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Scaling limits of bisexual Galton-Watson processes

Vincent Bansaye∗, Maria-Emilia Caballero†, Sylvie Méléard‡, Jaime San Martín§.

June 8, 2020

Abstract

Bisexual Galton-Watson processes are discrete Markov chains where reproduction events
are due to mating of males and females. Owing to this interaction, the standard branching
property of Galton-Watson processes is lost. We prove tightness for conveniently rescaled bi-
sexual Galton-Watson processes, based on recent techniques developed in [4]. We also identify
the possible limits of these rescaled processes as solutions of a stochastic system, coupling two
equations through singular coefficients in Poisson terms added to square roots as coefficients
of Brownian motions. Under some additional integrability assumptions, pathwise uniqueness
of this limiting system of stochastic differential equations and convergence of the rescaled
processes are obtained. Two examples corresponding to mutual fidelity are considered.
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1 Introduction
Galton-Watson processes describe population dynamics for clonal populations without interac-
tions. Biological reasons have led to generalize these processes to bisexual Galton-Watson pro-
cesses modeling sexual reproduction. The number of pairing of males and females in one generation
is then modeled by a mating function which can have different forms depending on different repro-
duction strategies: monogamous or polygamous reproduction, fidelity or not, one dominant male,
etc. These bisexual Galton-Watson processes have been introduced by Daley [8] and studied in
particular by Alsmeyer and Rösler [1, 2], see [3, 14] for surveys.

We are interested in the scaling limit of a bisexual Galton-Watson process. We consider a
population composed of females and males. The two subpopulations have their own dynamics
(clonal reproduction or intrinsic death) but can also interact through the sexual reproduction.
In the latter, the mating function plays a main role. This work extends a previous paper [4], in
which a general method was proposed for investigating scaling limits of finite dimensional Markov
chains to diffusions with jumps. This method was applied to two one-dimensional cases in random
environment. In both cases the uniqueness of the limiting one-dimensional diffusion process was
based on the works of Fu and Li [12], Dawson and Li [9] and Li and Pu [20], where the authors
generalized the well-known uniqueness result for Feller diffusion, with Hölder-1/2 regularity in the
diffusion coefficient.

In the present situation, the two populations, females and males, are coupled by the mating,
which makes the problem more difficult. We use the general result developed in [4] to prove
tightness and identification of the scaling limits of the bisexual processes. The limiting values
are solutions of a two-dimensional system of coupled stochastic differential equations with jumps
and non regular coefficients. The main novelty concerns the uniqueness of these limiting values.
Indeed the coupling of the two equations through singular coefficients in Poisson terms added to
square roots as coefficients of Brownian motions raises a deep difficulty. We resolve the problem
under an integrability condition on the jump measure which covers a large number of cases.

The bisexual Galton-Watson process ZN = (FN ,MN ) that we consider is defined as follows. It is
a Markov process taking values in N2 and satisfying the following induction identity for n ≥ 0,

FNn+1 = FNn +

FNn∑
p=1

Ef,Nn,p +

gN (FNn ,M
N
n )∑

p=1

Lf,Nn,p , (1)

MN
n+1 = MN

n +

MN
n∑

p=1

Em,Nn,p +

gN (FNn ,M
N
n )∑

p=1

Lm,Nn,p , (2)

where N ∈ N scales the population size and for each N , the family of random variables
{MN

0 , F
N
0 , Ef,Nn,p , Em,Nn,p , (Lf,Nn,p , L

m,N
n,p ) : n, p ≥ 1} is mutually independent. The random variables

(MN
0 , F

N
0 ) are integer-valued and the random variables (Ef,Nn,p , Em,Nn,p , (Lf,Nn,p , L

m,N
n,p )) are identically

distributed for n, p ≥ 1 and take values in {−1, 0, 1, 2, . . .} = {−1, 0} ∪ N. We denote their
distributions as follows:

E•,Nn,p
d
= E•,N , (Lf,Nn,p , L

m,N
n,p )

d
= (Lf,N , Lm,N ),

for • ∈ {f,m}. The terms related to the random variables E•,Nn,p may model either survival without
offsprings (E•,N = 0) or death without offsprings (E•,N = −1) or more complex event including an
asexual clonal reproduction with several offsprings (E•,N ∈ N). The random variables (Lf,Nn,p , L

m,N
n,p )

model the sexual reproduction issued from mating.

The class of bisexual Galton-Watson process defined above combines the classical asexual Galton-
Watson processes and the bisexual Galton-Watson processes introduced by Daley [8].

Our main result will be applied in two cases. The particular case where E•,Nn,p are Bernoulli random
variables with values in {0,−1}, describes whether or not individuals survive in the next generation.
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A second interesting example concerns the case where E•,Nn,p are nul and (Lf,Nn,p , L
m,N
n,p )

d
= −(1, 1) +

(Lf,N+ , Lm,N+ ), with L•,N+ ∈ {0, 1, . . .}. This case can be interpreted as the replacement of the
mating pair of female and male by a random number of females and males in the next generation,
via sexual reproduction. The function gN counts the number of mating in one generation. One
of the main example of mating function is gN (y, z) = y ∧ z and we illustrate our results with this
function. It counts the number of pairing of male and female when their number is given by y
and z. Modeling the effective sexual interaction by such a function corresponds to monogamous
mating with mutual fidelity.

In Section 2, we state our assumptions and the main results and we develop the two applications.
We prove the tightness and identification of the sequence of scaled sexual Galton-Watson processes
in Section 3. We then conclude the proof of the convergence theorem by using the uniqueness
result proved in Section 4. In the latter, we prove a uniqueness result in a slightly more general
framework which could be applied to different situations. This is is the main difficulty of the
paper.

2 Main results and applications

2.1 Assumptions and statement of convergence

Let us state the assumptions under which we obtain our main result. These assumptions will be
partially relaxed in the next sections for weaker results.

The two first assumptions govern the scaling of the reproduction and death events.
We introduce a truncation function h : R→ R, which is a continuous bounded function coinciding
with Identity in a neighborhood of zero. For convenience, we assume in this paper that h(u) = u
for u ∈ [−1, 1] and as an example, one can consider h(u) = (−1) ∨ (u ∧ 1).

Assumption A. We consider a non-negative sequence vN going to +∞ and we assume that

(A1) - For • ∈ {f,m}, there exist α• ∈ R, σ• ≥ 0 and a measure ν• on (0,∞) satisfying∫∞
0

(1 ∧ u2) ν•(du) < +∞, such that

lim
N→∞

vNN E(h(E•,N/N)) = α•; lim
N→∞

vNN E(h2(E•,N/N)) = σ2
• +

∫
(0,∞)

h2(u)ν•(du);

lim
N→∞

vNN E(φ(E•,N/N)) =

∫ ∞
0

φ(u)ν•(du) (3)

for any φ : R→ R continuous bounded and null in a neighborhood of 0.

(A2) - For •, ? ∈ {f,m}, there exist αS• ∈ R and σS•,? ∈ R+ and a measure νS on [0,∞)2 satisfying∫
[0,∞)2

1 ∧ (u21 + u22) νS(du1, du2) < +∞, such that

lim
N→∞

vNN E
(
h
(
L•,N/N

))
= αS• ,

lim
N→∞

vNN E
(
h•h?

(
(Lf,N , Lm,N )/N

))
= (σS•,?)

2 +

∫
[0,∞)2

h•h?(u1, u2)νS(du1, du2)

where hf (u1, u2) = h(u1) and hm(u1, u2) = h(u2), and

lim
N→∞

vNN E
(
φ
(

(Lf,N , Lm,N )/N
))

=

∫
[0,∞)2

φ(u1, u2)νS(du1, du2) (4)

for any φ : R2 → R continuous bounded and null in a neighborhood of 0.
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Assumption (A1) yields the classical necessary and sufficient condition for convergence of
rescaled (asexual) Galton-Watson processes, see for instance Grimwall [13], Lamperti [18], Bansaye-
Simatos [6] or [4]. Assumption (A2) provides a natural bisexual counterpart.

Let us now introduce the assumptions on the mating function.

Assumption B. There exists a non-negative function g on R2
+ such that

(B1)- The sequence of mating functions gN (defined on N2) uniformly converges to g, as N tends
to infinity :

sup
(y,z)∈(N/N)2

∣∣∣∣gN (Ny,Nz)

N
− g(y, z)

∣∣∣∣ N→∞−→ 0. (5)

(B2)- The function g is dominated by y ∧ z: there exists a, b ≥ 0 such that for any y, z ≥ 0,

g(y, z) ≤ a(y ∧ z) + b. (6)

(B3)- The function g is locally Lipschitz and g(y, 0) = g(0, z) = 0 for all y, z.
(B4)- The function g satisfies the ellipticity assumption: for any positive δ, n,

inf{g(y, z) : δ ≤ y ≤ n, δ ≤ z ≤ n} > 0. (7)

As a main example, we have in mind the monogamous mating with mutual fidelity for which
gN (y, z) = g(y, z) = y ∧ z. We refer to [3] about mating functions and their impact on population
dynamics and to [1] and [2] in the particular case of promiscuous mating. Assumption (B2) is
restrictive regarding the behavior of g when y or z goes to infinity. But it covers our main mod-
eling motivations. Besides it can certainly be relaxed before explosion time thanks to localization
arguments to capture other mating functions.

An additional moment assumption for the jump measure will be involved for pathwise unique-
ness. In this section for convenience we make the following first moment assumption and refer to
the next sections for comments and extensions.

Assumption C. We denote by ν the measure on R2
+ given by

ν(du1, du2) = νf (du1)δ0(du2) + δ0(du1)νm(du2) + νS(du1, du2).

We assume that ∫
R2

+

(u1 + u2)ν(du1, du2) < +∞. (8)

Let us now state our main result.

Theorem 2.1. Let us suppose that Assumptions A, B, C hold and that the sequence ZN0 /N con-
verges weakly to Z0 = (F0,M0) ∈ [0,∞)2. Then, the sequence of processes (ZN[vN .]/N)N converges
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in law in D([0,∞), [0,∞)2) to the unique strong solution Z = (F,M) of

Ft = F0 +

∫ t

0

αf Fsds+

∫ t

0

σf
√
Fs dB

f
s

+

∫ t

0

∫
[0,∞)2

1θ≤Fs−h(u)Ñf (ds, dθ, du) +

∫ t

0

∫
[0,∞)2

1θ≤Fs−(u− h(u))Nf (ds, dθ, du)

+

∫ t

0

αSf g(Fs,Ms) ds+

∫ t

0

√
g(Fs,Ms)dB

1
s

+

∫ t

0

∫
[0,∞)3

1θ≤g(Fs−,Ms−)h(u1)ÑS(ds, dθ, du1, du2)

+

∫ t

0

∫
[0,∞)3

1θ≤g(Fs−,Ms−)(u1 − h(u1))NS(ds, dθ, du1, du2),

Mt = M0 +

∫ t

0

αmMsds+

∫ t

0

σm
√
Ms dB

m
s

+

∫ t

0

∫
[0,∞)2

1θ≤Ms−h(u)Ñm(ds, dθ, du) +

∫ t

0

∫
[0,∞)2

1θ≤Ms−(u− h(u))Nm(ds, dθ, du)

+

∫ t

0

αSm g(Fs,Ms) ds+

∫ t

0

√
g(Fs,Ms)dB

2
s

+

∫ t

0

∫
[0,∞)3

1θ≤g(Fs−,Ms−)h(u2)ÑS(ds, dθ, du1, du2)

+

∫ t

0

∫
[0,∞)3

1θ≤g(Fs−,Ms−)(u2 − h(u2))NS(ds, dθ, du1, du2), (9)

where Bf and Bm are one-dimensional Brownian motions,(
B1

B2

)
=

(√
(σSf )2 − (σSfm)4/(σSm)2 (σSfm)2/σSm

0 σSm

)
.B,

B is a two-dimensional Brownian motion, NS, Nf and Nm are Poisson point measures on [0,∞)4

and [0,∞)3, respectively with intensity measures dsdθνS(du1, du2), dsdθν1(du) and dsdθνm(du),
Ñ being the compensated measure of N and all these processes are independent.

Note that in the previous statement, σS•,• is denoted by σS• for convenience. Besides Assumption
A ensures that the quantity (σSf )2 − (σSfm)4/(σSm)2 is positive. It can be deduced from Cauchy-

Schwarz inequality applied to E
(
χε(L

f,N )χε(L
m,N )

)
by choosing χε = h(1−φε) with φε an even

continuous bounded function on R null in [0, ε] and equal to 1 in [2ε,∞).

Note also that if instead of Assumption C, we only require
∫
R2

+
1 ∧ (u1 + u2) ν(du1, du2) < +∞,

then the convergence hold before the explosion time Te = limn→∞ inf{t ≥ 0 : Ft ≥ n or Mt ≥ n}.
Moreover the tightness and identification can be achieved under the optimal two-order moment
condition :

∫
R2

+
1 ∧ (u21 + u22) ν(du1, du2) < +∞. The proof of the uniqueness requires a stronger

moment assumption close to 0, which slightly extends the first moment condition.

Lastly, note that because of (B3), (0, 0) is an absorbing point and any solution issued from R2
+

stays in R2
+.

The proof of Theorem 2.1 will be given in Section 3. It consists in first proving the tightness and
the identification of the limit under Assumptions A and (B1), (B2), using a suitable functional
space which exploits the independence of random variables. The uniqueness of the limit will be
proved with additional Assumptions (B3)–(B4) and C. This uniqueness result is the main point
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of the paper. Indeed, the stochastic system given in (9) is a true coupled system (the coupling
being due to the mating), with radical diffusion coefficients and accumulating jumps. At the best
of our knowledge, it is the first result of this type in the case of non polynomial coefficients. For
the polynomial case, we mention the general approach for the study of the martingale problem
developed in e.g. [7, 11]. Our uniqueness result is stated and proved in a general framework in
Section 4.

2.2 Applications
We consider now two examples for which we apply the previous result. For sake of clarity, we
focus on the classical mating function

g(y, z) = y ∧ z.

2.2.1 Survival and sexual reproduction

In this first application, the probability for a given mating to leave one offspring or more in the next
time step (generation) is low. But a large number of offsprings may be produced in a single mating.
This random integer number is denoted by DN . The sex is determined independently for each
offspring: each new born is a female (resp. a male) with probability q ∈ (0, 1) (resp. 1 − q). Be-
sides, we fix pf , pm ≥ 0 to determine the death probability of males and females in each generation.

We make the following assumption.

Assumption D. Let us consider α ∈ [0,∞) and a measure µ on [0,∞) such that∫ ∞
0

uµ(du) <∞. (10)

We also consider a sequence (vN )N of positive real numbers tending to infinity and a truncation
function h and assume that

lim
N→∞

vNN E
(
h

(
DN

N

))
= α+

∫ ∞
0

h(u)µ(du); lim
N→∞

vNN E
(
φ

(
DN

N

))
=

∫ ∞
0

φ(u)µ(du).

for any φ continuous bounded and null in a neighborhood of 0.

We observe that the choice of the truncation function h does not impact (α, µ). Moreover, given
a triplet (µ, α, (vN )N ) as previously, the sequence of random variables (DN )N satisfying

P (DN = 1) =
α

vN
, ∀u ∈ [2/N,∞), P(DN ≥ Nu) =

µ[u,∞)

NvN

satisfies Assumption D.

We now give by induction a formal definition of the bisexual Galton-Watson ZN = (FN ,MN )
with sexual reproduction DN , sex ratio q and death rates (pf , pm). Given (FN0 ,M

N
0 ) ∈ N2, we

define for n ≥ 0,

FNn+1 = FNn +

FNn∑
p=1

Ef,Nn,p +

MN
n ∧F

N
n∑

p=1

Lf,Nn,p , (11)

MN
n+1 = MN

n +

MN
n∑

p=1

Em,Nn,p +

MN
n ∧F

N
n∑

p=1

Lm,Nn,p , (12)
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where for each N , the family of random variables {MN
0 , F

N
0 , Ef,Nn,p , Em,Nn,p , (Lf,Nn,p , L

m,N
n,p ) : n, p ≥ 1}

is mutually independent. Moreover for each n, p ≥ 1 and • ∈ {f,m},

P(E•,Nn,p = −1) = 1− P(E•,Nn,p = 0) = p•/vN

corresponds to the probability of death of each female and each male, while

(Lf,Nn,p , L
m,N
n,p )

d
= (Lf,N , Lm,N ) =

DN∑
j=1

(Bj , 1− Bj)

describes the sex repartition of offsprings, where (Bj)j≥1 are independent Bernoulli random vari-
ables with parameter q independent of DN .

Theorem 2.2. Under the weak convergence of ZN0 /N to Z0 = (F0,M0) ∈ [0,∞)2 and Assumption
D, the sequence of processes (ZN[vN .]/N)N converges in law in D([0,∞), [0,∞)2) to the unique strong
solution Z = (F,M) of the following SDE :

Ft = F0 −
∫ t

0

pfFsds+ αq

∫ t

0

(Fs ∧Ms) ds+

∫ t

0

∫
[0,∞)2

1θ≤Fs−∧Ms−quN(ds, dθ, du), (13)

Mt = M0 −
∫ t

0

pmMsds+ α(1− q)
∫ t

0

(Fs ∧Ms) ds+

∫ t

0

∫
[0,∞)2

1θ≤Fs−∧Ms−(1− q)uN(ds, dθ, du),

where N is a Poisson point measure on [0,∞)3 with intensity measure dsdθµ(du).

To apply Theorem 2.1, the technical point to check is Assumption (A2). It is deduced from the
next lemma.

Lemma 2.3. For any integers (k, `) 6= (0, 0),

NvNE
(

1− exp

(
−kL

f,N

N
− `L

m,N

N

))
N→∞−→ ak,` α+

∫ ∞
0

(1− e−ak,`u)µ(du),

where ak,` = kq + `(1− q).

Proof. By independence of the random variables Bj and conditioning by DN ,

E
(

1− e−kL
f,N/N−`Lm,N/N

)
= 1− E

([
qe−k/N + (1− q)e−`/N

]DN)
= E

(
faNk,`(D

N/N)
)
,

where fa(x) = 1− exp(−ax) and

aNk,` = −N log
(
qe−k/N + (1− q)e−`/N

)
.

Letting N → ∞ and noticing that aNk,` → ak,` > 0, we prove that NvNE
(
fak,`(D

N/N)
)
→

ak,`α +
∫∞
0
fak,` dµ by Assumption D and conclude. More precisely, let us use a family of non-

negative continuous bounded functions ϕε : [0,∞) → [0, 1], which are equal to zero in [0, ε] and
equal to 1 in [2ε,∞). The decomposition fa = ah+ (ϕε + 1− ϕε)(fa − ah) yields

NvNE
(
faNk,`(D

N/N)
)

= aNk,`.NvNE(h(DN/N)) +NvNE
(
ϕε(faNk,` − a

N
k,`h)(DN/N)

)
+NvNE

(
(1− ϕε)(faNk,` − a

N
k,`h)(DN/N)

)
.

By Assumption D, the first term converges to ak,`(α+
∫
h dµ) as N tends to infinity.

The last term vanishes as ε tends to 0. To see that, we use that there exists C > 0 such that for
ε small enough and a in a bounded set, |(1− ϕε)(fa − ah)|(x) ≤ Cεh(x) for any x ≥ 0 and

vNN
∣∣E ((1− ϕε)(fa − ah)(DN/N)

) ∣∣ ≤ CεvNNE(h(DN/N)),
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while vNNE(h(DN/N)) is bounded by Assumption D.
The facts that the sequence of functions (faNk,` − a

N
k,`h)(x)− (fak,` − ak,`h)(x) tends uniformly to

0 on the interval [ε,∞) as N tends to infinity and that
(
NvNE

(
ϕε(D

N/N)
))
N

is bounded by the
last part of Assumption D ensures that

NvN

{
E
(
ϕε(faNk,` − a

N
k,`h)(DN/N)

)
− E

(
ϕε(fak,` − ak,`h)(DN/N)

)} N→∞−→ 0,

for any ε > 0. We conclude using the convergence of NvNE
(
ϕε(fak,` − ak,`h)(DN/N)

)
to∫

ϕε(fak,` − ak,`h) dµ which also comes from Assumption D.

Proof of Theorem 2.2. The previous lemma ensures via an approximation argument relying on
Stone-Weierstrass local theorem (see [4] for details), that

lim
N→∞

vNN E
(
h
(
L•,N/N

))
= αS• ;

lim
N→∞

vNN E
(
h•h?

(
(Lf,N , Lm,N )/N

))
= (σS•,?)

2 +

∫
R2

+

h•h?(u1, u2)νS(du1, du2)

lim
N→∞

vNN E
(
φ
(

(Lf,N , Lm,N )/N
))

=

∫
[0,∞)2

φ(u1, u2)νS(du1, du2),

where we recall that hf (u1, u2) = h(u1) and hm(u1, u2) = h(u2) and φ is continuous bounded and
null in neighborhood of 0 and where we set

αSf = αq +

∫ ∞
0

h(qu)µ(du), αSm = α(1− q) +

∫ ∞
0

h((1− q)u)µ(du),

νS(A) =

∫ ∞
0

1(qu,(1−q)u)∈A µ(du).

Assumption (A1) is obviously satisfied :

lim
N→∞

vNN E(h(E•,N/N)) = lim
N→∞

−vNNP(E•,N = −1)/N = −p•;

lim
N→∞

vNN E(h2(E•,N/N)) = lim
N→∞

vNN P(E•,N = −1)/N2 = 0;

lim
N→∞

vNN E(φ(E•,N/N)) = 0.

Assumption B is guaranteed by our choice of mating function x ∧ y and Assumption C comes
from (10). We can apply Theorem 2.1 and conclude.

2.2.2 Replacement of couples

We assume that for each N , E•,N = 0. Besides, the reproduction random variables Lf,N and Lm,N
are independent random variables taking values in {−1, 0, 1, . . .} and the marginal laws satisfy the
following scaling assumption.

Assumption E. We consider two triplets (α•, σ•, ν•) for • ∈ {f,m} with the conditions

α• ∈ R; σ• ≥ 0;

∫ ∞
0

uν•(du) <∞.

We consider also a truncation function h and a non-negative sequence vN going to +∞. Let us
assume that for • ∈ {f,m},

lim
N→∞

vNN E(h(L•,N/N)) = α•; lim
N→∞

vNN E(h2(L•,N/N)) = σ• +

∫ ∞
0

h2(u) ν•(du);

lim
N→∞

vNN E(ϕ(L•,N/N)) =

∫ ∞
0

ϕ(u) ν•(du).
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for any ϕ continuous bounded and null in a neighborhood of 0.

We know from the historical study of Galton-Watson processes that for any such triplet (α, σ, ν),
there exist (vN )N and (LN )N satisfying Assumption E, see [16, 15, 6].

We consider for each N ≥ 1 the following Markov chain where every pair dies after reproduction
and leaves independently a random number of males and females, independent from each other
and distributed as (Lf,N , Lm,N ). It is defined by

FNn+1 = FNn +

MN
n ∧F

N
n∑

p=1

Lf,Nn,p ,

MN
n+1 = MN

n +

MN
n ∧F

N
n∑

p=1

Lm,Nn,p ,

where (Lf,Nn,p , L
m,N
n,p : n ≥ 0, p ≥ 1) are independent and distributed as (Lf,N , Lm,N ). Writing

(Lf,N , Lm,N ) = −(1, 1) + (Lf,N+ , Lm,N+ ), it means that the pairs disappear in the next generation
and are replaced by a number of males and females given by L•,N+ ∈ {0, 1, . . .}.
Assumption E and the independence of Lf,N and Lm,N make AssumptionsA and C easy to check,
while Assumption B is again a direct consequence of the choice of gN . We obtain

Theorem 2.4. Under the weak convergence of (ZN0 /N)N to Z0 = (F0,M0) ∈ [0,∞)2 and As-
sumption E, the sequence of processes (ZN[vN .]/N)N converges in law in D([0,∞), [0,∞)2) to the
unique strong solution Z = (F,M) of the stochastic differential equation

Ft = F0 + αf

∫ t

0

Fs ∧Ms ds+ σf

∫ t

0

√
Fs ∧MsdB

f
s

+

∫ t

0

∫
[0,∞)2

1θ≤Fs−∧Ms−h(u)Ñf (ds, du, dθ) +

∫ t

0

∫
[0,∞)2

1θ≤Fs−∧Ms−(u− h(u))Nf (ds, du, dθ),

Mt = M0 + αm

∫ t

0

Fs ∧Ms ds+ σm

∫ t

0

√
Fs ∧MsdB

m
s

+

∫ t

0

∫
[0,∞)2

1θ≤Fs−∧Ms−h(u)Ñm(ds, du, dθ) +

∫ t

0

∫
[0,∞)2

1θ≤Fs−∧Ms−(u− h(u))Nm(ds, du, dθ),

where Bf , Bm, Nf , Nm are independent, Bf and Bm are Brownian motions, Nf and Nm are
Poisson point measures on R3

+, respectively with intensity measures dsduνf (dθ) and dsduνm(dθ).

The assumption
∫∞
0
u ν•(du) < ∞ guarantees both non-explosion and pathwise uniqueness.

For tightness and identification, we just need
∫∞
0

(u2 ∧ 1) ν•(du) < ∞ for • ∈ {f,m}, while∫∞
0

(u ∧ 1) ν•(du) <∞ is sufficient for pathwise uniqueness before the explosion time.

Proof. We have

E
(
h
(
Lf,N/N

)
h
(
Lm,N/N

))
= E

(
h
(
Lf,N/N

))
E
(
h
(
Lm,N/N

))
is of order of magnitude of (1/vNN)2 so that

lim
N→∞

vNN E
(
h
(
Lf,N/N

)
h
(
Lm,N/N

))
= 0.

Similarly for φ(u1, u2) = φf,1(u1)+φm,1(u2)+
∑K
k=2 φf,k(u1)φm,k(u2) and φ•,k continuous bounded

and equal to zero in a neighborhood of zero, we have

lim
N→∞

vNN E
(
φ
(

(Lf,N , Lm,N )/N
))

=

∫ +∞

0

φf,1(u1)νf (du1) +

∫ +∞

0

φm,1(u2)νm(du2).

Thus, Assumption A holds with σSfm = 0 and νS(du1, du2) = δ0(du1)νm(du2) + νf (du1)δ0(du2)
and applying Theorem 2.1 yields the result.
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3 Proof of the convergence
The proof is organized as follows. First, using [4] applied to a compactified version of the bisexual
process ZN = (FN ,MN ), we prove tightness and that the limiting points of ZN are weak solution
of SDE (9). Second, we prove that pathwise uniqueness holds for (9). This point is new and is
the main difficulty of the paper. It is the object of forthcoming Proposition 3.5, whose proof is
a direct adaptation of the uniqueness result stated and proved in a more convenient setting in
Section 4.

3.1 Tightness and identification
Tightness and identification are proved under more general assumptions. We only need Assump-
tions A and (B1), (B2).

Proposition 3.1. Suppose AssumptionsA and (B1), (B2) hold and suppose the sequence (ZN0 /N)N
converges weakly to Z0 = (F0,M0) ∈ [0,∞)2. Then, the sequence of processes (ZN[vN .]/N)N is tight
in D([0,∞), [0,∞]2) and the limiting values Z = (F,M) are weak solutions of (9) before the
explosion time Te = limn→∞ inf{t ≥ 0 : Ft ≥ n or Mt ≥ n}.

The proof below provides an identification of the limiting points before the explosion time.
Assumption (B2) on the domination of the mating function could also be relaxed before explosion
using localization argument.

Let us apply the approach developed in [4] for the asexual case. The method is based on the
convergence of the characteristics of the associated semi-martingales developed in Jacod-Shiryaev
[15], with the use of a specific functional space. This latter exploits the population recurrence-type
structure and the independence of the random variables {MN

0 , F
N
0 , Ef,Nn,p , Em,Nn,p , (Lf,Nn,p , L

m,N
n,p ), n, p ≥

1}. This method allows us to prove tightness and identification under the optimal moment as-
sumption on the jump measure, see Assumption A.

Let us quickly summarize what we will do. We first remark that depending on the reproduction
laws, we can have explosion of the process under Assumption A. To deal with this problem and to
guarantee the boundedness of the characteristics, we compactify the process as in [4] by considering
the new process XN defined as follows :

XN
n =

(
exp(−FNn /N), exp(−MN

n /N)
)
.

This exponential transform combined with a functional space H formed by polynomials allow to
exploit independence and positivity of the reproduction random variables.

(I) In our setting, the characteristics of the exponential transform of the process are given by
formulas (14) and (15) below. It has been proved in [4] (see also Appendix A) that their uniform
convergence, in the sense of Lemma 3.3 below guarantees the tightness of the sequence (XN

[vN .]
)N

and yields the characteristics of limiting semimartingales.

(II) To identify the limiting values as solutions of a stochastic differential equation, we need to
exploit the explicit form given in Lemma 3.3. This representation is obtained in Lemma 3.4.

(III) We come back to the initial process ZN using Itô’s formula, up to the explosion time and
prove that the limiting values of the sequence (ZN )N are solutions of the stochastic differential
system (9). This will complete the proof of Proposition 3.1.

Let us now develop this program.

(I) The first part consists in introducing functional space H and in proving Assumption (H1)
recalled in Appendix A. This assumption ensures the convergence of the characteristics of the
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rescaled Markov chain (XN
[vN .]

)N for test functions belonging to H and provides their limiting
form. Note that since (XN

[vN .]
)N is bounded, Assumption (H0) of [4] is obvious.

We consider the space U = [−1, 1]2 and the space of monomial functions (on U) defined by

H =
{

(u1, u2) ∈ U → Hi,j(u1, u2) = (u1)i(u2)j ; i ≥ 0, j ≥ 0, i, j 6= 0
}
.

Following [15, 4], we consider the following family of linear operators characterizing the law of
the increments of the scaled Markov chain. It is defined for H measurable and bounded and for
x = (exp(−y), exp(−z)) ∈ X = (0, 1]2 by

GNx (H) = vNE
(
H(XN

1 − x)|XN
0 = x

)
,

where

XN
1 − x =

(
e−y
(

exp
(
− 1

N

[Ny]∑
p=1

Ef,Np − 1

N

gN ([Ny],[Nz])∑
p=1

Lf,Np

)
− 1

)
,

e−z
(

exp
(
− 1

N

[Nz]∑
p=1

Em,Np − 1

N

gN ([Ny],[Nz])∑
p=1

Lm,Np

)
− 1

))

Assumption (H1.1,2) is a direct consequence of Stone-Weierstrass theorem and the convergence
needed in (H1.3) is proved in forthcoming Lemmas 3.2 and 3.3. For that purpose, we set

ANk,`(x) = E

exp

− k

N

[Ny]∑
p=1

Ef,Np − `

N

[Nz]∑
p=1

Em,Np − 1

N

gN ([Ny],[Nz])∑
p=1

Lk,`,Np

 , (14)

where Lk,`,Np = kLf,Np + `Lm,Np and using that
∑i
k=0

∑j
`=0(−1)i−k+j−`

(
i
k

)(
j
`

)
= 0, we get by

expansion

GNx (Hi,j) = e−iy−jz
i∑

k=0

j∑
`=0

(−1)i−k+j−`
(
i

k

)(
j

`

)
vN
(
ANk,`(x)− 1

)
. (15)

Furthermore, we set for u, v ∈ R,

fk(u) = 1− e−ku, fk,`(u, v) = 1− e−ku−`v

for k, ` ∈ N, and by independence of the reproduction events, we have

ANk,` = aN1 a
N
2 a

N
3 , (16)

for any x = (exp(−y), exp(−z)) ∈ (0, 1]2, where

aN1 (x) = exp
(
[Ny] log

(
1− εN1

))
, εN1 = E

(
fk
(
Ef,N/N

))
aN2 (x) = exp

(
[Nz] log

(
1− εN2

))
, εN2 = E

(
f`
(
Em,N/N

))
aN3 (x) = exp

(
gN ([Ny], [Nz]) log

(
1− εN3

))
, εN3 = E

(
fk,`

(
(Lf,N , Lm,N )/N

))
.

We use the following functions fk and fk,` and their decompositions

fk(u) = kh(u)− k2

2
h2(u) +Rk(u),

fk,`(u, v) = kh(u) + `h(v)− k2

2
h2(u)− `2

2
h2(v)− k`h(u)h(v) +Rk,`(u, v),
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where Rk (resp. Rk,`) is continuous bounded and o(u2) (resp. o(‖(u, v)‖2)) in a neighborhood
of 0 (resp. (0, 0)). These decompositions allow us to derive the asymptotic behavior of εNi from
Assumption A, by summing the three components. Indeed, Rk (resp. Rk,`) are not null in a
neighborhood of zero but small enough and a simple approximation argument, which follows e.g. [4,
Section 4], yields vNNE(Rk(L•,N )) →

∫
Rkdν• and vNNE(Rk,`((L

f,N , Lm,N )/N)) →
∫
Rk,`dνS

as N →∞. We get

vNN εN1
N→∞−→ γfk = αf k −

1

2
σ2
f k

2 +

∫ ∞
0

(
fk(u)− kh(u)

)
νf (du), (17)

vNN εN2
N→∞−→ γm` = αm `−

1

2
σ2
m `

2 +

∫ ∞
0

(
f`(u)− `h(u)

)
νm(du), (18)

vNN εN3
N→∞−→ γSk,` = αSf k + αSm `−

1

2
(σSf )2 k2 − 1

2
(σSm)2 `2 − (σSfm)2k`

+

∫
R2

+

(
fk,`(u1, u2)− kh(u1)− `h(u2)

)
νS(du1du2), (19)

where we recall that σS•• is denoted by σS• .

Letting N →∞, we obtain the following uniform convergence:

Lemma 3.2. For any (i, j) ∈ N2 \ {(0, 0)}, for any k, ` ∈ N2,

sup
x∈(0,1]2

e−iy−jz
∣∣∣vN (ANk,`(x)− 1) + γfk y + γm` z + γSk,`g(y, z)

∣∣∣ N→∞−→ 0,

where x = (e−y, e−z).

Proof. We use the expression (16) which is rewritten :

ANk,` = 1 + (aN1 − 1) + (aN2 − 1) + (aN3 − 1) + (aN1 − 1)(aN2 − 1) + (aN1 − 1)(aN3 − 1)

+(aN2 − 1)(aN3 − 1) + (aN1 − 1)(aN2 − 1)(aN3 − 1) (20)

for a convenient Taylor expansion. We show now the uniform convergences

sup
x∈(0,1]2

e−(iy+jz)/3
∣∣vN (aNp (x)− 1)− γp(x)

∣∣ N→∞−→ 0, (21)

for p = 1, 2, 3, where

γ1(x) = γfk y ; γ2(x) = γm` z ; γ3(x) = γSk,` g(y, z).

The terms for p = 1, 2 correspond to the scaling of a Galton-Watson process and have already
been considered in [4]. Hence, we focus on the third term, which is more delicate. Using (19) and
Assumption (B.1), we first expand

aN3 (x) = egN ([Ny],[Nz]) log(1−εN3 ) = 1 +
1

vN

(
γSk,` g(y, z) + (g(y, z) + 1)oN (1)

)
+O

(
g(y, z)2 + 1

v2N

)
,

as N → ∞, uniformly for x such that gN (Ny,Nz)/N ≤ vN . Combining this estimate and
Assumption (B.2) yields

sup
gN (Ny,Nz)/N≤vN

e−(iy+jz)/3
∣∣vN (aN3 (x)− 1)− γSk,` g(y, z)

∣∣ N→∞−→ 0.
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Besides, γ∗ = supN

{
NvN log(1 − εN3 )

}
is finite since NvN εN3 has a finite limit. For x such that

gN (Ny,Nz)/N ≥ vN , we have

e−(iy+jz)/3vN (aN3 (x) + 1) ≤ e−(iy+jz)/3
gN (Ny,Nz)

N
(e(γ

∗/vN )gN (Ny,Nz)/N + 1)

≤ e−(iy+jz)/3(g(y, z) + o(1))(e(γ
∗/vN )(g(y,z)+o(1)) + 1),

where o(1) is uniform with respect to x using (5). Recalling (6), we get that both e−(iy+jz)/3vN (aN3 −
1) and e−(iy+jz)/3γ3(x) converge to 0 as N tends to infinity, uniformly for gN (Ny,Nz)/N ≥ vN .
This ends the proof of (21).

Combining the three uniform convergences in (20) yields the conclusion.

We can now compute the limit of (15), as N tends to infinity, which is achieved in the following
lemma.

Lemma 3.3. For any (i, j) ∈ N2 \ {(0, 0)}, we have

sup
x∈(0,1]2

∣∣GNx (Hi,j)− Gx(Hi,j)
∣∣ N→∞−→ 0,

where, writing x = (e−y, e−z) and denoting by δi,j the Kronecker symbol:

−eiy+jzGx(Hi,j) = y δj,0

(
δi,1αf − (2δi,2 + δi,1)σ2

f/2 +

∫ ∞
0

(
(−1)i+1f1(u)i − δi,1h(u)

)
νf (du)

)
+z δi,0

(
δj,1αm − (2δj,2 + δj,1)σ2

m/2 +

∫ ∞
0

(
(−1)j+1f1(u)j − δj,1h(u)

)
νm(du)

)
+g(y, z)

(
δj,0

[
δi,1α

S
f − (2δi,2 + δi,1)(σSf )2/2

]
+ δi,0

[
δj,1α

S
m − (2δj,2 + δj,1)(σSm)2/2

]
+δi,1δj,1(σSfm)2 +

∫
[0,∞)2

gi,j(u1, u2)νS(du1, du2)

)
,

and

gi,j(u) = δj,0
(
(−1)i+1f1(u1)i − δi,1h(u1)

)
+δi,0

(
(−1)j+1f1(u2)j − δj,1h(u2)

)
− (−1)i+jf1(u1)if2(u2)j1i 6=01j 6=0.

Proof. Combining (15) and the uniform convergence of the previous lemma, we obtain that
GNx (Hi,j) converges uniformly, as n tends to infinity, to Gx(Hi,j) which satisfies

−eiy+jzGx(Hi,j) =

i∑
k=0

j∑
`=0

(−1)i−k+j−`
(
i

k

)(
j

`

)
(yγfk + zγm` + g(y, z)γSk,`).

Plugging the expressions of the constants γ given in (17) and (18) and (19), the sum above can
be simplified using fk,`(u1, u2) = fk(u1) + f`(u2)− fk(u1)f`(u2) and

i∑
k=0

(
i

k

)
(−1)i−k = δ0,i ;

i∑
k=0

(
i

k

)
(−1)i−kk = δ1,i,

i∑
k=0

(
i

k

)
(−1)i−k k2 = 2δ2,i + δ1,i ;

i∑
k=0

(
i

k

)
(−1)i−kfk(u) = (−1)i+1f1(u)i1i>0.

We obtain the expected result.
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(II) We now proceed with the representation of the limiting points. For that purpose, we proceed
with the successive identification of the coefficients of the stochastic differential equation associated
with the limiting characteristics obtained above. Firstly, we gather the jump terms in a common
Poisson representation. Indeed, considering first Gx(Hi,j) for i + j ≥ 3 leads us to define the
measure µ on V = {1, 2, 3} × [0,+∞)× [0,∞)2 by

µ(dk, dθ, du1, du2) = δ1(dk) dθ νf (du1)δ0(du2) + δ2(dk) dθ δ0(du1) νm(du2)

+δ3(dk) dθ νS(du1, du2), (22)

where δk is the Dirac mass in k. The jump image function K = (K1,K2) is the measurable
function K : (x, v) ∈ [0, 1]2 × V → K(x, v) ∈ R2 given by

K1(x, v) = K1(x, k, θ, u1, u2) = −e−y.
(
f1(u1)1k=1, θ≤y + f1(u1)1k=3, θ≤g(y,z)

)
, (23)

K2(x, v) = K2(x, k, θ, u1, u2) = −e−z.
(
f1(u2)1k=2, θ≤z + f1(u2)1k=3, θ≤g(y,z)

)
, (24)

where we recall that x = (exp(−y), exp(−z)). Let us observe that
∫
V

1 ∧ |K(., v)|2µ(dv) < +∞.
Secondly, using Gx(Hi,j) for i+j = 2, we define the diffusion coefficients σ(.) ∈M2,4(R) as follows

σ11(x) = e−y
√
yσf , σ12(x) = 0, σ21(x) = 0, σ22(x) = e−z

√
zσm,

and

σ13(x) = e−y
√
g(y, z)

√
(σSf )2 − (σSfm)4/(σSm)2, σ14(x) = e−y

√
g(y, z)(σSfm)2/σSm

σ23(x) = 0, σ24(x) = e−z
√
g(y, z)σSm.

Finally we set the drift term b(.) = (b1(.), b2(.)) ∈ R2:

b1(x) = Gx(H1,0) = e−yy

(
−αf +

σ2
f

2
−
∫ ∞
0

(f1(u)− h(u)) νf (du)

)

+e−yg(y, z)

(
−αSf +

(σSf )2

2
−
∫ ∞
0

(f1(u1)− h(u1)) νS(du1, du2)

)
;

b2(x) = Gx(H0,1) = e−zz

(
−αm +

σ2
m

2
−
∫ ∞
0

(f2(u)− h(u)) νm(du)

)
+e−zg(y, z)

(
−αSf +

(σSf )2

2
−
∫ ∞
0

(f1(u2)− h(u2)) νS(du1, du2)

)
.

These parameters yield the following representation of the limiting points of (XN
[vN .]

)N .

Lemma 3.4. Any limiting value in D([0,∞), [0, 1]2) of the sequences of processes
(
XN

[vN .]

)
N

is a
semimartingale solution of the stochastic differential system

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs +

∫ t

0

∫
V

K(Xs−, v)Ñ(ds, dv), (25)

where B is a 4-dimensional Brownian motion and N is a Poisson point measure on R+ × V with
intensity dsµ(dv), X0, B, N are independent and Ñ is the compensated martingale measure of N .
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Proof. We need to prove that (H2) in [4] (cf. Appendix A) is satisfied. The continuity of x ∈ X →
Gx(H) for H ∈ H is a direct consequence of the continuity of g, which is guaranteed by (B3). The
continuous extension to X is due to (6). Using our definition of parameters b, σ,K, µ, let us now
check that for any H ∈ H,

Gx(H) =
∑

a∈{1,2}

αa(H)ba(x) +
∑

a,b∈{1,2}

βa,b(H)ca,b(x) +

∫
V

H(K(x, v))µ(dv), (26)

where for any a, b ∈ {1, 2},

ca,b(x) =

4∑
i=1

σa,i(x)σb,i(x) +

∫
V

KaKb(x, v)µ(dv)

and αa(H), βa,b(H) are the first and second order coefficients of H in its Taylor expansion and
H = H −

∑
a∈{1,2} αa(H) −

∑
a,b∈{1,2} βa,b(H) is the remaining term. We first observe that for

H ∈ H, these coefficients are trivial. There is a unique coefficient which is non zero for Hi,j when
i + j ≤ 2 and it is equal to 1. Besides dor i + j ≥ 3, Hi,j = Hi,j and α.(Hi,j) = β.,.(Hi,j) = 0.
Then using the triplet (V, µ,K) introduced above, we directly check that

Gx(Hi,j) =

∫
V

Hi,j(K(x, v))µ(dv) =

∫
V

Hi,j(K(x, v))µ(dv)

and Hi,j satisfies (26) for i+ j ≥ 3. Then we can check that (26) is satisfied for H2,0 :

Gx(H2,0) = e−2yy
(
σ2
f +

∫∞
0
f1(u)2νf (du)

)
+ e−2yg(y, z)

(
(σSf )2 +

∫
[0,∞)2

f1(u1)2νS(du1, du2)
)

=
∑4
i=1 σ

2
1i(x) +

∫
V
K2

1 (x, v)µ(dv) = c1,1(x).

Similarly

Gx(H0,2) = e−2zz
(
σ2
m +

∫∞
0
f1(u)2νm(du)

)
+ e−2zg(y, z)

(
(σSm)2 +

∫
[0,∞)2

f1(u2)2νS(du1, du2)
)

=
∑4
i=1 σ

2
2i(x) +

∫
V
K2

2 (x, v)µ(dv) = c2,2(x),

and (26) is satisfied for H0,2. Finally, the crossed term writes

Gx(H1,1) = ey+zg(y, z)

(
(σSfm)2 +

∫
[0,∞)2

f1(u1)f1(u2)νS(du1, du2)

)

=

4∑
i=1

σ1i(x)σ2i(x) +

∫
V

K1(x, v)K2(x, v)µ(dv) = c1,2(x) = c2,1(x)

and (26) is proved for any H ∈ H, recalling that the definition of b guarantees the identity for
i + j = 1. This proves that (H2) is satisfied and recalling that (H1) is already proved, we can
apply Theorem 2.4 in [4], see also Theorem A.2 in Appendix . It ends the proof.

(III) Let us now come back to the initial processes.
We write V = V1 ∪ V2, where V1 = {1, 2, 3} × [0,+∞)× (0, 1]2 and V2 = {1, 2, 3} × [0,+∞)×

(1,∞)2, to split small and large jumps.

We have seen in Lemma 3.4 that

X1
t = exp(−Ft) = X1

0 +

∫ t

0

b1(Xs)ds+

4∑
i=1

∫ t

0

σ1,i(Xs)dB
i
s

+

∫ t

0

∫
V1

K1(Xs−, v)Ñ(ds, dv) +

∫ t

0

∫
V2

K1(Xs−, v)N(ds, dv),
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where

b1(x) = e−yy

(
−αf +

σ2
f

2
−
∫
(0,1]

(f1(u)− h(u)) νf (du) +

∫
(1,∞)

h(u)νf (du)

)
(27)

+e−yg(y, z)

(
−αSf +

(σSf )2

2
+

∫
(0,1]

(h(u1)− f1(u1)) νS(du1, du2) +

∫
(1,∞)

h(u1)νS(du1, du2)

)
.

Using Itô’s formula we get before the explosion time Te:

logX1
t = −Ft = −F0 +

∫ t

0

1

X1
s

b1(Xs)ds−
1

2

4∑
i=1

∫ t

0

σ2
1,i(Xs)

(X1
s )2

ds+

4∑
i=1

∫ t

0

σ1,i(Xs)

X1
s

dBis

+

∫ t

0

∫
V1

{
log
(
X1
s− +K1(Xs−, v)

)
− log(X1

s−)
}
Ñ(ds, dv)

+

∫ t

0

∫
V1

{
log
(
X1
s− +K1(Xs−, v)

)
− log(X1

s−) +K1(Xs−, v)
1

X1
s−

}
µ(dv)ds.

+

∫ t

0

∫
V2

{
log
(
X1
s− +K1(Xs−, v)

)
− log(X1

s−)
}
N(ds, dv).

By definition of the coefficients introduced previously and by identification of the Brownian terms,
we obtain

σ1,1(Xs)

X1
s

=
√
Fsσf ; σ1,2(Xs) = 0 ;

σ1,3(Xs)

X1
s

=
√
g(Fs,Ms)

√
(σSf )2 − (σSfm)4/(σSm)2 ;

σ1,4(Xs)

X1
s

=
√
g(Fs,Ms)

(σSfm)2

σSm
.

We also recall from (23) that for any positive two-dimensional x, for v = (k, θ, u1, u2),

K1(x, v)

x1
= −

(
f1(u1)1k=1,θ≤y + f1(u1)1k=3,θ≤g(y,z)

)
.

WritingNf (ds, dθ, du) = N(ds, {1}, dθ, du, {0}) andNS(ds, dθ, du1, du2) = N(ds, {3}, dθ, du1, du2),
computation gives that∫

V1

{
log
(
X1
s− +K1(Xs−, v)

)
− log(X1

s−)
}
Ñ(ds, dv)

=

∫
[0,∞)×[0,1)

1θ≤Fs−uÑ
f (ds, du) +

∫
[0,∞)×[0,1)

1θ≤g(Fs−,Ms−)u1Ñ
S(ds, du1, du2).

We obtain similarly the last jumps terms, without compensation. Finally, the drift term of F is
given by the remaining terms. Recall that µ is defined in (22) and replacing b1(x) by its value
given in (27), it is equal to

− 1

x1
b1(x) +

1

2

4∑
i=1

σ2
1,i(x)

(x1)2
ds+

∫
(0,1]

(h(u)− f1(u)) νf (du) +

∫
(1,∞)

h(u)νf (du)

+

∫
(0,1]

(h(u1)− f1(u1)) νS(du1, du2) +

∫
(1,∞)

h(u1)νS(du1, du2) = αfy + αSf g(y, z).

This yields the expected equation for Ft. Following the same lines for Mt = − log(X2
t ) ends the

proof of Proposition 3.1.
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3.2 Uniqueness and convergence

Using the results of forthcoming Section 4, we are able to prove the uniqueness needed for Theorem
2.1 in a slightly more general framework. Recall that the measure

ν(du1, du2) = νf (du1)δ0(u2) + νm(du2)δ0(u1) + νS(du1, du2)

has been introduced in Assumption C.

Proposition 3.5. Let us assume that Hypotheses (B2)–(B4) are satisfied and∫
[0,∞)2

(u21 + u22) ∧ 1 ν(du1, du2) <∞

Let us moreover assume that that there exists ε0 > 0 such that

lim inf
a→0

e
ε0
(∫
A(a)

(u1+u2) ν(du1,du2)
) ∫

B(a)

(u21 + u22) ν(du1, du2) = 0, (28)

with A(a) = {(u1, u2) : a < u1 ≤ 1, a < u2 ≤ 1}, B(a) = {(u1, u2) : 0 < u1 ≤ a, 0 < u2 ≤ a}.

Then, the stochastic differential system (9) has a unique strong (positive) solution up to the ex-
plosion time

Te = lim
n→∞

inf{t ≥ 0 : Ft ≥ n or Mt ≥ n}.

If ν satisfies the extra assumption
∫
[0,∞)2

(u21 + u22)∧ (u1 + u2) ν(du1, du2) <∞, then Te =∞ a.s.

Note that Assumption C obviously implies (28). Observe also that under Assumptions (B2)–
(B4), g is locally Lipschitz with linear growth and satisfies the ellipticity assumption.

The proof of Proposition 3.5 is a simple adaptation of the proof of uniqueness of the next section.
The measure that plays the role of λ in Section 4, is ν. The representation of jumps in (9) relies
on the three Poisson point measures Nf , Nm, NS . These measures can be gathered in a single
Poisson point measure for convenience.

Finally, combining Propositions 3.1 and 3.5, we have proved the convergence stated in Theorem
2.1.

4 Pathwise uniqueness
We have seen previously that the main technical problems to prove uniqueness for the system (9),
come from the presence of the square root as coefficient on the Brownian terms, the presence of
singular coefficients for the compensated Poisson terms and the fact that this is a two-dimensional
system. In this section, we present a simpler version of this system by focusing on the sexual
coupling term. This system contains all the difficulties mentioned, improving the known results in
the literature. We do this to keep notation as simple as possible. Without additional complexity,
we actually consider here a more general diffusion and jump terms.

4.1 The system of equations

We study the uniqueness problem for the following system of stochastic differential equations.
This system has a form similar to the one obtained in (9) and contains all its difficulties. It is
given by
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Xt = x0 +

∫ t

0

b1(Xs, Ys)ds+

∫ t

0

√
`1(Xs, Ys) dB

1
s

+

∫ t

0

∫
R2

+

1θ≤κ1(Xs−,Ys−)p1(Xs−, Ys−)h(z) Ñ1(ds, dθ, dz)

+

∫ t

0

∫
R2

+

1θ≤κ1(Xs−,Ys−)p1(Xs−, Ys−)(z − h(z))N1(ds, dθ, dz);

Yt = y0 +

∫ t

0

b2(Xs, Ys)ds+

∫ t

0

√
`2(Xs, Ys) dB

2
s

+

∫ t

0

∫
R2

+

1θ≤κ2(Xs−,Ys−)p2(Xs−, Ys−)h(z) Ñ2(ds, dθ, dz)

+

∫ t

0

∫
R2

+

1θ≤κ2(Xs−,Ys−)p2(Xs−, Ys−)(z − h(z))N2(ds, dθ, dz). (29)

The processes B1 and B2 are Brownian motions and N1 and N2 are Poisson point measures on
(R+)3 with intensities ds dθ λ1(dz) and ds dθ λ2(dz), not necessarily independent.

In what follows, we will denote
λ(dz) = λ1(dz) + λ2(dz),

and throughout this section we assume that λ satisfies the hypothesis

(F0)
∫∞
0

(z2 ∧ 1)λ(dz) <∞.

The coefficient are defined on R2
+ and for i = 1, 2 the hypotheses about these coefficients are

(F1) bi, `i, κi, pi are locally Lipschitz on R+ × R+. We also assume that for all z ∈ R+ it holds
bi(0, z) = `i(0, z) = κi(0, z) = bi(z, 0) = `i(z, 0) = κi(z, 0) = 0.

(F2) `i, κi, pi are nonnegative, and pi are strictly positive in every compact set of [0,∞)2.

(F3) bi, `i, κi have linear growth and p, q are bounded. We denote by L,A two constants such
that

|b1(x, y)|+ |b2(x, y)|+ `1(x, y) + `2(x, y) + κ1(x, y) + κ2(x, y) ≤ L(x+ y) + A.

We assume without loss of generality that pi are bounded by 1.

(F4) The function h ∈ Cb(R+,R+) and it satisfies h(z) = z in a neighborhood of 0.

We point out the following facts that are direct consequences of (F0) and (F4).

1.
∫ 1

0
z2 λ(dz) <∞,

∫ 1

0
h2(z)λ(dz) <∞,

∫ 1

0
|z − h(z)|λ(dz) <∞ and λ([1,∞)) <∞.

2.
∫∞
1
z λ(dz) <∞ if and only if

∫∞
0
|z − h(z)|λ(dz) <∞.

3.
∫∞
0
z2 ∧ z λ(dz) <∞ if and only if

∫∞
0
h2(z)λ(dz) <∞ and

∫∞
0
|z − h(z)|λ(dz) <∞.

Note also that because of (F1), (0, 0) is an absorbing point and any solution issued from R2
+ stays

in R2
+.

In some of the computations below, we shall use Burkhölder-Davis-Gundy inequality with p = 1,
which provides a finite constant C1, such that

E
(

sup
s≤τ
|Ms|

)
≤ C1 E([M,M ]1/2τ ) (30)
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for any local martingale M , and any stopping time τ (cf. Dellacherie-Meyer [10] VII.92). We also
need to use similar inequalities relating the supremum of a local martingale and its predictable
quadratic variation. Namely, there exists a constant c1 > 0, such that if the jumps of M are
bounded in absolute value by ∆∆∆ then (see Lenglart-Lépingle-Pratelli [19])

c1E(〈M,M〉1/2τ ) ≤ E
(

sup
s≤τ
|Ms|

)
+ ∆∆∆;

E([M,M ]1/2τ ) ≤ 3E(〈M,M〉1/2τ ). (31)

Note that if Mt =
∫ t
0

∫∞
0
Hs−(z)Ñ(ds, dz) where N is a Poisson point measure with intensity ν,

then [M,M ]τ =
∫ t
0

∫∞
0
H2
s−(z)N(ds, dz) and 〈M,M〉τ =

∫ τ
0

∫∞
0
H2
s−(z)ν(ds, dz).

Our first result is an a priori bound for system (29) and we set

X∗t = sup
s≤t
|Xs|.

Proposition 4.1. Assume that (x0, y0) ∈ R2
+. Assume that

∫∞
0

(z2 ∧ z)λ(dz) < ∞ and (F1)–
(F4) hold. If (X,Y ) is a nonnegative solution of (29) then, the following a priori estimates hold
for all t > 0

E(Xt + Yt) ≤ (x0 + y0 + aAt)eaL t

and
E(X∗t + Y ∗t ) ≤

(
x0 + y0 +D + (D + a)A t

)
e(D+a)L t,

where L and A are given in (F3), a = 2 +
∫∞
0
|z − h(z)|λ(dz) and

D = C1

(
2 +

√∫∞
0
h2(z)λ1(dz) +

√∫∞
0
h2(z)λ2(dz)

)
.

Proof. We consider SXn = inf{t > 0 : Xt ≥ n}, SYn = inf{t > 0 : Yt ≥ n} and Sn = SXn ∧ SYn .
Then, we have

E(Xt∧Sn) = x0 +

∫ t

0

E(b1(Xs, Ys), s < Sn) ds (32)

+

∫ ∞
0

(z − h(z))λ1(dz)

∫ t

0

E(κ1(Xs, Ys)p1(Xs, Ys), s < Sn) ds

≤ x0 +
(
1 +

∫ ∞
0

|z − h(z)|λ1(dz)
)
At+ (33)

(
1 +

∫ ∞
0

|z − h(z)|λ1(dz)
)
L

∫ t

0

E(Xs∧Sn + Ys∧Sn) ds.

Proceeding similarly for Y , this implies that

E(Xt∧Sn + Yt∧Sn) ≤ x0 + y0 + aAt+ aL
∫ t
0
E(Xs∧Sn + Ys∧Sn) ds.

To apply Gronwall’s inequality, we need to bound E(Xt∧Sn + Yt∧Sn). This is not direct because
the processes may jump at Sn.

The first lines of (32) show that E(Xt∧Sn) ≤ x0+t(2Ln+A)(1+
∫∞
0
|z−h(z)|λ1(dz)), proving

that for all t we have E(Xt∧Sn) <∞. A similar conclusion holds for Y .

From Gronwall’s inequality, using that X,Y are nonnegative and they have only upward jumps,
we obtain

nP(Sn < t) ≤ E(Xt∧Sn + Yt∧Sn) ≤ (x0 + y0 + aAt)eaLt,

proving that Sn →∞ a.s., as n→∞. Now, Fatou’s lemma shows that

E(Xt + Yt) ≤ lim inf
n→∞

E(Xt∧Sn + Yt∧Sn) ≤ (x0 + y0 + aAt)eaLt (34)
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which proves the first part of the lemma. Besides,

E(X∗t∧Sn) ≤ x0 +

∫ t

0

E(|b1(Xs, Ys)|, s < Sn) ds

+

∫ ∞
0

|z − h(z)|λ1(dz)

∫ t

0

E(κ1(Xs, Ys)p1(Xs, Ys), s < Sn) ds

+E
(

sup
s≤t∧Sn

∣∣∣∣∫ s

0

√
`1(Xs, Ys) dB

1
s

∣∣∣∣)
+E

(
sup

s≤t∧Sn

∣∣∣∣∣
∫ s

0

∫
[0,∞)2

1θ≤κ1(Xs−,Ys−)p1(Xs−, Ys−)h(z) Ñ1(ds, dθ, dz)

∣∣∣∣∣
)

Using inequality (34) for the two first terms of the right hand side above and (30) for the two last
terms together with Cauchy Schwarz for the jump term, we obtain

E(X∗t∧Sn) ≤ x0 +
(
1 +

∫ ∞
0

|z − h(z)|λ1(dz)
) [

At+ L

∫ t

0

E(Xs∧Sn + Ys∧Sn) ds

]

+C1

(
E

(∫ t∧Sn

0

`1(Xs, Ys) ds

))1/2

+C1

(
E

(∫ t∧Sn

0

∫
[0,∞)2

1θ≤κ1(Xs−,Ys−)p
2
1(Xs−, Ys−)h2(z)N1(ds, dθ, dz)

))1/2

,

where we have used that the square root is a concave function. Therefore,

E(X∗t∧Sn)≤ x0 +
(
1 +

∫∞
0
|z − h(z)|λ1(dz)

) [
At+ L

∫ t
0
E(Xs∧Sn + Ys∧Sn) ds

]
+C1

(
1 +

√∫∞
0
h2(z)λ1(dz)

)(
At+ L

∫ t
0
E(Xs∧Sn + Ys∧Sn) ds

)1/2
≤ x0 +d1 + d2At+ d2 L

∫ t
0
E(Xs∧Sn + Ys∧Sn) ds,

wiith d1 = C1

(
1 +

√∫∞
0
h2(z)λ1(dz)

)
, d2 = d1 + 1 +

∫∞
0
|z − h(z)|λ1(dz) (here we have used

that
√
a ≤ 1 + a). The result follows from Gronwall’s inequality.

Proposition 4.2. Let (x0, y0) ∈ R2
+. We assume that (X,Y ) is a nonnegative solution of the

system (29), such that x0 = 0, and
∫∞
0

(z2 ∧ z)λ(dz) <∞. If (F1)− (F4) hold, then for all t ≥ 0,
we have Xt = 0, Yt = y0. A similar conclusion holds if y0 = 0.

Proof. Consider Uε = inf{t > 0 : Xt ≥ ε or Yt ≥ y0 + ε} where ε > 0. Note that Uε > 0 a.s.
since the process (X,Y ) is right-continuous. As in the proof of the previous proposition and using
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b1(0, .) = κ1(0, .) = 0, we have the following estimate

E(Xt∧Uε) ≤
∫ t

0

E(|b1(Xs, Ys)|, s < Uε) ds

+

∫ ∞
0

|z − h(z)|λ1(dz)

∫ t

0

E(κ1(Xs, Ys)p(Xs, Ys), s < Uε) ds

=

∫ t

0

E(|b1(Xs, Ys)− b1(0, Ys)|, s < Uε) ds

+

∫ ∞
0

|z − h(z)|λ1(dz)

∫ t

0

E(κ1(Xs, Ys)p1(Xs, Ys)− κ1(0, Ys)p1(0, Ys), s < Uε) ds

≤ R
(
1 +

∫ ∞
0

|z − h(z)|λ1(dz)
) ∫ t

0

E(Xs, s < Uε) ds

≤ R
(
1 +

∫ ∞
0

|z − h(z)|λ1(dz)
) ∫ t

0

E(Xs∧Uε) ds,

where R is a Lipschitz constant for b1, κ1p1 on [0, ε]× [0, y0 + ε]. Gronwall’s inequality gives that
E(Xt∧Uε) = 0, which implies that Xt∧Uε = 0 a.s. and then Yt∧Uε = y0 a.s.. In particular, on the
trajectories where Uε < ∞, there is a small time s0 > 0 such that for all 0 ≤ s ≤ s0, Xs+Uε < ε
and Ys+Uε < y0 + ε (by right continuity), which gives a contradiction. Therefore, the only possible
conclusion is that Uε =∞ and we conclude that Xt = 0 and Yt = y0, for all t.

4.2 Uniqueness
In this section we shall prove pathwise uniqueness for the system (29). We need the ellipticity
assumption for the coefficients `i, i = 1, 2, given in Assumption (B4),

(F5) For i = 1, 2 and for every 0 < δ ≤ n <∞, there exists ζ = ζ(δ, n) > 0 such that

ζ ≤ inf{`i(x, y) : (x, y) ∈ [δ, n]2}.

We also need to have a control on the small jumps and this is done through the following hypothesis
on λ, which is the analog of (28) in Proposition 3.5.

(F6) There exists ε0 > 0 such that

lim inf
a↓0

[
e ε0

∫ 1
a
z λ(dz)

∫ a

0

z2λ(dz)

]
= 0. (35)

We notice that if
∫∞
0

(z ∧ 1)λ(dz) < +∞ then λ satisfies hypotheses (F0) and (F6). Also it is
quite direct to show that if µ ≤ λ and λ satisfies (F0) and (F6), then µ fulfils (F0) and (F6).

For a solution (X,Y ) of system (29), we denote by Te the explosion time of (X,Y ), which is given
by

Te = lim
n→∞

SXn ∧ SYn .

Now, we are ready to state a uniqueness result.

Theorem 4.3. Assume that (x0, y0) ∈ R2
+. Assume that the coefficients of the system (29) satisfy

(F1)–(F5), and λ = λ1 + λ2 satisfies (F0) and (F6). Then, pathwise uniqueness holds for this
system, that is, if (X,Y ) and (X̃, Ỹ ) are two solutions up to their respective explosion times Te

and T̃e, then Te = T̃e a.s. and for all t < Te we have (Xt, Yt) = (X̃t, Ỹt) a.s..

Under the extra hypothesis
∫∞
0

(z2 ∧ z)λ(dz) <∞, we have Te =∞ a.s.
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Proof. (i) In the first part of the proof, we assume the extra condition∫ ∞
0

(z2 ∧ z)λ(dz) <∞ (36)

and Proposition 4.1 guarantees non-explosion of solutions. Since λ satisfies (F6), there exists
ε0 > 0 such that

lim inf
a↓0

e ε0
∫∞
a
h(z)λ(dz)

∫ a

0

h(z)2λ(dz) = 0,

because h agrees with the identity on a neighborhood of 0 and h is bounded then
∫∞
1
h(z)λ(dz) <

∞. In what follows, we denote by ΞΞΞ a bound for h.

We consider (X,Y ) and (X̃, Ỹ ) two strong solutions of the system (29). Let us fix 0 < δ <

x0∧y0 and n ∈ N∗ and let us take Tδ = inf{t > 0 : Xt∧Yt∧X̃t∧ Ỹt < δ}, Sn = SXn ∧SYn ∧SX̃n ∧SỸn ,
where we recall notation SZn = inf{t ≥ 0 : Zt ≥ n}, and

Tn,δ = Tδ ∧ Sn. (37)

We will prove that there exists t0 > 0 and a constant A > 0 such that for all t ≤ t0

E((X − X̃)∗t∧Tn,δ + (Y − Ỹ )∗t∧Tn,δ) ≤ A lim inf
a→0

(
eε0

∫∞
a
h(z)λ(dz)

∫ a

0

h(z)2 λ(dz)

) 1
2

= 0, (38)

where we recall that we write Z∗t = sup{Zs : s ≤ t}. Uniqueness will be shown on the interval
[0, t0 ∧ Tn,δ]. Similarly, it will extend to the interval [t0 ∧ Tn,δ, 2t0 ∧ Tn,δ] and by iterating this
argument, uniqueness will be shown in [0, Tn,δ] (when Tn,δ =∞ we take this interval to be [0,∞)).

Then, since the processes do not explode, we can take the limit as n → ∞, to conclude
uniqueness on [0, Tδ]. Finally, we deduce that X = X̃, Y = Ỹ on the interval [0, T0), where
T0 = lim ↑ Tδ. Notice that one of the coordinates has to be 0 on the left of T0, when T0 is finite.
Say that XT0− = X̃T0− = 0. Since T0 is a predictable stopping time the Poisson processes cannot
jump at this time, which implies that XT0 = X̃T0 = 0 and therefore from the uniqueness starting
from 0 we conclude Xt = X̃t = 0 for all t ≥ T0, which also implies that Yt = Ỹt = YT0− for all
t ≥ T0, showing the desired uniqueness.

Let us now prove (38).

In what follows we denote by

∆Xs = Xs − X̃s ; ∆Ys = Ys − Ỹs;
∆bs = b1(Xs, Ys)− b1(X̃s, Ỹs) ; ∆`

1/2
s = (`1(Xs, Ys))

1/2 − (`1(X̃s, Ỹs))
1/2;

∆κs = κ1(Xs−, Ys−)− κ1(X̃s−, Ỹs−) ; ∆ps = p1(Xs−, Ys−)− p1(X̃s−, Ỹs−) ;

∆us(θ) = 1θ≤κ1(Xs−,Ys−)p1(Xs−, Ys−)− 1θ≤κ1(X̃s−,Ỹs−)
p1(X̃s−, Ỹs−),

and

Γt =

∫ t

0

∫
[0,∞)2

∆us(θ)h(z) Ñ1(ds, dθ, dz).

We observe that

∆Xt =

∫ t

0

∆bsds+

∫ t

0

∆`1/2s dB1
s + Γt +

∫ t∧Tn,δ

0

∫
[0,∞)2

∆us(θ)(z − h(z))N1(ds, dθ, dz) (39)

and get
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E((∆X)∗t∧Tn,δ) ≤ E

(∫ t∧Tn,δ

0

|∆bs| ds

)
+ E

(
sup

0≤r≤t∧Tn,δ

∣∣∣∣∫ r

0

∆`1/2s dB1
s

∣∣∣∣
)

(40)

+ E

(
sup

0≤r≤t∧Tn,δ
|Γr|

)
+ E

(∫ t∧Tn,δ

0

∫
[0,∞)2

|∆us(θ)||z − h(z)|N1(ds, dθ, dz)

)
.

Consider r(n) a common Lipschitz constant for all the functions b, `, κ, p, q on the interval
[0, n] and denote by K(n) = (2Ln+ A + 1)(r(n) + 1), where L,A are given by the linear growth
condition on (F3). In particular, K(n) serves as a Lipschitz constant for all the coefficients of the
system in the interval [0, n], as well as a bound for these functions on [0, n]2.

We introduce

Rt = E((X − X̃)∗t∧Tn,δ + (Y − Ỹ )∗t∧Tn,δ) = E((∆X)∗t∧Tn,δ + (∆Y )∗t∧Tn,δ),

and the first term in the RHS of (40) is clearly bounded by

E

(∫ t∧Tn,δ

0

|∆bs| ds

)
≤ K(n) tRt. (41)

Let us bound the second term (Brownian term) in (40). By definition for s < t ∧ Tn,δ, we have
Xs, Ys, X̃s, Ỹs ∈ [δ, n] and therefore a = `1(Xs, Ys) ≥ ζ, b = `1(X̃s, Ỹs) ≥ ζ, where ζ = ζ(δ, n) > 0
is given by the ellipticity assumption (F5). Now, for a, b ≥ ζ we have |

√
a−
√
b| ≤ 1

2
√
ζ
|a− b| and

we get from (30) that

E

(
sup

0≤r≤t∧Tn,δ

∣∣∣∣∫ r

0

∆`
1/2

s dB1
s

∣∣∣∣
)
≤ C1E

(∫ t∧Tn,δ

0

∣∣∣∣(`1(Xs, Ys)
)1/2

−
(
`1(X̃s, Ỹs)

)1/2 ∣∣∣∣2 ds
)1/2


≤ C1

2
√
ζ
E

(∫ t∧Tn,δ

0

∣∣∣`1(Xs, Ys)− `1(X̃s, Ỹs)
∣∣∣2 ds)1/2


≤ K(n)C1

2
√
ζ

√
tRt (42)

For the last term in (40), we use that 0 ≤ p ≤ 1 and the triangular inequality

|∆us(θ)| ≤ |1θ≤κ1(Xs−,Ys−) − 1θ≤κ1(X̃s−,Ỹs−)
|+ 1θ≤κ1(X̃s−,Ỹs−)

|p1(Xs−, Ys−)− p1(X̃s−, Ỹs−)|.

This implies that

∫ ∞
0

|∆us(θ)| dθ ≤ |κ1(Xs−, Ys−)− κ1(X̃s−, Ỹs−)|+ κ1(X̃s−, Ỹs−)|p(Xs−, Ys−)− p(X̃s−, Ỹs−)|

≤ K(n)
(
|Xs− − X̃s−|+ |Ys− − Ỹs−|

)
and therefore

E

(∫ t∧Tn,δ

0

|∆us(θ)||z − h(z)|N1(ds, dθ, dz)

)
=

∫ ∞
0

|z − h(z)|λ1(dz)E

(∫ t∧Tn,δ

0

∫ ∞
0

|∆us(θ)| dsdθ

)

≤ K(n) t

∫ ∞
0

|z − h(z)|λ1(dz) Rt.

Let us now concentrate on the third term in (40). We write

Γar =

∫ r

0

∫
[0,∞)2

∆us(θ)h(z)10≤z≤a Ñ
1(ds, dθ, dz), Γa→r =

∫ r

0

∫
[0,∞)2

∆us(θ)h(z)1a<z Ñ
1(ds, dθ, dz).
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for a ≥ 0 and sup
0≤s≤t∧Tn,δ

|Γs| ≤ sup
0≤s≤t∧Tn,δ

|Γas | + sup
0≤s≤t∧Tn,δ

|Γa→s |. Using now (30) and (31) and

1a<z|dÑ1| ≤ 1a<zd(N1 + ν1), we get

E

(
sup

0≤s≤t∧Tn,δ
|Γs|

)

≤ E

(
sup

0≤s≤t∧Tn,δ
|Γas |

)
+ E

(∫ t∧Tn,δ

0

∫ ∞
0

|∆us(θ)|h(z)1a<z d(N1 + ν1)

)

≤ C1E
(

[Γa,Γa]
1/2
t∧Tn,δ

)
+ 2

∫ ∞
a

h(z)λ1(dz) E

(∫ t∧Tn,δ

0

∫ ∞
0

|∆us(θ)| dsdθ

)
(43)

≤ 3C1E
(
〈Γa,Γa〉1/2t∧Tn,δ

)
+ 2K(n)

∫ ∞
a

h(z)λ1(dz) Rt. (44)

It remains to estimate E
(
〈Γa,Γa〉1/2t∧Tn,δ

)
. If we denote by W1(a) =

∫
[0,a]

h2(z)λ1(dz) and
W1 = W1(∞), then for 0 < a ≤ 1, to be fixed later on, we get

E
(
〈Γa,Γa〉1/2t∧Tn,δ

)
=
√
W1(a) E

(∫ t∧Tn,δ

0

∫ ∞
0

|∆us| dθds

)1/2


=

√
W1(a)√
W1

√
W1 E

(∫ t∧Tδ

0

∫ ∞
0

|∆us| dθds

)1/2


=

√
W1(a)√
W1

E
(
〈Γ,Γ〉1/2t∧Tn,δ

)
≤
√
W1(a)√
W1

c1
−1

(
E

(
sup

0≤s≤t∧Tn,δ
|Γs|

)
+ ΞΞΞ

)
,

where we applied (31) to (Γs)s. Here c1
−1 is a finite constant, and obviously since ΞΞΞ is a bound

for h, then ΞΞΞ is a bound for the jumps of Γ.
It remains to remark from (39) that

E

(
sup

0≤r≤t∧Tn,δ
|Γr|

)
≤ E

(
(∆X)∗Tn,δ

)
+ E

(∫ Tn,δ

0

|∆bs| ds

)
+ E

(
sup

0≤r≤Tn,δ

∣∣∣ ∫ r

0

∆`
1/2

s dB1
s

∣∣∣)

+ E

(∫ Tn,δ

0

∫
[0,∞)2

|∆us(θ)||z − h(z)|N1(ds, dθ, dz)

)
= K < +∞. (45)

Coming back to (43) we get

E

(
sup

0≤s≤t∧Tn,δ
|Γs|

)
≤
√
W1(a)√
W1

3C1c1
−1(K + ΞΞΞ) + 2K(n)

∫ ∞
a

h(z)λ1(dz)

∫ t

0

Rsds.

Finally, adding all the estimates in (40), we obtain the following inequality

E((∆X)∗t∧Tn,δ) ≤ β1(a)E
(

(∆X)∗t∧Tn,δ

)
+ β1(a)ΞΞΞ + γ1(a)

∫ t
0
Rs ds+ ρ1(a, t)Rt,

with

β1(a) =

√
W1(a)√
W1

3C1c1
−1; γ1(a) = 2K(n)

∫ ∞
a

h(z)λ1(dz),

ρ1(a, t) = K(n)

(
t+ t

∫ ∞
0

|z − h(z)|λ1(dz) +
C1

2
√
ζ

√
t

)
(1 + β1(a)).
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In a similar way, we get the upper bound for E((∆Y )∗t∧Tn,δ). We call β2, γ2, ρ2 the corresponding
quantities. Then, summing up these upper bounds gives the following upper bound for Rt.

Rt ≤ (β1(a) ∨ β2(a))Rt + ΞΞΞβ(a) + γ(a)

∫ t

0

Rs ds+ ρ(a, t)Rt,

with β = β1 + β2, γ = γ1 + γ2, ρ = ρ1 + ρ2.
We first choose 0 < a0 < 1 such that for all a ≤ a0, we have β(a) ≤ 1/4, and we choose

0 < t0 = t0(n) such that

ρ(1, t0) = K(n)
(
t0 + 2t0

∫∞
0
|z − h(z)|λ1(dz) + C1

2
√
ζ

√
t0

)
(1 + β1(1))

+K(n)
(
t0 + 2t0

∫∞
0
|z − h(z)|λ2(dz) + C1

2
√
ζ

√
t0

)
(1 + β2(1)) ≤ 1/4.

Hence, for all a ≤ a0, t ≤ t0, we get Rt ≤ 1
2Rt + ΞΞΞβ(a) + γ(a)

∫ t
0
Rs ds, and a fortiori it holds

Rt ≤ 2ΞΞΞβ(a) + 2γ(a)

∫ t

0

Rs ds. (46)

Gronwall’s inequality shows that, for all 0 < a ≤ a0, t ≤ t0

Rt = 6ΞΞΞC1c1
−1

√W1(a)

W1
+

√
W2(a)

W2

 e2tγ(a)

≤ 12ΞΞΞ
C1c1

−1
√
W1 ∧

√
W2

(∫ a

0

h(z)2 λ(dz) e
8K(n)t

∞∫
a

h(z)λ(dz)
) 1

2

≤ A

(∫ a

0

h2(z)λ(dz) e8K(n)t0
∫∞
a
z λ(dz)

) 1
2

,

where A = 12ΞΞΞ C1c1
−1

√
W1 ∧W2

. Hence, if we also assume that 8K(n)t0 ≤ ε0, we have for all t ≤ t0

E((X − X̃)∗t∧Tn,δ + (Y − Ỹ )∗t∧Tn,δ) ≤ A lim inf
a→0

(∫ a

0

h(z)2 λ(dz) eε0
∫∞
a
h(z)λ(dz)

) 1
2

= 0.

This result was our aim and as previously detailed, uniqueness is then proved under (36).

(ii) Now, we relax the extra integrability condition (36). We truncate the Poisson processes as
follows

N i,D(dt, dθ, dz) = 1z≤DN
i(dt, dθ, dz), i = 1, 2,

where now the intensities are dν̂Di (dt, dθ, dz) = 1z≤D dt dθ λi(dz). In particular, we have λ̂Di (dz) =
1z≤D λi(dz), which satisfy (F6) and the extra condition of part (i) is satisfied:∫ ∞

0

(z2 ∧ z)λ̂Di (dz) =

∫ D

0

(z2 ∧ z)λ(dz) <∞.

We consider the associated drift term, where compensation has been truncated :

bDi (x, y) = bi(x, y)− κi(x, y)pi(x, y)

∫
(D,∞)

h(z)λ(dz)
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With these truncated Poisson processes, consider the analogue of (29)

X̂t= x0 +

∫ t

0

bD1 (X̂s, Ŷs)ds+

∫ t

0

√
`1(X̂s, Ŷs) dB

1
s

+

∫ t

0

∫
[0,∞)2

1θ≤κ1(X̂s−,Ŷs−)
p1(X̂s−, Ŷs−)h(z) Ñ1,D(ds, dθ, dz)

+

∫ t

0

∫
[0,∞)2

1θ≤κ1(X̂s−,Ŷs−)
p1(X̂s−, Ŷs−) (z − h(z))N1,D(ds, dθ, dz);

Ŷt = y0 +

∫ t

0

bD2 (X̂s, Ŷs)ds+

∫ t

0

√
`1(X̂s, Ŷs) dB

2
s

+

∫ t

0

∫
[0,∞)2

1θ≤κ2(X̂s−,Ŷs−)
p2(X̂s−, Ŷs−)h(z) Ñ2,D(ds, dθ, dz)

+

∫ t

0

∫
[0,∞)2

1θ≤κ2(X̂s−,Ŷs−)
p2(X̂s−, Ŷs−) (z − h(z))N2,D(ds, dθ, dz). (47)

We claim that if (X,Y ), (X̃, Ỹ ) are two solutions of (29), then they are also solutions of (47), on
the interval [0, τD), where τD is the first time when the point measure induces a jump z larger
than D:

τD = inf

{
t > 0 :

∫ t

0

∫
[0,∞)2

1θ≤κ1(Xs−,Ys−), z>DN
1(ds, dθ, dz) + 1θ≤κ2(Xs−,Ys−), z>DN

2(ds, dθ, dz) > 0

}

Indeed, 1s<τD, θ≤κi(Xs−,Ys−)1z>DN
i(ds, dθ, dz) = 0 and

1s<τD, θ≤κi(Xs−,Ys−)N
i(ds, dθ, dz) = 1s<τD, θ≤κi(Xs−,Ys−)N

i,D(ds, dθ, dz),

while bDi − bi is the correction of the drift coming from the compensation of N1,D −N1.

The first part (i) then ensures that (X,Y ) and (X̃, Ỹ ) coincide up to time τD. Writing
Sn = Sn(X,Y, X̃, Ỹ ) the first time when either X or Y or X̃ or Ỹ goes beyond n, we observe that

{τD < t ∧ Sn} ⊂ ∪i∈{1,2}{N i([0, t]× [0, supκi([0, n]2)]× [D,∞)) > 0}.

Besides, for each n ∈ N and t > 0 the probability of the event of the right hand side goes to 0 as
D → ∞. Letting n and then D go to infinity ensures uniqueness up to explosion time Te. The
proof is completed.

A Hypotheses (H1) and (H2)
In this appendix, we recall the framework introduced in [4] Section 2, adapted to our setting.

Let X be the bounded subset (0, 1]2 of R2 and U = [−1, 1]2.

For any N ≥ 1, we consider a discrete time X -valued Markov chain (XN
k : k ∈ N) with increments

XN
k+1 −XN

k taking values in U . Let (vN )N be a given sequence of positive real numbers going to
infinity when N tends to infinity. For x ∈ X , we define

GNx (H) = vN E
(
H(XN

k+1 −XN
k ) |XN

k = x
)

= vN E
(
H(XN

1 −XN
0 ) |XN

0 = x
)
, (48)

for real valued bounded measurable functions H defined on U .

We first observe that Hypothesis (H0) in [4] is obviously satisfied since the state space is bounded.
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We introduce the functional space

C2
b,0 = C2

b,0(U ,R) =

H ∈ Cb(U ,R) : H(u) =

2∑
i=1

αiui +

2∑
i,j=1

βi,juiuj + o(|u|2), αi, βi,j ∈ R


and here the specific function h is the two dimensional identity function

h = (h1, h2) ∈ (C2
b,0)2 ; hi(u) = ui (i = 1, 2). (49)

Hypotheses (H1) There exists a functional space H such that

1. H is a subset of C2
b,0 and hi, hihj ∈ V ect(H) for i, j = 1, . . . , 2.

2. For any g ∈ Cc(U ,R) with g(0) = 0, there exists a sequence (gn)n ∈ C2
b,0 such that

limn→∞ ‖g − gn‖∞,U = 0 and |h|2 gn ∈ V ect(H).

3. There exists a family of real numbers (Gx(H);x ∈ X , H ∈ H) such that for any H ∈ H,

(i) lim
N→∞

sup
x∈X

∣∣GNx (H)− Gx(H)
∣∣ = 0.

(ii) sup
x∈X
|Gx(H)| < +∞.

Theorem A.1. Assume that the sequence (XN
0 )N is tight in X and (H1) hold. Then the sequence

of processes (XN
[vN .]

, N ∈ N) is tight in D([0,∞),X ).

We observe that that for any H ∈ C2
b,0, there exists a unique decomposition of the form

H =

2∑
i=1

αi(H)hi +

2∑
i,j=1

βi,j(H)hi hj +H, (50)

where H(u1, u2) = o(|(u1, u2)|2) is a continuous and bounded function and αi(H), βi,j(H), i, j =
1 · · · 2 are real coefficients and β is a symmetric matrix.

The next hypothesis (H2) in addition to (H1) is sufficient to get the identification of the limiting
values by their semimartingale characteristics, and then their representation as solutions of a
stochastic differential equation.

Hypotheses (H2)

1. For any H ∈ H, the map x ∈ X → Gx(H) is continuous and extendable by continuity to X .

2. For any x ∈ X and any H ∈ H,

Gx(H) =

2∑
i=1

αi(H)bi(x) +

2∑
i,j=1

βi,j(H)ci,j(x) +

∫
V

H(K(x, v))µ(dv), (51)

where

i) αi, βi,j and H have been defined in (50),

ii) bi and ci,j are measurable functions defined on X ,
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iii) V is a Polish space, µ is a σ-finite positive measure on V , K is a measurable function from
X × V with values in U ,

∫
V

1 ∧ |K(., v)|2µ(dv) < +∞ and

ci,j(x) =

4∑
k=1

σi,k(x)σj,k(x) +

∫
V

Ki(x, v)Kj(x, v)µ(dv),

where σi,k(x) are measurable functions defined on X for 1 ≤ i ≤ 2 and 1 ≤ k ≤ 4.

The main general result in [4] yields the following statement here. A slight adaptation is
needed since here the dimension 2 of the process X differs from the dimension 4 of the brownian
motion involved in the representation (one can also consider a 4-dimensional process by adding
two coordinates identically null to match the precise framework of [4]).

Theorem A.2. If the sequence (XN
0 )N is tight in X and (H1) and (H2) hold then any limiting

value of (XN
[vN .]

, N ∈ N) is a semimartingale solution of the stochastic differential system

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs +

∫ t

0

∫
V

K(Xs−, v)Ñ(ds, dv), (52)

where X0 ∈ X and B is a 4-dimensional Brownian motion and N is a Poisson Point measure on
R+ × V with intensity dsµ(dv). Moreover X0, B, N are independent and Ñ is the compensated
martingale measure of N .

B Hypothesis (F6)

In this appendix, we shall study more closely hypothesis (F6).

Lemma B.1. Assume λ1 satisfies (F6), and λ2 satisfies
∫

(z ∧ 1)λ2(dz) <∞. Then λ = λ1 + λ2
satisfies (F6).

Proof. If λ1 also satisfies
∫

(z ∧ 1)λ1(dz) <∞, we have for λ = λ1 + λ2 and any a ≤ 1, ε > 0

eε
∫
(a,1]

z λ(dz)
∫ a

0

z2 λ(dz) ≤ eε
∫
[0,1]

z λ(dz)
∫ a

0

z2 λ(dz),

which converges to 0 as a converges to 0. Hence, λ satisfies (F6).

So, for the rest of the proof we shall assume that
∫ 1

0
z λ1(dz) = +∞. In what follows we denote

by K =
∫
[0,1]

z λ2(dz) <∞. We define inductively c0 = 1 and given cn we consider 0 < cn+1 < cn
characterized by

cn+1 = sup

{
0 ≤ c < cn :

∫
[c,cn)

z λ1(dz) ≥ 1

}
.

Now, since λ1 satisfies (F6) there exists a sequence (ak)k ⊂ [0, 1] such that ak ↓ 0 and

r(ak) = e
ε0
∫
(ak,1]

zλ1(dz)
∫ ak

0

z2 λ1(dz)→ 0.

Consider for every k the unique cnk such that ak ∈ [c1+nk , cnk). We consider two possible situa-
tions:

(i)
∫
[c1+nk ,ak]

zλ1(dz) ≤ 1/2;

(ii)
∫
[c1+nk ,ak]

zλ1(dz) > 1/2.
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In the first case we have
∫
(c2+nk ,ak]

z λ1(dz) ≤ 3/2 and
∫
[c2+nk ,ak]

z λ1(dz) ≥ 1. On the one hand

r(ak) = e
ε0
∫
(ak,1]

zλ1(dz)
∫ ak
0
z2 λ1(dz) ≥ eε0

∫
(ak,1]

zλ1(dz)
∫
[c2+nk ,ak]

z2 λ1(dz)

≥ c2+nke
ε0
∫
(ak,1]

zλ1(dz)
∫
[c2+nk ,ak]

z λ1(dz) ≥ c2+nke
ε0
∫
(ak,1]

zλ1(dz)

≥ e
ε0
∫
(c2+nk

,1]
zλ1(dz)− 3

2 ε0 c2+nk .

With this estimation we obtain for dk = c2+nk

e
ε0
∫
(dk,1]

zλ1(dz)
∫ dk
0
z2λ2(dz)≤ c2+nke

ε0
∫
(c2+nk

,1]
zλ1(dz) ∫ dk

0
zλ2(dz)

≤ Ke 3
2 ε0 r(ak).

On the other hand

e
ε0
∫
(dk,1]

zλ1(dz)
∫ dk
0
z2λ1(dz)≤ eε0

∫
(ak,1]

zλ1(dz)+
3
2 ε0
∫ ak
0
z2λ1(dz)

≤ e 3
2 ε0 r(ak).

This gives the bound

e
ε0
∫
(dk,1]

zλ(dz)
∫ dk

0

z2λ(dz) ≤ eε0(K+ 3
2 )(K + 1) r(ak).

In the second case we have
∫
(c1+nk ,ak]

zλ1(dz) < 1, by the definition of c1+nk , and therefore

r(ak) = e
ε0
∫
(ak,1]

zλ1(dz)
∫ ak
0
z2 λ1(dz) ≥ eε0

∫
(ak,1]

zλ1(dz)
∫
[c1+nk ,ak]

z2 λ1(dz)

≥ c1+nke
ε0
∫
(ak,1]

zλ1(dz)
∫
[c1+nk ,ak]

z λ1(dz) ≥ 1
2c1+nke

ε0
∫
(ak,1]

zλ1(dz)

≥ 1
2c1+nke

ε0
∫
(c1+nk

,1]
zλ1(dz)−ε0

.

Similarly as before, we take dk = c1+nk which gives

e
ε0
∫
(dk,1]

zλ1(dz)
∫ dk
0
z2λ2(dz)≤ c1+nke

ε0
∫
(c1+nk

,1]
zλ1(dz) ∫ dk

0
zλ2(dz)

≤ 2Keε0 r(ak).

Again, we have

e
ε0
∫
(dk,1]

zλ1(dz)
∫ dk
0
z2λ1(dz)≤ eε0

∫
(ak,1]

zλ1(dz)+ε0
∫ ak
0
z2λ1(dz)

≤ eε0 r(ak).

which allows us to show

e
ε0
∫
(dk,1]

zλ(dz)
∫ dk

0

z2λ(dz) ≤ eε0(K+1)(2K + 1) r(ak).

We summarize these estimations in both cases as

e
ε0
∫
(dk,1]

zλ(dz)
∫ dk

0

z2λ(dz) ≤ eε0(K+ 3
2 )(2K + 1) r(ak)

The result follows by noticing that (dk)k converges to 0.
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Remark B.2. Notice that if
∫

(z∧1)λ(dz) <∞ then both
∫

(z∧1)λ1(dz) <∞,
∫

(z∧1)λ2(dz) <∞
and a fortiori both λ1, λ2 fullfill (F6). Moreover, λ = λ1 + λ2 satisfies (F6).

It is also direct to show that if λ satisfies (F6), then both λ1, λ2 fulfill (F6). Nevertheless, it
is not true that if both λ1, λ2 satisfies (F6) then λ satisfies (F6). This makes the previous Lemma
more interesting.

We now give sufficient conditions to have hypothesis (F6). Assume that λ(dz) = f(z)
z2 dz, with

f ≥ 0 and
∫ 1

0
f(z)dz <∞,

∫
0+

f(z)
z dz =∞. After taking logarithm, condition (F6) holds if

sup
0<a<a0

∫ a0
a

f(z)
z dz

− log(
∫ a
0
f(z) dz)

<∞, (53)

for some small a0. This condition is satisfied if

r = sup
0<a<a0

∫ a
0
f(z)dz

a
<∞. (54)

Indeed, for all small z we have
∫ z
0
f(u)du ≤ rz and therefore∫ a0

a

f(z)

z
dz ≤ r

∫ a0

a

f(z)∫ z
0
f(u)du

dz = r

(
log

(∫ a0

0

f(u)du

)
− log

(∫ a

0

f(u)du

))
.

Hence, if a0 is small, we have
∫ a0
0
f(u)du < 1 and then

0 ≤
∫ a0
a

f(z)
z dz

− log(
∫ a
0
f(z) dz)

≤ r

(
log
(∫ a0

0
f(u)du

)
− log(

∫ a
0
f(z) dz)

+ 1

)
≤ r.

which shows (53).
Notice that (54) is satisfied if f is bounded near 0. For example f = 1, which gives λ(dz) =

1
z2 dz. Clearly f(z) = − log(z), for z small, does not satisfies (54). It is quite direct to show that
it does not satisfies (53) nor (35).
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