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Abstract

The standard photometric stereo is a technique to
densely reconstruct objects surfaces using light variation
under the assumption of a static camera with a moving light
source. In this work, we use photometric stereo to recon-
struct dense 3D scenes while moving the camera and the
light altogether. In such non-static case, camera poses as
well as correspondences between pixels of each frame to ap-
ply photometric stereo are required. ORB-SLAM is a tech-
nique that can be used to estimate camera poses. To retrieve
correspondences, our idea is to start from a sparse 3D mesh
obtained with ORB SLAM and then densify the mesh by a
plane sweep method using a multi-view photometric consis-
tency. By combining ORB-SLAM and photometric stereo,
it is possible to reconstruct dense 3D scenes with a off-
the-shelf smartphone and its embedded torchlight. Note
that SLAM systems usually struggle with textureless object,
which is effectively compensated by the photometric stereo
in our method. Experiments are conducted to show that our
proposed method gives better results than SLAM alone or
COLMAP, especially for partially textureless surfaces.

1. Introduction

Among all the techniques used for 3D reconstruction,
photometric stereo shines by its ability to capture details,
and to work even with textureless surfaces. This technique
has many applications. In the archaeological field, photo-
metric stereo can be considered to generate 3D models of
ancient objects difficult to manipulate. In art, it can be

  

(a) Pose estimation         (b) Set-up

Figure 1. Example of one experiment for reconstruction. The ex-
periment is conducted in a dark environment with a smartphone
whose flashlight is turned on (b). The smartphone takes a video
and we then compute the camera poses (blue rectangles on (a)),
the trajectory (green lines on (a)) and a point cloud (red points on
(a))

used to recover barely visible details of bas-reliefs. Un-
fortunately, most of existing photometric stereo techniques
require a static camera and a moving light, which prevents
from a usage on a mobile device; it is a technique that re-
mains only used in laboratories with specific setups. In this
work, our objective is to make this technology usable for
any smartphone users by moving around a close-up target
scene with the flashlight on, which will be used as the mov-
ing light source. We are targeting lambertian surfaces in
dark environments.

In our case, the camera and the light source are moving
together since they are embedded on the same device. This
makes the photometric stereo problem more challenging to



solve compared with the standard fixed camera set-up. Our
proposed set-up adds two requirements to the standard pho-
tometric problem: (1) an accurate estimation of the cam-
era pose for each input image (which is also the pose of the
flashlight), (2) correspondences between pixels to create the
photometric system. (1) will be acquired with SLAM. (2)
will be avoided using a plane-sweep approach.

The Simultaneous Localisation and Mapping (SLAM)
technology is efficient to quickly compute camera poses
from a sequence of RGB images in various environments.
We reason that the SLAM technology is the solution to over-
come the above mentioned issues, which will allow to re-
construct dense 3D models of objects with a mobile device,
even in the case of textureless objects.

We propose to use ORB-SLAM [16, 17] to compute
camera poses and 3D features (ORB features). ORB-SLAM
has the advantage to be usable with many kinds of move-
ments and on any scale. Thanks to photometric stereo, we
can compute normal vectors of the initial point cloud found
by SLAM. Then, using the multi-view photometric consis-
tency, we can densify this point cloud.

Our contributions are (1) the creation of an algorithm for
dense 3D reconstruction with a smartphone using its em-
bedded camera and flashlight, (2) a densification method to
reconstruct 3D scenes with only few initial points, and (3)
a method of close-up 3D reconstruction that works in dark
environment and with partially textureless objects.

2. Related work
Structure-from-motion is the most popular method to get

camera poses and sparse 3D features. It is particularly effi-
cient in recovering large-scale structures but struggles with
high-frequency details. [6, 18]. This standard technique
uses point correspondences to get a trajectory of key points
and thus, get the pose of the camera for each image. The
state-of-the-art technique that is currently acknowledged is
COLMAP [23]. It has the ability to extensively and accu-
rately build a 3D scene from a sequence of RGB images.
The drawbacks of this method are that it is highly time-
consuming since it will extract from all the images as many
features as possible. It also requires clearly visible textures
to get a smooth result. Nevertheless, COLMAP is the ref-
erential work that has to be considered when estimating the
efficiency of a technique for 3D reconstruction.

Photometric stereo is an acknowledged technology [24,
25, 10] that uses a pixel-wise approach to recover the nor-
mal vectors and the albedo of a scene captured with a spe-
cific setup (a camera and a system of varying lights). Based
on the variation of the light intensity, it performs well with
static conditions (static scene and camera). The user also
usually needs to know the pose of the lights beforehand.
Some works targeted the dynamic scenes [28, 4, 15] but
they only partially used photometric clues and few con-

sidered a dynamic camera. In [11], Higo et al. proposed
a mathematical model based on [1] for photometric stereo
when using a moving camera. However, they use a heavy
process to get their final normal map. They consider an
extensive list of possible correspondences for every single
pixel and apply the photometric equations for every corre-
spondences.

These last two decades, researchers started to work on
unifying Structure from Motion and photometric stereo
using various techniques such as Optical flow [26]. In
[21], photometric stereo and Structure from Motion are ap-
plied separetely; for photometric stereo, the camera remains
static but moves for the Structure from Motion. In [8], the
authors proposed to use multiple camera. Those solutions
are not usable with a monocular camera.

SLAM technologies are used for odometry and can be
used with a monocular camera. Recent methods [5, 16, 17]
are able to reconstruct large scenes as long as some con-
straints are respected (apparent textures, no changing light).
With only images taken by a moving camera, it is possi-
ble to get the camera pose in real-time. Various SLAM
algorithms exist; some are dense (depth-map oriented) [5]
and others are sparse (key-point oriented) [16, 17]. Depth-
map oriented algorithms such as LSD-SLAM [5] usually
focus on large scale scenes. Since our focus is on close-up
scenes, we chose to use a key-point oriented approach. It
also brings many benefits. First, ORB-SLAM [16] is a key-
point oriented algorithm that works well on any scale. It
is also fast and robust to many different kind of movements
including pure rotations [13, 12]. Since we cannot avoid the
user to be shaky, this is a key aspect for us. Additionally,
the bundle adjustment introduced in [17] brings more accu-
racy in the pose estimation, which is something essential for
photometric stereo. Nonetheless, ORB-SLAM, as a tech-
nique using feature-based approach, performs poorly when
the textures are not completely obvious, the light changes
[19], the scene is blurry or the environment is dark. If those
bad conditions appear, the point cloud might be inaccurate
and sparse.

In our proposed work, we use as a basis the point cloud
found by ORB-SLAM, which gives us a large amount of
reliable correspondences. The missing correspondences are
then computed by triangulating these reliable points.

3. Proposed method
Starting from a video taken by a smartphone, our objec-

tive is to reconstruct a dense 3D point cloud. The pipeline
of our proposed method is described in Figure 2. We use
ORB-SLAM (section 3.2) to obtain the camera pose and
an initial sparse 3D point cloud. With this information, we
apply photometric stereo (section 3.3) to obtain the normal
vectors. Finally, we densify (section 3.4) our point cloud
using a recursive approach of multi-view photometric con-



Figure 2. Pipeline of the proposed method. The input is a video taken by a smartphone. The output is a dense point cloud. More details
will be provided for each step in the corresponding sections: (1) ORB-SLAM: Section 3.2, (2) Photometric Stereo: Section 3.3, (3)

Densification: Section 3.4

sistency.

3.1. Image acquisition

Our proposed method starts with only one input: we pro-
vide a video where the camera moves around the object to
reconstruct. We do not require any prior knowledge con-
cerning the scene. The camera is calibrated beforehand [27]
[3] to obtain camera internal parameters. The input video is
divided into several frames. To apply photometric stereo, a
large variation of movement is required in order to have a
large panel of light orientations. During the acquisition of
this video, the torchlight is turned on to create the condition
of light variation. To increase the accuracy of our proposed
method, we avoid using auto-focus and changing the white
balance during the acquisition. We also avoided saturation.

3.2. ORB-SLAM-based algorithm

In our proposed method, we use ORB-SLAM in order
to get the camera pose (and consequently the light pose).
These poses are then used to build the photometric equa-
tions that we will detail in Section 3.3. ORB-SLAM also
provides an initial point cloud that will be used as a starting
point for densification that will be detailed in Section 3.4.

ORB-SLAM extracts ORB features in all images to find
a set of correspondences between all the images as ex-
plained in [16]. These correspondences allow us to compute
the camera pose of each input image. Since the camera and
the torchlight of a smartphone are usually close to one an-
other, we assume that the light pose corresponds to the cam-
era pose. From now on, we will only talk about the camera
pose but it also refers to the light pose. Among all the in-
put images, a series of key frames is selected. This selection
is based on the number of feature as explained below. The
world coordinate system is set as the camera coordinate of
the first key frame. The scale of the scene is arbitrarily de-
fine as the median scene depth during an initialization step

[17]. To compute the camera pose, the algorithm uses ho-
mographies and the fundamental matrices as in [16]. If the
scene is rather planar, the homography is used. On the other
hand, if the scene is non-planar and has a low-parallax, the
fundamental matrix is used. To evaluate the type of scene, a
score function is computed for each of the two models. As
in [16], we use a score function based on symmetric transfer
errors [9].

Bundle adjustment is used to refine the results as ex-
plained in [17]. In the end, we get the transformation from
world to camera coordinate system.

P cw =
[
Rcw T cw

0 1

]
.

(1)

We note the inverse transformation Pwc. In addition to
the camera pose, we also get a sparse reconstruction of the
scene in 3D with key points. For all those key points, we
have correspondences between all the key frames. With the
pose of the camera and the initial correspondences, we can
apply the equations related to photometric stereo.

3.3. Photometric Equations

We propose to apply the equations of photometric stereo
considering that (1) the camera is moving, and (2) the light
source is a near-light source close to the object. With the
equations corresponding to these assumptions, we can build
a solvable system. This system is used twice in our pipeline
as we have shown on Figure 2: (1) to get the normal vector
of each point of our initial point cloud, and (2) to densify our
point cloud using a multi-view photometric consistency.

3.3.1 Photometric stereo adapted to a moving camera

For each pixel p from the ith image, the standard photo-
metric equation (static camera, lambertian surface) in his
simplest form as explained by Woodham in [24] links the



pixel intensity si(p) with the albedo ρ(p), the light vector
li(p) (3 dimensional vector corresponding to the direction
from the pixel p to the light source) and the normal vector
n(p). n(p) and li(p) are in the same coordinate system. We
consider that the scale is the one computed by ORB-SLAM
during its initialization step. Additionally, we add a bias
a(p) to remove from the pixel intensity the component that
is due to the ambient light. The photometric equation is as
below:

si(p)− a(p) = ρ(p)(li(p) · n(p)). (2)

Since the camera coordinate system is changing for each
image, the natural coordinate systems to use is the world
coordinate system (equivalent to the camera coordinate sys-
tem of the first key frame).

For each image, the origin of the camera coordinate sys-
tem is the position of the camera. Consequently, it is easier
to compute the light vector in each camera coordinate sys-
tem and then project it into the world camera coordinate
system using the rotation matrix Rwc. Considering the ori-
gin of the camera coordinate system as the position of the
light source, the light vector in the camera coordinate sys-
tem li(p)

c is then li(p)
c = −P cw.x(p) where x(p) is the

position in world coordinate system of pixel p (homoge-
neous coordinate). After projecting in the world coordinate
system, we finally can write :

li(p) = −RwcP cwx(p). (3)

3.3.2 Near-light photometric stereo

Equation 2 is valid only if we assume that the origin of the
light source is at infinity from the object. In our work, the
camera and the light are considered being at the same point
and we focus on close-up scenes. As a consequence, we
cannot make this assumption of infinite distance. We need
to correct the light vector (2) to take this aspect into account.
The optimization of the near-light photometric model is a
problem that is still investigated and usually includes heavy
optimization. The simplest model in terms of computation
is a fall-off decreasing with the size of the light vector [20].
We correct the equation (1) and (2) and finally get:

si(p)− a(p) = ρ(p)(l′i(p) · n(p)), (4)

with

l′i(p) = −
RwcP cwx(p)

|RwcP cwx(p)|f
, (5)

where f is the fall-off factor. If f = 0, we get back to the
standard case as described in equation (2). The quadratic
model (f = 2) and the cubic model (f = 3) are often used
in the literature [20, 14].

3.3.3 Photometric system

We use the photometric equation (3) to get the normal vec-
tors. We define N(p) as the number of correspondences
for the key point p. In theory, the equation (3) is verified
for all images and all pixels. We can consider ρ(p)n(p) as
a 3-dimensional unknown and separate ρ(p) and n(p) by
normalizing. Then, we create the system as in (6). The sub-
scripts x, y and z refer to the 3 components of 3D vectors.


s1(p)
s2(p)
s3(p)
s4(p)

=

l′1(p)x l′1(p)y l′1(p)z 1
l′2(p)x l′2(p)y l′2(p)z 1
l′3(p)x l′3(p)y l′3(p)z 1
l′4(p)x l′4(p)y l′4(p)z 1




(ρ(p)n(p))x
(ρ(p)n(p))y
(ρ(p)n(p))z
a(p)

.
(6)

The unknown values are the scalar a(p) and the 3D vec-
tor ρ(p)n(p). It corresponds to 4 unknowns. For a given
pixel p, if we get at least N(p) = 4 points of view, it is
possible to create a solvable system. If there is no ambient
light (a(p) = 0), we can reduce the system to 3 unknowns.
We will stick to the general case for now.

In theory, N(p) = 4 equations are enough but we con-
sider solving the photometric system only if at leastN(p) =
10 correspondences are found. Also, we want for each i
si(p) > smin where smin is a fixed threshold defining the
minimum pixel intensity to be considered relevant in terms
of intensity information. We then solve this equation using
the least-square method. In our method, we use this equa-
tion in two different steps of our process. For the process
of estimating the normal vectors, there is no particular dif-
ficulty since we use the correspondences between the key
points found by our SLAM part. These estimated normal
vectors are used to get an initial direction for each key point.
The second time that we use this system is in the densifica-
tion process. In this part, we astutely reverse the problem,
and use it to find the missing correspondences.

3.4. Densification

So far, we got a set of key points, and after a first usage of
the photometric equation, we got an initial estimation of the
normals of those points. Now, our objective is to densify our
3D point cloud, which is done using a recursive approach.

First, we apply a 3D Delaunay Triangulation to generate
a list of triangles [7]. Inside those triangles, we have no
information. The inside is flat, which is unlikely to be the
true shape of the object to reconstruct. We want to fill in
the inside of those triangles with as many points as possible
to reconstruct details. For each initial triangle, we compute
the gravity point G0.

Thanks to the normal vectors previously computed with
photometric stereo, we estimate a searching direction (only
one degree of liberty). This direction is simply computed as



Figure 3. Process of densification. We start from a triangle whose vertices are key points found by ORB-SLAM. We slide across a line that
cross the gravity point G0, and whose direction is the mean value of the vertexes’ normal vectors. The step is S0 at first step. P0 is the
most reliable point. We then repeat the process considering P0 as a vertex of 3 new sub-triangles

the mean value of the normal vectors of each vertex. Then,
we slide along the axis created by this direction.

The initial sliding step S0 is defined as a tenth of the
smallest side of the current triangle. When the point is
in its true position on the surface, it means 2D reprojec-
tions on each image should lead to corresponding points.
If the points are corresponding, the photometric constraint
(4) should be satisfied. Consequently, by picking the can-
didate which minimizes the photometric error e(p), we can
identify the true position of the point on the surface with-
out knowing the correspondences. If the point is reliable
enough, it is added to the mesh as P0, and can be used as
a new vertex, and thus creates 3 sub-triangles. Inside each
sub-triangle, we compute a new gravity point G1 and a new
sliding step S1 to add a new point P1. The process can then
be repeated again and again.

e(p) =
1

Np
.

√√√√ Np∑
i

(si(p)− s̃i(p))2. (7)

d(p) =
1(
Np

2

) .
√√√√ Np∑

i,j,i 6=j

(si(p)− sj(p))2. (8)

A point is considered reliable enough when the two fol-
lowing conditions are met. First, the error e(p) has to be
inferior to a minimum error called τe. s̃i(p) corresponds
to the recomputed pixel intensity using the solution of our
system. Secondly, the variation d(p) for pixel p between all
the pixel intensities of the system should not be too wide
(inferior to τd) to avoid discontinuities. Outliers are also re-
jected by applying RANSAC. Each key point of the initial
point cloud is also evaluated based on the same error con-
ditions, which leads to the removal of some points in the
initial point cloud.

During the 2D reprojection, some triangles might over-
lap with the background on some frames, which leads to
useless or even wrong new points. The threshold smin men-
tioned in Section 3.3.3 is a way to address this issue. A
concrete example will be provided with the cone dataset in
Section 4.5.

As we mentioned before, this approach is recursive. For
each initial triangle, we subdivide into 3 triangles which are
also subdivided 3 times etc... We perform this process 5
times. Consequently, we can create a maximum of 35 = 243
subtriangles for each initial triangle. In practice, we never
reach this maximum since there are always some points that
are not reliable. Once all the consistent triangles are com-
puted, we get a densified point cloud as our final output.

4. Experimental results

We evaluate our proposed method with real datasets.
We used the quadratic model (f = 2 in Equation (5)).
We experimentally fixed τe = 0.04, τd = 50 pixels and
smin = 50.

4.1. Camera and Torchlight specifications

We captured the data using a Huawei P20 smartphone.
This smartphone uses Leica optics and a LED flash. The
torchlight and the camera are positioned at around 1 cm to
one another. It is equipped with a 50 mm f/1.8 lens. To
acquire the images, we used the Android application FooteJ
which allows us to manually control all the parameters of
the camera. We conducted our experiments with a 1/60
shutter, an ISO of 1200 and a focal of 2.4 mm. For the cone
dataset, we used an ISO of 200 because of the whiteness of
the surface. Beforehand, we calibrated the camera using a
chessboard [27]. Here as well, we used 960x720p images
saved in .png file format. As it is a real case, we have no
information about the real fall-off function.



Box COLMAP ORB-SLAM Our method
KF / Total NA 16/860 16/860
Points count NA 9,763 105,276
Time NA ∼1 min 19 min
Cushion Colmap ORB-SLAM Our method
KF / Total 832/832 11/832 11/832
Points count 10,840 5,531 22,2941
Time ∼14h ∼1 min 12 min
Cone COLMAP ORB-SLAM Our method
KF / Total 706/706 15/706 15/706
Points count 6547 4726 13,691
Time ∼22h ∼1 min 9 min

Table 1. Comparison between COLMAP, ORB-SLAM and our
method to highlight the densification. KF corresponds to the num-
ber of key frames. COLMAP could not render a proper result for
the box dataset after more than 30 hours of computation

4.2. Datasets

If a part of the scene contains many features (such as a
textured wall), our ORB features will mainly focus on those
points. Consequently, since we do not want to focus on
simple walls, we avoid textures on the walls and the floor if
there are some. We also avoid ambient light (a(p) = 0) .

We used 3 different objects: a box, a cushion and cone-
like shape. Note that the box and the cushion have some
textures on it. Concerning the object with the cone-like
shape, it is completely white which makes it challenging to
reconstruct with SLAM. During the acquisition, the camera
is zigzagging around the object at 180 degrees.

Table 1 displays for each dataset a quantitative com-
parison between COLMAP, ORB-SLAM and our proposed
method. All experiments where conducted on the same
CPU.

4.3. Dataset with flat surfaces

Figure 4 shows some typical frames of the box dataset
and the point cloud of our algorithm. The box was placed at
a distance from the camera so that the object is blurry. With
this experiment, we can prove that our algorithm still works
when some pixels are ambiguous due to bluriness.

The white point cloud (Figure 4 (c)) is the point cloud
obtained with the standard ORB SLAM algorithm [17]. As
we can see, SLAM can generate the general shape, but it
is sparse and it cannot properly find the border of the sur-
faces. The green point cloud is obtained with our technique.
Our result has a higher density of points in comparison with
ORB-SLAM. Note that some parts are more densified than
others. While the green point clouds emphasizes the densi-
fication, the normal map highlights the shape of the box.

We could not generate a similar point cloud with
COLMAP. Whenever we tried, COLMAP failed to provide
a proper point cloud. We reason that the bluriness of the

images might be a hindrance for the computation. Unlike
COLMAP, our proposed method is not hindered by such
problems.

This example shows that our proposed method gets prop-
erly the general shape of the object, which is not the case
with SLAM. It also provides a higher density of points. This
type of flat surface is a simple case, so we tried with other
surfaces.

4.4. Dataset with curved surfaces

On the Figure 5, the point clouds obtained with the cush-
ion dataset are displayed. We chose this cushion to test
curved surfaces, as the cushion has two different kinds of
curvatures (top part and lateral part). The shakiness of the
user and the blurriness of some frames do not disturb our
proposed method.

As we can see, our proposed method significantly im-
proves the density of the point cloud in comparison with
SLAM. Besides, while the ORB-SLAM’s point cloud is
ambiguous for some parts of the surface, the photometric
stereo helps us to remove the inconsistent points as ex-
plained in Section 3.4, and thus, get a thin surface. The
white points on the point clouds generated by our proposed
method correspond to points found by SLAM and consis-
tent enough to be kept.

Besides, our proposed method is better than COLMAP
to render the true shape of the object. The rendered point
cloud from COLMAP seems smooth and homogeneously
dense, nonetheless, it wrongly curved the shape. In Figure
5, we can notice that the real cushion is not as round as
COLMAP output, but way closer the shape of our proposed
method. COLMAP does not distinguish the two kinds of
curvatures on the cushion while our proposed method does.

4.5. Dataset with both flat and curved surfaces

The third dataset is a more challenging surface. We dis-
play the result on Figure 6. It is a kind of cone with a cuboid
on top of it. The object is completely white. Since ORB-
SLAM had difficulties to find key points on the top of the
cone, we added a red marker at this position and 3 small thin
yellow markers to make the initial point cloud computation
a bit more consistent.

One of the other challenging aspects of this surface is the
occlusions due to the cuboid overlapping with the cone. For
this dataset in particular, the minimum intensity threshold
smin explained in Section 3.4 was crucial to avoid wrong
points between the cuboid and the base of the cone.

Due to the sparseness of the point clouds, the compu-
tation of the normal based on the closest neighbour does
not render the perfect orientations of the surfaces (for all
the techniques). Nonetheless, we can see that we obtained
local densifications. For example, the densification is more
important on the right part than on the left part of the cuboid.



  

(a) Typical input frames

 (b) Our  proposed method

(c) ORB-SLAM  
Figure 4. Densification result obtained using the box dataset. With the same input frames (a), we generated a point cloud, using our

proposed (d) and ORB-SLAM (b). The last column represents a smoothed colored map to visualize the shape of the box.

We explain this difference of density by the fact that the ini-
tial time required by ORB-SLAM to initialize the poses is
higher than for the box and cushion dataset. ORB-SLAM
particularly struggles with this partially textureless object.
Our proposed idea to add photometric stereo is here to dras-
tically diminish the impact of this struggle in the final out-
put.

5. Discussion and further work
By combining ORB-SLAM and photometric stereo, it is

possible to highly benefit from these two techniques. First,
photometric stereo needs accuracy and robustness which is
provided by ORB-SLAM; the user can do rotation around
the object and be shaky without altering the results. It does
not require any a priori knowledge regarding the poses of
the camera and the light. Thanks to the selection of key
frames and key points by ORB-SLAM, it is possible for
our photometric computation to focus only on images of
interest. Also, ORB-SLAM performs poorly with texture-
less surfaces and dark environments which are cases where
photometric stereo performs well. However, ORB-SLAM
and photometric stereo’s opposition on the texture condi-
tions leads to a difficulty: we need ORB-SLAM to be able
to track key points, which means purely textureless surfaces
cannot be used. Only partially textureless surfaces allows
ORB-SLAM to track points.

In terms of computation time, we managed to get a den-
sity of point similar to COLMAP with never more than 2%
of its computation time, as Table 1 shows. Besides, even
though COLMAP renders good-looking surfaces, the real
shape is usually not as curved as what COLMAP thinks it
is. Our proposed method provides a more realistic render-

ing for curves, in a way smaller computation time.

We improve significantly the density of a point cloud that
can be obtained with a mere use of ORB-SLAM. Our ex-
periments with real objects tend to prove the feasibility of
real reconstruction with a simple smartphone in dark envi-
ronments. Our field of interest was not dealing with non-
lambertian surfaces and shadows. Different optimization
techniques has been developed to target those issues [22]
[2]. Using those techniques will probably increase the ver-
satility of this smartphone use of photometric stereo.

6. Conclusion

Our method grants access to smartphone users with the
acknowledged technique of photometric stereo. Thanks to
ORB-SLAM, we created an automated process for a simpli-
fied usage; no beforehand knowledge concerning the cam-
era pose or light pose is required, and we obtain an initial
sparse 3D scene. Starting from this sparse scene, we use a
photometric system to compute a sparse set of normal vec-
tors. Then, we densify our 3D scene using multi-view pho-
tometric consistency. We obtained promising results with
real scenes and put forward the potential of photometric
stereo to be complementary with the ORB-SLAM difficul-
ties to reconstruct dark scenes and partially textureless ob-
ject.
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Figure 5. Point clouds obtained using the cushion dataset. With the same input frames (a), we generated a point cloud, using our proposed
(b) and compared with COLMAP (c) and ORB-SLAM (d). The last column represents a smoothed colored map to visualize the shape of

the cushion.
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Figure 6. Results obtained using the cone dataset. With the same input frames (a), we generated a point cloud, using our proposed (d) and
compared with COLMAP (b) and ORB-SLAM (c). The last column represents a smoothed colored map to visualize the shape of the cone.
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