
]

(c) q = 7.5, averaged profile.

x [m]

y
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m
]

(d) q = 11.8, averaged profile.

Figure 24: Cross flow liquid jet shapes for both values of q, compared to the experimen-

tal trajectories from Bodoc et al. [40](red continuous lines). (a) and (b), instantaneous

profiles; (c) and (d), averaged intensity profiles.

The difference between the two regimes q = 7.5 and q = 11.8 is visible in the

evolution of Fig.s 23a and 23b. The lesser gas momentum of the q = 11.8 Case 2

allows the jet to stand more upright and to directly impact the upper wall. The

Case 1 jet, q = 7.5, appears more bent and breaks-up before impacting the wall :
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large liquid structures detaches from the body before undergoing pulverisation.

The behaviour of the jet is in good agreement with the visualizations depicted

in Fig. 21. Fig. 24 compares the predicted liquid jet shape with the ONERA

experimental observation realized in Bodoc et al. [39] and Bodoc et al. [40].

Fig.s 24a and 24b depict the instantaneous side view of the jets, while Fig.s 24c

and 24d show a time-averaged intensity contour of the liquid presence. Even

with a low temporal convergence, the shape of the jet is in agreement with the

correlations

The presented simulation demonstrates the capabilities of the new consistent

mass-momentum transport to reproduce experimental atomization conditions

characterized by high density ratio (equal to 103) and high momentum flux ratio,

that were beyond the reach of the previous velocity-based advection scheme.

5. Remarks on computational efficiency

The proposed algorithm uses some ideas already presented original works of

Ghods and Herrmann [9] and Rudman [8]. From the latter, in particular, the

idea of a sub-cell resolution for the volume fraction is employed, as well as the

idea of evaluating the momentum-flux density according to the reconstructed

volume fraction. However, it has been shown by the presented test cases that an

expensive finer grid as advised by Rudman is not needed to achieve consistency.

In order to asses the computational efficiency of the proposed method, some

comparative run-time measurements of DYJEAT have been performed on the

most computationally intensive test case §4.1. In this test case only the advective

and pressure terms are solved. No viscosity, surface tension nor source terms

are considered. A fixed number of time-steps have been set, on an fixed mesh

and on a single core. The runs have been performed with the Level-Set-WENO,

the CLSVOF-WENO (the non-consistent velocity treatment) and the CLSVOF-

CMOM approach. A CLSVOF-WENO run on a twice finer mesh ∆x/2 has been

performed as well. The pressure solver iterations number have been fixed as well

to an averaged value, so that its contribution is independent of the advection
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algorithm.

Timers have been extracted by using theMPI_Wtime Fortran MPI function.

The total execution time has been extracted, as well as the interface tracking,

the momentum update and the pressure solver run-times. As the absolute com-

putational times may strongly depend on architecture, compiler and/or code

optimization, only relative times are presented.

Table 8 shows the measured times, normalized by the absolute lowest value

(the Level-Set Interface tracking time on the ∆x mesh).

Algorithm Mesh TOT IT MU

Level-Set (LS) ∆x 26.9 1.0 1.3

CLSVOF-WENO ∆x 27.5 2.4 1.3

CLSVOF-CMOM ∆x 28.9 2.4 2.5

CLSVOF-WENO ∆x/2 285.9 14.1 8.7

Table 8: Normalized run-time measurements of §4.1 test case, for the different algo-

rithms. TOT : total time; IT: interface tracking; MU: momentum update. Normal-

ization by the lowest absolute value (LS-IT).

Several conclusions can be drawn from these results :

• The LS algorithm is the least expensive in DYJEAT.

• The coupling with the VOF in DYJEAT shows a 150% increment in the

interface tracking compared to the LS. The same WENO scheme is used

for the velocity update.

• Switching to a CMOM momentum advection almost doubles the veloc-

ity update time, an expected result coming from the added temporary

continuity equations.

• Computing the CLSVOF operations on a twice finer mesh gives, not sur-

prisingly, a factor 6 on the interface tracking, and 7 on the velocity update.
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Indeed, 23 = 8 times more operations must be theoretically performed for

each equation.

This preliminary analysis suggests that the computational excess of the

CLSVOF-CMOM would be much lower than using a Rudman-type method

using a twice as fine grid. The total CPU time excess of CLSVOF-CMOM com-

pared to CLSVOF-WENO computations amounts to 5%÷ 10%. An important

benefit in terms of RAM memory is also expected: in the proposed scheme there

are some sub-grid quantities to be computed, but never stored. Defining VOF-

related equations on the finer mesh would imply storing several variables on the

finer grid. Code optimization considerations should be taken into account at

this point, however.

6. Conclusions

In this paper, an efficient method to achieve a consistent momentum-preserving

transport for two-phase flows simulation on staggered grids has been presented.

Starting from a standard Coupled Level-Set/VOF directionally split approach,

the main ideas behind this method are: (i) to recast the momentum equation in

a conservative form; (ii) to solve auxiliary continuity equations coupled to the

momentum equations in the velocity control volumes; (iii) to evaluate consistent

mass and momentum fluxes by means of the PLIC reconstruction.

The continuity and momentum fluxes are evaluated by considering the equiv-

alence between mass and VOF as in Rudman [8]. The inconsistency related to

the staggered arrangements is dealt with by temporary continuity equations,

solved on the face-centered velocity control volumes. These allow recovering a

consistent updated velocity, which avoids the development of instabilities related

to momentum transfer and grants good kinetic energy conservation properties.

The Rudman’s resolution of the continuity and momentum equations on a

twice finer sub-grid is not needed, thus avoiding the significant additional com-

putational cost. Compared to un-split advection schemes, the proposed scheme

retains the simplicity of the directional PLIC fluxes computation, without the
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complex reconstruction of the three-dimensional streak-tubes. Mass conserva-

tion is satisfied for all practical purpose, even though machine error conservation

is not systematically achieved, thanks to the VOF contribution.

Different test cases show a significant improvement in both stability and ac-

curacy of this new method, even at extreme density ratios of 106. In particular,

the liquid jet in cross-flow test case can be considered as a difficult atomization

test case: the new method can handle both high density and shearing ratios,

whereas the classical velocity-based advection schemes for momentum fail. The

liquid jet trajectory, which depends mainly on the ratio of liquid-to-gas momen-

tum flux, is successfully validated against ONERA experimental data. Even

very small droplets can be tracked in a strong shearing flow, which is one of the

goals of atomization DNS.

Finally, the CPU time increase induced by the new method is less than 10%

higher than the standard CLSVOF-WENO scheme.
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