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person. A smile may indicate a happy person, a yawning indicates tiredness for
example. This information is essential in many applications areas such as health,
security or communication. Indeed, it is possible to automatically detect tiredness
or anger for road safety, or to detect the level of pain of a patient for health
applications.

The majority of the approaches dealing with facial expressions are generally
trained on unoccluded faces and give very good results. However, these approaches
perform poorly when deployed on un-controlled data (e.g., video surveillance sys-
tem), where the face can be highly occluded. Two types of approaches have been
proposed to address challenges in presence of occlusions. The first approach tend
to reconstruct the occluded parts of the face and simulate an ideal analysis con-
text. The second approach consists in characterizing the face despite the facial
occlusion and let classifier identify the closest expression among the training data.
In all cases, the facial expression analysis remains challenging when occlusions
occur.

In this paper, we propose an innovative approach to overcome facial occlusions
challenges. We assume that the facial movement induced by an expression is rel-
atively close between individuals although the texture or facial geometry of each
individual is highly different. The innovation brought by our contribution relies on
the propagation properties of the facial movement. The movement induced by an
expression spreads beyond the movement epicenter to neighbouring regions. Hence,
if a region is occluded then it is possible to focus on the movement information
that has been propagated to neighbouring regions. This paper is an extension of
our previous work [21] where specific facial frameworks (i.e., specific sets of facial
regions) are constructed per expression, according to the importance of each facial
region to recognize the underlying expression in presence of specific occlusions.
Only the most relevant regions are selected in order to be robust to both small
and large occlusions. The previous work gets one output per expression and there
is no unified process to recognize all facial expressions under one occlusion. In this
paper, we propose to merge the per-expression facial frameworks into a unique
model in order to recognize globally any given facial expression in presence of a
specific occlusion.

As well as the majority of proposed approach to handle occlusions, we work
on completely controlled dataset with frontal faces and simulated occlusions. Sim-
ulated occlusions allows the comparison of results with unoccluded data. Thus,
we can quantify clearly the performance gap that is to various kind of occlusions.
Because we are working on movement, we focus on the analysis of video sequences.

In Section 2, we highlight the main contributions of the paper and discuss
approaches used to handle facial occlusions challenges. The construction of opti-
mized facial frameworks per expression in presence of given occlusions is explained
in Section 3. The merging of these facial frameworks is introduced in Section 4.
In Section 5, we present the data used for learning and the experimental protocol
used. Then, we present the performances obtained considering one expression at a
time or all expressions simultaneously. In Section 6, we analyze the ability of the
facial frameworks to recognize a given expression in presence of specific occlusions.
In Section 7, we evaluate the generic expression recognition performance in pres-
ence of large occlusions and compare our approach to the other approaches from
the literature. To conclude, we summarize the results and discuss perspectives in
section 8.
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2 Scope and background

This section starts with an overview of the state-of-the-art methods to recognize
facial expressions. Later, we highlight the main objectives of our contribution and
we provide a brief overview of existing approaches to handle facial occlusions.

2.1 Facial Expression Recognition

Facial expression can be studied statically or dynamically. Static approaches con-
sider one image, usually associated to the expression apex, and focus on distinctive
static features. Dynamic approaches encode changes in the evolution of the facial
features over time starting from the onset of the expression until the apex.

Static facial expression recognition is mainly based on texture or geometric fea-
tures extraction [5]. Texture features [23,10] are based on the intensity of the pixels
while geometrical ones [14] consider distances or deformations of the face, often
based on facial landmarks. In all cases, these features encode relevant information
about the facial expression and are used to train classifiers. Traditionally, KNN
and SVM algorithms are used for this classification step [11]. Recently, deep learn-
ing based approaches have been proposed, essentially based on CNN architectures
where features are learnt directly from the data [5].

Some works have studied the role of facial movement to recognize expressions
and have shown that considering the whole activation sequence seem more infor-
mative than considering only the apex alone [2]. Existing descriptors have been
then extended to support the temporal dimension. For instance, LBP [23] has been
extended LBP-TOP [28] by encoding the changes overtime. Other works are based
on the facial landmarks dynamics. Some approaches track these points to char-
acterize the deformation of the face [24] in time. Recurrent neural networks such
as LSTM have been proposed to keep track of temporal changes in deep learn-
ing approaches [25]. In order to characterize more precisely the movement, optical
flow is particularly adapted and some features are derived from it. Recently, Al-
laert et al. [1] proposed a descriptor called Local Motion Patterns (LMP) based
on optical flow. It characterizes the facial movement by retaining only the main
directions related to facial expressions, while avoiding motion discontinuities. In
order to characterize the movement within the face, LMPs are applied to small
regions that are laid out on the face according to the facial muscles scheme. Hence,
based on the relevance of the movement in the presence of facial expressions and
the location of facial muscles, the face is segmented into 25 regions.

All these methods have proven their effectiveness in controlled situations. Nev-
ertheless, these methods are still challenged under occlusions. Furthermore, Kotsia
et al. [15] have shown that depending on the localisation of the occlusions the loss
of performance differs greatly. For instance, occlusions of the mouth for example
have greater impact than occlusions of the eyes regions. In the following section,
we discuss how the current state-of-the art approaches deal with occlusions.
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2.2 Background to overcome facial occlusions

Among the approaches proposed to handle occlusions, two categories can be dis-
tinguished: approaches that reconstruct the occluded parts of the face in order
to retrieve an ideal analysis context, and approaches that characterize the face
despite the occlusions.

Among the reconstruction approaches, the in-painting approach is the most
commonly used [4,13,17,26]. In order to improve the reconstruction, recent works
proposed to add some texture information from another unoccluded face. This
unoccluded face is selected according to its similarities with the occluded one.
Jampour et al. [13] use a guidance face to help the reconstruction of an occluded
face. These solutions have proven their effectiveness for the task of face recogni-
tion because a similar face is chosen to reconstruct the occluded one. Nevertheless,
based on the texture, this solution does not seem appropriate for facial expression
recognition task where similar expressions do not necessarily imply similar faces.
Recently, new approaches based on deep neural networks and more specifically
on generative algorithms networks have been proposed [22,4,17,26]. These new
approaches try to automatically reconstruct the hidden regions of the face thanks
to a generative algorithm. However, these network architectures are large and pa-
rameter tuning process is complex. Besides, the large intra-face variation between
individuals in the presence of facial expressions, the reconstruction of occluded
regions remains relatively complex.

Regarding the approaches characterizing facial expressions despite the pres-
ence of occlusions, they can be divided in two categories : sparse representation
approaches and sub-regions approaches. Sparse representation approaches recog-
nize facial expression on an occluded face by representing a test image as a linear
combination of unoccluded images from a dictionary [19,12]. This dictionary is
composed of a set of unoccluded training images. Because the dictionary is com-
posed of unoccluded data, occlusions cause errors in the linear combination. When
these errors reach a threshold, they are implicitly considered as occlusions and are
represented by an identity matrix which is isolated from the extracted facial fea-
tures used by the classification process. These approaches have the advantage to
implicitly localize occlusions. However, these approaches require large dictionaries
covering variations for each expression in order to build accurate linear combina-
tions and in order to have enough characteristics to discriminate between expres-
sions. In the sub-regions approaches, the face is divided into different regions and
each region is analyzed individually [7]. The results are then merged to recognize
the expression. The advantage of these approaches is that they perfom well even
in the absence of a large set of training data. However, the granularity of the
subdivision of the face into local regions and its effect on performance remains an
open question, particularly in the presence of important occlusions.

2.3 Contribution

Although much progress has been made in facial expression analysis field, facial
occlusions are still challenging. Recent approaches proposed in the literature are
not sufficient to properly characterize facial expressions in the presence of occlu-
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sions. In addition, the large intra-face variety of individuals in presence of facial
expressions increases the complexity of the learning process.

Considering the descriptors used to characterize facial expressions, majority of
approaches are based on texture or geometry descriptors. However, in presence of
an important facial occlusion, the information to characterize the facial expression
is almost completely lost or has a high probability of being noisy due to estimation
errors. Recent approaches have proven the effectiveness of optical flow in charac-
terizing facial expressions [1]. Thanks to the physical properties of skin, descriptors
based on movement seem adapted in the case of occlusion. Indeed, despite the fact
that the epicenter of a movement is situated in an occluded part of the face, the
movement related to the expression is still visible in the neighboring regions, as
illustrated in Fig. 1 (see input data part of the image), where the motion induced
by the smile has, as a secondary effect, the rise of the cheeks.
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Fig. 1: Overview of the proposed approach.

Assuming that the movement within a face region spreads to neighbouring re-
gions, we consider it appropriate to characterize facial expressions based on the
evolution of movement through specific regions of the face. Inspired by the sub-
region approaches, we propose an innovative approach to overcome facial occlu-
sions. Fig. 1 illustrates an overview of our approach which consists in recognizing
facial expressions in presence of partial occlusions of the face. This approach is
composed of two main steps. The first step consists in building optimized facial
frameworks defining the facial regions contributing the most to the recognition
of specific expressions in presence of a given occlusion. These facial frameworks
are generated thanks to optimized weights computed for each facial region. These
weights represent the contribution of each region to recognize a particular expres-
sion. The most important ones are selected in order to construct dedicated facial
frameworks. The second step, illustrated in the lower part of Fig. 1, takes ad-
vantage of the obtained facial frameworks in order to train one binary model per
expression. The results obtained with these binary models are then merged and a
unique model per occlusion is trained in order to classify all expressions.
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3 Weighting optimization algorithm

In this section, we investigate the best compromise between the minimum num-
ber of facial regions required to recognize facial expression and the performance
obtained in different occlusions.

3.1 Weighting facial region scheme

The weighting algorithm consists in three steps. The first step generates various
partial facial frameworks (a subset of facial regions), called configurations, includ-
ing fewer regions than the initial facial framework. Inspired by [1], we consider a
facial framework using 25 regions laid out following the facial muscle scheme. For
each configuration Cj, the weighting algorithm evaluates the performance of the
classification process using only the motion information contained in the regions
R; composing C;. Then, the recognition rate obtained for a given configuration
Cj serves to infer the contribution of each region R; to the classification process.

3.1.1 Configurations

The choice of the retained configurations in the weighting algorithm is essential.
Generating the whole set of configurations that covers all combinations of one to
twenty-five regions is heavy and time consuming. Instead, in order to reinforce
the motion propagation properties, we decided to consider only configurations
containing pair-wise connected regions. As illustrated in Fig. 2-A, from the region
Ri2, the combinations {Rlz}, {RG,R12}7 {R&Rm}, {R14,R12} and {R157R12}
of size one and two are obtained. Indeed, the regions Rg, Rs, Ri14 and Ris5 are
directly connected to the region Ri12. Bigger combinations are obtained using the
pair-wise connectivity of regions.

Fig. 2: Neighboring configurations.

We have chosen to explore configurations containing up to 8 regions as these
configurations cover already horizontal, vertical and diagonal parts of the face as
illustrated in Fig. 2-B. The configuration construction process guarantees that the
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configurations cover several muscles of the face and enable us to study the corre-
lation between them. Considering the configurations containing up to 8 regions,
we had a total number of 21,294 different combinations.

We have chosen to explore configurations containing less than 8 regions as
these configurations cover already horizontal, vertical and diagonal parts of the
face as illustrated in Fig. 2-B. The configuration construction process guarantees
that the configurations cover several muscles of the face and enable us to study
the correlation between them.

3.1.2 Transferring weights to regions

The collected results obtained from all configurations are directly used to compute
each region weight. At the beginning, each region receives a zero weight. Then, the
classification rate obtained for each configuration C; is used to compute a score
according to the mean classification rate of all configurations normalized by the
standard deviation. This score is calculated as follows :

w(Cj,emo) = exp((a(Cj,emo) — ui)/oi)/exp(i) (1)

where 4 is the number of regions of the configuration C;, j € [1,21294], ¢ =
|C;] € [1, 8], and a(C}) refers to the accuracy obtained with the configuration C;
evaluated on the expression emo. pu; and std; are respectively the mean and the
standard deviation of the results obtained with all the configurations containing 4
regions. Finally, exp(i) which is the exponential of ¢, moderates the contribution
of each configuration with regard to its size. Indeed, configurations covering larger
portion of the face are expected to provide higher recognition rates.

The score obtained is then added to the current weights of each region R;
included in the configuration Cj;. Finally, each region weight is normalized with
regard to the number of apparition of the region in all the combinations. The
obtained weights reflect the importance of each region for recognizing each expres-
sion.

Fig. 3 illustrates the heatmaps obtained on CK+ [20] dataset using the LMP
descriptor which is a descriptor based on optical flow, an SVM classifier with RBF
kernel and a 10-fold cross-validation protocol. Details about the specific parameters
used for obtaining these heatmaps are provided in Section 6. We illustrate them
here, in order to give a better understanding of the outcome of the weighting
scheme. This figure reveals that for almost all expressions: the bottom of the face
is activated, except for the anger, which mainly activates the eyebrows regions.
Moreover, one can notice that these heatmaps are not symmetric. This asymmetry
seems to be completely normal as some works have shown the asymmetry of facial
expressions [9,8].

The weight transferring process is represented in Fig. 4. The example shows
the construction of the heatmap for the sadness expression. Fig. 4-A (bounded by
the purple border) presents the heatmap obtained in absence of occlusions and in
Fig. 4-B (bounded by the blue border) presents the heatmap obtained in presence
of one occlusion.

As seen in the weighting heatmap obtained without any occlusion (i.e. consid-
ering entire set of configurations C'), the most important regions for this expression
are situated under the mouth. Considering the weight evaluation in presence of
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Fig. 3: Heatmaps of the importance of regions per facial expression computed using
LMP descriptor [1] on CK+ dataset [20]. See Section 6 for details.

occlusions, the process is very similar to the unoccluded situation, but during the
weight transferring part, we only consider configurations C' that include only unoc-
cluded regions (e.g., corresponds to the checked green configurations in Fig. 4-B).
Thus, the importance of each visible region is computed independently from the
occluded regions. Besides, occluded regions have a zero weight at the end of the
process. This result is completely consistent because an occluded region gives no
information about the facial expression.

As seen in the heatmap computed in presence of an occlusion impacting all
the right part of the face, all configurations involving right regions are filtered out
before transferring weights to regions. The resulting heatmap has zero weights for
all regions on the right side of the face (blank areas) and the weights on the left
side of the face are different with regard to the unoccluded heatmap notably for
the cheek regions.

3.2 Optimizing facial framework for expressions recognition

The regions are sorted according to their weights in order to determine the ranking
of the regions for each expression. This ranking is then used to generate models
containing from one to twenty-five regions. Each model contains the n best re-
gions for each facial expression. The obtained results reveals : a) the optimal facial
frameworks for each facial expression; and b)the minimal number of regions re-
quired to recognize the expressions with performances similar to those obtained
in absence of occlusion. These facial frameworks are illustrated in Fig.5 for the
expression of happiness in presence of different occlusion patterns by selecting the
6 best regions.

4 Fusion of facial expression models

The weighing optimization algorithm allows the construction of one model per
expression and per occlusion. Each model corresponds to a binary classifier and
indicates if the input data corresponds to the underlying expression or not. In
order to recognize an expression, regardless of the binary classifiers, we add a
fusion step and, hence, construct a unified model for all expressions. The overview
of the whole process are illustrated in Fig. 6.
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As we build a learning architecture using two layers, we proceed with two
learning processes : one concerning the binary classifiers and one concerning the
fusion layer. For each learning process, an adapted training set is prepared.

At first, six models are trained to recognize one expression against the others.
In this case, we need a training set per expression (one expression against the
others). For each model, the regions are first selected according to the z best
regions that characterize an expression under a specific occlusion.

The constructed facial frameworks are then used to train, per expression, bi-
nary classifiers. The outputs of these models represent : a) the probability of an
input sample to be classified as the underlying expression; and b) the probability
of an input sample to belong to a different expression class.

A new training step is then performed with another training set which covers
all expressions. In order to do this second training, raw data is fed to each binary
classifier previously trained. The binary classifiers are not trained anymore and
the models do not change. They are used only to compute, per expression, the
probabilities that the input sample belongs or not to a specific expression class.
These probabilities are concatenated into feature vectors that are fed into the
fusion process.

5 Evaluation protocol

In this section, we present the protocol used to conduct our evaluations. First, we
introduce the descriptors used to characterize facial movements. Then, we detail
the dataset and the selected facial occlusions.

5.1 Facial motion characterization

To characterize the movement, we used the LMP descriptor proposed by Allaert et
al. [1]. The LMP descriptor is based on optical flow which is particularly adapted to
characterize the movement. Moreover, this descriptor has been created especially
for facial expression recognition. Indeed, it takes into account the facial muscles
scheme to filter discontinuities in optical flow. For experiments, we use the same
segmentation used in Allaert et al. [1].

5.2 Dataset

The proposed approach is evaluated on the CK+ dataset as it is one of the most
frequently used dataset in the literature to handle occlusions [6,7,12,18] and it
contains video sequences which are adapted to study the movement. CK+ is a
controlled dataset which contains 374 labelled video sequences. Each video se-
quence starts from the neutral face and ends with the apex of the expression.

In this dataset, images do not contain any occlusions, so, they have to be
simulated. On one hand, occlusions are not totally realistic and there is a little
gap between a real occlusion and a simulated one. But, on the other hand, we
can totally control the experiments. By controlling the occlusion process, we can
clearly quantify its impact on the overall performance. Besides, it offers also the
possibility to construct precise benchmarks for comparison purpose.
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5.3 Selected facial occlusions

Generally, the occluded regions are located at the level of the mouth and eyes,
under different sizes. In order to simulate head pose variation, some approach hide
half of the faces (right or left). Occlusion are often generated by the altering parts
of the face by adding white, black or noisy pixels. Sometimes a blur effect can be
applied instead. Some examples are presented in the left part of Fig. 7.

Not having a stable and widely accepted baseline to compare the performance
of our approach on occluded faces, we choose to simulate important occlusions to
challenge our approach, as illustrated in the right part of Fig. 7.
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Fig. 7: Selected occlusions according to those used in the literature.

Inspired by the wide range of occlusions used in the literature, we choose a
limited set of occlusions but which covers all the challenges. Indeed, the occlusion
considered in our study present occlusions that impact larger facial area than those
usually met in the literature.

The first two configurations (Occl and Occ2) present important occlusions
on the left and right parts of the face. The third occlusion is inspired by the
observations of Kotsia et al. [15] that underline the fact that the mouth has a
great importance to recognize expression. Hence, in order to strongly challenge our
approach, we define an occlusion configuration that impacts the mouth, the cheeks
and the nose. Two other configurations consider important occlusions appearing
on the upper part of the face and occlusions appearing in the middle part of the
face.

6 Evaluation per expression

We propose a per expression evaluation in order to check if the constructed facial
frameworks provide interesting results. We first evaluate the impact of the region
selection when there is no occlusion. This first evaluation allows us to evaluate the
accuracy of our weight calculation and, also, to find a minimal number of regions
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required to recognize an expression. Then, we evaluate the efficiency of our per
expression recognition method in presence of the selected occlusions.

6.1 Experimental protocol

In order to work individually with each expression and to build relevant model for
per-expression recognition task, we generated several subsets of the CK+ dataset
per expression. In each newly generated subset, all the sequences available for
one expression are compared to a randomly stratified combination of all other
expressions. For example the happiness subset contains two classes : happiness
versus no-happiness. All the videos labeled happiness from the initial dataset are
kept. For the no-happiness class, videos labeled with the five other expressions are
randomly picked and a stratification scheme is employed in order to guarantee the
same representativity of the other expressions as in the initial dataset. The defined
distribution is described in Table 1.

¢

Table 1: Per expression subsets size for the computation of per region weights.

Happiness Fear Surprise Anger Disgust Sadness Total

Happiness subset 95 19 19 19 19 19 190
Fear subset 10 50 10 10 10 10 100
Surprise subset 16 16 80 16 16 16 160
Anger subset 7 7 7 35 7 7 70
Disgust subset 8 8 8 8 40 8 80
Sadness subset 13 13 13 13 13 65 130

For this evaluation, we have generated 25 configurations using one region, 46
configurations using two regions and so on until 12,827 configurations using 8
regions. A total number of 21,294 configurations are generated. The 21,294 con-
figurations are generated for each expression and all these models are sent to SVM
classifiers. Weights are calculated for the twenty-five regions and for each expres-
sion. The regions are ranked according to the computed weights. The ranking is
further used to generate twenty-five models by facial expression containing from
one to twenty-five regions.

6.2 Impact of the selection process

Fig. 8 shows the results obtained for each facial expression using the sorted regions.
These results show that this approach allows to be robust to really important
occlusions. Indeed, facial expressions corresponding to surprise, happiness and
disgust have quite optimal results with only one region. Sadness must have at least
three regions to be recognized and anger needs at least six regions. This result is
related to the complexity of the emotion. The anger and disgust expressions shares
the same facial regions, which makes it hard to distinguish them with fewer regions.
It is then necessary to take into consideration a larger number of regions.
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Fig. 8: Expression recognition rate according to the number of regions.

6.3 Efficiency of the approach on occluded faces

New weights are calculated for each occlusion and each facial expression to get
specific models robust to the considered occlusion. For each expression and for
each occlusion, the model which gives the best result is selected. We report results
on the models containing the six best regions calculated for the occlusion on the
facial expression. These 6-regions models are more stable with regard to some
occlusions than the full facial framework using 25 regions. They reasonably limit
the number of required unoccluded regions.

Fig. 9 shows the results obtained with and without intelligent facial frameworks
per expression in presence of occlusions. The results obtained without intelligent
facial frameworks are calculated with a model trained on unoccluded data using
entire facial framework composed of the twenty-five regions. The optimized results
are obtained with our approach by taking the best results considering the visible
regions on one hand, and by taking the results given with the six best regions on
the other. Finally, the black lines represent the results obtained in the case of an
entire unoccluded dataset. According to these results, it is clear that our approach
improves significantly the results even if only six regions are used. Indeed, consid-
ering the results provided by the best six regions calculated for each occlusion and
for each expression gives results close to the best results obtained in unoccluded
settings.

With regard to the obtained results, except for anger, the lower part of the face
is really important for almost almost all expressions. Indeed, without optimiza-
tion, the worst results are obtained with the mouth occlusion and the proposed
approach significantly increases the performances in all situations. Concerning the
anger expression, we can see that a lot of information is localized around the eyes.
However, interesting results are obtained in spite of eyes occlusion. Finally, we
can see that the occlusion of the nose and cheeks have an impact more or less
important according to the expression. This observation shows that the effect of
propagation of the movement give non negligible information.
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Fig. 9: Performance comparison with occlusion by expression on CK+.

7 Evaluation for all expressions

In this section, We present an evaluation of the entire process. We first evalu-
ate the effectiveness of our approach to characterize the six universal expressions
(happiness, anger, disgust, fear, sadness and surprise) under different facial occlu-
sions. Then, a comparison with representative approaches from the literature is
performed.

7.1 Experimental protocol

In our evaluation, we selected the six best regions for each expression for each oc-
clusion calculated. The selected facial frameworks for each expression per occlusion
are illustrated in Fig. 10.

In order to evaluate our approach, we had to split the dataset in two training
subsets. One used for training the per expression models and the second one for
training and evaluating the fusion model. We take 40% of the sequences to train the
per expression model. The remaining 60% are then used to train and evaluate the
fusion. Performances on each model are reported using a 10-folds cross-validation
protocol. The detailed distributions of each expression is presented in Table 2.
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Table 2: Size of per expression subsets for the evaluation of the fusion step.

Per expression models (40%)  Fusion model (60%) Total number of data in CK+

Happiness 38 57 95
Fear 21 31 53
Surprise 33 49 83
Anger 14 22 37
Disgust 16 24 41
Sadness 26 39 65

For the first training sets, we need six different training sets : one per expres-
sion. In order to build these training sets, we take all sequences for the current
expression. In order to have balanced distribution, a same number of data for the
expression and for the others expressions are respected. Thus, we randomly pick
1/5 of the number of data of the expression for the five other expressions. By
randomizing the initial dataset, we then created ten different sets of the training
sets.

These results are calculated for the ten training sets and we report the mean
result obtain for the ten runs. For each training set, an SVM classifier with RBF
kernel are used with a 10-fold cross-validation protocol. Then, the average classi-
fication rates are reported.

7.2 Performances analysis

In order to evaluate the performance of our approach, we study three criteria. At
first, we analyze the recognition performance of facial expressions in the presence
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of different occlusions. Then, we compare our performance with other approaches
proposed in the literature.

7.2.1 Performances analysis under occlusions

In this section, we analyze the performances of our approach to characterize the six
universal facial expressions (happiness, sadness, disgust, fear, surprise and anger)
under different occlusions. Table 3 shows the results obtained with our process
with and without occlusion. The process without occlusion considers the six most
important regions of the face to recognize each expression. The process with oc-
clusion consider the calculated regions considering the several occlusions.

Table 3: Accuracy of our approach on CK+ dataset with and without occlusion.
No occlusion a ’ ' g a

91.3% 73.4% 88.8% 89.0% 89.3% 90.7%

As observed in Table 3, we can conclude that the proposed approach is rela-
tively robust in the presence of severe facial occlusions. As we can see, the results
obtained with an occlusion of the bottom of the face drop significantly. It demon-
strates the importance of the mouth regions about the expression and it is harder
to compensate with the information found in the upper part of the face. To go
further, the per expression results are presented in Fig. 11. This graph highlights
the robustness of our method under the studied occlusions. As one could expect,
the occlusion of the eyes regions has a strong impact on the expression of anger as
these regions are really important. The confusion matrix of the upper part occlu-
sion in Fig. 12 indicates that anger is mainly confused with sadness. This could be
explained by the fact that these two expressions implies both pulling down of the
lips. With these results, one can also notice that, the fear expression is particularly
impacted by the bottom face occlusion. The confusion matrix of the lower part
occlusion presented in Fig. 12 indicates that fear is mainly confused with surprise
and sadness. Indeed, surprise and fear induce a raise of the eyebrows, while the
inner corners of the eyebrows are pulled towards each other for both fear and
sadness.

7.2.2 Performances comparison with others approaches

In this section, we compare the performance of our approach with the other ap-
proaches proposed in the literature on the CK+ database. Since there is no prede-
fined baseline to compare the different approaches, we only analyze the occlusions
that are closest to the other approaches. The results are represented in Fig. 13.
In Fig. 13, we compare our results with the results obtained by Kotsia et al.
[15]. In this paper, they analyse the impact of facial occlusion on facial expression
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Fig. 12: Confusion matrices obtained under occlusion of the lower and the upper
part of the face.

recognition by analysing the results obtained by a human or by several descriptors.
In Fig. 13 we have kept the results obtained respectively, with the DNMF algorithm
[27] (column 1), with a descriptor based on the tracking of geometrical points of the
face from the first frame to the last frame [16] (column 2) and, finally, with Gabor
filters [3] (column 3). Gabor filters and DNMF algorithm are both texture-based
features. We can notice from these results that, with exactly the same protocol,
the results obtained by tracking geometric points, which takes into account the
temporal aspect, seems to be more robust to occlusions. Dapogny et al. [7] proposed
local descriptors for several regions of the face. These descriptors are fused to train
the classifier. They also propose an auto-encoder trained to estimate confidence
scores on the different regions. The obtained scores are used as weights for the
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Fig. 13: Comparison of performances with others approaches in the literature.

different features during the fusion step. This weighting step is used to enhance
the robustness to occlusions. The results obtained by using only the local features
without the weights, and, the results with weighted features are shown in Fig. 13.

In view of the results, our approach gives very competitive performances. It is
important to note that our occlusions are more severe than those used in other
approaches except for [22] which may explain the difference with some approaches.
To fairly compare the results obtained with other approaches, a less severe occlu-
sion of the mouth is also presented in this comparison. This result as well as the one
with the upper part of the face shows that our solution is really competitive with
other approaches evaluated on the CK+ dataset. Moreover, the difference between
the result obtained with and without the cheeks tends to show the importance of
the cheeks and, thus, the importance of the propagation of the movement.

7.2.8 Analysis under realistic occlusions

Fig. 14 shows the qualitative results obtained on sequences captured in presence
of real static occlusions. This figure illustrates, for each expression, the filtered
optical flow, the selected regions for per expression recognition and the probabil-
ities obtained for each model. The selected regions are outlined in green. As seen
in this figure, the selected regions calculated with our method, focus the analysis
on regions containing important and discriminant movements. The intermediate
probabilities (reported below each thumbnail) are calculated in a cross dataset con-
text. The per expression models and fusion models are trained on CK+ dataset.
No data from the collected sequences is included in the training process.
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O J o U bW

AT UTUTUTUTUTUTUTOTE BB B D DD DD DNWWWWWWWWWWNNNNONNNONNNONNONNNR R R PR R R e
P> WNRFROWOJdNT D WNRPRPOW®O®-IAUDRWNR,OW®OWIANTB®WNRFROW®O-JNUB®™WNROWO®W--10U D WN R O WO

20 Delphine Poux* et al.

8 Conclusion

In this paper, we design an approach that handle expression recognition in presence
of occlusions. We propose, as a first step, a method to calculate a facial framework
for each expression adapted to a considered occlusion. Based on the calculated
facial frameworks, we propose then a fusion step in order to build an entire process
which takes an input data and predict, at the end, the expression.

In order to do that, we pre-trained several models: one per expression in order
to get the probabilities that the input data belongs to an expression class. These
probabilities are then aggregated and they are used for training the fusion model.

The results obtained with this process are competitive with state-of-the-art
methods, although we have considered larger occlusions. Nevertheless, it is still
difficult to compare with other approaches especially due to reproductibility issues.
One of our future work consists in building a benchmark regrouping a large set
of occlusions and allowing the community to benefit from a stable evaluation
framework.
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