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ABSTRACT

The pansharpening problem consists in fusing a high resolu-
tion panchromatic image with a low resolution multispectral
image in order to obtain a high resolution multispectral image.
In this paper, we adapt a Residual Dense architecture for the
generator in a Generative Adversarial Network framework.
Indeed, this type of architecture avoids the vanishing gradient
problem faced when training a network by re-injecting pre-
vious information thanks to dense and residual connections.
Moreover, an important point for the pansharpening problem
is to preserve the geometry of the image. Hence, we propose
to add a regularization term in the loss function of the genera-
tor: it preserves the geometry of the target image so that a bet-
ter solution is obtained. In addition, we propose geometrical
measures that illustrate the advantages of this new method.

Index Terms— Pansharpening, Generative Adversarial
Network, residual dense network, regularization, remote sen-
sing.

1. INTRODUCTION
Satellites are essential for Earth’s observation. They ac-

quire images at various scales depending on the objective of
the satellite. In remote sensing, the spatial resolution is ex-
pressed as the size of the ground captured by one pixel. The
spectral resolution is given both by the number of bands of
the image and by the bandwidth of the signal captured by the
sensors producing the images.

Satellites usually offer multispectral and panchromatic
images. Panchromatic images have a high spatial resolution
and only one spectral band, in contrast with the multispectral
images that have a low spatial resolution and several spectral
bands. Pansharpening techniques are then used in order to
fuse the panchromatic and the multispectral images to ob-
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tain an image with the spatial resolution of the panchromatic
image and the spectral resolution of the multispectral image.

This problem can be formulated as the reconstruction of
an image u thanks to the observed panchromatic image P and
the multispectral image y. This leads to consider the following
model: 

yk = SHkuk +Bk, ∀ k ≤ K
P =

∑
k≤K

αku
k +B , (1)

where S is a subsampling operator, H the blur operator, B
a gaussian noise and K the number of bands of the multis-
pectral images. The second equation of problem (1) supposes
that the panchromatic image can be approached by a linear
combination of the bands of the image we are looking for.
This model was introduced by Ballester et al. [1] and it is
commonly used [2, 3].

2. STATE OF THE ART AND CONTRIBUTIONS
Several types of approaches have been proposed to solve

the pansharpening problem:
i) Component substitution methods that use a linear

transformation on the multispectral data to separate
spatial details from spectral details in order to sub-
stitute the spatial details by the panchromatic image
[4, 5].

ii) Multi-resolution analysis approaches which combine
methods that decompose panchromatic and multispec-
tral images into a sequence of signals or pyramids
with decreasing information content. This allows to
add high frequencies of the panchromatic image to the
solution [6, 7].

iii) Variational or bayesian methods that solve an inverse
problem by giving an a priori on the solution [1, 2, 3].

iv) Learning methods that model the relation between va-
riables, here the panchromatic image and the multis-
pectral images by the composition of several levels
(convolution, etc.), without the need of a model such
as (1).

Many approaches using deep learning have been proposed
and they give state of the art results. Masi et al. [8] adapt
a CNN used for super-resolution for the pansharpening pro-
blem. This CNN mimics the behavior of a sparse represen-
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tation. Palsson et al. [9] use a 3-D CNN because they consi-
der multispectral images as 3D images: two spatial dimen-
sions and one spectral dimension. This makes it possible to
better model the inter bands spectral correlation. Guo et al.
[10] propose a CNN robust to the inconsistencies across sa-
tellites by using a 4 layers network with dilated multilevel
blocks. This dilated multilevel block allows to make full use
of features extracted by the convolutional layers. Moreover, to
avoid overfitting they propose to use a l2-regularization term
on the weights in the loss function.

An important point for the pansharpening problem is to
preserve the geometry of the panchromatic image. To do so,
Yang et al. [11] propose to train a network PanNet in the high
frequency (HF) domain to preserve the structure and the geo-
metry of the panchromatic image. To preserve the spectral
information, the mutispectral image is propagated thanks to
residual connection in a ResNet architecture.

More recently, there is the emergence of GANs for the ge-
nerative problem. Generative Adversarial Networks (GANs)
are a class of unsupervised learning algorithms introduced by
Goodfellow et al. [12]. This type of network seeks to mimic
any data distribution. In general, a GAN is a generative mo-
del where two networks are competing each other. The first
network is the generator Gθ. It generates a sample, while its
adversary, the discriminator network Dη tries to detect whe-
ther a sample is real or if it is the result of the generator. For
example, Liu et al. [13] propose a GAN based method. They
choose a simple architecture, i.e. a CNN as generator and dis-
criminator.

In this paper, we propose a new GAN based framework
by first considering a Residual Dense architecture for the ge-
nerator. Motivated by the efficiency of the Residual dense
architecture to train networks for many applications (super-
resolution [14] or denoising [15] for instance), we propose
to adapt this type of architecture. Indeed, dense and residual
connections allow to re-inject the information across the net-
work and so to avoid the vanishing gradient problem faced
during training.

In addition, to preserve the geometry, we propose to add a
regularization term in the loss function of the generator. This
term is based on the assumption that the gradient of the fused
image can be aligned at each point with the gradient of the
target image by regarding the orientation of the vector given
by the gradient. This new method is called RDGAN-Geom.

3. RESIDUAL DENSE BASED ARCHITECTURE
USED FOR THE GENERATOR

In the literature, based on GANs, the authors, for example
[13, 18], usually use to minimize the following loss functions:
L(Gθ) =

∑
i≤N

αlog(Dη(Gθ(z))) + δ||u−Gθ(z)||1 (2)

the loss function for the generator Gθ and:

L(Dη) =
∑
i≤N

log(1−Dη(Gθ(z))) + log(Dη(u)) (3)

the loss function for the discriminator Dη .
Here, N is the batch size, z = [↑ y, P ] is the input of

the network Gθ with ↑ y corresponding to the low resolution
multispectral y image upsampled with a bicubic interpolation
to the size of the panchromatic image P , Gθ(z) is the output
of the generator, θ and η the parameters of Gθ and Dη to
optimize and u is the target image.

Since we work in a residual framework, the output of the
generator Gθ(z) is a residual image. This residue contains
information about spatial and spectral details. To obtain the
final multispectral image we have to add the residue to the
multispectral image ↑ y. For the discriminator Dη , Equation
(3) is used but formulated in a residual way.

We consider a Residual Dense architecture as in Figure
1 for the generator. This architecture allows us to keep ad-
vantages of residual [16] and dense [17] architectures. These
types of architectures were introduced in order to solve the va-
nishing gradient problem, often faced during the training pro-
cess when using a deep neural network. The Residual Dense
architecture, in Figure 1, is composed of p residual dense
blocks Bi, i ≤ p presented in Figure 2, and it takes in input
the concatenation of the panchromatic and the multispectral
images.

Fig. 1: General architecture used for the generator, where the
input z = [P, ↑ y] is the concatenation [.] of the panchromatic
image P and ↑ y the multispectral image y = (y1, ..., yN )
resized to the size of P . Blocks Bi, i ≤ p, are residual dense
blocks described in Figure 2.

Each residual dense block, Figure 2, is composed of four
convolutional layers. Dense connections [17] are represented
by the concatenation of outputs of different layers. Hl repre-
sents the non-linear transformation (convolution, ReLU and
pooling) of the lth layer of one block and vl represents the
output of this layer. The lth layer in input is the feature maps
of all previous layers of the block. Therefore, it can be written
as follows:

vl = Hl([v0, ..., vl−1]),

where [.] represents the concatenation. It means that each
layer has access to all previous information. Furthermore,
each blocks is composed of one residual connection, repre-
sented by the addition of the input of the block with the
outputs of the last layers. In this way, the information in input

2



pre-print ICIP 2020 - International Conference on Image Processing c©2020 IEEE

of the block is transmitted without any modification.

Fig. 2: Architecture based on residual dense blocksBi for i =
1, ..., p. Dense connections are represented by the concatena-
tion of each output of previous layers and residual connec-
tions by the addition of the two different layer outputs.

This type of architecture trains a deep neural network by
considering residual and dense connections. The aim is to re-
inject the information obtained in output of some layers in
order to avoid a gradient equal or close to zero.

4. GEOMETRICALLY CONSTRAINED LOSS
FUNCTION

Thus, finding the spatial details and recovering the geo-
metry in the fused image is very important for the panshar-
pening problem. In order to do this, Yang et al. use the high
frequencies (HF) of the panchromatic and the multispectral
image to train a ResNet architecture, PanNet [11]. Therefore,
they minimize the loss function:

L = ||fω(PHF , ↑ yHF )+ ↑ y − u||22, (4)

where fω is the network PanNet, u the target image and PHF
and ↑ yHF are high pass information of P and ↑ y.

On the contrary, to take into account the geometry, we
propose to consider a third regularization term in the equation
(2), a geometrical term, initially proposed by Ballester et al.
[1] in a variational framework for the pansharpening problem.
We propose to minimize the following loss function:

L(Gθ) =
∑
i≤N

αlog(Dη(Gθ(z)+ ↑ y))+

δ||Gθ(z)+ ↑ y − u||1+

β
∑
x∈Ω

|∇u(x)⊥.∇(Gθ(z)(x)+ ↑ y(x))| (5)

for the generator Gθ, where ∇(.) is the gradient operator, ⊥
is the orthogonal vector and Ω the image domain. This third
term forces the alignment of the level lines of each band of
the solution with each band of the target image. This amounts
to transfering the geometry of the target image to the desired
pansharpened image. This results in using the inner product
between the orthogonal gradient vectors of the target image
and the gradients of the output image. Indeed, this inner pro-
duct is equal to zero when vectors are collinear and conse-
quently the geometry of the target image is preserved.

5. EXPERIMENTS

5.1. Dataset and quality evaluation
For most satellites, the resolution factor between the pan-

chromatic and the multispectral images is 4. We use images of
the Pléiades satellite to train and test the network. The ground
sampling distance of Pléiades is 0.7 m for the panchromatic
image and 2.8 m ground sampling distance for the multispec-
tral image. To train and test, the satellite images are cropped
into samples of size 128×128. Finally, 4408 samples are used
for training and 412 for testing.

Several criteria are used to measure the spatial or spec-
tral quality of the fused images. We use the Spectral Angle
Mapper (SAM) measure. This criterion measures the spec-
tral distortion between the target image and the fused image.
The Cross Correlation (CC) coefficicent evaluates the spatial
distortion between both images by computing the inter-bands
and intra-bands correlations. The Root Mean Square Error
(RMSE) gives a global error corresponding to the l2 norm
and the Peak Signal to Noise Ratio (PSNR).

In order to compare the geometrical similarities of two
images X and Y , we propose the geometrical metric MA:

MA(X,Y ) =
1

|Ω|
∑
Ω

||AX −AY ||2, (6)

where |Ω| is the number of pixel and A = ∇ or A = ∆ with
∆ the Laplacian operator. The metric M∇ allows to compare
the edges of two images an M∆ allows to compare the points
detected on each image [19].

Since all the previous measures need a target image, the
Wald’s protocole [20] is used to train the network. It consists
in reducing the spatial resolution of the panchromatic and the
multispectral images. Then the degraded images are used to
train the network. Hence it becomes possible to compare the
fused image obtained by the different methods with the origi-
nal multispectral image. This protocol offers therefore a way
of checking the different properties of the considered me-
thods.
5.2. Details of implementation

The proposed method was implemented with Tensorflow
and with ADAM optimizer to minimize the loss function with
an initial learning rate of 0.0002 and a momentum of 0.5. The
batch size is set to 19.

5.3. Results
We compare the proposed method with some state-of-the-

art pansharpening methods. The pansharpening methods in
comparison are the coefficicent injection methods GLP [21]
and GSA [22], the variational method P+XS [1] and the Pan-
Net [11] and PSGAN [13] networks. For a better comparison,
we train both networks on the Pléiades dataset and the trai-
ning time is about 24 hours for PanNet. The training time is
about 15 hours for the PSGAN method and between 10 and
12 hours when considering the ResNet or the Residual Dense
architecture.
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Method PSNR CC SAM RMSE
ideal value max 1 0 0
GSA [22] 19.73 0.877 0.2997 27.40
GLP [21] 19.47 0.877 0.2998 28.14
P+XS [1] 19.37 0.860 0.317 28.48

PanNet [11] 28.36 0.950 0.157 10.30
PSGAN [13] 26.59 0.952 0.155 10.93

PSGAN-Geom 27.18 0.955 0.145 10.14
GAN ResNet 28.38 0.960 0.153 10.07

GAN ResNet-Geom 28.42 0.961 0.152 10.02
GAN ResNet HF 28.24 0.9595 0.154 10.22

GAN ResNet HF-Geom 28.26 0.960 0.152 10.18
RDGAN 29.37 0.969 0.141 8.94

RDGAN-Geom 29.38 0.969 0.138 8.93
RDGAN HF 29.17 0.967 0.145 9.15

RDGAN-Geom HF 29.20 0.968 0.144 9.11

Table 1: Quantitative results obtained on test images, best re-
sults are in bold and worst underlined comparing learning ap-
proaches.

Target image P+XS PanNet

PSGAN RDGAN RDGAN-Geom
Fig. 3: Visual results obtained with the differents methods on
urban area. Only comparing RGB images does not allow to
conclude about the major differences between results.

First, the coefficient injection methods GLP [21] and GSA
[22] and the variational method P+XS [1] do not give satis-
fying quantitative results unlike learning approaches (Table
1).

Then, when the geometrical term is added to the PSGAN
method while keeping the same architecture provided by Liu
et al. [13], quantitative results are improved but the architec-
ture of the PSGAN method is very simple. By changing the
architecture of the generator for a ResNet architecture propo-
sed in the PanNet method [11], quantitative results are similar
to those obtained with the PanNet approach. However, when
considering the geometrical term (5) with the ResNet archi-
tecture, results are improved.

Finally, motivated by the results obtained in many appli-
cations,the proposed method RDGAN-Geom, composed of
several residual dense blocks, gives the best quantitative re-
sults and these results are better when adding the geometrical
term (5) in the loss function.

Visually on Figure 3, it is more difficult to appreciate
visual differences between all learning methods if we only
consider RGB visual comparison. Nevertheless, on the dif-

ference images in Figure 4, we can see a better preservation
of the geometry when considering the RDGAN-Geom net-
work. In order to quantify the results obtained in Figure 4,
we use the metrics M∇ and M∆ introduced in Section 5.1.
Quantitative results in Table 2 confirm visual results and we
can conclude that our RDGAN-Geom gives best results while
preserving the geometry.

P+XS PanNet PSGAN RDGAN RDGAN-P+XS

Fig. 4: Images of the differences between the target image
zoom and the result obtained for each method on the zoo-
med part of figure 3. The method GAN Residual Dense-P+XS
helps to better preserve the geometry of the target image.

Model M∇ M∆

Ideal value 0 0
P+XS 17.22 23.96

PanNet 9.07 13.52
PSGAN 8.66 13.18
RDGAN 8.20 12.55

RDGAN-Geom 8.10 11.87

Table 2: Quantitative results obtained on test images. These
results show a better preservation of the geometry for the
GAN Residual Dense architecture while considering the
P+XS term in the loss function. Best results are in bold and
worst underlined.

Yang et al. [11] use the high frequencies of the multis-
pectral and the panchromatic images in input of their network
to preserve edges and structure. To compare this network with
ours, we also test when giving the high frequencies in input of
our network when considering a ResNet or a Residual Dense
architecture for the generator (named with HF in Table 1).
Quantitative results show that the high frequencies have few
influence in our GAN framework whatever the architecture
considered.

6. CONCLUSION

In conclusion, we propose to use a Residual Dense archi-
tecture for the generator in a Generative Adversarial Network
with a regularization term in the loss function for the panshar-
pening problem. The proposed term added to the loss function
forces the alignement of the gradient of the output with the
gradient of the target image at each pixel in order to preserve
the geometry.

Furthermore, the combination of the architecture and the
term in the loss function allows to get better quantitative and
visual results, preserving geometry in images.
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