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Knowledge Engineering

Nathalie Aussenac-Gilles, Jean Charlet and Chantal Reynaud

Abstract Knowledge engineering refers to all technical, scientific and social aspects1

involved in designing, maintaining and using knowledge-based systems. Research2

in this domain requires to develop studies on the nature of the knowledge and its3

representation, either the users’ knowledge or the knowledge-based system’s knowl-4

edge. It also requires the analysis of what type of knowledge sources is considered,5

what human-machine interaction is envisaged and more generally the specific end6

use. To that end, knowledge engineering needs to integrate innovation originating7

from artificial intelligence, knowledge representation, software engineering as well8

asmodelling. This integration enables both users and software systems tomanage and9

use the knowledge for inference reasoning. Other advances are fuelling new meth-10

ods, software tools and interfaces to support knowledge modelling that are enabled11

by conceptual or formal knowledge representation languages. This chapter provides12

an overview of the main issues and major results that are considered as milestones13

in the domain, with a focus on recent advances marked by the raise of the semantic14

web, of ontologies and the social web.15

1 Introduction16

Knowledge engineering (KE) became a research domain in the early 1980s, its17

research object being designing, maintaining and using knowledge-based systems18
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2 N. Aussenac-Gilles et al.

(KBS). Many of the early expert systems were developed using traditional software19

engineering methods combined with rapid prototyping. In this context, building con-20

ceptual models in the early stages of the process became a major and critical issue.21

The further population of thesemodelswith the appropriate knowledge presented also22

substantial challenges. The so-called knowledge acquisition bottleneck1 became the23

subject of a large amount of research work, Ph.D. theses and international projects,24

either with a cognitive and methodological perspective (Aussenac 1989) or targeting25

the definition of new knowledge representations (Cordier and Reynaud 1991; Charlet26

1991). In the late 1990s, the perspective broadened and gave birth to KE as a cross-27

disciplinary research domain. Mainly located in the field of Artificial Intelligence28

(AI), KE refers to all technical, scientific and social aspects involved in designing,29

maintaining and using KBS. KE defines the concepts, methods, techniques and tools30

to support knowledge acquisition, modelling and formalisation in organisations with31

the aim of structuring the knowledge and making it operational.32

KE is expected to address knowledge modelling and sharing issues when design-33

ing any KBS that supports human activities and problem solving. Such knowledge34

intensive applications include knowledge management (KM) systems, Information35

Retrieval (IR) tools, both semantic or not, document or knowledge browsing, Infor-36

mation Extraction (IE), decisionmaking or problem solving to name but a few.When37

the Semantic Web (to which the chapter “Semantic Web” of Volume 3 of this book38

is dedicated) emerged as a promising perspective to turn web data into knowledge39

and to define more powerful web services, research in KE started waving close rela-40

tions with this domain. Indeed, the Semantic Web overlaps KE in various ways, both41

domains use the same languages, standards and tools like ontologies, knowledge42

representation languages and inference engines.43

In the rest of this chapter, we propose a chronological and historical presentation44

of the major paradigms that marked milestones in KE during the last 25 years in45

Sect. 2. Then in Sect. 3, we detail the main research issues that KE is dealing with.46

Section4 offers a synthetic view of the remaining methodological and representation47

challenges before we conclude in Sect. 5.48

2 Knowledge Modelling49

2.1 The Notion of Conceptual Model50

Around the 1990s, KE methods proposed to design KBS starting with a knowl-51

edge modelling stage that aimed to collect and describe the system knowledge in52

1Knowledge acquisition refers to the process of gathering expert knowledge (called “knowledge
mining” at that time) and representing it in the form of rules and facts in the hope that the KBS
behaves like the expert would in a similar situation. The difficulty to precisely collect or capture
this knowledge, which is implicit and hard to elicit in many ways, reduces the amount and quality
of knowledge actually represented, as the term “bottleneck” illustrates.
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Knowledge Engineering 3

an operational form, regardless of the implementation. Knowledge representation53

in the model was both abstract and with an applicative purpose. It was expected to54

account for the multiple necessary knowledge features and types to meet the sys-55

tem requirements. Practically, this representation formed the so-called conceptual56

model. A conceptual model should fit the kind of knowledge to be described and57

would then be formalised using the appropriate formalisms required by the KBS (i.e.58

inference rules in many applications of the 1990s). Then, conceptual models became59

key components in knowledge engineering and they significantly evolved over the60

years to cover a large variety of models depending on the needs they should satisfy,61

thus being adapted to new approaches and to every recent research work in the field.62

The way in which knowledge is described and represented impacts the implemen-63

tation of the targeted KBS, and even more, the ability to understand or explain its64

behaviour. Knowledge acquisition and engineering have long referred to A. Newell’s65

notion of Knowledge Level (1982). Newell was one of the first to establish a clear66

separation between the knowledge to be used in a system to produce a behaviour67

and its formal “in-use” representation in the system implementation. In other words,68

Newell stressed the necessity to describe the system knowledge at a level that would69

be independent from the symbols and structure of a programming language, level that70

he called the Knowledge Level. At this level, the system is considered as a rational71

agent that will use its knowledge to achieve some goals. Such system behaves in a72

rational way because, thanks to its knowledge, he intends to select the best sequence73

of actions leading to one of its goals as directly as possible. Newell’s Knowledge74

Level not only prompted researchers to define conceptual models, but it also influ-75

enced the structuring of these models in several layers corresponding to various76

types of knowledge required to guarantee the system behaviour. In conceptual mod-77

els, domain knowledge, that gathers entities or predicates and rules, is distinct from78

problem solving knowledge that consists in actions and goalsmodelled usingmethods79

and tasks.80

2.2 Problem Solving Models81

Problem solving models describe in an abstract way, using tasks and methods, the82

reasoning process that the KBS must carry out. A task defines one or several goals83

and sub-goals to be achieved by the system, and a method describes one of the ways84

the task goals can be achieved. A task description also specifies the input and out-85

put knowledge, constraints and resources required to perform the task. To describe86

the way the system should behave to solve a problem, a hierarchy of tasks can be87

defined, a general task being decomposed into several more specific tasks that specify88

the sub-goals required to achieve the goal of the main task. Methods make explicit89

how a goal can be reached thanks to an ordered sequence of operations. Methods90

that decompose a task into sub-tasks are distinguished from methods that implement91

a basic procedure to directly reach a particular goal. The distinction between tasks92

and methods progressively emerged from research works after B. Chandrasekaran93
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4 N. Aussenac-Gilles et al.

proposed the notion of Generic Task (1983) and L. Steels proposed a componential94

modelling framework that included three types of components: tasks; methods and95

domain data models (1990). This distinction has been adopted to account for the96

reasoning process in many studies (Klinker et al. 1991; Puerta et al. 1992; Schreiber97

et al. 1994; Tu et al. 1995) because it provides a separate description of the targeted98

goal and the way to achieve it. Thus, several methods can be defined for one single99

task, making it easier to explicitly represent alternative ways to reach the same goal.100

This kind of model is similar to results established in task planning (Camilleri et al.101

2008; Hendler et al. 1990) where planning systems implement problem solvingmod-102

els thanks to operational methods and tasks, as it is suggested in the CommonKADS103

methodology (Schreiber et al. 1999).104

2.3 From Conceptual Models to Ontologies105

Once solutions had been found to design explicit problem-solving models, build-106

ing the full conceptual model of an application consisted in reusing and adapting107

problem-solving components together with an abstract representation of domain data108

and concepts. Then an analysis of the domain knowledge was needed to establish109

a proper connection between each piece of the domain knowledge and the roles it110

played in problem solving (Reynaud et al. 1997). Domain knowledgemodels include111

two parts. The domain ontology forms the core part; it gathers concepts, i.e. class-112

sets of domain entities in a class/sub-class hierarchy, and relations between these113

classes, to which may be associated properties like constraints or rules. The second114

part extends this core with instances or entities belonging to the concepts classes,115

and relations between these entities. Thus an ontology defines a logical vocabulary116

to express domain facts and knowledge, in a formal way so that a system can use it117

for reasoning. Some concepts, called primitive concepts, are defined thanks to their118

situation in the concept hierarchy and thanks to properties that form necessary con-119

ditions for an entity to belong to this class. Other concepts, called defined concepts,120

are defined as classes equivalent to necessary and sufficient conditions that refer to121

properties and primitive concepts. The word ontology used to refer to a sub-field of122

philosophy. It has been first used in computer science, and particularly in AI, after123

the Knowledge Sharing Effort ARPA project (Neches et al. 1991) introduced it to124

refer to a structure describing the domain knowledge in a KBS. A little later, Gruber125

(1993) was the first to propose a definition of ontology in the field of KE. A more126

recent definition, proposed in Studer et al. (1998), is currently the acknowledged127

one:128

An ontology is a formal, explicit specification of a shared conceptualisation.129

Conceptualisation refers to an abstract model of some phenomenon in the world by having130

identified the relevant concepts of that phenomenon. Explicit means that the type of concepts131

used, and the constraints on their use are explicitly defined. Formal refers to the fact that132

the ontology should be machine-readable.133

Shared reflects the notion that an ontology captures consensual knowledge, that is, it is not134

private of some individual, but accepted by a group.135
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Knowledge Engineering 5

Fig. 1 High level concepts of an ontology used in the domain of electronic fault diagnosis

To sum up, ontologies meet complementary and symmetric requirements: (a) as136

specifications, they define a formal semantics so that software tools may process137

them; (b) as knowledge models, they reflect a – partial – point of view on a knowl-138

edge domain, that designers try to build as consensual as possible, and they provide139

semantic bridges that connect machine processable representations with their actual140

meanings for humans – supportingwhatRastier calls interpretative semantics (2009).141

The fact that an ontology be formal is both a strength because it enables to produce142

inferences (e.g. entity classification) and a limitation, using a formal language for143

its representation making it more difficulty to build. Figure 1 presents the main high144

level concepts of an ontology designed for an IR system in the domain of electronic145

fault diagnosis for cars. The symptom concept is defined by the identification of a146

car component, that provides a service to the vehicle user, that has been affected147

by a problem in a particular context. In the formal representation of this model,148

cardinality constraints on the defByPb and defByServ relations contribute to149

express that an instance of symptom cannot be identified unless a service and a150

problem have been identified too.151

According to how the ontology will be used, it needs to be more or less rich152

in defined concepts and relations. For instance, if the ontology will be used in a153

standard information retrieval system, its role will be to structure domain concepts154

in a hierarchy and to provide labels (terms) for these concepts. This kind of ontology155

is called a light-weight ontology: it contains a concept hierarchy (or taxonomy) and156

very fewdefined concepts.When concept labels are representedwith a specific formal157

class and properties, either called (formal) term or lexical entry, this kind of ontology158

is called Lexical Ontology.2 If the ontology is to be used to produce inferences on159

domain knowledge, it will generally be larger and it will contain more relations,160

more axioms involved in the definition of defined concepts or any concept required161

for reasoning. This second kind of ontology is called a heavy-weight ontology.162

2Whereas the KE English-speaking community uses “lexical ontology”, many French research
groups refer to Termino-Ontological Resource (TOR) (Reymonet et al. 2007) for very similar
knowledge structures.
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6 N. Aussenac-Gilles et al.

Due to their genericity and potentially high reusability, ontologies were expected163

to be easy to design. Several research lines have tried to characterise which parts164

of an ontology could be generic, and consequently reusable, on the one hand, and165

which techniques and methods could support the design of the non-generic parts.166

This distinction led to define the following typology of ontologies, which may also167

correspond to knowledge levels in a single ontology:168

• An upper level ontology or top-ontology is considered the highest level. It struc-169

tures knowledge with very general and abstract categories that are supposed to170

be universal and that are the fruit of philosophical studies on the nature of the171

main knowledge categories when formally representing human thinking in any172

domain. The major reference studies about top levels in ontologies are Sowa’s173

top-level categories,3 SUMO,4 or DOLCE5 to name a few of them. As concluded174

by the SUO6 working group and the joint communiqué from the Upper Ontology175

Summit,7 trying to define a unique norm for high level categories is pointless as176

long as various philosophical schools or trends propose distinct ways to categorise177

the world entities. Top level ontologies are the anchor point of more specific lev-178

els (core ontologies and domain knowledge), and they are generic enough to be179

shared.180

• A core ontology or upper domain ontology provides a domain description that181

defines the main concepts of a particular domain, together with properties and182

axioms applying on these concepts. For instance, a core ontology of medicine183

would contain concepts such as diagnosis, sign, anatomic structure and relations184

like localisation linking a pathology to the affected anatomic structure (cf. GFO-185

Bio8); in Law, the LKIF-Core9 ontology offers notions like norm, legal action and186

statutory role.187

• A domain ontology describes the domain concepts practically handled by pro-188

fessionals and experts in everyday activities. It is the most specific kind of a189

knowledge model, and it becomes a knowledge base when instances of domain190

specific concepts are represented. Nevertheless, there may be no clear frontier191

between a core-ontology and an ontology of the same domain that includes the192

core one when both of them are designed within the same process. The distinction193

is more obvious when the domain ontology reuses and specialises an existing core194

ontology. Domain ontologies or the domain level of ontologies can be designed195

thanks to text-based approaches and reusing domain thesaurus or terminologies196

(cf. Sect. 4.1).197

3http://www.jfsowa.com/ontology/toplevel.htm.
4http://www.ontologyportal.org/.
5http://www.loa-cnr.it/DOLCE.html.
6http://suo.ieee.org/.
7http://ontolog.cim3.net/cgi-bin/wiki.pl?UpperOntologySummit/UosJointCommunique.
8http://www.onto-med.de/ontologies/gfo-bio/index.jsp.
9http://www.estrellaproject.org/lkif-core/.
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Knowledge Engineering 7

3 Issues and Major Results198

Ifwe consider theKEevolution over the last 30 years, changes have been driven by the199

diversification of what could be considered as a knowledge source for “intelligent”200

or AI information systems. This wealth in knowledge sources came together with201

changes in computers that impacted any software system: the amazing increase in202

storage capacities and always higher computing performance of computers. Knowl-203

edge source diversification offered the advantage to benefit from complementary204

sources together with available techniques to analyse them. In the following we first205

outline the various knowledge sources that KE has successively focused on over the206

years, as well as the research issues raised by the passage from these sources to mod-207

els. By model, we mean here the different types of knowledge models presented in208

Sect. 2 used to represent either the knowledge in a KBS (conceptual models), some209

problem-solving process (problem-solving models) or domain specific knowledge210

(domain models). Then we show the research paradigms that deal with these issues,211

as well as the variety of modelling methods and techniques produced in KE to over-212

come them. We end with the presentation of major results about model reuse and213

with the connection of this research with the one on knowledge representation.214

3.1 Knowledge Sources215

Historically, knowledge for KBS first referred to human expertise, for which the216

knowledge base of expert systems should account according to a human-inspired217

paradigm. Knowledge was thus both technical and specialised. It gathered high-218

level skills and know-how that generally never had been verbalised before, and that219

were hard to explicit. The expected role of expert systems was to capitalise and make220

this expertise explicit so that it could be sustained and transferred to the KBS, or to221

humans via the KBS. Knowledge was then represented with inference rules.10222

In a second period, expert systems evolved and becameKnowledge-Based systems223

because their role was no longer to replace the expert but rather to provide an intel-224

ligent help to the end-user. Efficiency was privileged against the accuracy towards225

human reasoning. Then reference knowledge became shared knowledge, that KBS226

used for reasoning according to their own problem solving engines.227

Today, many applications (i.e. spelling checkers, decision support systems, billing228

systems, but also chest players or search engines) include some model-based mod-229

ules. Their goal is to perform some of the system tasks either in an autonomous230

way or in a cooperative way together with other modules or in cooperation with231

the user, adapting to the use context and to users’ profiles. The knowledge required232

for these support tasks to solve problems or to perform activities includes technical,233

10For a historical outline on knowledge-based system, one can read Aussenac (1989), Stefik (1995),
Aussenac-Gilles et al. (1996), or Charlet et al. (2000).
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8 N. Aussenac-Gilles et al.

consensual and shared knowledge, that is modelled as rules or action maps, and as234

structured and goal-oriented domain models.235

The historical evolution of knowledge-based information systems highlights vari-236

ous types of knowledge that were considered over the years: individual expert knowl-237

edge, in-use knowledge related to practice, activities and individual usage; knowledge238

about organisations, consensual and shared knowledge of an application field, com-239

mon sense knowledge, knowledge related to knowledge integration or distributed240

knowledge over the Web. It is to capture these various kinds of knowledge that new241

knowledge sources have been taken into account. Thus, documents have played an242

increasing role as more digital documents were available. Since the early works243

on knowledge acquisition for expert systems, KE relies on documents, in particu-244

lar textual documents, as they convey meaning and may contribute to reveal some245

knowledge. Documents are exploited for the language and information they contain,246

which is complementary or an alternative to interviews of domain experts or special-247

ists. Data can also become knowledge sources thanks to knowledge or information248

extraction processes from data or data mining. Last, components of existing knowl-249

edge models can be reused when they convey consensual and shared knowledge.250

These components can either be problem solving models, that can be reused across251

various domains, like the library of problem solvingmethods in CommonKADS (this252

library is one of the major results of the KADS and later CommonKADS11 European253

projects Schreiber et al. 1999), or domain models, ontologies, semantic resources254

like lexical data-bases or thesauri. Ontologies represent domain concept definitions255

in a formal structure. A lexical data-bases like WordNet12 registers, classifies and256

organises, according to semantic and lexical criteria, most of the vocabulary of the257

English language. Thesauri collect normalised domain vocabularies as structured258

sets of terms.259

3.2 From Knowledge Sources to Models: Research Issues260

One of the core and typical issues in KE is to provide or develop tools, techniques and261

methods that support the transition from the knowledge sources listed in Sect. 3.1 to262

the models presented in Sect. 2. These techniques not only rely on software systems263

but also on analysis frameworks or observation grids borrowed to other disciplines.264

Research in KE actually follows an engineering paradigm in the sense that it requires265

innovation to design new tools, languages andmethods or to select and adapt existing266

ones. It requires as much innovation to organise them in an appropriate way within267

methodological guidelines and integrated or collaborative platforms. Expected inno-268

vations concern the nature and development of these tools as well as the definition269

of their use conditions, their synergy and interactions so that they could manage par-270

ticular knowledge types at each stage of the development process of an application.271

11http://www.commonkads.uva.nl/.
12http://wordnet.princeton.edu/wordnet/.
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Knowledge Engineering 9

For the last twenty years, methodological research in KE raised cross-functional272

issues that have been reformulated and renewed when new knowledge sources were273

addressed, new types of models were designed or new use-cases and problems had274

to be solved using these models.275

3.2.1 How to Design a Model?276

Two complementary methodological streams first defined diverging stages and tech-277

niques (Aussenac-Gilles et al. 1992).Bottom-upmethods privilege data analysis, first278

driven by the identified users’ needs and later guided by the model structure and the279

components to be filled. Bottom-up approaches focus on tools that support data col-280

lection and mining, knowledge identification and extraction, and later on tools that281

produce abstract representations of knowledge features (classification, structuring282

and identification of methods and problem solving models). In contrast, the alterna-283

tive process follows a top-down approach that privileges the reuse and adaptation of284

existing knowledge components. Then knowledge gathering starts with the selection285

of appropriate components, that further guides the extraction of new knowledge and286

the model instantiation process. A unified view considers that modelling follows a287

cyclic process where bottom-up and top-down stages alternate. The process moves288

from stages dedicated to knowledge collection or reuse towards knowledge repre-289

sentation stages using more and more formal languages. Most methods and tools290

presented in Sect. 3.3 combine both processes, whereas we focus on results about291

model reuse in Sect. 3.4.292

3.2.2 How to Benefit from Complementary Knowledge Sources?293

Diversifying knowledge sources and knowledge types is one of the solutions to get294

more precise and richer models, or to automatically design a part of them. As a295

consequence, KE methods start with the identification of appropriate knowledge296

sources. They suggest also a set of relevant tools and techniques that explore and297

efficiently process these sources.Most of all, they proposemethodological guidelines298

to articulate the use of these tools in a coordinated way that ensures a complemen-299

tary exploitation of their results to design an appropriate model. Results in Sect. 3.3300

illustrate this process.301

3.2.3 What Are Models Made of? What is the Optimal Formal Level?302

Eachmodel combines various types of knowledge. In a similar way, each KEmethod303

questions and makes suggestions on the nature of the models to be designed, on the304

way to structure them and to collect the appropriate knowledge that feel them as well305

as on the representation formalism to select, which can be more or less formal as306

discussed in Sect. 3.5.307
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10 N. Aussenac-Gilles et al.

3.2.4 How Does Model Engineering Take into Account the Target Use308

of a Model?309

Several research studies have shown that conceptual models were all the more rele-310

vant than they were dedicated to a specific range of systems. KE does not restrict its311

scope to design models; it is highly concerned by their actual use because it is one of312

the ways to validate the engineering process, and because it is this specific use that313

determines the model content, its structure and, as a side effect, the way the model is314

designed. In short, the targeted use of a model has a strong impact on methodological315

options and on the selection of a knowledge representation in the model (Bourigault316

et al. 2004).317

3.2.5 How to Promote Model Reuse?318

The reuse of structured knowledge fragments is often the best option to reduce the319

cost of knowledgemodelling.However, reuse is not possible unless the principles that320

guided themodel design are available, unlessmodels can be compared and combined,321

and unless the selection of some of their components and their combination are322

technically feasible and sound. These very same questions also arise in researchwork323

about ontology or KB alignment, reuse and composition to build new knowledge324

bases.325

3.2.6 How to Ensure Model Evolution in Relation with the Use326

Context?327

The knowledge models used in KBS are involved in a life cycle that includes their328

evolution. This parameter became increasingly significant as a consequence of the329

evolution of the knowledge sources, of domain knowledge and users’ needs. Since330

the early 2000s, ontology evolution is one of the major challenges to be solved to331

promote their actual use. Various research studies define an evolution life-cycle,332

several means to identify and to manage changes while keeping the model consistent333

(Stojanovic 2004; Luong 2007).334

3.3 Designing Models: Techniques, Methods and Tools335

In order to make practical proposals in getting access to knowledge coming from336

people or documents deemed to provide indications, KE has its own solutions: tech-337

niques and tools that may be integrated into methodologies and frameworks. These338

solutions are largely inspiredby close disciplines, dependingon the considered source339

of knowledge, sequentially covering cognitive psychology, ergonomics, terminology340

and corpus linguistics since KE emerged as a discipline.341
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Designingmodels requires access to knowledge available throughvarious sources.342

Access techniques depend on the nature of the sources, with potentially generation of343

new knowledge that had not been made explicit before. Technique makes reference344

here to operating modes requiring specific ways to choose or create knowledge345

production or use situations, then ways to discover/collect/extract or analyse data,346

and finally proposals to interpret, evaluate and structure the results of the analysis.347

We focus on the two knowledge sources that have been most widely used in this348

process: human expertise and textual documents.349

3.3.1 Human Expertise as Knowledge Source350

Regarding human expertise, research approaches have evolved from a cognitivist351

perspective, assuming a possible relation between mental and computer representa-352

tions, to constructivist approaches, considering that models as artifacts that enable353

the system to behave as the human would, and then situated cognition, taking into354

account a contextual or collective dimension. In the first case, the task is to locate,355

make explicit and represent technical expertise. According to this view, which his-356

torically lead to design expert systems, one or several human experts possess the357

knowledge that has to be made explicit in order to design a system that produces358

the same reasoning. Cognitive psychology has provided guidelines on how to carry359

out interviews, on how to analyse them and gave the pros and cons of each form360

of interview in relation to the study of human cognitive phenomena (Darses and361

Montmollin 2006). These techniques have been adapted and then used to extract362

knowledge from experts, as in the works of Aussenac (1989), Shadbolt et al. (1999)363

or Dieng-Kuntz et al. (2005). We can distinguish the direct methods that consist in364

querying the expert to get him to speak in a more or less guided way and the indirect365

methods as repertory grids based on the interpretation of acquired elements as the366

expert performs tasks using his expertise.367

This cognitivist perspective has been increasingly brought into question to better368

satisfy the situated aspect of the knowledge. As expertise is only accessible when369

applied in problem solving situations, KE has taken up task and activity analysis370

techniques from the area of ergonomics.371

Onemain resultwas to lay the foundations of knowledge acquisition as a discipline372

focusing on knowledge itself prior to considering its formalisation and its use within373

a given system.Both adopting the constructivist view and taking into account existing374

methods in software engineering then led to new methodological proposals guiding375

the whole knowledge acquisition process. Several methods defined in important376

projects, mainly European projects, are presented in Sect. 3.3.3.377

Knowledge in software aims at better guiding users. By the way, it impacts their378

working methods. So it raises the need to analyse their practices and the practices of379

their collaborators, to study their activities and their use of support tools, to consider380

their organisational context, which refers to ergonomics, sociological ormanagement381

approaches. Results of such analyses were first returned in a static way, as models382

(task, interaction and organisationmodels for instance inCommonKADS) (Schreiber383
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12 N. Aussenac-Gilles et al.

et al. 1999). These models were made operational using task languages and methods384

such as LISA, Task (Jacob-Delouis and Krivine 1995) or CML (Schreiber et al.385

1994). The notion of trace of activities has then been widely explored to take into386

account activities in a more in-depth way. Traces are integrated to provide users387

with a precise and context sensitive help based on the knowledge of their behaviour.388

Therefore, Laflaquiére et al. (2008) define the notion of trace for software use or389

documentation system activities in order to be able to discover, represent, store traces390

and then exploit and reuse them.391

3.3.2 Textual Documents as Knowledge Sources392

Regarding textual documents, whether technical, linked to an activity or to an appli-393

cation domain, two problems arise when exploiting them as knowledge sources: their394

selection and their analysis. Document analysis is mainly based on the natural lan-395

guage in the text. Some approaches also exploit the text structure identified on the396

paper or screen layout and electronically manageable thanks to tags or annotations397

(Virbel andLuc 2001). The latter is generally referred as structured or semi-structured398

documents (XML documents). We first describe the strengths of textual document399

analysis, then the techniques and the tools used for that.400

Strengths of Textual Document Analysis401

Textual documents are rich knowledge sources. Text analysis has always been a part402

of KE but the way to address it changed drastically after 1990.We do not try anymore403

to recover automatically the understanding of a text by an individual (Aussenac-404

Gilles et al. 1995). The increasing importance of textual analysis is a consequence405

of the progress achieved by natural language processing (NLP), which has delivered406

robust specialised software programs to process written language. NLP maturity407

has been synchronous with ontology deployment. Designing ontologies and using408

them to semantically annotate documents became two applications of the analysis of409

written natural language. A strong assumption behind automatic text processing is410

that text provide stable, consensual and shared knowledge of an application domain411

(Bourigault and Slodzian 1999; Condamines 2002). However, this is not always the412

case, and two key points influence the quality of the extracted data: first, the creation413

of a relevant corpus early on in the process, then a regular contribution of domain414

experts or experts in modelling for interpreting the results. Text analysis is used415

to design ontologies and similar resources such as thesauri, indexes, glossaries or416

terminological knowledge bases.417

Techniques and Tools for Textual Analysis418

The aim of textual analysis in KE is to discover, in an automatic or cooperative way,419

linguistic elements and their interpretation and to help designing parts of conceptual420

models.421

Linguistic approaches are based onwordings in the text to identify knowledge rich422

contexts (Barriere andAgbago 2006). Domain notions are expected to bementionned423

using nominal or verbal phrases with a strong coherence. According to the way they424
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Knowledge Engineering 13

are used, these phrases can be considered as terms denoting domain concepts or425

relationships between domain concepts. Language may also provide clues with a426

lower reliability, linking more diffuse knowledge elements. Then analysts have to427

rebuild reference links in order to come up with knowledge-based elements, axioms428

or rules. Results established by lexical semantics, terminology and corpus linguistics429

research are set prior to the implementation of this kind of approach (Condamines430

2002; Constant et al. 2008).431

Statistical approaches process a text as a whole and take advantage of redun-432

dancies, regularities, co-occurrences in order to discover idioms and terms, but also433

words or sets of words (clusters) with a similar behaviour or linguistic context.434

Several such techniques are described in the book Foundations of Statistical Natural435

Language Processing from Manning and Schütze (1999).436

In both cases, preliminary text analysis, as cutting a text into sentences and into437

tokenwords or grammatical parsingofwords, is needed.Adescriptionof this research438

work is given in chapter “Artificial Intelligence and Natural Language” of Volume 3.439

The more sophisticated the pre-processing is (as complete syntactic analysis of sen-440

tences), the easier it is to automatically define precise interpretation rules. Unfortu-441

nately, software performing sophisticated analyses are often less robust, and they are442

available in fewer languages, English being often favoured. Furthermore, resources443

are sometimes needed (such as glossaries or semantic dictionaries) and few of them444

are available in some languages.445

When the structure of the documents is available as a result of explicit markers,446

linguistic approaches can be combined with the exploitation of the structure in order447

to benefit of their complementary semantics (Kamel and Aussenac-Gilles 2009).448

The underlying idea is that structural cutting process of documents contributes to the449

semantic characterisation of their content.450

Regarding the design of ontologies, text analysis serves two purposes451

(Maedche 2002; Cimiano et al. 2010): the identification of concepts with their prop-452

erties and relationships, or ontology learning process; and the identification of con-453

cept instances and relations holding between them, the ontology population process.454

Similar tools can be used in both cases: text corpora have to be parsed in order to455

discover linguistic knowledge-rich elements (Meyer 2000), linguistic clues that can456

be interpreted as knowledge fragments.457

Vocabulary modelling motivated the design of dedicated software tools that458

provide higher level results than standard NLP tools. For instance, results such as459

terms and clusters of synonym terms can then be integrated in a model.460

Examples of such tools are term extractors – Terminoweb (Barriere and Agbago461

2006), Syntex-Upery (Bourigault 2002),TermExtractor (Drouin2003) orTermRaider462

in the GATE13 framework -; pattern-based relation extractors - Caméléon (Aussenac-463

Gilles and Jacques 2008), RelExt (Schutz and Buitelaar 2005) or SPRAT (Maynard464

et al. 2009) that implements three types of lexico-syntactic patterns (Hearst’s pat-465

terns, patterns derived from Ontology design patterns and contextual patterns) in466

13http://gate.ac.uk/.
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14 N. Aussenac-Gilles et al.

GATE; pattern-based languages like Jape in GATE, Nooj,14 Unitex15; named-entity467

extractors (Poibeau and Kosseim 2000) that contribute to search for instances or rela-468

tions between instances (as with the KIM platform16). To sum up, designing models469

from texts has strongly benefited from NLP frameworks (GATE, Linguastream,17470

UIMA18) that support the development of adapted processing chains. Finally, spe-471

cific processing chains, as Text2Onto (Cimiano and Völker 2005), and the version472

integrated by NeOn,19 have allowed an assessment of the strengths and limitations of473

this approach by increasing automation and exploiting machine learning techniques.474

Current research works combine text analysis, reuse of ontological components and475

human interpretation. Cimiano et al. (2010) gives a reasonably full picture of these476

works.477

3.3.3 Modelling Frameworks478

Modelling frameworks provide access to knowledge sources, or to their traces, to479

knowledge extraction techniques and software tools, as well as to modelling tech-480

niques and languages. They suggest a methodology that defines a processing chain481

and guides the modelling task step by step. In the following Sub-section, we first482

present the most significant results about problem-solving modelling in the early483

1990s. Then we focus on methods and frameworks for ontology design which have484

been developed in the last ten years.485

Methods for Problem-Solving Modelling486

Methodological guidelines have been established to better design large knowledge-487

based system projects. Their principles are similar to those in software engineering488

because of the importance assigned to modelling. In both cases, development cycles489

have to be managed and one or several models of the system to be designed must be490

built. The design of an application is considered as a model transformation process491

with conceptual models defined in Sect. 2.1. This requires a set of epistemological492

primitives that characterises at a high level (knowledge level) inference capabilities of493

the system to be designed. These primitives define generic knowledge representation494

structures that can be further instantiated.495

In the early 1980s and 1990s the notion of conceptual model evolved with an496

emphasis on problem-solving models, new related languages, inference and tasks497

notions articulated. From a methodological viewpoint, the research showed that498

modelling primitives provide a grid for collecting and interpreting knowledge; they499

guide modelling. The utility of having elements coming from generic models and500

14http://www.nooj4nlp.net/.
15http://www-igm.univ-mlv.fr/~unitex/.
16http://www.ontotext.com/kim/.
17http://linguastream.org/.
18http://domino.research.ibm.com/comm/research_projects.nsf/pages/uima.index.html.
19http://www.neon-toolkit.org/.
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of being able to reuse them by instantiation on a particular application has then501

emerged, in particular from results on Generic Tasks from Chandrasekaran (1983).502

Later, the CommonKADS methodology showed the interest of adaptable and mod-503

ular elements. All these principles are general as they apply irrespective of the task,504

the domain and the problem-solving method performed. Modelling techniques and505

reusable components are integrated in frameworks including aswell expertise extrac-506

tion techniques.507

Following the work on Generic Task and role-limited methods (Marcus and508

McDermott 1989), and the proposals made by L. Steels in the componentional COM-509

MET approach and in the KREST framework (1990), several works distinguished510

explicitly the notions of tasks and methods. This distinction has the advantage to511

describe separately the goal to be reached from the way to reach it and it allows512

for the explicit definition of several ways to reach a same goal by associating sev-513

eral problem-solving methods to a same task. These works have been taken into514

account by the European project KADS (Schreiber and Wielinga 1992), a pioneer515

in KE, which has resulted in the most accomplished methodology and framework516

CommonKADS (Schreiber et al. 1999).517

CommonKADS allows for the construction of severalmodels related to each other518

and required to specify a KBS with an organisational model reflecting in-use knowl-519

edge. The expertise model of the system is now recognised as very different from520

a cognitive model of a human expert. It is described according to three viewpoints:521

tasks, domain models, methods. Each problem-solving method can be parametrised522

and its adaptation is defined using a questionnaire guiding for the choice of one of523

the solution methods corresponding to each main task of the reasoning process of a524

specific application. Tasks describe what must be performed by the KBS. Domain525

models describe the knowledge required for reasoning. Methods describe how the526

knowledge is used to solve a task. A method can decompose a task into sub-tasks or527

solve one or several task(s). The methodology suggests an iterative construction of528

an application model according to the three different viewpoints. These perspectives529

are all necessary and complementary. The choice of a domain model depends on the530

selection of a problem-solving method as problem-solving methods define the role531

of the knowledge to be filled. Specifically, methods largely define the nature of the532

controlled sub-tasks. The aim of the methodology is thus to identify and model all533

the relations between methods, tasks and domain models.534

Methods and Frameworks for Designing Ontologies535

The design process of ontologies took advantage of these methodologies. It started536

when the reuse of domain models put forward the interest in high quality consensual537

models designed according � good � principles facilitating reuse and adaptation.538

The specific challenges encountered during the ontology design process are the fol-539

lowings:540

1. Define the ontology content and ensure its quality;541

2. Exploit efficiently all available knowledge sources using, for instance, text anal-542

ysis or ontology reuse processes;543

420043_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:8/7/2019 Pages: 36 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16 N. Aussenac-Gilles et al.

3. Facilitate the knowledge engineer design by providing specific tools; and544

4. Define a methodological setting and the relevant approach to perform the various545

tasks.546

Ontology engineering frameworks are uniform and coherent environments sup-547

porting the ontology design. They help achieve the different tasks by providing548

various tools and supporting a methodology that guarantees that all tasks are run one549

after the other.550

Various methods can be used to design ontologies.20 In this paper, we present551

three methodologies that are paying close attention to the quality of the ontology552

content: OntoClean, ARCHONTE and OntoSpec.553

The OntoClean methodology has been designed by Guarino and Welty (2004).554

The first ideas were presented in a series of articles published in 2000, the OntoClean555

name appeared in 2002. Inspired by the notion of formal ontology and by principles556

of analytical philosophy, OntoClean made a significant contribution as the first for-557

mal methodology in ontology engineering. It proposes to analyse ontologies and to558

justify ontological choices using metaproperties of formal classes independent of all559

application domains. These metaproperties were originally four (i.e. identity, unity,560

rigidity and dependence).561

The ARCHONTE (ARCHitecture for ONTological Elaborating) methodology,562

designed by Bachimont et al. (2002), is a bottom-up methodology to design ontolo-563

gies from domain texts in three steps. First, relevant domain terms are selected and564

then semantically normalised as concepts by indicating the similarities and differ-565

ences between each concept, its siblings and its father (principle ofdifferential seman-566

tic). The second step consists in knowledge formalisation (ontological commitment).567

The aim is to design a differential ontology by adding properties or annotations,568

by defining domains and ranges of relationships. Finally, the third step consists in569

ontology operationalisation using knowledge representation languages. This process570

results in a computational ontology.571

OntoSpec (Kassel 2002) is a semi-informal ontology specification methodology.572

It finds its origins in the definitions that are associated in natural language with573

conceptual entities which allow users to collaborate with knowledge engineers in574

order to design ontologies. In addition, this methodology proposes a framework575

including a typology of properties that can be used in the definition of concepts,576

relationships or rules, in order to paraphrase properties using natural language. The577

framework serves as a guide to model and facilitate the design of formal ontologies.578

The main component of the frameworks used for designing ontologies is usu-579

ally an ontology editor. Therefore, Protégé21 is an editor extensively used to cre-580

ate or modify RDFS or OWL ontologies, and can be available as a web service581

(Web-Protégé) which is particularly appropriate for cooperative ontology design.582

Swoop22 has been designed for lightweight ontologies, whereas Hozo23’s original-583

20For a survey of the main existing methodologies, see Fernández-López and Gómez-Pérez (2002).
21http://protege.stanford.edu/.
22http://code.google.com/p/swoop/.
23http://www.hozo.jp/ckc07demo/.
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ity lies in the notion of role and the ability to distinguish concepts depending on584

particular contexts from basic concepts to ensure an easier ontology reuse. Besides585

this editing function, several other functionalities can be provided in ontology engi-586

neering frameworks, such as Schema XML translating functions, graph display of587

parts of the ontology, ontology modules management, ontology partition, transla-588

tion of vocabularies, import functions of Web ontologies, access to ontology search589

engines, text processing modules (like Tree-Tagger24 or Stanford Parsing tools), help590

for personalizing ontologies, generating documentation, managing ontology evolu-591

tion, ontology evaluation, ontology alignment, reasoning and inference services,592

navigation assistance services, visualisation services, …As an illustration, most of593

these functionalities are available as plug-ins in the Neon25 framework.594

Some frameworks are designed to deal with a specific kind of data. Therefore,595

Text2Onto, successor of TextToOnto, and DaFOE4App are specially designed to use596

text documents and thesaurus as input knowledge sources. Text2Onto (Cimiano and597

Völker 2005) includes a text mining software and modules that generate structured598

information fromweakly structured documents. Text2Onto is associatedwithKAON599

(Karlsruhe Ontology Management Infrastructure) framework (Oberle et al. 2004) in600

order to design ontologies. DaFOE4App (Differential and Formal Ontology Editor601

for Applications) (Szulman et al. 2009) focuses on the linguistic dimension while602

its design uses some of the ARCHONTE methodology principles (Bachimont et al.603

2002).DaFOE4App covers all stages fromcorpora analysis (using aNLP framework)604

to the definition of a formal domain ontology. It guarantees persistence, traceability605

and the dimensioning of models (several millions of concepts). The TERMINAE606

framework (Aussenac-Gilles et al. 2008), designed before DaFOE4App, has evolved607

with the specifications of DaFOE4App. TERMINAE26 was used and evaluated in608

many projects. To end this non-exhaustive list, PlibEditor is more specially tailored609

to databases. With PlibEditor, users can perform all the tasks required to design610

ontologies, import or export ontologies as well as data. PlibEditor is complementary611

to OntoDB, an ontology-based database system and it enables a database approach612

based on domain ontologies (Fankam et al. 2009).613

3.4 Model Reuse614

Just as software engineering aims to reuse software components, knowledge acquisi-615

tion promotes the reuse of knowledge components. This reusability can be achieved616

in various ways.617

Initially proposed in the settings of the KADS project, reuse of problem-solving618

models consists in taking up task models expressed in a domain-independent ter-619

minology and adapting them to specific tasks. This approach is attractive. However,620

24http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.
25http://www.neon-toolkit.org/wiki/Neon_Plugins.
26http://lipn.univ-paris13.fr/terminae/.
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two specific problems are of paramount importancewhen adapting a problem-solving621

model to a specific domain. First, an application often performs several types of rea-622

soning, with several models associated to each of them that have to be distinguished623

and combined. Second, the reuse and adaptation of predefined generic models to a624

specific application is difficult and highly time consuming. Indeed, both the task to625

be completed and the knowledge base of the system must be expressed in the terms626

of the same application domain, whereas reusable methods coming from libraries,627

are expressed using a generic vocabulary. Therefore, adapting problem-solving ele-628

ments to an application is first andmainly a problem of termmatching. Consequently,629

these challenges have led to more flexible approaches with reusable and adaptable630

elements of a finer granularity. Such approaches imply reusing parts of reasoning631

models instead of full generic problem-solving models.632

Based on the KADS project’s outcome, some frameworks support the combi-633

nation of generic components. They include rich libraries of components as well634

as graphical editors dedicated to knowledge formalisation, task representation, and635

the selection and configuration of the methods allowing to solve the tasks (Musen636

et al. 1994). Solution to adapt generic models to a specific application are diverse,637

ranging from manual instantiation procedures (Beys et al. 1996) to automated pro-638

cesses including mechanisms that check the specification consistency (Fensel et al.639

1996). The CommonKADS project settings led to the most successful results to640

design problem-solving models. The CommonKADS expertise model can be built641

by abstraction process or reusing components of problem-solving models. Its partic-642

ular strength lies in the library of components with different granularities, and with a643

reuse and adaptation process guided by a questions grid which ensures the relevancy644

of designed model.645

Ontology design is also shaped by the need to reuse existing models. The number646

of domain ontologies has grown significantly, their popularity being explained in part647

by the ability to reuse them from one information system to another. Specifically,648

ontology reuse aims at reducing the difficulties in ex-nihilo developments that con-649

stitute real obstacles to some applications. Issues raised by ontology reuse include:650

the selection of reusable and relevant ontologies, the specific support required to651

reuse large and complex ontologies that are hard to comprehend, and the integration652

of various reused ontologies in the under development ontology.653

Ontology reuse has motivated the design of ontology search engines such as654

Watson,27 Swoogle,28 or OntoSearch.29 Using key words, these engines provide a655

list of ontologies containing at least one concept, one relationship or another ele-656

ment labelled or identified by one of the key words. Then selecting the most relevant657

ontologies in this list requires that each ontology could be evaluated individually and658

that ontologies could be compared to eachother according to various criteria. There-659

fore, how to assess an ontology and to compare several ontologies is currently one660

of the main challenges in the field. Various questions should be addressed in order661

27http://kmi-web05.open.ac.uk/WatsonWUI/.
28http://swoogle.umbc.edu/.
29http://asaha.com/ebook/wNjE3MzI-/OntoSearch--An-Ontology-Search-Engine.pdf.
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to tackle this challenge: What criteria can be used? How to understand the mod-662

elling perspective adopted in an ontology? How to merge two ontologies? To what663

extend do two ontologies reflect the same conceptualisation of a given domain? Can664

we describe the differences in relation to level of detail, compatibility, key concepts665

and coverage? Are the differences artificial shifts (i.e. consequences of technical666

or terminological choices) or profound semantic differences that reflect diverging667

conceptualisations? A major area of research work focused on the development of668

algorithms and tools to identify and solve differences between ontologies (i.e. anal-669

ysis of differences between terms, concepts, definitions). Moreover, some research670

studies bear on global ontologies comparison providing an overview on commonal-671

ities and differences. One interesting research direction is to best exploit ontology672

visualisation results. Visualisation software tools applied to large ontologies provide673

global views and some of them specifically enable the identification of the ontology674

main concepts.675

The notion of knowledge pattern, directly based on the design patterns used in676

software engineering, aims at reducing the significant difficulties occurring when677

designing large ontologies or when adapting reusable ontologies. Knowledge pat-678

tern has been introduced in Ontology Engineering by Clark et al. (2000) and then679

in semantic web applications by Gangemi et al. (2004), Rector and Rogers (2004)680

and Svatek (2004). Knowledge patterns are recurrent and shared representations of681

knowledge, explicitly represented as generic models and validated through a cooper-682

ative process by the research community. Therefore, they are easily reusable after a683

further processing by symbolic relabelling required to obtain specific representations.684

Knowledge patterns provide “building blocks” that ensure faster ontology design.30685

Moreover, they lead to better results by solving, for instance, design problems and686

content-related issues independently of the conceptualisation (Gangemi 2005). Addi-687

tionally, patterns can facilitate the application of good modelling practices (Pan688

et al. 2007). The “Semantic Web Best Practices and Deployment” W3C working689

group promotes the use of ODPs to design ontologies. A library of knowledge pat-690

terns is provided in the settings of the European NeOn project. It includes struc-691

tural, correspondence, content, reasoning, presentation and lexico-syntactic patterns692

(Presutti et al. 2008). The eXtreme Design (XD) methodology provides guidelines693

for pattern-based ontology design (Daga et al. 2010).31694

Reuse of knowledge models requires also to manage their integration within the695

system under development in order to allow for an easy communication between the696

reused model and the other models. Although ontologies aim at facilitating inter-697

operability between applications they usually originate from different designers and698

refer to variousmodelling perspectives. Therefore, their usewithin a same application699

requires to solve specific issues associated with semantic heterogeneity. In practice,700

the same terms may be used to label different concepts in each reused ontology701

or ontology module; the same concepts may have different labels; and a particular702

concept can be characterised by different features in each model. Facing this het-703

30Referred to as Ontology Design Pattern or ODP.
31http://ontologydesignpatterns.org/wiki/Main_Page.
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erogeneity, significant progress has been made on model reconciliation. Models can704

be reconciled at two different levels. At the schema level, reconciliation consists in705

identifying correspondences or mappings between semantically-related entities of706

two ontologies. In the past years, considerable efforts have been made to build ontol-707

ogy alignment tools (Euzenat and Shvaiko 2013), many of which are available on708

the internet such as OnAGUI32 or TAXOMAP (Hamdi et al. 2009). Each year since709

2004, OAEI international campaigns aim at comparing ontology matching systems.710

At the data level, reconciliation consists in determining if two data descriptions refer711

to the same entity of the real world (e.g. the same person or the same hotel). This712

problem is referred to as reference reconciliation (Saïs et al. 2009) and it is close to713

coreference resolution in NLP.714

3.5 Knowledge Representation in Models715

Even though designing knowledge representation languages is not KE’s main objec-716

tive, researchers, when specifying knowledge and models, contribute to develop,717

evaluate and evolve these languages within normalisation groups, such as W3C.718

Knowledge representation languages as well as modelling languages were first dedi-719

cated to problem-solving and reasoning. Then, they related to ontologies (cf. Sects. 2,720

2.1, 2.2); nowadays knowledge representation languages are back hand in hand with721

reasoning.722

In the 1980s, ontology representation languages successfully took advantage of723

logic and conceptual graphs (Sowa 1984). Conceptual graphs could provide both a724

logic formalisation and a graphical symbolism when no powerful HMI was available725

to display semantic networks or trees, and to deploy or close them upon request.726

OWL was later developed as an evolution of DAML+OIL,33 a language resulting727

from the merge of the DAML34 and OIL project outcomes (Fensel et al. 2001).728

Drawn also on description logic (cf. Sect. I.5), and defined as a layer above XML,729

OWL became stable and included three languages OWL Lite, OWL-DL, OWL-full730

according to the W3C recommendations. Each of these three languages specificities731

results from the trade-off representativity versus calculability. In 2007, OWL was732

extended with new features. A new version, called OWL 2, was formally defined733

in 2012 with three sub-languages35 (called profiles) offering distinct advantages,734

computational properties or implementation possibilities, in particular application735

scenarios: OWL 2 EL enables polynomial time algorithms for all standard reason-736

ing tasks; OWL 2 QL enables conjunctive queries to be answered in LogSpace;737

32https://github.com/lmazuel/onagui.
33http://www.w3.org/TR/daml+oil-reference.
34http://www.daml.org/.
35https://www.w3.org/TR/owl2-new-features/#F15:_OWL_2_EL.2C_OWL_2_QL.2C_OWL_2
_RL.
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Fig. 2 The layer cake of the
semantic Web as proposed in
2009

OWL 2 RL enables the implementation of polynomial time reasoning algorithms738

using rule-extended database technologies.739

In the Semantic Web Stack proposed by Tim B. Lee (cf. Fig. 2), representing the740

stacking order of the Semantic Web languages, we can notice that RDF,36 located741

in the bottom part, is the basic language of the Semantic Web. RDF is the common742

ground to all the languages of interest for KE (i.e. RDF, RDF-S, OWL, SPARQL743

and RIF). These languages allow applications to consistently use ontologies and744

associated rules. RDF is a simple language to express data models as a graph745

where nodes are web resources and edges properties. RDF Schema37 is a seman-746

tic extension of RDF. It is written in RDF and provides mechanisms to structure747

data models, by describing groups of related resources and the relationships between748

these resources. OWL is another and more expressive extension allowing a better749

integration of ontologies and easier inferences. SPARQL38 is an RDF semantic query750

language for databases, able to retrieve and manipulate data stored in RDF format.751

RIF39 (Rule Interchange Format) is the rule layer in the Semantic Web Stack. RIF is752

not a rule language but rather a standard for exchanging rules among rule systems.753

Other rule languages may apply on ontologies, like SWRL,40 or Description Logic754

Programs (DLP)41 (Hitzler et al. 2005). None of them is proposed as a standard for755

36https://www.w3.org/RDF/.
37https://www.w3.org/TR/rdf-schema/.
38https://www.w3.org/TR/rdf-sparql-query/.
39https://www.w3.org/TR/rif-overview/.
40http://www.w3.org/Submission/SWRL/.
41http://logic.aifb.uni-karlsruhe.de/wiki/DLP.
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the semantic web, because theW3C assumes that a single language would not satisfy756

the needs of many popular paradigms for using rules in knowledge representation.757

Another W3C recommendation defined as an application of RDF is SKOS42 (for758

Simple Knowledge Organisation System). SKOS provides a model for expressing759

the basic structure and content of concept schemes such as thesauri, taxonomies,760

folksonomies, and other similar types of controlled vocabulary. In basic SKOS, con-761

ceptual resources (concepts) are related to each other in informal hierarchies but762

no logical inference is possible. Using SKOS, generalisation versus specialisation,763

(broader-than and narrower-than - – BT/NT) relations that are very often used in the-764

saurus can be represented without logical inferences associated to the subsumption765

relationship in OWL.766

SKOS was even more necessary in that logical inferences based on the subsump-767

tion relationship are only valid if ontologies comply with the associated constraints768

(whereas such relationship is not valid on thesaurus). Furthermore, the applications769

using thesaurus and ontologies are increasingly efficient and the resources them-770

selves – i.e. thesaurus and ontologies – are involved in the development processes771

using different knowledge representation languages at different steps in the devel-772

opment process and not always as intended by the language designers. For instance,773

a thesaurus and an ontology jointly used in an application can be modelled in OWL774

for that application. However, one could be originally developed in SKOS and the775

other one in OWL, and they could further be distributed in a format like CTS2.43776

4 Methodological Issues and Today’s Applications777

The current KE challenges are both methodological and application oriented. A few778

founding principles tackle those issues and provide a general framework:779

• The need for a multidisciplinary approach taking into account the recommen-780

dations of other disciplines such as cognitive psychology, ergonomics, manage-781

ment, linguistics, information retrieval, natural language processing or document782

management.783

• The importance of a thorough modelling approach, bringing together different784

models whenever required during the system development process.785

• Theneed to consider upstream the systemergonomic design, prior to anymodelling786

stage; more specifically, the targeted uses of the system should be taken into787

account aswell as its integration in the broader informationprocessing architecture.788

KE-related applications form a vast field of research, experimentation and transfer789

of AI technologies in which innovative methods must be developed. The articulation790

between methodology and applications guides the stakes described below.791

42https://www.w3.org/TR/2009/REC-skos-reference-20090818/.
43http://www.3mtcs.com/resources/hl7cts.
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4.1 Linking Language, Knowledge and Media792

As said in Sect. 3.1, natural language is an ideal vector of knowledge, and written793

natural language is now a good support for knowledge extraction thanks to recent794

advances in NLP and machine learning techniques. To represent and manage knowl-795

edge from text, KE has to deal with various interdisciplinary methodological issues796

that appear in concordance with classes of applications related to various media.797

4.1.1 Designing Problem-Solving Models and Ontologies from Natural798

Language in Textual Documents799

In the 1990s, the firstKE studies on knowledge acquisition for expert systems focused800

on text to identify heuristic knowledge andmore or less explicitly explain human rea-801

soning. At that time, text sources were either existing documents or documents elab-802

orated for modelling purposes, such as transcriptions of interviews. Later, the focus803

on domain ontologies accentuated the sometimes provisional dissociation between804

the heuristic reasoning and the description of the concepts (and vocabulary) used by805

these heuristics. Subsequently, at the end of the 1990s, under the impetus of research806

studies like the one of the French TIA Group, textual corpora generated in relation807

with an activity were used to help design ontologies for support systems of this same808

activity. Thus textual corpora were considered as a complementary or alternative809

source of knowledge to experts and specialists in the field. Processing such corpora810

requires not only NLP tools but also platforms able to use the result of these tools to811

design ontologies, terminologies or any conceptual scheme. (cf. Sect. 3.3.2).812

Moreover, in this perspective, the document as such is a valuable knowledge con-813

veyer in its own right. The management of documents produced and used in the814

individual and collective activity, but also, as such, the management of documen-815

tary collections (images, sounds, videos) is of interest to KE. KE can then rely on816

document management technologies that support the sharing, dissemination, archiv-817

ing, indexing, structuring or classification of documents or document flows. A major818

difficulty is to select the right documents in order to best meet the users’ needs and819

to find the useful task supports (including knowledge). Because more and more KE820

projects integrate document management in a large variety of forms, researchers in821

the field cannot free themselves from an in-depth reflection on the notion of a doc-822

ument, particularly a digital document. To this end, several researchers contributed823

to the work of the multidisciplinary thematic network on the document (RTP-DOC)824

and its productions (Pédauque 2003, 2005).825

4.1.2 Information Retrieval with Ontologies826

Thanks to the Semantic Web, where ontologies provide metadata for indexing docu-827

ments, ontologies are now at the heart of Information Retrieval (IR) applications. In828
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this context, they make it easier to access to relevant resources, because they can be829

used to link and integrate distributed and heterogeneous sources at both the schema830

and data level. Ontologies are also a means to query multiple sources using a unified831

vocabulary, to enrich queries with close concepts or synonym terms, to filter out and832

classify the query results. Given that thesauri are already in use in this field, this833

line of work obviously leads to compare the gains and limitations of ontologies with834

those of thesauri or terminologies and to evaluate their respective contributions to835

IR. These analyses contribute to specify which kind of ontology is more likely to836

support IR: those having a strong linguistic component, with at least many terms837

labeling the concepts. As a consequence, a new need emerged: the implementation838

of application environments where ontologies and thesaurus co-exist to serve the839

purpose of IR (Vandenbussche and Charlet 2009).840

4.2 Coping with Data Explosion841

For nearly 20 years, the amount of available data exploded. In a parallel movement,842

the Semantic Web turned out to be a web of Data in addition to a web a document.843

This means that the semantics should also be brought to data by labeling them with844

ontology concepts. Thus applications address increasingly numerous and diverse845

data that generate new needs in particular for their description and their integration.846

The so-called Big Data is frequently characterised by the four (or more) versus847

(4Vs): Volume, Velocity, Variety, Veracity. Velocity has to do with efficiency and848

calculability of knowledge representation, which is out of the scope of this chapter.849

In the following paragraphs, we explore the three others characteristics: Veracity,850

Variety, and, for the Volume problematic, we focus more specifically on the question851

of the size of designed models.852

4.2.1 Volume853

The description of these very numerous data requires the development of models in854

which the amount of information to be taken into account can be large enough to open855

new perspectives to statistical approaches and models. In order to maintain the use856

and management of symbolic models, the challenge is to be able to design models of857

very large size, for example by reducing the amount of information to be taken into858

account simultaneously. In this way, work on ontology modularity aims at designing859

very large ontologies needed for applications, and to consider these ontologies as sets860

of (more or less independent) modules. Modularity, in the general sense of the word,861

refers to the perception of a large knowledge repository (i.e. an ontology, a knowledge862

or data base) as a set of smaller repositories. Although the concept of modularity863

is widely used in computer science, it is a relatively new idea in KE. For example,864
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the Knowledge Web project44 (2004–2007) provided guidelines to design modular865

ontologies (Stuckenschmidt et al. 2009). This project showed the diversity of views866

on modularity and pointed out the important research directions to be developed:867

guidelines to design modules (how to determine a coherent and meaningful set of868

concepts, relationships, axioms and instances), metadata to describe, to select and to869

use or re-use modules, specification of how they can be linked to one another, their870

composition and their reuse in different contexts. Managing a large mass of data in871

a distributed context can also lead to designing on a set of existing ontologies that872

need to be redesigned, aligned, transformed into modules or integrated with non-873

ontological resources such as databases, folksonomies or thesauri. The networked874

ontology construction method defined by the NeOn45 project (2006–2010) includes875

a support for cooperative design and takes into account the dynamic and evolutionary876

features of ontologies (Gómez-Pérez and Suárez-Figueroa 2009), which are major877

issues for the development of large ontology-based applications.878

4.2.2 Variety or Managing Knowledge Integration Through Ontologies879

Both in the fields of databases and information retrieval, ontologies are experimented880

as a promising solution for data integration. When integrating data from multiple881

and heterogeneous sources, ontologies can help to understand and interpret data882

belonging to the same domain but represented in heterogeneous structures. Then883

ontologies are also a good support to relate them more easily (Assele Kama et al.884

2010). In some domains, such as geography, few ontologies are practically available885

for data integration (Buccella et al. 2009) or they describe targeted domains, such886

as Towntology for planning and urbanism (Roussey et al. 2004) or FoDoMuSt in887

the field of image processing (Brisson et al. 2007). The challenge then consists in888

designing useful ontologies.889

In other domains, like agriculture or medicine, ontologies exist but are very large890

and therefore difficult to exploit. In this case, the challenge is to enable the understand-891

ing of their content in order to help extract the relevant subset for an application. In892

the medical field, many classifications contain several tens of thousands of concepts893

and an ontology includes several hundred thousand concepts. Ontology reuse and894

management reaches an additional level of complexity: ontologies are developed895

to represent knowledge of a precise sub-domain, we speak of Interface ontology.896

Other large ontologies are developed to provide broad representations and to serve897

as references for future epidemiological studies, we speak of Reference ontology898

(Rosenbloom et al. 2006). In this context, the best known models are SNOMED-CT899

that covers the whole medical domain (Spackman 2005) and FMA for represent-900

ing human anatomy in whole (Rosse and Mejino 2003). Between the two types of901

ontologies, we need alignment services and the possibility of extracting the relevant902

subsets for a target system. This is what a standard like CTS2 allows (cf. Sect. 3.5).903

44http://cordis.europa.eu/ist/kct/knowledgeweb_synopsis.htm.
45http://www.neon-project.org/.
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This context, reinforced by the need to exploit diversified knowledge or several904

partial models (or modules), requires to face the problem of heterogeneity between905

models/ontologies/knowledge, and motivates the current interest in semantic inter-906

operability. Research work on semantic interoperability bears on automatic mapping907

tools that set links between elements of semantically heterogeneous concept schemes,908

ontologies or other knowledge sources. They define processes for schema matching,909

ontology alignment (cf. Sect. 3.4), or data reconciliation. For instance, recent medi-910

cal studies have tried to integrate most of the knowledge needed to make a diagnosis911

– e.g. clinical, imaging, genomics knowledge – thanks to a pivotal ontology based912

on various available ontologies or models (Hochheiser et al. 2016; Sarntivijai et al.913

2016).914

4.2.3 Veracity915

Veracity points out, with a step backwards, two things.916

The quality of data is often a problem. For example, in medicine, the medical staff917

generally inputs data into information systems through poor interfaces, with little918

time, in difficult working conditions or with little involvement. As a consequence,919

the data quality is poor too. In a KE point of view, it is important to stress that quality920

ontologies, and quality Knowledge Organisation Systems in general, are necessary.921

Secondly, it appears that medical data are coded (or tagged with concepts) with922

precise goals and strict coding rules. This process involves a reduction of themeaning,923

and raises difficulty when interpreting the data, which often requires to read again924

the original text or resource. Indeed, when reusing data in a new context or when925

trying to merge it with other data, we observe that the data is biased by the first926

context. It is then necessary to closely analyse the bias and to check that it can be927

taken into account or even compensated for in another way. Knowledge engineers928

must be aware of these limitations and anticipate them before data reuse.929

4.3 Managing Distributed Data930

The web and web standards have greatly changed the way data is distributed. In par-931

ticular, new types of systems, web services, rely on a new communication protocol932

between machines. Thanks to web services, the Web became a distributed com-933

puting device where programs (services) can interact intelligently by being able to934

automatically discover other services, to negotiate among themselves and to com-935

pose themselves into more complex services. A considerable amount of knowledge936

is mandatory to get intelligible services from machines. When added a knowledge937

base, web services become semantic web service.938

Semantic web services are the bricks to create a semantic Web of services whose939

properties, capabilities, interfaces and effects are described in an unambiguous way940

and can be exploited by machines. The semantics thus expressed must facilitate941
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the automatic management of services. Semantic web services are essential for the942

effective use of web services in industrial applications. However, they still raise a943

number of issues for the research community, including for the KE field because944

they use ontologies to explain which service they provide to other services or to end945

users. Semantic modelling contributes to evaluate the quality of aWeb service and to946

take it into account in the process of discovery or composition of services. Peer-to-947

peer (P2P) systems have also grown significantly, and a substantial body of research948

work has recently sought to improve the search function in unstructured systems949

by replacing random routing with semantically guided routing. Several dimensions950

of the problem are analysed: Which semantics should be remembered? Which rep-951

resentation to adopt? How to design it? What is shared among peers? How to use952

semantics? How to disseminate it? These issues remained unresolved and have been953

brought into sharper focus by KE.954

4.4 Leveraging New Knowledge Sources955

Two knowledge sources currently raise major challenges: data from the Web 2.0 and956

data from the Web data-bases (web of data).957

The Web 2.0 or social Web (OReilly 2007) devotes a considerable attention to958

users compared to the Web in its initial version, by allowing them to become active.959

Both authors and actors, Internet users can use the web 2.0 tools to store, imple-960

ment and manage their own content and share it. These tools include blogs, social961

networks, collaborative sites, linking platforms, and on-line sharing services. These962

tools and services are increasingly used in organisations. However, the software tools963

managing these contents have their own data format and they are increasingly dis-964

tributed and heterogeneous. These features raise important problems of information965

integration, reliable identification of the authors or history tracking to name but a966

few. Similarly, tagging or labeling46 is a common practice to characterize and group967

similar contents and to facilitate data search. This process presents several limita-968

tions due to the ambiguity and heterogeneity of the labels, called tags. Enterprise 2.0969

systems (McAfee 2006) recently tend to develop as a field of experimentation and970

promotion for KE techniques. It enables a kind of renewal within the KE domain by971

making new proposals for facilitating navigation, querying or retrieval. As proposed972

by Tim Berners-Lee, linked Web data refer to an RDF-based publication and inter-973

connection of structured data on theWeb, based on the RDFmodel. TimBerners-Lee974

talks about aWeb of data. It thus promotes a W3C project that goes in this direction,975

i.e. the Linking Open Data (LOD). The Web of Data, following the web of docu-976

ments, intends to face the flood of information by connecting the data. Linked data977

has the advantage of providing a single, standardised access mechanism rather than978

using different interface and result formats. Data sources can bemore easily searched979

46I.e. content indexing with user’s metadata. The sets of labels then form folksonomies.
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by search engines, accessed using generic data browsers, and linked to different data980

sources.981

The number of data published according to the principles of linked data is grow-982

ing rapidly (we are talking about billions of RDF triplets available on the Internet).983

The site http://lov.okfn.org/dataset/lov/ gives a snapshot of existing vocabularies984

(more than 600) and highlights the numerous mutual reuse of terms between these985

vocabularies. Among this large number of data sources, DBPedia47 structures the986

content of Wikipedia48 into RDF triples so as to make the information of the ency-987

clopedia reusable. DPpedia is a very powerful source as it is interconnected with988

other data sources, such as Geonames49 and MusicBrainz50) and it has been linked989

to even larger data sets like YAGO51 (Rebele et al. 2016) or BabelNet52 (Navigli and990

Ponzetto 2012). These large generic knowledge bases are also used by search engines991

to display structured content in response to users’ queries. Because of they propose992

unambiguous and linked vocabularies, these masses of data represent promising993

sources for KE.994

4.5 Coping with Knowledge Evolution995

The dynamic nature of the data on the Web gives rise to a multitude of problems996

related to the description and analysis of the evolution of such data. The existing997

models of knowledge representation are inadequately addressing the challenges of998

data evolution and, above all, they do not benefit from any adaptive mechanism that999

would allow them to rigorously follow the evolutions of a domain. Research work1000

on ontology evolution underlines howmuch the Semantic Web and KE communities1001

need to find appropriate solutions to this complex issue. Early studies defined the1002

stages of an evolution process (Noy and Klein 2004; Stojanovic 2004), they spec-1003

ified a typology of changes (Plessers et al. 2007) and change descriptions. Other1004

works proposed mechanisms, sometimes borrowed to belief revision (Flouris 2006)1005

to keep the modified ontology consistent and logically sound (Haase and Stojanovic1006

2005) and defined how to propagate changes in distributed ontologies and in the1007

applications that use them (Stuckenschmidt and Klein 2003). With similar purposes1008

to ontology engineering, ontology evolution can be fed thanks to the knowledge1009

identified in textual documents using NLP tools (Buitelaar and Cimiano 2008) and1010

relying on document structure, like in (Nederstigt et al. 2014). More recently, when1011

the ontology is used to generate semantic annotations of text, research studies deal1012

47http://wiki.dbpedia.org/.
48https://fr.wikipedia.org.
49http://www.geonames.org/.
50https://musicbrainz.org/.
51https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-na
ga/yago/.
52http://babelnet.org/.
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with the evolution of these semantic annotations when the textual corpus or when the1013

indexing vocabularies evolve (Tissaoui et al. 2011; Da Silveira et al. 2015; Cardoso1014

et al. 2016).1015

Zablith et al. (2015) propose a recent overview of the major trend in this domain.1016

Characterizing and representing domain data evolution raises issues both at the data1017

level (Stefanidis et al. 2016) and at the model scheme level (Guelfi et al. 2010).1018

Ontology evolution remains a hard issue, even at the era ofmachine learning, because1019

a statistic processing of a massive amount of documents is relevant for building large1020

knowledge bases like DBpedia, but produces poor results when trying to fix errors1021

or to identify local changes in an existing model. Processing large amounts of data is1022

much more appropriate to feed and update the data level in knowledge bases, which1023

corresponds to instances of ontological classes.1024

4.6 Collective Versus Personal Knowledge1025

Most of the previous approaches place little emphasis on the social dimension of1026

knowledge management. This dimension is strong enough in some professional1027

communities to consider them as communities of interest or as communities of prac-1028

tices. Communities of practices designate social groups in which learning processes1029

emerge through the sharing of networked knowledge. KE models need to capture1030

these learning processes or to integrate them into their knowledge management pro-1031

cess. To this end, Lewkowicz and Zacklad (2001) propose a new form of knowledge1032

management based on the structuring of collective interactions. This approach aims1033

at better using of the shared knowledge, at facilitating its reuse, the knowledge of an1034

organisation being considered as above all a matter of collective competence.1035

The identification of communities of interest that emerged thanks to the develop-1036

ment of Web 2.0 or the analysis of users’ digital traces sharing similar thematic1037

information implies the representation of individual knowledge about the fields1038

of interest and activities of their members, together with the collective dimension1039

of knowledge. This collective dimension is the focus of the Computer Supported1040

Cooperative Work (CSCW) research community, that designs specific solutions1041

to manage collective and in-use knowledge. For instance, M. Zacklad proposes a1042

conceptual model mid-way between thesauri and formal ontologies, called semiotic1043

ontologies, that should be more easily shared by a working community in an infor-1044

mation retrieval framework (Zacklad 2007). Conversely, more and more software1045

systems and Web interfaces are designed to be context sensitive or user customised.1046

To do so, they adapt to the user profile, environment or interactions with the system,1047

which requires the acquisition, the modelling and the processing of the interaction1048

contexts (Garlatti and Prié 2004).1049
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4.7 Model Quality Assessment1050

Finally, a fundamental question for KE concerns the quality assessment of the mod-1051

els used and the results produced. The use of poor quality knowledge may lead to1052

errors, duplications and inconsistencies that must be avoided. Beyond its interest in1053

research, the theme of quality has become critical with the deployment of systems1054

in companies.1055

The quality of the models/ontologies can be guaranteed methodologically, when1056

the ontology was designed following a rigorous method based on the theoretical and1057

philosophical foundations of what an ontology is (such as the methods presented in1058

Sect. 5). Other methodological works aim to move from manual and approximative1059

approaches, the cost and duration of which are difficult to estimate, to more system-1060

atic, equipped and better controlled processes. Of course, they focus on reuse such1061

as Methontology (Gómez-Pérez et al. 2007) and NEON in Suárez-Figueroa et al.1062

(2012), on practical guidelines (Noy and Hafner 1997) or on systematic text anal-1063

ysis using NLP tools and modelling platforms such as Terminae (Aussenac-Gilles1064

et al. 2000) or GATE and methods listed in Maedche (2002). In the case of Brank1065

et al. (2005), a state of the art classifies the ontology evaluation techniques into four1066

categories: (1) syntactic evaluations check whether the model complies the syntactic1067

rules of a reference language (RDF, OWL, …) such as Maedche and Staab (2002),1068

(2) in-use evaluations test the ontology when used by a targeted system, e.g. Porzel1069

and Malaka (2004) (3) comparison with a reference source in the domain (either1070

a gold model or a representative set of textual documents), such as Brewster et al.1071

(2004) or, finally (4) human evaluation tests how well the ontology meets a set of1072

predefined criteria, standards or needs, for example Lozano-Tello and Gomez-Perez1073

(2004). Moreover, in Brank et al. (2005), validation approaches are organised into1074

six levels: lexical level, level of taxonomic relations, level of other semantic rela-1075

tionships, application level (looking how the ontology impacts on the system that1076

uses it), context level (how the ontology is reused by or reuses another ontology),1077

syntactic level or, finally, the level of design principles. Practically, it may be easier1078

to evaluate an ontology level by level because of its complexity.1079

5 Conclusion1080

KE has undergone successive changes of direction. This research field constantly1081

evolves from the inside (experimenting new analyses, new perspectives, original1082

ways of posing problems, new theoretical concepts) and from outside (targeting new1083

types of applications, dealing with new types of data, in particular with the upheavals1084

of the Web, integrating the contributions of other disciplines that come to bring new1085

methods and concepts). Over the years, these developments gradually broadened1086

the scope of KE. Each new proposed theoretical framework includes parts of the1087

previous work. Even if some changes of perspective correspond to actual breaks, the1088
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results of the domain complement each other over time and can be taken from a new1089

angle when the context evolves.1090

For a long time, KE has been interested in producing knowledge models in a well-1091

structured process under the control of knowledge engineers. The resulting models,1092

generally complex, were used in specific applications. Today, applications in which1093

knowledge is used as support for reasoning or activity have become much more1094

diversified. Since 2000, they have been devoted to knowledge management in the1095

broadest sense, including semantic information retrieval, navigation aids, decision1096

support, and many semantic Web applications. This enlargement continues and new1097

fields of application are still emerging, posing the problems of KE in new terms.1098

Thus, in the age of ubiquitous computing, it is the living room, the train, the auto-1099

mobile, the workshop, the classroom or meeting room, the smallest kitchen device1100

that become “smart” tools. Within these tools, a dynamic process is required to con-1101

tinuously acquire context knowledge on the flow from a wide variety of sources (sen-1102

sors, databases, the Internet, users with various profiles). In addition, these intelligent1103

tools must have a pro-active behaviour that enables them to initiate communication1104

or action based on their understanding of the current situation and on their goals.1105

So, for example, phones know where we are at a given time and become capable1106

of automating some operations, such as when taking pictures, labeling them with1107

geographic and temporal metadata.1108

The last decade has seen a major transformation in the way individuals interact1109

and exchange. Information is now co-produced, shared, filed and evaluated on the1110

Web by thousands of people. These uses and the underlying technologies are known1111

as Web 2.0. Web 3.0 is the latest evolution to date that combines the social web and1112

the semantic technologies of the semantic Web. In the context of communities of1113

interest or practices where spontaneous emergence and activity are allowed by these1114

evolutions of the Web, KE and knowledge management are thus major stakes of the1115

future decade.1116

Finally, KE must feed and evaluate all these new developments, compare them1117

with previousmodels (reasoningmodels, rules bases), estimate the need to use ontolo-1118

gies and their alignment to type or organise data, to define new techniques and1119

languages if necessary, to justify the use of metadata to enrich and reuse data, and so1120

on. The speed of Web evolutions can be seen as a crazy accelerator of the research1121

pace or as an alarm that invites us to step back and pose the problems at a higher1122

abstraction level, necessarily interdisciplinary, in order to better qualify the essence1123

of knowledge, their dissemination and their formalisation for digital processing.1124
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