Abed Bounemoura 
  
Some remarks on the Classical KAM Theorem, following Pöschel

We propose a slight correction and a slight improvement on the main result contained in "A lecture on Classical KAM Theorem" by J. Pöschel.

Introduction and results

The paper [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF] contains a very nice exposition of the classical KAM theorem which has been very influential. It is our purpose in this short and non self-contained note to add two remarks to this remarkable paper.

The first one concerns a technical mistake 1 in the proof of the main abstract statement Theorem A, which has been recently pointed out and corrected in the PhD thesis [START_REF] Koudjinan | Quantitave KAM normal forms and sharp measure estimates[END_REF]. Yet a correction of this mistake, following Pöschel arguments, leads to a final statement which is both less elegant and quantitatively weaker. We would like to explain how, by modifying slightly the arguments using ideas due to Rüssmann (see for instance [START_REF]Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF]), Theorem A of [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF] can be proved without any changes. The aforementioned modifications consist of replacing the crude Fourier truncation by a more refined polynomial approximation, and then set an iterative scheme with a linear 2 , rather than super-linear, speed of convergence.

The second one concerns the application of Theorem A to an ε-perturbation of a nondegenerate integrable Hamiltonian system. This gives persistence of a set of positive measure of analytic invariant quasi-periodic tori with fixed diophantine frequencies, such that 1 The choices of h 0 and K 0 , page 23 in [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF], violate the condition h 0 ≤ α(2K ν 0 ) -1 . 2 We would like to quote here the paper [START_REF] Rüssmann | Non-degeneracy in the perturbation theory of integrable dynamical systems, Number theory and dynamical systems[END_REF]: "It has often been said that the rapid convergence of the Newton iteration is necessary for compensating the influence of small divisors. But a deeper analysis shows that this is not true. The Newton method compensates not only the influence of small divisors but also many bad estimates veiling the true structure of the problems." 1 each torus in this set is at a distance of order √ ε to its associated unperturbed invariant torus. By using a more adapted version of Theorem A, we can actually show that the distance is of order ε/α, where α is the constant of the Diophantine vector. This is not a new result, as this was already proved in [START_REF] Villanueva | Kolmogorov theorem revisited[END_REF] using a refinement of Kolmogorov approach (for an individual torus). So let us recall the main result of [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF], keeping the same notations. For a given domain Ω ⊆ R n , consider a subset Ω α ⊆ Ω of Diophantine vectors with constant α > 0 and exponent τ ≥ n -1. Given 0 < r, s, h ≤ 1, define

D r,s = {I | |I| < r} × {θ | |Im(θ)| < s} ⊆ C n × C n , O h = {ω | |ω -Ω α | < h} ⊆ C n
where | . | is the sup norm for vectors, and let | . | r,s,h the sup norm for functions defined on D r,s × O h and | . | L the Lipschitz semi-norm with respect to ω. Let N(I, ω) = e(ω) + ω • I, which can be seen as a family N ω of linear integrable Hamiltonian depending on parameters ω ∈ Ω; the family of embedding Φ 0 : T n ×Ω → R n ×T n defined by Φ 0 (θ, ω) = (0, θ) defines, for each ω ∈ Ω, a Lagrangian torus invariant by the Hamiltonian flow of N ω and quasiperiodic of frequency ω.

Theorem A. Let H = N + P . Suppose P is real-analytic on D r,s × O h with |P | r,s,h ≤ γαrs ν , αs ν ≤ h (1.1)
where ν = τ + 1 and γ is a small constant depending only on n and τ . Then there exist a Lipschitz map ϕ : Ω α → Ω and a Lipschitz familiy of real-analytic Lagrangian embedding Φ : 

T n × Ω α → R n × T n that
|W (Φ -Φ 0 )|, αs ν |W (Φ -Φ 0 )| L ≤ c(αrs ν ) -1 |P | r,s,h |ϕ -Id|, αs ν |ϕ -Id| L ≤ cr -1 |P | r,s,h (1.2)
uniformly on T * × Ω α and Ω α respectively, where c is a large constant depending only on n and τ , and W = Diag(r -1 Id, s -1 Id).

As expressed in (1.2), the map (Φ, ϕ) is Lipschitz regular with respect to ω ∈ Ω α , and its Lipschitz norm (suitably weighted) is close to the one of (Φ 0 , Id); this is all what is needed to transfer the positive measure in parameter space ω ∈ Ω α to a positive measure of quasi-periodic solutions in phase space. One course one may ask whether (Φ, ϕ) is more regular with respect to ω ∈ Ω α (since Ω α is a closed set, smoothness has to be understood in the sense of Whitney). In fact, the sketch of proof we will give below implies the following:

given any l ∈ [1, +∞[, provided (1.1) is replaced by |P | r,s,h ≤ γ(l)αrs ν
for some h > 0 and some γ(l) > 0, (Φ, ϕ) is of class C l with respect to ω: we simply chose l = 1 in Theorem A to obtain Lipschitz regularity. However, as l → +∞, γ(l) → 0 and thus we cannot conclude that (Φ, ϕ) is smooth. In order to reach such a statement, one can replace the linear scheme of convergence by the usual super-linear scheme (as described in [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF] for instance) but then the exponent ν in (1.1) has to be deteriorate: given any µ > ν, we have that (Φ, ϕ) is smooth with respect to ω provided (1.1) is replaced by

|P | r,s,h ≤ γ(µ, ν)αrs µ
for some h > 0 and some γ(µ, ν) > 0: again γ(µ, ν) → 0 as µ → ν. Popov (see [START_REF] Popov | KAM theorem for Gevrey Hamiltonians[END_REF]) showed that one can even go further and obtain some Gevrey smoothness of (Φ, ϕ) under a stronger smallness condition; without going into these rather technical issues, let us just say that (Φ, ϕ) can be shown to be Gevrey with exponent 1 + µ provided the polynomially small threshold s ν in (1.2) is replace by a super-exponentially small threshold of order exp(-c(1/s) a ) with a = a(µ, ν) = ν/(µ -ν). This is probably the best smoothness one can achieve in general.

Next we consider a small perturbation of a non-degenerate integrable Hamiltonian, that is a real-analytic Hamiltonian of the form

H(q, p) = h(p) + f (q, p), |f | ≤ ε
where |f | is the sup norm on a proper complex domain. Introducing frequencies as independent parameters as in [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF], one can write H as in Theorem A with

P = P f + P h , |P f | ≤ ε, |P h | ≤ Mr 2
where M is a bound on the Hessian of h. At that point, the best choice for r seems to be r ≃ √ ε so that the size of P is of order ε and Theorem A can be applied; yet with such a choice it is obvious that because of the estimates for ϕ in (1.2), the distance between the perturbed and unperturbed torus will be of order ε/r ≃ √ ε. Such an argument, used in [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF], do not take into account the fact that the term P h is actually integrable and at least quadratic in I (that is, P h (0, ω) = 0 and ∇ I P h (0, ω) = 0): this is an important point, as the size of P h will effectively enter into the conditions (1.1) but not in the estimates (1.2), simply because P h do not get involved in the approximation procedure nor contribute to the linearized equations one need to solve at each step of the iteration. Then, taking into account the estimate for P h (which itself is a consequence of the fact that it is at least quadratic in I), the requirement |P | αrs ν is then obviously implied by the conditions where ν = τ + 1, γ and δ are small constants depending only on n and τ . Then there exist a Lipschitz map ϕ : Ω α → Ω and a Lipschitz familiy of real-analytic Lagrangian embedding Φ : T n × Ω α → R n × T n that defines, for each ω ∈ Ω α , a Lagrangian torus invariant by the Hamiltonian flow of H ϕ(ω) and quasi-periodic of frequency ω. Moreover, the estimates (1.2) holds true.

|P f | αrs ν ,
We may now choose r as large as possible, namely r ≃ αs ν , and obtain as a consequence that the distance between perturbed and unperturbed torus is of order ε(αs ν ) -1 . As we already said, this fact was proved in [START_REF] Villanueva | Kolmogorov theorem revisited[END_REF]; alternatively, a slight modification in the proof in [START_REF] Bounemoura | KAM, α-Gevrey regularity and the α-Bruno-Rüssmann condition[END_REF] yields the same result.

Sketch of proof

In this section, we will sketch the proof of Theorem A and Theorem B; actually, we will simply indicate the modifications with respect to [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF] and we will use the same convention for implicit constants depending only on n and τ .

Proposition 2.1. Let H = N + P , and suppose that |P | s,r,h ≤ ε with

     ε •< αη 2 rσ ν , ε •< hr, h ≤ α(2K ν ) -1 , K =• σ -1 log(nη -2 ) (2.1)
where 0 < η < 1/8 and 0 < σ < s/5. Then there exists a real-analytic transformation

F = (Φ, ϕ) : D ηr,s-5σ × O h/4 → D r,s × O h such that H • F = N + + P + with |P + | ≤ 9η 2 ε (2.2) and |W (Φ -Id)|, |W (DΦ -Id)W -1 | <• (αrσ ν ) -1 ε |φ -Id|, h|Dϕ -Id| L <• r -1 ε (2.3) uniformly on D ηr,s-5σ × O h and O h/4 , with W = Diag(r -1 Id, σ -1 Id).
The above proposition is a variant of the KAM step of [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF], which we already used in [START_REF] Bounemoura | Positive measure of KAM tori for finitely differentiable hamiltonians[END_REF]. The only difference is that in [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF], instead of (2.1) the following conditions are imposed

     ε •< αηrσ ν , ε •< hr, h ≤ α(2K ν ) -1
(2.4) with a free parameter K ∈ N * , leading to the following estimate

|P + | <• (ε(rσ ν ) -1 + η 2 + K n e -Kσ )ε.
(2.5) instead of (2.2). The last two terms in the estimate (2.5) comes from the approximation of P by a Hamiltonian R which is affine in I and a trigonometric polynomial in θ of degree K; to obtain such an approximation, in [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF] the author simply truncates the Taylor expansion in I and the Fourier expansion in θ to obtain the following approximation error

|P -R| s-σ,2ηr,h <• (η 2 + K n e -Kσ
).

Yet we can use a more refined approximation result, which allows to get rid of the factor K n in the above estimate. More precisely, we use Theorem 7.2 of [START_REF]Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF] (choosing, in the latter reference,

β 1 = • • • = β n = 1/2
and δ 1/2 = 2η for δ ≤ 1/4); with the choice3 of K as in (2.1), this gives another approximation R (which is nothing but a weighted truncation, both in the Taylor and Fourier series, which is affine in I and of degree bounded by K in θ) and a simpler error

|P -R| s-σ,2ηr,h ≤ 8η 2 .
As for the first term in the estimate (2.5), it can be easily bounded by η 2 ε in view of the first part of (2.1) which is stronger than the first part of (2.4) required in [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF]. Now, at variance with [Pös01], we will use Proposition 2.1 in an iterative scheme with a linear speed of convergence as η will be chosen to be a small but fixed constant: for convenience, let us set η = 10 -1 4 -ν , κ = 9η 2 .

Next, we define for i ∈ N, σ 0 = s/20, σ i = 2 -i σ 0 , s 0 = s, s i+1 = s i -5σ i so that s i converges to s/2. Then, for

K i =• σ -1 i log(nη 2 ) =• σ -1 i , we set h i = α(2K ν i ) -1 = 2 -iν h 0 , h i •= ασ ν i
and the condition αs ν ≤ h implies in particular than h 0 ≤ h. Finally, we put

ε i = κ i ε, r i = η i r
and we verify that Proposition 2.1 can be applied infinitely many times: the third condition of (2.1) holds true by definition, whereas the first two conditions of (2.1) amount to ε i •< αr i σ ν i which, in view of our choice of η, holds true for all i ∈ N provided it holds true for i = 0; for i = 0 the condition is satisfied in view of the threshold ε ≤ γαrs ν . Once we can iterate Proposition 2.1 infinitely many times, the convergence proof and the final estimates follow exactly as in [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF], since the sequences ε i (h i r i ) -1 and ε i (h 2 i r i ) -1 decrease geometrically, again by our choice of η. This concludes the sketch of proof.

To prove Theorem B, one needs the following variant of Proposition 2.1. 

         ε •< αη 2 rσ ν , r •< M -1 αη 2 σ ν , ε •< hr, h ≤ α(2K ν ) -1 , K = nσ -1 log(η -2 ) (2.6)
where 0 < η < 1/4 and 0 < σ < s/5. Then there exists a real-analytic transformation

F = (Φ, ϕ) : D ηr,s-5σ × O h/4 → D r,s × O h
such that H • F = N + + P + + Q with the estimates (2.2) and (2.3).

Let R be the approximation of P ; if {., .} denotes the Poisson bracket and [ . ] averaging over the angles, we solve the equation

{F, N} = R + Q -[ R + Q] which, since Q is integrable, is exactly the equation {F, N} = R -[ R]
that is solved in [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF] (with, of course, R instead of R as we explained above). This justifies that the transformation in Proposition 2.2 is the same as in Proposition 2.1, and in particular it satisfy the estimates (2.2). The only difference is that the new Hamiltonian writes H • F = N + + P + + Q, N + = N + [ R]

with

P + = 1 0 {(1 -t)[ R] + t R + Q, F } • X t F dt + (P -R) • X 1 F .
As compared to [START_REF] Pöschel | A lecture on the classical KAM theory[END_REF], there is an extra term in P + coming from Q, whose contribution is easily bounded by the simple Poisson bracket |{Q, F }| <• Mr(ασ ν ) -1 ε and, in view of the extra condition we imposed in (2.6), one can easily arrange the estimate (2.3). This justifies Proposition 2.2, and the iteration leading to Theorem B is exactly the same as the one leading to Theorem A.

  defines, for each ω ∈ Ω α , a Lagrangian torus invariant by the Hamiltonian flow of H ϕ(ω) and quasi-periodic of frequency ω. Moreover, Φ is real-analytic on T * = {θ | |Im(θ)| < s/2} for each ω and

  r αs ν and thus we can state the following theorem (with a change of notations).

Theorem B. Let H = N + P + Q. Suppose P , Q are real-analytic on D r,s × O h , Q is integrable and at least quadratic in I with |Q| r,h ≤ Mr 2 and |P | r,s,h ≤ γαrs ν , r ≤ δM -1 αs ν , αs ν ≤ h

(1.3)

  Proposition 2.2. Let H = N + P + Q, suppose that |P | s,r,h ≤ ε, |Q| r,h ≤ Mr 2 with Q integrable and at least quadratic in I and

There is a constant depending only on n that we left implicit in the definition of K, which depends on the precise choice of norms for real and integer vectors, see[START_REF] To | Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF] for instance.
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