
HAL Id: hal-02859175
https://hal.science/hal-02859175v1

Submitted on 8 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Scalable Algorithms for the Unsplittable
Shortest Path Routing Problem

Amal Benhamiche, Morgan Chopin

To cite this version:
Amal Benhamiche, Morgan Chopin. Toward Scalable Algorithms for the Unsplittable Shortest Path
Routing Problem. [Research Report] Orange Labs. 2020. �hal-02859175�

https://hal.science/hal-02859175v1
https://hal.archives-ouvertes.fr

Toward Scalable Algorithms for the Unsplittable
Shortest Path Routing Problem
Amal Benhamiche

Data & Artificial Intelligence,
Orange Labs,

Châtillon, France,
amal.benhamiche@orange.com

Morgan Chopin
Data & Artificial Intelligence,

Orange Labs,
Châtillon, France,

morgan.chopin@orange.com

Abstract—In this paper, we consider the Delay Constrained
Unsplittable Shortest Path Routing problem which arises in the
field of traffic engineering for IP networks. This problem consists,
given a directed graph and a set of commodities, to compute a set
of routing paths and the associated administrative weights such
that each commodity is routed along the unique shortest path
between its origin and its destination, according to these weights.
We present a compact MILP formulation for the problem,
extending the work in [5] along with some valid inequalities
to strengthen its linear relaxation. This formulation is used as
the bulding block of an iterative approach that we develop
to tackle large scale instances. We further propose a dynamic
programming algorithm based on a tree decomposition of the
graph. To the best of our knowledge, this is the first exact
combinatorial algorithm for the problem. Finally, we assess the
efficiency of our approaches through a set of experiments on
state-of-the-art instances.

Index Terms—Traffic engineering, IP networks, Mixed Integer
Linear Programming, Dynamic Programming, Treewidth, Algo-
rithms

I. INTRODUCTION

In spite of the promises of the MPLS1 forwarding scheme,
most IP networks still heavily rely on shortest path rules where
weights are assigned to links by network administrators and
the routers are then able to compute shortest routing paths
[14]. At the same time, the growing interest for content and
user services driving even more traffic stresses the need to
optimize the utilization of the available resources and maintain
a high level of QoS on operational networks. On another hand,
the arising of Network Virtualization will be a key enabler
for the deployment of virtualized components capable of
performing efficient path computation on behalf of the routers,
thus allowing the optimization of operational IP networks.
This perspective change draws again the traffic engineering
community’s attention to classical problems related to IP net-
work optimization and raises the question of finding effective
algorithms allowing to solve those problems for large scale
networks.

The problem of finding routing weights inducing shortest
paths that minimize the network congestion has been widely
studied in the literature for both its splittable and unsplittable
versions. Some early works addressing shortest path routing

1MultiProtocol Label Switching

issues in an IP network optimization include [6]. The authors
of this paper study the problem of designing a survivable
VPN-based network using OSPF2 routing protocol and
propose a compact MILP formulation and several heuristics
to solve the problem. In [9], the authors investigate the OSPF
weights optimization problem with splittable traffic and a
piecewise approximation of the load function. They show
that the problem is NP-hard for a given set of demands and
provide a local search heuristic to solve it. The problem is
also shown NP-hard to approximate for both splittable and
unsplittable versions (see [9] and [3]). The authors in [1]
and [2] adress the unsplittable shortest path routing problem
and study the properties of path sets that induce shortest
path routing with compatible weights. Approaches based on
Mixed Integer Linear programming for the problem include
the work in [13], [5], [4]. In particular, compact formulations
are proposed in [13] and [5] for the splittable version of
the problem. Bley propose in [5] the so-called two-phase
algorithm, an exact approach based on a decomposition of the
problem into a master subproblem and a client subproblem.
The former subproblem generates routing paths while the
latter returns compatible weights if any, or conflict inequalities
forbidding incompatible routing paths otherwise.

In this paper, we consider a variant of the Unsplittable
Shortest Path Routing (USPR) problem with end-to-end
delay constraints motivated by practical QoS requirements
for the traffic. Our work extends the results proposed by
[5] and [4]. Our main contributions are (i) a compact
MILP formulation for the problem along with two classes
of valid inequalities to strengthen its linear relaxation, (ii)
a MILP-based heuristic that iteratively reroutes a portion
of the traffic fixed by the decision-maker and reduces the
network load and (iii) a dynamic programming algorithm
based on a tree decomposition of the graph. To the best of
our knowledge, this is the first exact combinatorial algorithm
for the problem.

Our algorithms are designed with the two following objec-
tives

2Open Shorest Path First

• scalability: they can be used to push back the limits of
existing approaches for the problem in terms of size of
instances treated,

• flexibility: they can be parameterized to provide solutions
that modify only part of the traffic routing, which is
highly desirable in practice.

In addition, they can be either integrated in a centralized
entity capable of computing intra-domain routing strategies
that optimize the network load like a Path Computation
Element (PCE) or SDN controller, or used as an off-line tool
by the decision-makers for network planning operations.

The remainder of the paper is organized as follows. Section
II is devoted to preliminaries and basic definitions. In Section
III, we introduce some necessary notations and give a formal
definition of the problem along with a compact MILP formula-
tion. We further present two families of inequalities valid for
the problem. We describe our MILP-based iterative solving
approach in Section V and a dynamic programming algorithm
in Section VI. Finally, Section VII is devoted to present some
early experiments to show the efficiency of our algorithms for
state-of-the-art instances while some concluding remarks are
given in Section VIII.

II. PRELIMINARIES

In this section, we give the graph notations and notions used
throughout this paper

a) Graph terminology: Let G = (V,A) be a (un)directed
graph. We also use the notation V (G) and A(G) (resp. E(G))
to denote the vertex set and arcs set (resp. edges set) of G
respectively Let X ⊆ V , we denote by G[X] the subgraph
of G induced by X . We denote by N(v) the set of adjacent
vertices of v and δ+(v) (resp. δ−(v)) the set of outgoing
(resp. ingoing) arcs of v. A path or v1v`-path is a sequence
of vertices v1 − v2 − . . . − v` such that vivi+1 ∈ A for
each i = 1, . . . , `− 1. If no vertices appear more than once
in a path then it is elementary. The two vertices v1 and v`
are the endpoints of the path and the others are called
internal vertices. A subpath is defined as any subsequence
vj − vj+1 − . . . − vj+k for some j and k. Unless stated
otherwise, all the paths considered in this paper are elementary.
We use the notation p[vi, vj] to denote a subpath of p with vi,
vj being any two vertices of p. We denote by P(G) the set
of all elementary path in G.

We say that G is bidirected if uv ∈ A and vu ∈ A for all
u, v ∈ V . The underlying undirected graph Gu of G is the
undirected graph obtained from G by taking the same set of
vertices, and with the set of edges defined as follows. There is
an edge between any pair of vertices u and v, if the directed
graph has an arc uv or vu.

b) Tree decomposition and treewidth: A tree decompo-
sition T = (T,B) of an undirected graph G = (V,E) consists
of a tree T = (X,F) with node set X and edge set F , and a
set B ⊆ 2V whose members Bx ∈ B, called bags, are labeled
with the node x ∈ X , such that the following conditions are
met:

1)
⋃
x∈X Bx = V .

2) For each uv ∈ E there is an x ∈ X with u, v ∈ Bx.
3) For each v ∈ V , the node set {x ∈ X : v ∈ Bx} induces

a subtree of T .
The third condition is equivalent to assuming that if v ∈ Bx′

and v ∈ Bx′′ then v ∈ Bx holds for every node x of the
(unique) x′x′′-path in T . The width of a tree decomposition T
is w(T) = maxx∈X |Bx|−1 and the treewidth of G is defined
as tw(G) = minT w(T) where the minimum is taken over
all tree decompositions T = (T,B) of G. The “−1” in the
definition of w(T) is included for the convenience that trees
have treewidth 1 (rather than 2).

Any tree decomposition T = (T,B) of a graph can be
transformed in linear time into a so-called nice tree decom-
position T ′ = (T ′,B′) with w(T ′) = w(T), |B′| = O(|B|)
and with Bx 6= ∅ for all Bx ∈ B where T ′ is a rooted tree
satisfying the following conditions (see [12] for more details):

1) Each node of T ′ has at most two children.
2) For each node x with two children y, z, we have B′y =

B′z = B′x (x is called join node) with B′x, B
′
y, B

′
z ∈ B′.

3) If a node x has just one child y, then B′x ⊂ B′y (x is
called forget node) or B′y ⊂ B′x (x is called insert node)
and ||B′x| − |B′y|| = 1 with B′x, B

′
y ∈ B′.

One can see that the subtree Tx of T rooted at node x repre-
sents the subgraph Gx induced by precisely those vertices of G
which occur in at least one By where y runs over the nodes
of Tx. When the graph is directed, the tree decomposition
applies for the underlying undirected graph.

c) Parameterized complexity: The parameterized com-
plexity theory is a framework that provides a new way to ex-
press the computational complexity of optimization problems.
We briefly recall here the main ideas behind this theory, the
reader is referred to [8] for more background on this subject. A
problem parameterized by k is called fixed-parameter tractable
(fpt) if there exists an algorithm, called an fpt algorithm, that
solves it in time f(k) · nO(1) (fpt-time) where n is the size
of the input. The function f is typically super-polynomial and
only depends on k. In other words, the combinatorial explosion
is confined into f . If the values of k are small in practice, then
the algorithm adopts a polynomial behavior.

III. DESCRIPTION OF THE PROBLEM

A. Notations and definitions

In terms of graphs, the problem can be presented as follows.
We consider given a bidirected graph G = (V , A) that repre-
sents an IP network topology. Every node v ∈ V corresponds
to a router while an arc a = uv ∈ A represents a logical link
between router nodes u and v. Every arc uv is associated a
capacity (bandwidth) denoted by cuv > 0 and a latency value
denoted δuv > 0. We let K denote a set of commodities (traffic
demands) to be routed over the graph G. Every commodity k
is defined by a pair (sk, tk) with sk, tk being the origin and
destination of k, respectively, along with the traffic volume
Dk > 0 to be routed from st to tk and a a maximum delay
value ∆k > 0.

Definition 1 (Partial routing (sub)path): A partial routing
path for a commodity k ∈ K in a graph G is a pair (p, k)
denoted by pk where p is a path. A partial routing subpath
of pk is a routing path qk such that q is a subpath of p.

Definition 2 (Complete routing path): A routing path pk is
said to be complete for a commodity k ∈ K in a graph G if
the endpoints of p are exactly the origin and destination of k.

Definition 3 (Routing configuration): A routing configura-
tion for a set of commodities K in a graph G is a sub-
set RG,K ⊆ {pk : p ∈ P(G), k ∈ K} of routing paths.

The set of all possible routing configurations of K in G is
denoted by R(G,K).

Definition 4 (Feasible routing configuration): A routing
configuration R ∈ R(G,K) is said to be feasible if there
exists a weight function w : A → Z+ such that (i) for
each pk ∈ R the path p is the unique shortest path between
its endpoints according to w and (ii) the delay constraint is
satisfied i.e

∑
pk∈R

∑
uv∈p δuv 6 ∆k.

Definition 5 (Complete routing configuration): A routing
configuration R ∈ R(G,K) is said to be complete if it
is feasible and there exists a (necessarily unique) complete
routing path in R for each k ∈ K.

Definition 6 (Conflicting paths): Two paths p1 and p2 are
said to be conflicting if they share two vertices u and v
and p1[u, v] 6= p2[u, v] with p1[u, v] 6= ∅ and p2[u, v] 6= ∅.
Otherwise, they are said to satisfy Bellman property.

Finally, we provide the following two metrics:
Definition 7 (Load): The load load(R, u, v) of an

arc uv ∈ A given a routing configuration R ∈ R(G,K) is
defined as

load(R, u, v) =
1

cuv

∑
pk∈R:uv∈p

Dk

The load is the ratio between the total flow that goes through
an arc and the arc’s capacity.

Definition 8 (Congestion): The congestion cong(R) of a
routing configuration R ∈ R(G,K) is defined as

cong(R) = max
uv∈A

load(R, u, v)

The congestion is then the maximum load over all arcs.

B. Properties

In this section, we will state two lemmas that will be useful
in the rest of the paper.

Lemma 1: Let R ∈ R(G,K) if R is feasible then it contains
no conflicting routing paths.

Proof: Suppose, on the contrary, that R is feasible and
yet contains two routing paths pk1 , p

k′

2 such that they share two
vertices u and v and p1[u, v] 6= p2[u, v] with p1[u, v] 6= ∅ and
p2[u, v] 6= ∅. Since R is feasible then there exists a weight
function such that p1 (resp. p2) is the unique shortest path
between its endpoints with respect to w. By the Bellman prin-
ciple, the subpath p1[u, v] is a shortest between u and v. For
the same reason, the subpath p2[u, v] is a shortest between u
and v which is different from p1[u, v] by assumption. Hence,

there are two different shortest paths to join the endpoints,
denoted s and t, of p1 i.e the path p1 itself and the one formed
by the subpaths p1[s, u], p2[u, v] and p1[v, t]. This contradicts
the unicity of p1.

The next lemma shows that feasibility can checked in
polynomial time.

Lemma 2 (Benameur and Gourdin [1]): Determining
whether a routing configuration is feasible and returning
the corresponding weight function, if any, can be done in
polynomial time.

C. Problem statement

We are now in position to state the problem studied in
this paper. The Delay Constrained Minimum Congestion (D-
USPR) problem is to find a set of weights to assign to the arcs
of G and a set of routing paths induced by those weights such
that (i) there is a unique shortest path satisfying the delay
constraints for each commodity according to the identified
weights and (ii) the network congestion is minimum. Formely,
the problem is defined as follows.

D-USPR
Input: A bidirected graph G = (V,A, c, δ) where each
arc uv ∈ A has a capacity value cuv > 0 and a latency
value δuv > 0, a set K of commodities where each
commodity k ∈ K is defined as (sk, tk, Dk, ∆k).
Output: A complete routing configuration RG,K with
minimum congestion value.

In this paper, we will also make use of this slightly more
general version of the above problem

PRE ROUTED D-USPR
Input: A bidirected graph G = (V,A, c, δ) where each
arc uv ∈ A has a capacity value cuv > 0 and a latency
value δuv > 0, a set K of commodities partitioned into two
sets Kfree (free demands) and Kfixed (fixed demands) and
a complete routing configuration RG,Kfixed

.
Output: A complete routing configuration RG,Kfree

such
that RKfree

∪ RKfixed
is feasible and has minimum con-

gestion value.

Observe that if Kfixed = ∅, we end up with the D-USPR
problem.

It is worth noting that, even if they look similar at first
glance, the EDGE DISJOINT PATHS (edp) problem (resp.
NODE DISJOINT PATHS (ndp) problem) is not a particular
case of D-USPR with unit demands and unit capacities
(see Fig. 1). Recall that the edp (resp. ndp) problem asks,
given an undirected graph and a set of k demands, to find k
edge-disjoint (resp. node-disjoint) paths joining the demands.
Consequently, the negative and positive results for edp or ndp
do not directly transfer to D-USPR.

IV. MILP FORMULATION

A. Notations and formulation

Let xka be a binary variable that takes the value 1 if
commodity k is routed along a path using arc a and 0

b

a
c

e

d
f

b

a
c

e

d

Fig. 1. In the graph on the left, the two paths a− c− d− f
and b− c− e− f form the unique valid solution for the EDGE DISJOINT
PATHS problem where the demands are (b, f) and (a, f). However, this is
not a feasible routing configuration since these two paths are conflicting.
In the graph on the right, it is not possible to find two node-disjoint paths
satisfying the demands (b, e) and (a, d), yet it is easy to see that the routing
paths a− c− d and b− c− e form a feasible routing configuration.

otherwise. We define the binary variables uta that takes the
value 1 if a belongs to a shortest path towards destination t
and 0 otherwise. We further let wuv denote the weight assigned
to the arc uv and rvu be the potential of node u, that is the
distance between node u and node v. The D-USPR problem
is then equivalent to the following MILP formulation:

minL (1)

s.t.
∑

a∈δ+(v)

xka −
∑

a∈δ−(v)

xka =

 1 if v = sk,
−1 if v = tk,
0 otherwise.

∀v ∈ V,
∀k ∈ K,

(2)∑
k∈K

Dkxka 6 cuvL,∀a ∈ A, (3)∑
a∈A

δax
k
a 6 ∆k,∀k ∈ K, (4)∑

a∈δ+(v)

uta 6 1,∀v ∈ V,∀t ∈ T, (5)

xka 6 ut
k

a ,∀a ∈ A,∀k ∈ K, (6)

uta 6
∑

k∈K,tk=t

xka,∀a ∈ A,∀t ∈ T, (7)

wuv − rtu + rtv > 1− utuv,∀uv ∈ A,∀t ∈ T, (8)
wuv − rtu + rtv 6M(1− utuv),∀uv ∈ A,∀t ∈ T, (9)

xka ∈ {0, 1},∀k ∈ K, ∀a ∈ A, (10)
uta ∈ {0, 1},∀a ∈ A,∀t ∈ T, (11)
wuv > 0,∀uv ∈ A, (12)
rvu > 0,∀u, v ∈ V × V. (13)

The objective (1) is to minimize the load of the most loaded
link, denoted L. Inequalities (2) ensure that a unique path is
associated to each commodity k and (3) express the load over
an arc a. Inequalities (4) are the delay constraints over the
routing paths while (5) and (6)-(7) are anti-arborescence and
linking constraints, respectively. In particular, inequalities (5)
ensure that there is at most one path traversing any node v
towards a given destination t ∈ T , which is necessarily implied
by Bellman property. Constraints (8) and (9) guarantee that the
weight of any arc used by a shortest path towards a destination
t corresponds to the difference of potentials between the end
nodes of this arc and larger otherwise. Finally, (10)-(13) are
the trivial and integrity constraints.

Proposition 1: The formulation (2)-(11) is valid for the D-
USPR problem.

Proof: It is easy to see that any solution of D-USPR satis-
fies inequalities (2)-(11). To show the converse, let (x, u, w, r)
denote a solution of (2)-(11) and consider two sets, say Qk

and St defined as follows: Qk = {a ∈ A : xka = 1}, for each
k ∈ K, with Q = ∪k∈KQk and St = {a ∈ A : uta = 1},
for every t ∈ T . Since x ∈ {0, 1}K×A satisfies the flow
conservation constraints (2), Qk clearly contains a unique
routing sktk-path for commodity k, which by (4) also satisfies
the delay constraints. Inequalities (2), (5), (6) and (7) ensure
that the elements of St form an anti-arborescence rooted at
destination t and consequently, contains paths that satisfy
Bellman property. Moreover, since w ∈ R+ and r ∈ R+

satisfy inequalities (8) and (9), every set Qk, k ∈ K, consists
of arcs which are tight with respect to the weights w, thus
containing a shortest sktk-path.

Now suppose that there are two conflicting paths in Q, say
p1 and p2 and let s1t1 and s2t2 be their respective endpoints.
Denote by u and v two internal nodes of p1 and p2 such that
p1[u, v] 6= p2[u, v]. Further assume that∑

vivj∈p1
wvivj =

∑
uiuj∈p2

wuiuj ,

then the inequalities (8) and (9) with t ∈ {t1, t2} summed over
vivj ∈ p1[u, v] and uiuj ∈ p2[u, v] yields a contradiction.
Consequently, every st-path used for routing is a unique
shortest path according to the weights w and hence (x, u, w, r)
is a solution of the D-USPR problem.

B. Valid inequalities

In what follows, we present two families of inequalities
valid for the D-USPR problem.

(i) Subpath consistency constraints

The first family is the so-called subpath consistency con-
straints and has been introduced in different versions in []

Proposition 2 ([4]): The following inequalities

xs,va − xs,ta +
∑

e∈δ−(v)

xs,te 6 1, ∀(s, t), (s, v) ∈ K, ∀a ∈ A,

(14)
xv,ta − xs,ta +

∑
e∈δ−(v)

xs,te 6 1, ∀(s, t), (v, t) ∈ K,∀a ∈ A,

(15)
are valid for the D-USPR problem.
Those inequalities ensure that two paths p1, p2 with a
common endpoint vi ∈ V , that intersect at a second node
vj are necessarily such that p1[vi, vj] = p2[vi, vj]. In other
words, any pair of commodities having the same origin
(respectively destination) node are necessarily routed along
two paths that satisfy Bellman property.

(ii) Node precedence constraints

The second family of inequalities has been introduced by
Garcia [10] for the resource constrained shortest path problem
and later extended by Horvath et al. [11]. They arise directly
from the maximum delay requirement of the D-USPR problem
and express the fact that any feasible routing st-path using
an arc a = uv ∈ A should leave this arc through an arc
a′ = u′v′ ∈ δ+(v) satisfying the following condition

σs,u + δa + δa′ + σv′,t 6 ∆s,t,

where σs,u (respectively σv′,t) is the length of the shortest
path between nodes s and u (respectively between nodes v′

and t) with respect to the delay metric. In other words, σuv =∑
e∈puv δe, for (u, v) ∈ V ×V . For each arc a = uv ∈ A and

each commodity k ∈ K originating from node sk and going
to node tk, denote by Φouta,k , the set of arcs defined as follows

Φouta,k = {a′ = u′v′ ∈ δ+(v) with v′ 6= u :

σst,u + δa + δa′ + σv′,tk 6 ∆k}.

Similarly, we let Φina,k denote the set of arcs entering into node
u that can belong to a feasible routing path:

Φina,k = {a′ = u′v′ ∈ δ+(u) with u′ 6= v :

σst,u′ + δa′ + δa + σv,tk 6 ∆k}.

Proposition 3: The following inequalities

xka 6
∑

a′∈Φout
a,k

xka,k,∀a ∈ A,∀k ∈ K, (16)

xka 6
∑

a′∈Φin
a,k

xka,k,∀a ∈ A,∀k ∈ K, (17)

are valid for the D-USPR problem.
Proof: Let k be a commodity of K with origin sk and

destination tk and let a = uv be an arc of A such that v 6=
sk, tk. Denote by (x, u, w, r, L) and let pk = {e ∈ A : xke = 1}
be the sktk-path associated with the routing of commodity k.
It is easy to see that inequality (16) is trivially satisfied if xka =
0. Now if xka = 1, then, by (2), there exists an arc, say a′ = u′v′

in δ+(v) such that
∑
e∈δ+(v) x

k
a = 1. Denote by p[sku] = {e ∈

A : xs
ku
e = 1} (respectively p[v′tk]= {e ∈ A : xv

′tk

e = 1})
the subpath with endpoints sk, u (respectively, v′, tk. Suppose
that a′ is in δ+(v) \ Φouta,k , that is to say,∑

e∈p[sk,u]

δe + δa + δa′ +
∑

e∈p[v′,tk]

δe >

σsk,u + δa + δa′ + σv′,tk > ∆k,

which, by (4), yields a contradiction. Thus (16) are valid for
D-USPR problem. We use similar arguments to show that
inequalities (17) are valid for the problem.

V. AN EFFECTIVE ITERATIVE ALGORITHM

In this section, we introduce an effective iterative algorithm
for solving the D-USPR problem. Consider given a graph G
with a capacity vector C and a set of demands K with a
latency vector ∆. The idea of this algorithm is to iteratively de-
crease the load by constructing feasible routing configurations
and the associated weight vectors. To this end, we perform the
following initialization steps:

Step 1 We first solve the minimum congestion spanning tree
with delay constraints in G. Let H denote the spanning tree
obtained.

Step 2 We set an arbitrary weight value w0
uv on each

arc uv of A(H) and a infinite weight on the remaining
arcs uv ∈ A(G) \A(H).

Step 3 We associate with each commodity of K a path,
say pk, in H between sk and tk.

We will denote by R0 the complete routing configuration
obtained at the end of the initialization phase. Note that R0

obviously defines a feasible solution for the D-USPR problem.
We let a∗ ∈ A(G) be the most loaded arc with respect

to R0, that is to say a∗ = arg maxuv∈A load(R, u, v). At each
iteration, we then apply the following procedure. We consider
a partition of the demands set K into two subsets Kfixed

and Kfree, where Kfree is the subset of (congesting) demands
whose routing path in R0 uses the arc a∗ and Kfixed contains
the remaining demands. We fix the routing paths of the de-
mands in Kfixed along with the associated weights. Let Tfixed
(resp. Tfree) denote the destination nodes of the demands
in Kfixed (resp. Kfree) and Rt ⊆ RKfixed

denotes this fixed
routing toward destination t ∈ Tfixed. We determine a feasible
routing configuration by rerouting the demands of Kfree,
all other demands remaining equal. This can be done by
solving the formulation (1)-(13) with the following changes.
Inequalities (2), (4)-(9) are written over Kfree and Tfree
instead of K and T while (3) is replaced by the following
inequality∑

k∈Kfree

Dkxka +
∑

k∈Kfixed

Dkxka 6 cuvL,∀a ∈ A, (18)

Finally, we add the following inequalities

wuv − rtu + rtv = 0, ∀uv ∈ Rt,∀t ∈ Tfixed, (19)
wuv − rtu + rtv > 1, ∀uv ∈ A \Rt,∀t ∈ Tfixed, (20)

to ensure that the paths fixed in each set Rt define shortest
paths towards the destination t ∈ Tfixed. This procedure is
summarized in Algorithm 1.

VI. A DYNAMIC PROGRAMMING ALGORITHM

In this section, we introduce a dynamic programming
algorithm based on a tree decomposition for solving the
PRE ROUTED D-USPR problem. Observe that the problem
is trivial in the case where the input graph is a tree since there
can only be one path to route any demand. However, it is not
possible to generalize this positive result to graphs of bounded
treewidth since the problem is NP-complete even on bidirected

Algorithm 1: Iterative algorithm
Data: An instance (G, K, C, ∆) of the problem
Result: A complete routing configuration R
Initialization: R0 ← a complete routing configuration

obtained by performing Step1-Step3
a∗ ← arg maxa∈A cong(R0, a)
iter ← 0

while iter < itermax do
find the demands in Kfree and Kfixed

find a complete routing configuration RiterG,Kfixed

Riter ← complete routing configuration obtained
by solving (1)- (20)
a∗ ← arg maxa∈A load(Riter, a)
iter ← iter + 1

return Riter with cong(R) 6 cong(R0);

rings [3]. This negative result rules out the possibility of
having an fpt algorithm parameterized only by the “treewidth”.
However, we prove in what follows that the problem is fixed-
parameter tractable for the combined parameter “treewidth”
and “number of demands”.

Proposition 4: Given a nice tree decomposition of Gu

of width ω, the PRE ROUTED D-USPR problem
can be solved in at most 2|K|ω

8+∆ log |K| · nO(1)-time
where ∆ = maxk∈K ∆k.

Proof: Let I = (G = (V,A, c, δ),Kfree,Kfixed, RKfixed
)

be an instance of PRE ROUTED D-USPR .
Let T = (T = (X,F),B) be a nice tree decomposition
of Gu rooted at node r ∈ X . We denote by ω the width of T
and by n the order of G i.e n = |V |. We start the proof by
introducing some extra notations and definitions.

Notations. Recall that Tx is the subtree of T rooted at
node x and Gx = (Vx, Ax) is the subgraph of G induced by
the vertices of G which occur in at least one bag By where y
runs over the nodes of Tx. In this proof, we will also use
the subgraph Ḡx which is obtained from Gx by removing the
arcs with both endpoints in Bx. We denote by Ux the set of
all origins and destinations of the demands in Kfree that lie
in Vx i.e Ux = {{sk, tk} ∩ Vx : k ∈ Kfree} (see Figure 2).
Let R ∈ R(G,K) and G′ a subgraph of G, we denote by R|G′
the routing configuration obtained by taking the subpaths of R
induced by G′. We denote by GR the graph obtained by taking
the union of all routing paths in R.

Definitions. In this paragraph, we introduce several notions
that are needed in the proof.

Valid routing configuration: We say that a routing con-
figuration R ∈ R(Ḡx,K) is valid, if it is feasible and for
every k ∈ K one of the following two conditions is met:

• There is exacly one complete routing subpath pk ∈ R.
• The graph induced by the union of the routing subpaths

for k in R is made of disjoint paths with at least one
endpoint in Bx. Furthermore, there are at most two
degree-one vertices in Vx \Bx in such graph.

a

b

c

d e

f g

Gx Ḡx

G

a, b, c

a, c

a, c, d

c, d

c, d, e

d, e d, e

d

d, e

e

d, f

e, gr

x

T

Fig. 2. Example of a graph G together with a nice tree decomposi-
tion T = (T = (X,F),H) of Gu rooted at node r ∈ X . In order to alleviate
the figure and since the graph is bidirected, we drop the arcs orientation. We
have Bx = {a, c, d} and Ux = {a, b}. The origins and destinations of
demands are represented with squares.

Routing contract: A “routing contract” H induced by a valid
routing configuration R ∈ R(Ḡx,K) is an edge-labeled graph
where the edge labelling is a function λH from E(H) to 2K

defined as follows. First, we say that a vertex v ∈ V (GR)
is a transit vertex if it has degree 2 in GR and the de-
mands routed along the edges vv1 and vv2 according to R
where v1, v2 ∈ N(v) are the same. The graph H is then ob-
tained from GR by removing every transit vertex v ∈ V (GR)
and inserting the edge v1v2 i.e we remove v and connect
its neighbors with an edge. Regarding the edge labelling
function λH , the demands in λH(uv) are exactly those routed
along the corresponding subpath p[u, v] (which can be a single
edge) in GR (see Figure 3). More generally, we say that
a routing configuration Q ∈ R(Ḡx,K) is H-respecting if
there exists a mapping f : V (H) → V (GQ) such that for
all uv ∈ E(H) the demands in λH(uv) are exactly those
routed along the corresponding subpath p[f(u), f(v)] in GQ.
We denote by Hx the set of all possible routing contracts at
node x.

Delay contract: A “delay contract” induced by a valid
routing configuration R ∈ R(Ḡx,K) is a function d : K → N
defined as follows. Given a demand k ∈ K, the value d(k)
is equal to the sum of the delays on the arcs used to
route the demand k according to R. We say that a routing
configuration Q ∈ R(Ḡx,K) is d-respecting if for each k ∈ K
we have

∑
pk∈Q

∑
uv∈p δuv = d(k). We denote by Dx the set

a b c d

e f

g

G

a c d

e f

g

GR

a c d

f

g

H

Fig. 3. Illustration of the construction of a routing contract. In this example,
there are three demands k1 (green), k2 (blue) and k3 (red) routed according to
a valid routing configuration R. The different routing paths are represented as
continuous colored line. The graph GR is defined as the union of all routing
paths in R. The routing contract H of R is then obtained by replacing the
only transit vertex e ∈ V (GR) by the edge ag. Regarding the labeling func-
tion λH of H , it is defined as follows: λH(ag) = {k1, k2}, λH(cf) = {k2}
and λH(df) = {k2, k3}.

of all possible delay contracts at node x.
Subproblems definition. We define a set of subproblems

for each node x ∈ X , one corresponding to each possi-
ble Hx ∈ Hx and each dx ∈ Dx that may represent in Ḡx
the routing contract and delay contract induced by an optimal
complete routing configuration for I . Hence, for each routing
contract Hx and each delay contract dx, we let OPTx(Hx, dx)
be an Hx-respecting and dx-respecting valid routing configura-
tion in R(Ḡx,K) with minimum congestion. If no such rout-
ing configuration exists, we simply set OPTx(Hx, dx) = ∅.

Recurrence relations. We now describe how the solutions
of the subproblems attached to a node are constructed. At
the cost of adding more nodes in the tree T , we may assume
w.l.o.g that the bags associated to the leaves of T contains only
one vertex. In this case, each leaf is considered as an insert
node. Initially, OPTx(Hx, dx) = ∅ for all Hx, dx ∈ Hx×Dx
and x ∈ X . By convention, cong(∅) = +∞. The algorithm
computes the table OPTx of each node x in T according
to their type (insert, forget or join) and using a bottom-up
procedure that ends to the root as follows.

a) Insert node: Let x be an insert node. In the case
that x is a leaf, we simply skip this step and move on to the
next node. Otherwise, let y be the child of x. By definition
By ⊂ Bx and Bx \By = {v}. We compute the table OPTx as
follows. For each Hy, dy ∈ Hy×Dy we perform the following
instructions in sequence
• We define a routing contract Hx obtained from Hy by

simply adding the vertex v.
• We construct a delay contract dx by simply set-

ting dx = dy .
After the instructions are performed, we
set OPTx(Hx, dx) = OPTy(Hy, dy).

b) Forget node: Let x be a forget node with child y.
By definition Bx ⊂ By and By \Bx = {v}. Let Ev be the
set of edges incident to v and dBx

(v) = |N(v) ∩ Bx|. This
step requires the most attention since it is during this phase
that we need to take care of the different ways to extend the
routing paths of every routing configuration stored in OPTy

(See Figure 4). In what follows, we assume that whenever
some fixed demands are routed along some of the edges in Ev
we include the corresponding routing subpaths of RKfixed

into
every routing extension constructed hereafter.
For each routing contract Hy ∈ Hy and each delay con-
tract dy ∈ Dy such that OPTy(Hy, dy) 6= ∅, we partition the
set Kfree into the following three sets:

• Kopen : the free demands with no routing path
in OPTy(Hy, dy).

• Kpartial : the free demands which have at least one (non-
complete) routing path in OPTy(Hy, dy).

• Kclosed : the free demands for which there exists a
complete routing path in OPTy(Hy, dy).

First, we can ignore the demands in Kclosed : since they are
end-to-end routed, there are no more decisions to be made for
them. Consider instead a free demand k ∈ Kopen. Suppose
for the moment that v 6= sk and v 6= tk. Hence, this demand
can be (possibly) routed through the vertex v using two edges
of Ev . This yields to at most dBx

(v)(dBx
(v)−1)/2 choices to

route k through v. Thus, a total of at most (dBx
(v)(dBx

(v)−
1)/2)|Kopen| possibilities to route all the demands in Kopen in
this way. If v = sk or v = tk then the only choice is to pick
one of the edge in Ev to start (or finish) routing the demand.
Clearly, the number of possibilities in this case is dominated
by the previous case.

Now consider a free demand k ∈ Kpartial. Let Rkv be
the set of routing paths for k in OPTy(Hy, dy) having at
least one endpoint in (N(v) ∩Bx) ∪ {v}. We will show how
many new routing paths can be obtained to route k through v
by extending those in Rkv . Similarly, suppose that v 6= sk

and v 6= tk. The demand k can be (possibly) routed through the
vertex v by extending the paths in Rkv with at most one or two
edges of Ev . Thus the total number of possible ways to extend
the routing paths in Rkv is bounded by (dBx(v)(dBx(v)−1)/2).
Thus, a total of at most (dBx

(v)(dBx
(v) − 1)/2)|Kpartial|

possibilities to route all the demands in Kpartial. Suppose now
that v = sk or v = tk, if there exists a routing path pk ∈ Rkv
then the path cannot be extended through v. Otherwise, the
only choice is to extend the routing paths in Rkv by picking
one of the edge in Ev to start (or finish) routing the demand.
Clearly, the number of possibilities in this case is dominated
by the previous case.

Overall, there are at most

(dBx(v)(dBx(v)− 1)/2)|Kclosed|+|Kpartial|

new possible routing configurations that can be constructed
from the ones in OPTy(Hy, dy). Let Rx be the set of
those routing configurations that are valid (recall that check-
ing whether a routing configuration is feasible can be done
in polynomial time using Lemma 2). For each Rx ∈ Rx,
let Hx ∈ Hx and dx ∈ Dx be the routing con-
tract and delay contract induced by Rx (i.e Rx is Hx-
respecting and dx-respecting), we set OPTx(Hx, dx) = Rx
if cong(Rx) < cong(OPTx(Hx, dx)).

a v c d e

f g

hḠy

a

v

c d e

f g

hḠx

Fig. 4. Illustration of a possible routing configuration extension dur-
ing a forget node operation. The edges in grey are those belonging
to Ev = {va, vc, vd} and we have Bx = {a, c, d, e}, By = {a, v, c, d, e}
and dBx (v) = 3. The different routing paths are represented as colored lines.
Dashed lines corresponds to a possible extension of these routing paths.

c) Join node: Let x be a join node with two chil-
dren y, z. By definition By = Bz = Bx. For each Hy, dy ∈
Hy × Dy and each Hz, dz ∈ Hz × Dz , let Rx =
OPTy(Hy, dy) ∪ OPTz(Hz, dz) and let Hx, dy ∈ Hx ×
Dx be the routing contract and delay contract induced
by Rx. We set OPTx(Hx, dx) = Rx if Rx is valid
and cong(Rx) < cong(OPTx(Hx, dx)).

d) Final step: Once we have computed the optimal
solutions for every node, we can determine a complete routing
configuration R∗ ∈ R(G,K) with minimum congestion for
the instance I as follows. Apply the forget node operation to
every vertex in Br to get a new table OPT , then return the
solution OPT (H, d) of minimum congestion among all H
and d.

Correctness. The correctness follows from the following
claim.

Claim 1: Let x ∈ X and R ∈ R(Ḡx,K) be a minimum
congested valid routing configuration. For every child y ∈ X
of x, OPTy(Hy, dy) ∈ R(Ḡy,K) is a minimum congested
valid routing configuration where Hy ∈ Hy and dy ∈ Dy are
induced by R|Ḡy

.
Proof: Let H and d be the routing contract and delay con-

tract induced by R. Suppose that there exists a Hy-respecting
and dy-respecting valid routing configuration Ry ∈ R(Ḡy,K)
such that cong(Ry) < cong(OPTy(Hy, dy)). Consider the
routing configuration R′ ∈ R(Ḡx,K) which is obtained
by extending the routing paths of Ry the same way
that OPTy(Hy, dy) gets extended to obtain R. So R′ is H-
respecting, d-respecting and we have cong(R′) < cong(R).
We claim that R′ is a valid routing configuration which
contradicts the choice of R as being a minimum congested
valid routing configuration in R(Ḡx,K). We show that R′

is feasible since the other conditions of validity are satisfied
by construction. Since R is feasible there exists a weight
function w such that for each pk ∈ R the path p is the unique
shortest path between its endpoints according to w. We show
how to construct a weight function w′ from w so that R′ is
feasible with respect to w′. For this purpose, we will use the

fact that R and R′ are both H-respecting. For each uv ∈
E(H), there is corresponding routing subpath p[u, v] in R
and p′[u, v] in R′, and we set w′(e′) = 1

`

∑
e∈p[u,v] w

′(e) for
each edge e′ ∈ p′[u, v] where ` is the length of p[u, v]. Finally,
for every edge uv ∈ E(Ḡx) such that w′(uv) is undefined, we
set w′(uv) = +∞. This finishes the construction of w′ and we
claim that R′ is feasible according to w′. To see this, observe
that any H-respecting routing graph is obtainable from H by
subdividing an appropriate number of time each edge in E(H).
Thus, whenever there is a H-respecting routing graph that
is feasible according to w, it suffices to construct a weight
function w′ that preserves the distances between the vertices
of degree greater than two. The routing configuration R′ is
then valid and cong(R′) < cong(R) which contradicts the
minimality of R.

Running time. First, regarding the number of subproblems
to solve, there are at most |Hx| · |Dx| of them associated to
each node x ∈ X . This corresponds to the number of possible
pair routing contract and delay contract at each node x. Since
we have a nice tree decomposition of O(n) nodes, we end
up with a total of at most O(|Hx| · |Dx| · n) subproblems to
solve. The most costly subproblem to solve is the forget node
operation which takes time at most

(dBx
(v)(dBx

(v)− 1)/2)|Kclosed|+|Kpartial| · nO(1)

which is bounded by ωO(|Kfree|) ·nO(1). Thus overall running
time is

ωO(|Kfree|) · |Hx| · |Dx| · nO(1)

Claim 2: Let x ∈ X , we have |Hx| ≤ 2O(|K||Bx|8)

Proof: By definition, Hx contains only routing contracts
that are induced by valid routing configurations in R(Ḡx,K).
Let Hx ∈ Hx and R ∈ R(Ḡx,K) be a valid Hx-respecting
routing configuration. First, the number of routings paths
in R is bounded by O(|Bx|2). Indeed, since R is valid,
every pk ∈ R is either complete or has at least one endpoint
in Bx. Hence, there can be as many routing subpaths as the
number of pairs of vertices in Bx plus at most two routing
paths per demand with exactly one endpoint in Bx. Indeed, if
there are more routing paths then we may create conflicting
paths which is ruled out by Lemma 1 or the graph induced
by R may not contain only disjoint paths. Hence there can be
no more than |Bx|(|Bx| − 1)/2 + 2|Bx| = O(|Bx|2) routing
paths in R as claimed.

Now we will determine the maximum number of possible
routing contracts that can be obtained from valid routing
configurations in R(Ḡx,K). Let p be a path in Hx that is
used to route some demand in K. By definition of a routing
contract, we know that every vertex in p intersects with at least
one other routing path in R (recall that all transit vertices are
removed). Moreover, since there is no conflicting paths in R
(Lemma 1), every other routing path can intersect p at most
once. Thus pk has no more than 2|R| + 2 vertices and then
the graph Hx contains at most |R|(2|R| + 2) = O(|Bx|4)
vertices. Finally, there can be at most 2|K||E(Hx)| possible
edge-labelling function for Hx. Hence, the number of possible

routing contract in Hx is bounded by 2O(|K||Bx|8) as claimed.

Claim 3: Let x ∈ X , we have |Dx| ≤ |K|∆.
Proof: By definition, Dx contains only delay contracts

that are induced by valid routing configurations in R(Ḡx,K).
Let dx ∈ Dx and R ∈ R(Ḡx,K) be a valid dx-respecting
routing configuration. Thus, for all k ∈ K, we have

dx(k) =
∑
pk∈R

∑
uv∈p

δuv 6 ∆k 6 ∆

The number of possible delay contracts is then bounded
by |K|∆ as claimed.

Using Claim 2 and Claim 3, we deduce that the overall
running time is bounded by 2|K|ω

8+∆ log |K|·nO(1), as claimed.

Since finding an optimal tree-decomposition of a graph is
fixed-parameter tractable with respect to the treewidth of that
graph [7], we obtain the following result as an immediate
corollary.

Proposition 5: The PRE ROUTED D-USPR problem
is fixed-parameter tractable with respect to the parameter
“treewidth” and “number of demands”.

It is interesting to note that this algorithm can be compared
with the two phases approach proposed in [4]. Indeed, the
master problem that finds a set of routing paths is simply
replaced here with a dynamic programming procedure while
we still need the client to check for feasibility.

VII. NUMERICAL RESULTS

In this section, we present some early experiments related to
the D-USPR problem and based on the results described above.
Both exact and heuristic solving approaches are implemented
in Python and using Cplex 12.8 with the default settings and
NetworkX graph library. We have tested our algorithms with
the following features:
• first by (i) solving the basic formulation (1)-(13),
• then by introducing (ii) the subpath consistency inequali-

ties (14)-(15), (iii) the node-precedence inequalities (16)-
(17) and (iv) both families of valid inequalities, to the
basic formulation,

• Algorithm 1 uses a variant of the formulation (1)-(13), as
described in Section V, along with both families of valid
inequalities.

We have tested our algorithms on several instances derived
from SNDlib3 topologies of variying size and density. The big-
M value is set to |A| × |K| for all the experiments, likewise
in [4] and the CPU time limit is fixed to 5 hours for the exact
approach.

Table I shows the impact of using valid inequalities and the
efficiency of each class in strengthening the basic formulation
(1)-(13) for nine instances. The first four columns refer to the
name, number of nodes, number of arcs and number commodi-
ties, for each instance. Then, for each of the configurations (i)
(basic MILP), (ii) (MILP + subpath consistency inequalities)

3http://sndlib.zib.de

and (iii) (MILP + node precedence inequalities), we show
the following entries: Gap (%) is the root gap (the relative
difference between the best upper bound (optimal solution
if the problem has been solved to optimality) and the lower
bound obtained at the root node), Nodes is the number of
nodes in the branch-and-bound tree and TT is the CPU time for
computation (in seconds). The value in Gap column is written
in italics if the solution found within the time limit was not
optimal and replaced by “–” if no feasible solution was found
within that time. We can see from Table I that the subpath
consistency constraints (14)-(15) allow to improve the gap for
several instances and help in reducing substantially both the
number of nodes in the branch-and-bound tree and the CPU
time for computation. In particular, except for dfn-bwin and
dfn-gwin, that are the instances with highest density, all the
instances are solved to optimality in less than 20 minutes, most
of them at the root node. A less significant impact is obtained
when using node precedence inequalities (16)-(17), yet they
allow to speed up the resolution for several instances, and to
reduce the size of the branch-and-bound tree (like for instance
di-yuan).

Table II shows the results obtained when adding both fam-
ilies of inequalities to the basic formulation for the previous
instances. We can see from the table that there is a positive
but slight impact on the CPU time, especially for instances
Di-yuan and Nobel-US.

Note that, these results although promising can be signif-
icantly improved by generating the valid inequalities in a
dynamic fashion (via separation routines in a branch-and-cut
framework) instead of being all integrated in the basic MILP.

We have tested our iterative algorithm on instances France,
Nobel-EU and Norway that could not be solved using the
exact approach due to their size, density and number of
demands. Those three instances are among the most chal-
lenging state-of-the-art instances for the USPR problem. The
iterative algorithm allows to obtain a good upper bound for all
three instances simply by improving an existing solution (e.g.
one obtained from the minimum spanning tree congestion).
A preliminary set of results shows empirically that a good
partition of the demands set with an appropriate selection
of the demands to reroute (Kfree) allows to substantially
improve the trivial bound of the existing solution. In addition,
the fact that we start from an existing solution allows us to
save computation efforts highlighting even further the potential
scalability of our algorithm. For example, in instance France,
rerouting 3% of the demands allows to improve the minimum
spanning tree congestion bound by 2% while an improvment
of 7% is enabled by rerouting 16% of the demands.

VIII. CONCLUDING REMARKS

In this paper, we have investigated several research direc-
tions to go towards more scalable algorithmic solutions. For
this purpose, we proposed the following two approches: (i)
reducing the size of the problem (e.g number of demands) and
(ii) exploiting the structure of the input graph (e.g treewidth).
Although the obtained results are promising there is still room

TABLE I
THE IMPACT OF EACH CLASS OF VALID INEQUALITIES

(i) Basic MILP (ii) MILP + subpath cons. ineq. (iii) MILP + node precendence ineq.

Topology |V | |A| |K| Gap (%) Nodes TT Gap (%) Nodes TT Gap (%) Nodes TT

PDH 11 68 24 0.00 1 0.80 0.00 1 0.41 0.00 1 0.34
Di-yuan 11 84 22 0.00 6571 773.41 0.00 1 1.24 0.00 1 0.45
Polska 12 36 66 6.70 602765 17302.36 6.62 71 34.66 6.62 78295 6780.74
Nobel-US 14 42 91 7.98 19004 18000.00 2.02 5 439.08 - 255813 18000.00
Dfn-bwin 10 90 90 0.00 1 0.45 51.25 1 18000.00 0.00 1 1.91
abilene 12 30 132 0.00 6832 19.49 0.00 1 8.59 0.00 6271 17.77
Dfn-gwin 11 94 110 6.67 5375 862.72 37.82 1 18000.00 12.03 31 707.97
Atlanta 15 44 210 0.00 10839 187.22 0.25 1 20.58 0.00 125393 6280.28
Nobel-GER 17 52 121 - - 18000.00 12.12 1 811.39 - 385146 18000.00

TABLE II
THE IMPACT OF ADDING BOTH CLASSES OF INEQUALITIES

Name LB UB root gap (%) Nodes TT (sec.)

PDH 12.80 12.80 0.00 1 0.50
Di-yuan 5.00 5.00 0.00 1 0.30
Polska 6.41 6.90 6.70 243 60.97
Nobel-US 24.20 24.70 2.02 5 263.86
Dfn-bwin 0.34 0.69 50.72 1 18000.00
abilene 60.41 60.4 0 1 10.17
Dfn-gwin 0.65 1.05 38.10 1 18000.00
Atlanta 3.58 3.58 0,00 5 29.64
Nobel-GER 3.87 4.40 12.12 16 458.00

for improvment. First, we expect that solving the formulation
using a branch-and-cut algorithm will subtantially improve
the performance of the MILP-based exact approach and the
efficiency of the iterative algorithm. Second, we are imple-
menting the dynamic programming algorithm and even though
the theoretical complexity is prohibitive, we believe that the
efficiency of this algorithm can be good in practice especially
if used in combination with a parallelization approach. Finally,
this problem seems to be a good candidate to apply machine
learning methods in the hope to reach better running time
through learned heuristics.

REFERENCES

[1] W. Ben-Ameur and É. Gourdin. Internet routing and related topology
issues. SIAM J. Discrete Math., 17(1):18–49, 2003.

[2] A. Bley. Routing and capacity optimization for IP networks. PhD thesis,
Technische Univertität Berlin, 2007.

[3] A. Bley. Approximability of unsplittable shortest path routing problems.
Networks, 54(1):23–46, 2009.

[4] A. Bley. An integer programming algorithm for routing optimization in
IP networks. Algorithmica, 60(1):21–45, 2011.

[5] A. Bley, B. Fortz, E. Gourdin, K. Holmberg, O. Klopfenstein, M. Pióro,
A. Tomaszewski, and H. Ümit. Optimization of OSPF Routing in
IP Networks, pages 199–240. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[6] A. Bley, M. Grötschel, and R. Wessäly. Design of broadband virtual
private networks: Model and heuristics for the b-win. In Robust
Communication Networks: Interconnection and Survivability, 1998.

[7] H. L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
25(6):1305–1317, 1996.

[8] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized
Complexity. Springer-Verlag, 2013.

[9] B. Fortz and M. Thorup. Internet traffic engineering by optimizing
OSPF weights. In Proceedings IEEE INFOCOM 2000, The Conference
on Computer Communications, pages 519–528. IEEE Computer Society,
2000.

[10] R. Garcia. Resource constrained shortest paths and extensions. PhD
thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2009.

[11] M. Horváth and T. Kis. Solving resource constrained shortest path
problems with lp-based methods. Computers & Operations Research,
73:150 – 164, 2016.

[12] T. Kloks. Treewidth, Computations and Approximations. Springer, 1994.
[13] A. Parmar, S. Ahmed, and J. Sokol. An integer programming approach

to the ospf weight setting problem. 2006.
[14] N. Perrot, A. Benhamiche, Y. Carlinet, and E. Gourdin. Future

Networks: Overview of Optimization Problems in Decision-Making
Procedures, pages 177–207. IGI Global, 2019.

