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Characterizations of global transversal exponential
stability (long version)

Vincent Andrieu, Bayu Jayawardhana, Laurent Praly

Abstract—We study the relationship between the global expo-
nential stability of an invariant manifold and the existence of
a positive semi-definite Riemannian metric which is contracted
by the flow. In particular, we investigate how the following
properties are related to each other (in the global case): i). A
manifold is globally “transversally” exponentially stable; ii). The
corresponding variational system (c.f. (7) in Section II) admits the
same property; iii). There exists a degenerate Riemannian metric
which is contracted by the flow and can be used to construct a
Lyapunov function. We show that the transverse contraction rate
being larger than the expansion of the shadow on the manifold
is a sufficient condition for the existence of such a Lyapunov
function.

An illustration of these tools is given in the context of global
full-order observer design.

Keywords: Contraction, transversal exponential stability, ex-
ponentially attractive invariant manifold

I. INTRODUCTION

The use of Lyapunov functions has been instrumental in
the (asymptotic) stability analysis of solutions or invariant
sets of autonomous dynamical systems. It can be traced back
to Lyapunov himself who has introduced this concept in his
dissertation in 1892 (see [19] for an English translation).
The seminal use of a Lyapunov function is for analyzing the
asymptotic behavior of systems’ trajectories and for studying
the influence of systems’ perturbations to the asymptotic
stability property. In the past century, the applicability of
Lyapunov stability theorems and functions has been extended
beyond the field of dynamical systems and become one of the
cornerstone tools in systems & control theory. It has become
a very efficient tool for synthesizing stabilizing control laws,
regulators and observers (see for example [13], [29], [15],
[25]).

On the one hand, the study of converse Lyapunov theorems
has received a considerable attention from the nonlinear con-
trol community (see, for example, [18], [24], [21], [20], [22],
[16] for early results). Recent works on the various variations
of converse Lyapunov theorems are, among many others, [30],
[14].

On the other hand, instead of constructing Lyapunov func-
tions (which can be non-trivial), it is also a common approach
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to use a first-order approximation for analyzing local stability
of equilibrium points of nonlinear systems. Indeed, lineariza-
tion has allowed one to apply directly tools for linear systems
and it provides a simple way to construct local Lyapunov
functions for the original nonlinear systems. Surprisingly this
local approach can sometime also be employed to obtain the
global properties and to construct global Lyapunov functions.
Recent examples of the latter are the papers [8] or [1] that
deal with contraction analysis and the paper [9] which deals
with differential passivity property.

In this paper, we study the property of global exponential
stability of an invariant manifold {(z, x) ∈ Rnz+nx : z = 0},
along some vector fields that can be decomposed as{

ż = F (z, x)
ẋ = G(z, x) ,

(1)

where z is in Rnz , x is in Rnx and the functions F :
Rnz × Rnx → Rnz and G : Rnz × Rnx → Rnx are C2.
In this systems’ description, the z part of the state variables
can refer to key state variables in various control problems.
For instance, it can refer to the regulated output variables, or
to the difference between two trajectories in an incrementally
stable system, or to the error between the state and an estimate
provided by an asymptotic observer.

Similar to the results in [2], we investigate how the global
exponential stability property along solutions of some vari-
ational system is equivalent to the stability property of the
invariant manifold on the system itself and how a Lyapunov
function can be obtained from this stability property. In
contrast to the local results as we have presented in [2], we
investigate in this paper global properties.

In order to obtain this global characterization, we need to
attach to each point (z, x) a bilinear map which defines a
degenerate Riemannian metric. The first characterization is
that the Lie derivative of this field of bilinear maps along
the vector field has to be non positive. As will be shown, this
characterization is valid as long as the expansion rate on the
manifold is smaller than the attraction rate to the manifold.
We note that this type of property has already been given in
the literature. For instance this type of assumption implies the
existence of an asymptotic phase 1 [11].

It is also the case in the literature related to the normal
hyperbolic invariant manifold (see the work of Fenichel [5]
or the books [12] and [31]). In our context, the manifold is
a particular case of a normal hyperbolic invariant manifold.

1It is the property that for each state trajectory there exists another trajectory
inside an attractive and positively invariant manifold to which the state
trajectory is converging to (also named shadow trajectory).
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This has also been studied in [4] for the particular case of
a compact invariant manifold. In their context, the global
transverse exponential stability property can be rephrased in
term of Normally Hyperbolic Invariant Manifold (NHIM)2.
Note however that as opposed to these works on NHIM, we
are not interested in the persistency or regularity properties. In
this paper, we are interested to study equivalent conditions to
the NHIM property and also a novel Lyapunov characterization
for this property.

Notation : All along the paper, | · | is the Euclidean norm of
vectors or matrices. For defining the dimension of the off-the-
manifold, on-the-manifold and the complete system, we use
three integers nz , nx and nw such that nw = nz + nx. We
denote by Bz(a) the open ball of radius a centered at the origin
in Rnz . The symbols Iz , Ix and Iw denote the identity matrices
respectively in Rnz , Rnx and Rnw . The first derivative of a
function φ is denoted by φ′. Given a function S : Rn 7→ Rn×n
the values of which are bilinear maps, its Lie derivative along
a vector field ϕ : Rn 7→ Rn is defined as

LϕS(w) = dϕS(w) +

(
∂ϕ

∂w
(w)

)>
S(w) + S(w)

∂ϕ

∂w
(w) ,

where dϕS is the element wise upper right Dini derivative
along the flow W of the vector field ϕ defined in the following
sense

v>dϕS(w)v := lim sup
h↘0

v>
S(W (w, h))− S(w)

h
v (2)

for all v in Rnw .

II. TRANSVERSALLY EXPONENTIALLY STABLE MANIFOLD

The system (1) may compactly be rewritten as

ẇ = ϕ(w) , (3)

where w = (z, x) is in Rnw and nw = nx + nz . We denote
by W (w0, t) = (Z(w0, t), X(w0, t)) the (unique) solution of
(3) which goes through w0 = (z0, x0) in Rnw at time t = 0.
We assume throughout the paper the following assumptions.

Assumption 1: For all w0 in Rnw solutions W (w0, t) are
defined for all positive times, i.e. the system (3) is forward
complete.

Assumption 2: The manifold Z := {w = (z, x) : z =
0} ⊂ Rnw is invariant along the flow generated by (3) which
is equivalent to

F (0, x) = 0 ∀x ∈ Rnx . (4)

In our previous work [2], we have shown that the transverse
uniform local exponential stability of the manifold Z can be
fully characterized based on the stability property of the lin-
earized dynamics of the z-subsystem. In this paper, following
the approach taken in [1] we study a global version of this
property, namely the global transverse exponential stability.

2A normally hyperbolic invariant manifold (NHIM) is a natural general-
ization of a hyperbolic fixed point. Roughly speaking, an invariant manifold
is normally hyperbolic if, under the dynamics linearized about the manifold,
the (positive or negative) growth rate of vectors transverse to the manifold
dominates the growth rate of vectors tangent to the manifold. We refer to [31]
for an exposition on this notion.

(Glob.)-TES (Global transverse exponential stability)
There exist a non decreasing continuous functions k :
R+ → R+ \ {0} and a positive real number λ such that
the inequality

|Z(w0, t)| ≤ k(|z0|) exp(−λt) |z0| (5)

holds for all w0 = (z0, x0) in Rnw and t in R+.

In other words, the manifold Z is globally exponentially
stable for the system (1), uniformly in x.

Example 1: As a prototypical example in this paper, let us
consider the following planar system defined on R2 which
satisfies Assumptions 1 and 2:

ż = φ(x)z , ẋ = νx , φ(x) = −λ+ x sin(x) , (6)

where λ > 0 and ν ∈ R. It can be checked, that its solutions
are given by

W ((z0, x0), t) =

(
e−λt+

cos(x0)−cos(eνtx0)
ν z0, e

νtx0

)
∀t ∈ R.

This implies that Property (Glob.)-TES holds since we have
for all (z0, x0) in R2

|Z((z0, x0), t)| ≤ exp

(
2

ν

)
e−λt|z0| .

4

In this paper, we show that the global transverse exponential
stability can be characterized by the following two (almost)
equivalent properties. Let us consider the following variational
system obtained from (3) :

˙̃w =
∂ϕ

∂w
(w)w̃ , ẇ = ϕ(w) . (7)

TES-VS (Transverse exponential stability of the variational
system (7))
There exist a non decreasing function k̃ : R+ → R+\{0}
and a non increasing function λ̃ : R+ → R+ \ {0} such
that∣∣∣Z̃(w̃0, w0, t)

∣∣∣ ≤ k̃(|z0|) exp
(
−λ̃(|z0|)t

)
|w̃0| , (8)

for all (w̃0, w0) in R2nw where Z̃(w̃0, w0, t) is the z̃
component of the state w̃ = (z̃, x̃) of the variational
system (7).

Namely the manifold Z̃ := {(z̃, x̃, z, x) : z̃ = 0} is
exponentially stable for the system (7) uniformly in x. Note
however that the bound depends on x̃0 via w̃0 (and not only
on z̃0).

Property TES-VS is a property on the variational system
(7). It establishes that the z̃ component converge exponentially
toward zero uniformly with respect to x and it is independent
of the dynamical behavior of x̃.

(Glob.)-LMTE (Global Lyapunov matrix transversal equa-
tion)
There exist a non increasing continuous functions λs :
R+ → R+, a function s : Rnw → R+ \ {0}, a non
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decreasing continuous function s : R+ → R+ and a
locally Lipschitz function S : Rnw → Rnw×nw such that

s(w)

[
Iz 0
0 0

]
≤ S(w) ≤ s(|z|) Iw , (9)

and its Lie derivative along ϕ (see notations) exists and
satisfies

LϕS(w) ≤ −λs(|z|)S(w) , (10)

for all w = (z, x) in Rnw .

Property (Glob.)-LMTE establishes the existence of a de-
generate metric which is contracted by the flow. If, for all w in
Rnw , S were positive definite and bounded then (10) implies
that the flow generated by the system is contracting in the
sense that the Riemannian distance associated to the metric
S between any two trajectories decreases along the solutions.
We note here that S may not be full rank everywhere and
Rnw endowed with this metric is not a Riemannian manifold.
However, as will be shown later in Section VI, we can define
a degenerate Riemannian metric which allows us to define
a Lyapunov function characterizing the fact that the solution
converges to the manifold Z .
Example 1 (cont’d): When we consider the variational system
obtained from (6) to the tangent bundle, we have

˙̃w =

[
φ(eνtx0) φ′(eνtx0)Z(w0, t)

0 ν

]
w̃ .

This implies that

Z̃(w̃0, w0, t)

= e
∫ t
0
φ(eνsx0)dsz̃0

+

∫ t

0

e
∫ t
s
φ(eνhx0)dhφ′(eνsx0)Z(w0, s)e

νsx̃0ds ,

= e
∫ t
0
φ(eνsx0)ds

[
z̃0 +

∫ t

0

φ′(eνsx0)eνsz0x̃0ds

]
.

Hence if x0 6= 0,

Z̃(w̃0, w0, t) =

e
∫ t
0
φ(eνsx0)ds

[
z̃0 +

φ(eνtx0)− φ(x0)

ν

z0x̃0

x0

]
.

Using the previously defined φ, it follows that

Z̃(w̃0, w0, t) = e
cos(x0)−cos(eνtx0)

ν

[
e−λtz̃0

+
e(ν−λ)t sin(eνtx0)− e−λt sin(x0)

ν
z0x̃0

]
.

Two cases may be distinguished as follows.
• If λ > ν then Z̃(w̃0, w0, t) converges exponentially

toward zero for all z0, x0, x̃0, z̃0 and property TES-VS
holds.

• if λ ≤ ν then it can be checked that Z̃(w̃0, w0, t) doesn’t
converge to zero. This is the case if λ = ν. Moreover,
when λ < ν it may be unbounded. For instance, when we
take z0 = 1, x0 = 1, x̃0 = 1. Hence Property TES-VS
doesn’t hold.

The purpose of this paper is to show that what has been
obtained in Example 1 is general. Indeed, it will be shown that

these three properties are (almost) equivalent when the expan-
sion rate in the Z manifold is smaller than the convergence
rate to the Z manifold (λ > ν in the illustrative example).
This together with some mild conditions on the bounds on the
derivatives of the vector field ϕ, we establish that Property
(Glob.)-TES implies TES-VS in Section IV. Section V is
devoted to show that (Glob.)-TES and TES-VS imply (Glob.)-
LMTE . Finally, Section VI contains the proof that property
(Glob.)-LMTE implies the existence of Lyapunov function
which characterizes the stability property (Glob.)-TES .

The following section discusses the relationship with exist-
ing results available in the literature.

III. LINK WITH EXISTING STUDIES

A. Case in which there is no x dynamics

In the particular case in which there are no x-dynamics the
system (1) becomes simply

ż = F (z) , F (0) = 0 , z ∈ Rnz . (11)

In that case, the three properties introduced are drastically
simplified and become :

• (Glob.)-TES becomes the local exponential stability and
the global asymptotic stability of the origin.

• TES-VS becomes the fact that the z̃ components of the
solutions to following system

˙̃z =
∂F

∂z
(z)z̃ , ż = F (z) ,

converge (exponentially) toward zero.
• (Glob.)-LMTE boils down to the existence of (non uni-

formly) contracting Riemannian metric.

It has been shown in [1] that in this particular case these 3
properties are equivalent. The results presented in this paper
are direct extension of this work to the case in which the
attractor is not an equilibrium but a (simple) linear manifold.

In this particular case, this equivalence property can also be
obtained following the route of [7] on normal hyperbolicity.
Indeed, assuming completeness of the trajectories in backward
time, and employing [17], it is possible to show that a
dynamical system admitting a locally exponentially stable and
globally asymptotically stable equilibrium can be transformed
via a global diffeomorphism into a linear system. With this,
so in the case of no x-dynamics and backward completeness,
equivalence of the three properties follows simply by applying
Lyapunov methods for linear systems.

Actually global linearization by diffeomorphism is proved
in [4] also for the case when there are x-dynamics or more
precisely when the attractor is not a point but a compact
manifold, but still requiring backward completeness. Unfor-
tunately we do not know if it is possible or not to obtain
this linearization result without compactness and (backward)
completeness. These two assumptions are not made here and
we follow a different route to establish the equivalence of the
three properties (Glob.)-TES , TES-VS and (Glob.)-LMTE .
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B. Relationship with the local properties in [2]

As briefly discussed before, we have presented local ver-
sions of the three properties given above in our previous work
in [2].

For instance, instead of the global transverse exponential
stability (i.e. Property (Glob.)-TES ), we have considered the
following property.

(Local) Transverse exponential stability There exist posi-
tive real numbers r > 0, k0 > 0 and λ > 0 such that
we have, for all w0 = (z0, x0) in Bz(r) × Rnx and for
all t in R+,

|Z(w0, t)| ≤ k0 exp(−λt)|z0| . (12)

Using some technical assumptions (related to the bounds on
derivatives of the vector field ϕ), we have shown in [2] that
this property is equivalent to the following two properties.

ES-TLS (Exponential stability for the locally transversally
linearized system)
There exist real numbers k̃ > 0 and λ̃ > 0 such that, for
the linear part of the variational system

˙̃z =
∂F

∂z
(0, x)z̃ , ẋ = G0(x) := G(0, x) , (13)

any solution (Z̃(z̃0, x0, t), X0(x0, t)) satisfies, for all
(z̃0, x0, t) in Rnz × Rnx × R+,

|Z̃(z̃0, x0, t)| ≤ k̃ exp(−λ̃t)|z̃0| . (14)

(Loc.)-LMTE (Local Lyapunov matrix transversal equation)
For all positive definite matrix Q, there exist a continuous
function P` : Rnx → Rnz×nz and positive real numbers
p

0
> 0 and p0 > 0 such that P` has a derivative dG0P`

along the vector field G0 in (13) and we have, for all x
in Rnx ,

dG0
{P`(x)}+ P`(x)

∂F

∂z
(0, x) +

∂F

∂z
(0, x̃)>P`(x) ≤ −Q(15)

p
0
I ≤ P`(x) ≤ p0 I . (16)

It is possible to show that each of these three properties
are local version of the properties introduced in the previous
section. In particular, the property ES-TLS (i.e. the exponential
stability of the z̃ component of system (13)) is induced by
TES-VS (i.e. the exponential stability of the z̃ component
of system (7)). Indeed, consider solutions to system (7) with
initial condition (w0, w̃0) with w0 in Z and x̃0 = 0. Since
F (0, x) = 0 for all x, it implies that ∂F

∂x (0, x) = 0 and
consequently, solutions of (7) initiated from (w0, w̃0) with w0

in Z are solutions of (13). Consequently, for such solution
with x̃0 = 0, (5) yields

˙̃
Z(w0, w̃0, t) ≤ k̃(0) exp(−λ̃t)|z̃0|

and consequently (14) holds with k̃0 = k̃(0), i.e. ES-TLS
holds.

As shown in [2], (Loc.)-LMTE is a characterization of
the transverse local exponential stability. Indeed, given P`
solution to (15) it is shown in in [2] that the function
(z, x) 7→ z>P`(x)z is a local Lyapunov function. Moreover,

it is possible to establish a direct link between P`, solution
of (15) and the S solution of the global equation (10).

Proposition 1: Assume there exists a positive real number
p such that Property (Glob.)-LMTE holds with S decomposed
as

S(z, x) =

[
P (z, x) Q(z, x)
Q(z, x)> R(z, x)

]
. (17)

and with p ≤ s(0, x) then P`(x), the Schur complement of
S(0, x), i.e.

P`(x) = P (0, x)−Q(0, x)R(0, x)gQ(0, x)> ,

where R(x)g in Rnx×nx is any symmetric generalized inverse
matrix3, defines a function P` : Rnx → Rnz×nz which
satisfies (16) for some positive real numbers p` and p`.
Moreover, P` has a derivative dG0P` along G0 which satisfies
(15).

In other words, putting aside the continuity requirement on
the matrix function P`, (Glob.)-LMTE implies (Loc.)-LMTE
as introduced in [2]. Note that in the particular case in which
Q(0, x) = 0 for all x then P`(x) = P (0, x) and consequently
P` has the same regularity as S. As pointed out later in Remark
2 this is typically the property which is obtained in the proof
of Proposition 3 which establishes property (Glob.)-LMTE
assuming (Glob.)-TES and the transverse exponential stability
of the lifted system (i.e., TES-VS ).
Proof : First of all, for any x in Rnx , the matrix S(0, x) being
positive semi-definite ( for any generalized inverse Rg(0, x)) it
can be shown that

P`(x) ≥ 0 , (Ix−R(0, x)R(0, x)g)Q(0, x)> = 0 . (18)

Indeed, the second equation may be obtained as follows. First
of all S(0, x) being positive semi-definite, for each x̃ in Rnx
such that Rx̃ = 0, we have Q(0, x)>x̃ = 0. Otherwise,
picking z̃ = −λQ(0, x)>x̃ and letting λ go to zero is such

that
[
z̃> x̃>

]
S(0, x)

[
z̃
x̃

]
< 0. Assume now that there exists

x̃2 such that Q(Ix−RgR)x̃2 6= 0. Note that from the previous
statement, this implies that R(Ix−RgR)x̃2 6= 0. However, since
RRgR = R, this is impossible. Consequently (18) holds true.

Now, it can be shown that P` is uniquely defined (but it may
be non continuous). Indeed, let Rg1 and Rg2 be two generalized
inverse of R. Then, employing (18), this yields,

QRg1Q
> = QRg1RR

g
2Q
>

= QRg2Q
>

Hence, P` is uniquely defined.
Hence, we have that

P`(x) = [ Iz −Q(0,x)Rg(0,x) ]S(0, x)
[

Iz
−Rg(0,x)Q(0,x)>

]
, (19)

which implies that[
z̃> x̃>

]
S(0, x)

[
z̃
x̃

]
= z̃>P`(x)z̃ +

[
x̃> + z̃>QRg

]
R
[
x̃+RgQ>z̃

]
, (20)

and
z̃>P`(x)z̃ = inf

x̃∈Rnx

{[
z̃> x̃>

]
S(0, x)

[
z̃
x̃

]}
(21)

3Given a square matrix R, a generalized inverse is any matrix which
satisfies RgRRg = Rg and RRgR = R.
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hold for all z̃. By letting

x̃ = −R(x)gQ(x)z̃ , (22)

it follows from (20) and (9) that

p < s(0, x) Iz ≤ P`(x) .

In particular, when x̃ = 0, P`(x) ≤ P (0, x) ≤ s(0) Iz. Hence,
(16) holds with p` = p and p` = s(0).

Take any z̃ in Rnz . We have by definition

z̃>dG0P0(x)z̃ = lim sup
h↘0

z̃P`(X0(x, h))z̃ − z̃P`(x)z̃

h
.

But by letting x̃ as in (22), equation (20) implies that

z̃P`(x)z̃ =
[
z̃> x̃>

]
S(0, x)

[
z̃
x̃

]
, (23)

whereas (21) gives

z̃P`(X0(x, h))z̃ ≤
[
z̃> x̃>

]
S(0, X0(x, h))

[
z̃
x̃

]
.

Together with (10), it follows then that

z̃>dG0P`(x)z̃

≤
[
z̃> x̃>

]
lim sup
h↘0

S(0, X0(x, h))− S(0, x)

h

[
z̃
x̃

]
. (24)

Here we note that (4) implies that Z((0, x), h) = 0 for any h ≥ 0
and therefore (0, X0(x, h)) = W ((0, x), h). Thus the inequality
(24) becomes

z̃>dG0P`(x)z̃

≤
[
z̃> x̃>

]
lim sup
h↘0

S(W ((0, x), h))− S(0, x)

h

[
z̃
x̃

]
≤
[
z̃> x̃>

]
dϕS(0, x)

[
z̃
x̃

]
On the other hand, equations (22) and (4) imply that

[
z̃> x̃>

]
S(0, x)

[
∂F
∂z

(0, x) ∂F
∂x

(0, x)
∂G
∂z

(0, x) ∂G
∂x

(0, x)

] [
z̃
x̃

]
=
[
z̃>P`(x) 0

] [ ∂F
∂z

(0, x) 0
∂G
∂z

(0, x) ∂G
∂x

(0, x)

] [
z̃
x̃

]
= z̃>P`(x)

∂F

∂z
(0, x)z̃

It follows from this equality together with (10) and (23) that

z̃>
(
dG0P`(x) + P`(x)

∂F

∂z
(0, x) +

∂F

∂z
(0, x)>P`(x)

)
z̃

≤
[
z̃> x̃>

]
LϕS(0, x)

[
z̃
x̃

]
≤ −λs(0)

[
z̃> x̃>

]
S(0, x)

[
z̃
x̃

]
≤ −λs(0)z̃>P`(x)z̃ .

This shows that (15) holds.

IV. (GLOB.)-TES “⇒” TES-VS
A. Statement of the result

In [2, Proposition 1], it was shown that the exponential
stability of the locally transversally linearized system (Prop.
ES-TLS) was implied by the local transverse exponential
stability (i.e. equation (12)). In this section our aim is to show
that this implication may also be true for the global version
of these two properties.

In the spirit of Lyapunov first method, we have the following
result

Proposition 2: If Property (Glob.)-TES holds and there
exists a non decreasing function µ : R+ → R+ and a positive
real number ν such that, for all w = (z, x) in Rnw ,∣∣∣∣ ∂ϕ∂w (w)

∣∣∣∣ ≤ µ(|z|) ,
∣∣∣∣ ∂2ϕ

∂w2
(w)

∣∣∣∣ ≤ µ(|z|) (25)

and ∣∣∣∣∂G∂x (0, x)

∣∣∣∣ < ν < λ (26)

hold then Property TES-VS holds.
The proof of this proposition is given in the next subsection.

Let us first emphasize that the property (26) expresses a
relationship between the expansion of the x component on
the manifold {(z, x) ∈ Rn, z = 0} and the asymptotic
convergence to zero of the z component. This is exactly the
property which has been discussed in the illustrative Example
1. Indeed, λ is the convergence rate of the z component
whereas ν expresses an estimation of the expansion rate on
the manifold. More precisely, given (0, x0) an initial condition
on the manifold, it follows that

d

dt
|X((0, x0), t)| ≤ ν |X((0, x0), t)|+ |G(0, 0)|

which establishes that

|X((0, x0), t)| ≤ exp(νt)[|x0|+
1− exp(−νt)

ν
|G(0, 0)|] ,

≤ exp(νt)

[
|x0|+

|G(0, 0)|
ν

]
.

This assumption implies that the manifold {(z, x) ∈
Rn, z = 0} is normal hyperbolic (see also [5]).

Note that this restriction on the expansion in the manifold is
trivially removed in the particular case in which ∂F

∂z (z, x) = 0.
Indeed, in this case, if Property(Glob.)-TES holds then
Property TES-VS holds. This is trivially the case in the
linear context since for linear systems Property (Glob.)-TES
implies that F doesn’t depend on x.

B. Proof of Proposition 2

The proof is decomposed in two steps. In the first step, we
show that the fundamental matrix of the z̃ component of a
solution to the system

˙̃z =
∂F

∂z
(w)z̃ , ẇ = ϕ(w) (27)

converges exponentially to zero. In the second step, we show
the result by expressing solutions to system (7) employing the
former fundamental matrix.
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Proof : First step: The fundamental matrix of the au-
tonomous system is exponentially decreasing.

We define the fundamental matrix of the z̃ component of
a solution to the system (27) as the Rnz×nz matrix function
solution to

∂Φz̃
∂t

(w, t) =
∂F

∂z
(W (w, t)) Φz̃(w, t) ,

Φz̃(w, 0) = Iz .

We want to evaluate sup
|z̃0|=r̃

|Φz̃(z0, x0, t)z̃0|
|z̃0|

where r̃ > 0 is any

positive real number. Since Φz̃(z0, x0, t)z̃0 is the z̃-component
of a solution initiated from (z̃0, w0) = (z̃0, z0, x0) of the partially
linear system (27), the idea is to approximate it with the z-
component of Z((z̃0, x0), t) of the nonlinear system (1). For this
approximation to be appropriate, i.e. for the linearization to be
close to the nonlinear function, z̃0, i.e. r̃, should be small. Also
such an approximation may not be good for all positive times
t. To overcome this problem, after some time s, we reinitialize
the solution of the non linear system at the current value of the
linear one. Specifically, we approximate, Φz̃(z0, x0, t+ is)z̃0, on
the time interval [0, s), by Z(z̃i, xi, t) where

z̃i = Φz̃(z0, x0, is)z̃0

(zi, xi) = (Z(z0, x0, is) , X(z0, x0, is))

}
(28)

The expressions here make sense for any integer i because of
the forward completeness assumption.

To study the relation between these solutions, we start with
some estimations. Given arbitrary z̃ in Rnz , (za, xa) in Rnw and
(zb, xb) in Rnw and let y = zb − z̃, we have

F (zb, xb)−
∂F

∂z
(za, xa)z̃ =

∂F

∂z
(za, xa)[zb− z̃]+∆(za, xa, zb, xb)

where

∆(za, xa, zb, xb) = F (zb, xb)−
∂F

∂z
(za, xa)zb

= [F (zb, xb)− F (zb, xa)]

+

[
F (zb, xa)− ∂F

∂z
(0, xa)zb

]
+

[
∂F

∂z
(0, xa)− ∂F

∂z
(za, xa)

]
zb

Since F (0, x) = 0 and with the Hadamard’s lemma (see [23,
Page 17]), (4) and (25), we obtain the existence of a non
decreasing function c : R+ → R+ (depending on the function
µ)4such that, for all (za, xa) in Rnw and (zb, xb) in Rnw ,

|∆(za, xa, zb, xb)|
≤ c(|za|+ |zb|)

[
|zb|2 + |zb||za|+ |zb||xa − xb|

]
.

This together with (25) implies that∣∣∣∣F (zb, xb)−
∂F

∂z
(za, xa)z̃

∣∣∣∣ ≤ c(|za|+ |zb|)
×
[
|zb − z̃|+ |zb|2 + |zb||za|+ |zb||xa − xb|

]
, (29)

holds for all (za, xa) in Rnw and (zb, xb) in Rnw . Similarly we
obtain also that

|G(za, xa)−G(zb, xb)|
≤ |G(za, xb)−G(zb, xb)| + |G(za, xa)−G(za, xb)| ,
≤ c(|za|+ |zb|)|za − zb|+ c(|za|)|xa − xb| ,
≤ c(|za|+ |zb|) [|za|+ |zb|+ |xa − xb|] ,

(30)

4In the following the notation c is used generically without distinction.

holds for all (za, xa) in Rnw and (zb, xb) in Rnw . In the following
we will substitute (za, xa) by (Z(z̃i, xi, s), X(z̃i, xi, s)) and sim-
ilarly (Z(zi, xi, s), X(zi, xi, s)) will replace (zb, xb). Note at this
point that, because of (5), if z̃i is in Bz(|z0|), then Z(z̃i, xi, s)
is in Bz(k(|z0|)|z0|) for all positive times s. In this case, as (28)
implies that

Z(zi, xi, s) = Z(z0, x0, s+ is)

we have that

c(|Z(z̃i, xi, s)|+ |Z(zi, xi, s)|) ≤ c(2k(|z0|)|z0|) := c̃(|z0|)

holds for all s, s and i. Now, for each integer i, we define the
following functions on [0, s]

Yi(s) = |Z(z̃i, xi, s)− Φz̃(z0, x0, s+ is)z̃0| ,
Di(s) = |X(z̃i, xi, s)−X(z0, x0, s+ is)| ,

= |X(z̃i, xi, s)−X(zi, xi, s)| .

Note that we have Yi(0) = Di(0) = 0. By integration of the
differential inequality obtained from (30), and using (5), we get,
for each integer i such that z̃i is in Bz(|z0|) and for all s in [0, s],
that

Di(s) ≤ c̃(|z0|)
∫ s

0

ec̃(|z0|)(s−σ)

×
[
|Z(z̃i, xi, σ)|+ |Z(zi, xi, σ)|

]
dσ .

≤ c̃(|z0|)
∫ s

0

ec̃(|z0|)(s−σ)

×
[
k(|z̃i|) exp(−λσ)|z̃i|+ k(|z0|) exp(−λ(is + σ))|z0|

]
dσ ,

≤ c̃(|z0|)ec̃(|z0|)s
1− exp(−(c̃(|z0|) + λ)s)

c̃(|z0|) + λ
k(|z0|)

×
[
|z̃i|+ exp(−λis)|z0|

]
.

Similarly, using (29),

Yi(s) ≤ c̃(|z0|)
∫ s

0

exp(c̃(|z0|)(s− σ))

×
(
|Z(z̃i, xi, σ)|2 + |Z(z̃i, xi, σ)||Z(zi, xi, σ)|

+ |Z(z̃i, xi, σ)|Di(σ)
)
dσ ,

≤ γ(s, |z0|)
[
|z̃i|2 + exp(−λis)|z0||z̃i|

]
,

holds for all s in [0, s] where

γ(s, z0) = c̃(|z0|)k(|z0|)2

∫ s

0

ec̃(|z0|)(s−σ)e−2λσ×

×
(

1 + c̃(|z0|)e(c̃(|z0|)+λσ 1− e−(c̃(|z0|)+λ)σ

c̃(|z0|) + λ

)
dσ .

Hence it follows then that together with (5) and the definition
of Yi(s), we have obtained that, for all i, if we have z̃` in Bz(|z0|)
for all ` in {0, . . . , i}, then, we have also, for all s in [0, s],

|Φz̃(z0, x0, s+ is)z̃0| ≤ |Z(z̃i, xi, s)|+ |Yi(s)| ,

≤ k(|z0|)e−λs|z̃i| +
γ(s, |z0|)

[
|z̃i|+ e−λis|z0|

]
|z̃i| .

(31)

On the other hand, (25) implies

d
dt
|z̃| ≤ c̃(|z0|)|z̃| .

Therefore, for all i and with no restriction on z̃` for ` in {0, . . . , i},
we have for all s in [0, s]

|Φz̃(z0, x0, s+ is)z̃0| ≤ ec̃(|z0|)s|z̃i| ≤ ec̃(|z0|)[s+is]|z̃0| . (32)
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Let us take s large enough such that

s >
log(3k(|z0|))

λ
.

Then by letting λ1 = λ− log(3k(|z0|))
s

, we have that

k(|z0|)e−λs ≤
e−λ1s

3
.

Subsequently, we take a positive integer j0 large enough so that

γ(s, |z0|)e−λj0s|z0| ≤
e−λ1s

3
.

Finally we pick r̃ small enough such that

ec̃(|z0|)j0sr̃ ≤ |z0| and γ(s, |z0|) ≤
e−λ1s

3

1

r̃ec̃(|z0|)j0s
.

hold where s, r̃ and j0 depend on |z0|. In this case, it follows
from (32) with s = 0 that

|z̃`| ≤
[
ec̃(|z0|)j0sr̃

] |z̃0|
r̃

∀` ≤ j0.

Similarly, it follows from (31) that

|z̃i+1| = |Φz̃(z0, x0, [i+ 1]s)z̃0| (33)

≤ e−λ1s

3

[
1 +

|z̃i|
r̃ec̃(|z0|)j0s

+ e−λ[i−j0]s

]
|z̃i| (34)

holds for all i ≥ j0 for which we have z̃` in Bz(|z0|) for all ` in
{0, . . . , i}. Finally, using (32), we can deduce that

|Φz̃(z0, x0, s+ is)z̃0| ≤ ec̃(|z0|)s|z̃i|. (35)

In the case where |z̃0| is smaller than r̃, we have obtained
successively that

1. z̃` is smaller than |z0| for each ` smaller than j0,

2. |z̃j0 | ≤ r̃e
c̃(|z0|)j0s ≤ |z0|,

3. |z̃j0+1| ≤ e−λ1s|z̃j0 | ≤ r̃e
c̃(|z0|)j0s ≤ |z0|.

which, by induction, we get

|z̃i| ≤ r̃ec̃(|z0|)j0s ≤ |z0| ∀i .

Hence (35) implies that

|Φz̃(z0, x0, t)z̃0| ≤ ec̃(|z0|)[j0+1]s|z̃0| ∀t ∈ [0, j0s] .

Also (33) and (35) imply that

|Φz̃(z0, x0, t)z̃0| ≤ e[c̃(|z0|)+λ1]se−λ1t|z̃0| ∀t ≥ j0s .

Consequently, we obtain that

|Φz̃(z0, x0, t)| ≤ k̃a(|z0|)e−λ1t (36)

with k̃a(|z0|) = e[c̃(|z0|)+λ1](j0+1)s .

Second step: Showing the upper bound. Let w̃0 = (z̃0, x̃0) be
in Rnw . Note that for all t ≥ 0, we have

Z̃(w̃0, w0, t) = Φz̃(w0, t)z̃0

+

∫ t

0

Φz̃(w0, t− s)
∂F

∂x
(W (w0, s))X̃(w̃0, w0, s)ds . (37)

Using Hadamard’s lemma (see [23, Page 17]) and using equa-
tions (4) and (25), there exists a non decreasing continuous
function c : R+ → R+ such that

∣∣ ∂F
∂x

(z, x)
∣∣ ≤ c(|z|)|z| for all

(z, x). Since Z(z0, x0, t) is in Bz(k(|z0|)|z0|) together with (5),
we have that5, for all s ≥ 0,∣∣∣∣∂F∂x (W (w0, s))

∣∣∣∣ ≤ c(|z0|)e−λs|z0| .

Using (36), it follows also that∣∣∣Z̃(w̃0, w0, t)
∣∣∣ ≤ k̃a(|z0|) exp (−λ1t) |z̃0|

+ c(|z0|)|z0|
∫ t

0

exp (−λ1(t− s)− λs)
∣∣∣X̃(w̃0, w0, s)

∣∣∣ ds , (38)

holds for all t ≥ 0 and all w̃0 in Rnw . On the other hand, we have
for all (z, x) in Rnw with (26)∣∣∣∣∂G∂x (z, x)

∣∣∣∣ ≤ ∣∣∣∣∂G∂x (z, x)− ∂G

∂x
(0, x)

∣∣∣∣+

∣∣∣∣∂G∂x (0, x)

∣∣∣∣
≤ c(|z|)|z|+ ν .

This inequality in combination with (5) for all s ≥ 0 and all w̃0 in
Rnw∣∣∣X̃(w̃0, w0, s)

∣∣∣ ≤ exp

(
c(|z0|)

1− e−λs

λ
+ νs

)
|x̃0|+∫ s

0

exp

(
c(|z0|)

e−λ` − e−λs

λ
+ ν(s− `)

)
× c(|z0|)

∣∣∣Z̃(w̃0, x̃0, `)
∣∣∣ d` .

By rearranging this inequality (and changing again the c func-
tion), we obtain∣∣∣X̃(w̃0, w0, s)

∣∣∣ ≤ c(|z0|) exp (νs)

×
[
|x̃0|+

∫ s

0

∣∣∣Z̃(w̃0, x̃0, `)
∣∣∣ d`] .

Hence inequality (38) becomes (changing one more time the c
function)∣∣∣Z̃(w̃0, w0, t)

∣∣∣ ≤ k̃a(|z0|)e−λ1t|z̃0|+

c(|z0|)|z0|
[
e[ν−λ]t + e−λ1t

]
×
[
|x̃0|+

∫ t

0

∣∣∣Z̃(w̃0, x̃0, `)
∣∣∣ d`]

By assumption we have that ν < λ and by setting u(t) =
exp(λ2t)Z̃(w̃0, w0, t), where λ2 = min{λ1, ν − λ}, it implies

u(t) ≤ α+

∫ t

0

β(`)u(`)d`

with

α = k̃a(|z0|)|z̃0|+ 2c(|z0|)|z0||x̃0| ,
β(`) = 2c(|z0|)|z0| exp(−λ2`).

Employing Grönwall Lemma (see [10, p. 36]), it follows that∣∣∣Z̃(w̃0, w0, t)
∣∣∣ ≤ exp(−λ2t)α exp

(∫ t

0

β(`)d`

)
,

≤ exp(−λ2t)α exp

(
1− e−λ2t

λ2
2c(|z0|)|z0|

)
.

5c is again a generic notation.
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V. (GLOB.)-TES AND TES-VS ⇒ (GLOB.)-LMTE

In the spirit of Lyapunov matrix equation, it was shown
in [2, Proposition 2] that the exponential stability of the
locally transversally linearized system (Prop. ES-TLS) can be
characterized by a local Lyapunov matrix transversal equation
(i.e. Property (Loc.)-LMTE). Again, in this section, it is shown
that this implication holds true in the global context as given
in the following proposition.

Proposition 3: If Properties (Glob.)-TES and TES-VS
hold then Property (Glob.)-LMTE holds.

The proof of this theorem is decomposed in three steps. In
the first step we introduce a candidate matrix function S. In
the second step we show that this matrix function satisfies the
lower and upper bound given in (9). The final step is devoted
to show that the field of bilinear maps we have obtained admits
a Lie derivative along the vector field ϕ which satisfies (10).
Proof : First step: Introduction of S. Consider the following
nonlinear dynamical system where the state of which is a matrix
in Rnw×nw :

Φ̇(w, t) =
∂ϕ

∂w
(W (w, t))Φ(w, t) , Φ(w, 0) = Iw . (39)

It follows trivially that

W̃ (w̃, w, t) = Φ(w, t)w̃ .

Using the property (Glob.)-TES , (i.e. uniform exponential con-
vergence of z̃ as given in (8)), we have for all (w̃, w, t) in
R2nw × R≥0 that∣∣∣Z̃(w, w̃, t)

∣∣∣ ≤ k̃(|z|)e−λ̃(|z|)t|w̃| .

Therefore if we denote

Φ1(w, t) =
[
Iz 0

]
Φ(w, t) ,

we have that
|Φ1(w, t)| ≤ k̃(|z|) e−λ̃(|z|)t , (40)

holds for all w in Rnw and all t in R+. Let λ̃s be a non increasing
function such that λ̃s (k(|z|) |z|) ≤ λ̃(|z|) . Consider the function
S : Rnw → Rnw×nw defined by

S(w) = lim
T→+∞

∫ T

0

e
∫ s
0 λ̃s(|Z(w,`)|)d`Φ1(w, s)>Φ1(w, s)ds . (41)

Second step: Lower and upper bound on S. With (Glob.)-TES
property we have that (5) holds and

λ̃s(|Z(w, `)|) ≤ λ̃s
(
k(|z|) e−λ` |z|

)
≤ λ̃(|z|) , ∀`.

Therefore

S(z, x) ≤ lim
T→+∞

∫ T

0

eλ̃s(k(|z|)|z|)sΦ1(w, s)>Φ1(w, s)ds ,

≤ lim
T→+∞

∫ T

0

eλ̃(|z|)sΦ1(w, s)>Φ1(w, s)ds .

Hence, it is well-defined, continuous and satisfies

λmax{S(z, x)} ≤ k̃(|z|)2

λ̃(|z|)
:= s̄(|z|) ∀(z, x) ∈ Rnw .

To obtain the lower bound on the matrix function S, we decom-
pose it in blocks, as we have done before in Proposition 1,

S(w) =

[
P (w) Q(w)
Q(w)> R(w)

]
.

Let Ps be the Schur complement of S given by

Ps(w) = P (w)−Q(w)R(w)gQ(w)> ,

where R(w)g is any symmetric generalized inverse matrix of
R(w). Following similar argumentation as in Proposition 1, it
can be shown that Ps is uniquely defined since S is posi-
tive semi definite for all w, and writing Ps as a solution to
a minimization procedure. Moreover, employing the fact that
(Ix−R(w)gR(w))Q(w)> = 0, we know that for all w̃ = (z̃, x̃),

w̃>S(w)w̃ = z̃>Ps(w)z̃

+ (x̃+R(w)gQ(w)z̃)>R(w)(x̃+R(w)gQ(w)z̃) .

It can be shown that Ps is a positive definite matrix. Indeed,
assume that z̃ 6= 0 is such that Psz̃ = 0. Let x̃ = −R(w)gQ(w)z̃.
Then this implies

w̃>S(w)w̃ = 0 .

However, according to the definition of S, where
e
∫ s
0 λ̃s(|Z(w,`)|)d` ≥ 1 we have that

lim
T→+∞

∫ T

0

|Φ1(w, s)z̃|2 ds = lim
T→+∞

∫ T

0

∣∣∣Z̃(w, w̃, s)
∣∣∣2 ds = 0

which is impossible since Z̃(w, w̃, 0) = z̃ 6= 0 and s 7→
Z̃(w, w̃, s) is a C1 function. Consequently, for all w, Ps(w) is
a positive definite matrix. Let

s(w) = λmin {Ps(w)} .
This function takes positive value and

s(w)

[
Iz 0
0 0

]
≤ S(w) .

Hence, (9) is obtained.
Third step : Lie derivative of S. To get (10), let us exploit the
semi-group property of the solutions of the variational system
(7), i.e.

W (w, h+ s) = W (W (w, h), s)

Φ(w, h+ s)w̃ = W̃ ((w̃, w), h+ s)

= W̃
((
W̃ (w̃, w, h) , W (w, h)

)
, s
)

= Φ(W (w, h), s)W̃ (w̃, w, h)

= Φ(W (w, h), s)Φ(w, h)w̃

where w̃ is arbitrary. In particular for s = −h,
we have I = Φ(W (w, h),−h)Φ(w, h). Thus
Φ(w, h + s)Φ(W (w, h),−h)Φ(w, h) = Φ(W (w, h), s)Φ(w, h)
where Φ(w, h) is invertible. Consequently, S(W (w, h)) being
well defined for sufficiently small h implies that

S(W (w, h))

= lim
T→+∞

∫ T

0

e
∫ s
0 λ̃s(|Z(W (w,h),`)|)d`

× Φ(W (w, h), s)>
[
Iz 0
0 0

]
Φ(W (w, h), s)ds

= lim
T→+∞

Φ(W (w, h),−h)>

×
∫ T

0

e
∫ s
0 λ̃s(|Z(w,h+`)|)d`Φ1(w, s+ h)>Φ1(w, s+ h)ds

× Φ(W (w, h),−h)

= lim
T→+∞

(
Φ(W (w, h),−h)>

)>
×
∫ T+h

h

e
∫ s
h λ̃s(|Z(w,`)|)d`Φ1(w, s)>Φ1(w, s)ds

× Φ(W (w, h),−h)
(42)
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We note that

lim
h→0

Φ(W (w, h),−h)− I

h
= − ∂ϕ

∂w
(w) ,

and

lim
h→0

e
∫ s
h λ̃s(|Z(w,`)|)d` − e

∫ s
0 λ̃s(|Z(w,`)|)d`

h

= −λ̃s(|z|)e
∫ s
0 λ̃s(|Z(w,`)|)d` .

This implies that

dϕS(w) = −λ̃s(|z|)S(w)−
[
Iz 0
0 0

]
− ∂ϕ

∂w
(w)>S(w)− S(w)

∂ϕ

∂w
(w) .

We conclude then that the derivative (2) does exist and we get

LϕS(w) ≤ −λ̃s(|z|)S(w) .

Remark 1: Note that with Propositions 2 and 3, (Glob.)-
LMTE holds if Property TES-VS and the bounds (25) and
(26) hold.

Remark 2: The function S introduced in (41) for proving
the theorem takes only positive semi definite values. For
instance, for all w = (0, x) (i.e. in Z),

Φ1(w, t) =
[
Φz̃((0, x), t) 0

]
,

where Φz̃ is the fundamental matrix of the autonomous part
of the z̃ dynamics which is defined in (27). This implies that
for all w = (0, x) in Z the function S introduced in (41) has
the following structure

S(0, x) =

[
P (0, x) 0

0 0

]
, (43)

whose rank is nz .
Example 1 (cont’d): Going back to the illustrative system (6)
for which it is assumed that λ > ν, the function (39) is given
as :

Φ(w, t) =

[
κ(x, t) κx(x, t)z

0 eνt

]
,∀(x, t), (44)

where
κ(x, t) = e−λt+

cos(x)−cos(eνtx)
ν , (45)

and,

κx(x, t) =
∂κ

∂x
(x, t) (46)

= e−λt+
cos(x)−cos(eνtx)

ν
eνt sin(eνtx)− sin(x)

ν
, (47)

Consequently

Φ1(w, t)>Φ1(w, t) =

[
1 0
0 z

]
M(x, t)

[
1 0
0 z

]
, (48)

where

M(x, t) =

[
κ(x, t)2 κ(x, t)κx(x, t)

κ(x, t)κx(x, t) κx(x, t)2

]
. (49)

Note that if λ > ν > 0, M is bounded and converge
exponentially to zero as time goes to infinity. Consider the
matrix

S(w) =

[
1 0
0 z

]
N(x)

[
1 0
0 z

]
(50)

where,

N(x) = lim
T→+∞

∫ T

0

eλssM(x, s)ds (51)

It is well defined for 0 < λs < λ − ν and following Step 3
in the proof, it satisfies (10). Moreover, it verifies a bound in
the form (9) since N is bounded.

VI. (GLOB.)-LMTE “⇒” (GLOB.)-TES AND
LYAPUNOV FUNCTION CONSTRUCTION

The matrix function S obtained from the property (Glob.)-
LMTE may be used to define a degenerate Riemannian metric
on Rnw . More precisely, on each point w in Rnw , S(w) defines
a quadratic form w̃>S(w)w̃ which is semi positive definite and
may admit a kernel of dimension nx. From this, it is possible to
define a degenerate Riemannian metric on Rnw as for instance
done in [3].

In the following we consider the associated energy integral
as a Lyapunov function. More precisely, if S is a function with
values that are symmetric semi definite matrices satisfying (9)
then energy of any piece-wise C1 path γ : [0, 1] → Rnw
between two arbitrary points w1 = γ(0) and w2 = γ(1) in
Rnw is

E(γ) =

∫ 1

0

dγ

dτ
(σ)>S(γ(σ))

dγ

dτ
(σ) dσ . (52)

Note that in contrast with the case in which S defines a usual
Riemannian metric, it is possible to consider two points w1

and w2 and a C1 path the energy integral of which is zero.
This is for instance the case when considering for instance
w1 = (0, x1) and w2 = (0, x2) for the matrix function defined
in (41) (see Remark 2) and a path such that γz(s) = 0 for all
s in [0, 1] where γz is the z-component of γ.

Given w = (z, x) in Rnw , we define the set Ω(w) as the
set of all C2 paths γ such that

γ(0) = w , γz(1) = 0 .

We can now define a candidate Lyapunov function, denoted by
V , as the infimum energy of all paths between w and points
in the manifold, i.e.

V (w) = inf
γ∈Ω(w)

E(γ) . (53)

In the following proposition we show that this is indeed a
good Lyapunov function candidate and moreover it admits a
negative definite upper right Dini derivative along the solution
of system (3). Note however that to get the result we need a
uniform lower bound of the matrix function S.

Proposition 4: Assume that Property (Glob.)-LMTE
holds. Assume moreover that there exists a positive real
number s0 such that

s0 ≤ s(w) , ∀w ∈ Rnw . (54)
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Then V , defined in (53), satisfies

s0|z|2 ≤ V (z, x) ≤ s(|z|)|z|2 , (55)

and admits an upper right Dini derivative along the solutions
of system (3) defined as

D+
ϕV (w) := lim sup

h↘0

V (W (w, h))− V (w)

h
,

which satisfies

D+
ϕV (w) ≤ −λv(|z|)V (w) . (56)

Hence Property (Glob.)-TES holds.
Example 1 (cont’d): Going back to the illustrative system
(6) for which it is assumed that λ > ν, due to the particular
structure of the function S it is possible to show that s can be
taken independent of w in term of s0. Indeed, note that for each

x in R x̃ 7→
[
1 x̃

]
N(x)

[
1
x̃

]
is a non negative polynomial of

degree 2 with continuous coefficient in x. Hence, it reaches a
minimum value denote c(x) which is continuous and we have,[

1 x̃
]
S(1, x)

[
1
x̃

]
=
[
1 x̃

]
N(x)

[
1
x̃

]
≥ c(x) (57)

It can be shown after lengthy computation that c(x) is lower
bounded (see Appendix for the proof). Hence,

inf
x∈R

c(x) = c(x∗) ≥ s(1, x∗) := s0 > 0 (58)

This implies,[
z̃ x̃

]
S(z, x)

[
z̃
x̃

]
= z̃2

[
1 x̃

z̃

]
S(z, x)

[
1
x̃
z̃

]
(59)

= z̃2
[
1 x̃z

z̃

]
S(1, x)

[
1
x̃z
z̃

]
(60)

≥ z̃2s0 (61)

And consequently, on this example, the lower bound on s is
obtained and the function V defined in (53) can be employed
as a Lyapunov function.
Proof : Let us first show that V , defined in (53), satisfies (55) for
all w in Rnw and all paths γ in Ω(w). Using (54), we have

E(γ) =

∫ 1

0

dγ

ds
(s)>S(γ(s))

dγ

ds
(s)dτ

≥ s0

∫ 1

0

dγz
ds

(s)>
dγz
ds

(s)dτ , (62)

where γz is the z-component of γ. An energy integral minimizer
for an Euclidean metric is a straight line τ 7→ (1 − τ)z. Indeed,
consider a path τ 7→ δ(τ) ∈ Rnz such that δ(0) = 0 and δ(1) =
0. Consider the function

`(h) =

∫ 1

0

(γ̇z(s) + hδ̇(s))>(γ̇z(s) + hδ̇(s))ds

Note that ` reaches its minimum value at 0 then

0 = `′(0) = 2

∫ 1

0

δ̇(s)>γ̇z(s)dτ = −2

∫ 1

0

δ(s)>γ̈z(s)dτ

for all δ. This implies that γ̈z(s) = 0 and γz is affine. Hence,∫ 1

0

dγz
dτ

(τ)>
dγz
dτ

(τ)dτ ≥ z>z
∫ 1

0

ds = |z|2 .

By the definition of the function V , for all k there exists a path γk
in Ω(w) such that

s0|z|
2 ≤ E(γk) ≤ V (w) +

1

k
.

This implies that the left inequality in (55) holds.
On the other hand the particular path γ∗ : τ → ((1 − τ)z, x)

is in Ω(w). Hence,

V (z, x) ≤ E(γ∗) =

∫ 1

0

[
z> 0

]
S ((1− s)z, x)

[
z
0

]
ds

≤ s(|z|)
∫ 1

0

z>zds

≤ s(|z|)|z|2 .

So the left inequality in (55) holds also.
Let us now establish (56). We start by studying the evolution

with time of the energy integral of an arbitrary path. Let w be an
arbitrary point in Rnw and γ be an arbitrary point in Ω(w). Let
also τ > 0 be a positive real number. We denote Γ : [0, 1] ×
[−τ, τ ]→ Rnw the function defined by

Γ(s, t) = W (γ(s), t) .

Following the properties of γ and W , the function Γ is C2,
bounded and is a path between W (w, t) and W (γ(1), t) with
γ(1) belonging to Z. Hence, Γ(·, t) is in Ω(W (w, t)). Let us
denote ϑΓ(·,t)(W (w, t)) the energy integral of this path. By the
definition of V , we have

V (W (w, t)) ≤ ϑΓ(·,t)(W (w, t)) ∀t ≥ 0 . (63)

Let us evaluate the derivative of the function t 7→
ϑΓ(·,t)(W (w, t)). We define the function ` by

`(s, t) =
∂Γ

∂s
(s, t)>S(Γ(s, t))

∂Γ

∂s
(s, t) .

It is continuous and satisfies

ϑΓ(·,t)(W (w, t)) =

∫ 1

0

`(s, t)ds . (64)

Also it satisfies, for any s in [0, 1], t in (−τ, τ) and h sufficiently
small,

`(s, t+ h)− `(s, t)

=

[
∂Γ

∂s
(s, t+ h)− ∂Γ

∂s
(s, t)

]>
S(Γ(s, t+h))

∂Γ

∂s
(s, t+

h)

+
∂Γ

∂s
(s, t)> [S(Γ(s, t+ h))− S(Γ(s, t))]

∂Γ

∂s
(s, t+ h)

+
∂Γ

∂s
(s, t)]>S(Γ(s, t))

[
∂Γ

∂s
(s, t+ h)− ∂Γ

∂s
(s, t)

]
.

Here the function t 7→ ∂Γ
∂s

(s, t) is continuously differentiable with

∂2Γ

∂s∂t
(s, t) =

∂ϕ

∂w
(Γ(s, t))

∂Γ

∂s
(s, t)

and, S admitting a Lie derivative satisfies (c.f. (2)),

lim
h→0

[S(Γ(s, t+ h))− S(Γ(s, t))]

h
= dϕS(Γ(s, t)) .

With (10), it follows that

∂`

∂t
(s, t)

=
dΓ

ds
(s, t)>

∂ϕ

∂w
(Γ(s, t))>S(Γ(s, t))

dγ

ds
(s)

+
∂Γ

∂s
(s, t)>dϕS(Γ(s, t))

∂Γ

∂s
(s, t)

+
∂Γ

∂s
(s, t)>S(|Γ(s, t)|) ∂ϕ

∂w
(Γ(s, t))

∂Γ

∂s
(s, t)
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=
∂Γ

∂s
(s, t)>LϕS(Γ(s, t))

∂Γ

∂s
(s, t)

≤ −λs(|Γz(s, t)|)
∂Γ

∂s
(s, t)>S(Γ(s, t))

∂Γ

∂s
(s, t)

≤ −λs(|Γz(s, t)|)`(s, t)

Thus for each s in [0, 1], the function t ∈ [−τ, τ ] 7→ `(s, t) is
continuous and admits a derivative (not necessarily continuous)
satisfying the above differential inequality. It follows (see [26,
Theorem A.1.2.1] for example) that for all (s, t) ∈ [0, 1]× [−τ, τ ]

`(s, t) ≤ e−
∫ t
0 λs(|Γz(s,r)|)dr`(s, 0) .

Let us find an s-independent upperbound of λs(|Γz(s, r)|), ap-
pearing in the integral. Since Γz(1, r) = 0, we have

Γz(s, r) =

∫ s

1

∂Γz
∂s

(σ, r)dσ .

Subsequently, together with (54) and (62), we have that

|Γz(s, r)| ≤
∫ s

1

∂Γz
∂s

(σ, r)dσ

≤
∫ 1

0

∣∣∣∣∂Γz
∂s

(σ, r)

∣∣∣∣ dσ
≤

∫ 1

0

∣∣∣∣∂Γz
∂s

(σ, r)

∣∣∣∣2 dσ,
≤ 1

s0

ϑΓ(·,r)(W (w, r)) ,

holds for all s in [0, 1]. The function λs being non increasing
implies that

λs(|Γz(s, r)|) ≥ λs

(
1

s0

ϑΓ(·,r)(W (w, r))

)
and therefore for all (s, t) ∈ [0, 1]× [0, τ ]

`(s, t) ≤ e
−
∫ t
0 λs

(
1
s0
ϑΓ(·,r)(W (w,r))

)
dr
`(s, 0) .

By integrating in s and using (64), we obtain for all t ∈ [−τ, τ ]

ϑΓ(·,t)(W (w, t)) ≤ e
−
∫ t
0 λs

(
1
s0
ϑΓ(·,r)(W (w,r))

)
dr
ϑγ(w)

This means that

D+
ϕϑγ,xp(w) = lim sup

t↘0

ϑΓ(·,t)(W (w, t))−ϑγ(w)

t

≤ −λs
(

1

s0

ϑγ(w)

)
ϑγ(w) .

In other words, ϑγ(w) is non increasing along the solutions and

ϑΓ(·,t)(W (w, t)) ≤ e
−λs

(
1
s0
ϑγ(w)

)
t
ϑγ(w) ∀t ∈ [0, τ ] .

By the definition of V as a minimum, for any path γ in Ω(w) and
any t in [0, τ ] we have

V (W (w, t)) ≤ e
−λs

(
1
s0
ϑγ(w)

)
t
ϑγ(w)

However we know that for any k, there exists a path γk in Ω(w)
satisfying

V (w) ≤ ϑγk (w) ≤ V (w) +
1

k
.

Hence

V (W (w, t)) ≤ e
−λs

(
1
s0

[V (w)+ 1
k

]
)
t
[
V (w) +

1

k

]

and therefore

V (W (w, t)) ≤ e
−λs

(
1
s0
V (w)

)
t
V (w) . (65)

Together with (55), we obtain finally

|Z(w, t)| ≤

√
s(|z|)
s0

exp

−λs
(
s(|z|)|z|2

s0

)
2

t

 |z| .
Using (65), we get also that

D+
ϕV (w) = lim sup

t↘

V (W (w, t))− V (w)

t

≤ lim sup
t↘0

(
e
−λs

(
1
s0
V (w)

)
t
V (w)

)
− V (w)

t

≤ −λs
(

1

s0

V (w)

)
V (w) .

This ends the proof.

VII. APPLICATION TO THE DESIGN OF GLOBAL
FULL-ORDER OBSERVER

A. Analysis based on former results

In order to illustrate some of the propositions that have been
given in this paper, we consider the observer design context in
this section. Consider an autonomous dynamical system given
by

ẋ = f(x) , y = h(x) , (66)

where x in Rn is the state and y in R is a measured output.
The vector field f : Rn → Rn and the function h : Rn → R
are both C1. Solutions initiated from x0 in Rn is denoted by
X(x0, t) and is assumed to be defined for all positive time.

Let us consider the problem of a (full order) observer design
for this system. In other word, we are looking for a necessary
and sufficient condition for the existence of a vector field K :
Rn → Rn such that for the dynamical system{

˙̂x = f(x̂) +K(x̂)(y − h(x̂))

ẋ = f(x) , y = h(x)
(67)

we have an attractive invariant manifold {(x, x̂) ∈ R2n, x =
x̂} which is globally asymptotically stable and uniformly
locally exponentially stable. More precisely, we introduce the
following property.

Definition 1 (Global full-order observer): The system (66)
is said to admit a global full-order observer with rate of
convergence λ > 0 if there exist a vector field K and a non
decreasing continuous function k such that for all (x0, x̂0) in
R2n, the solutions of (67) satisfy∣∣∣X̂(x0, x̂0, t)−X(x0, t)

∣∣∣ ≤ k(|x0− x̂0|) exp(−λt)|x0− x̂0| ,
(68)

where X̂(x0, x̂0, t) is the x̂ component of the solution of (67)
initiated from (x0, x̂0).
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By letting z = x̂− x, this system is in the form of system
(5) with ϕ(z, x) = (F (z, x), G(z, x)) and{
F (z, x) = f(x+ z)− f(x) +K(x+ z)(h(x)− h(x+ z)) ,
G(z, x) = f(x) .

The asymptotic stability property previously mentioned can be
rephrased as the property (Glob.)-TES for a non decreasing
continuous function k and a positive real number λ.

Using Proposition 3, a necessary condition for a global full
order observer to exist can be given as follow.

Proposition 5: Assume that there exists ν such that∣∣∣∣∂f∂x (x)

∣∣∣∣ ≤ ν , ∀x ∈ Rn .

Assume that system (66) admits the existence of a global full
order observer with rate of convergence λ. Assume moreover
that K, f and h are such that (25) holds and

ν < λ .

Then there exist a non increasing continuous functions λs :
R+ → R+, a function p : R2n → R+ \ {0} and a non
decreasing continuous function p : R+ → R+ and a locally
Lipschitz function P : R2n → Rn×n such that

dϕP (z, x) + P (z, x)
∂F

∂z
(z, x) +

∂F

∂z
(z, x)>P (z, x)

≤ −λp(|z|)P (z, x) , (69)

and,
p(w) In ≤ P (z, x) ≤ p(|z|) In . (70)

Proof : The proof of this proposition can be directly deduced
from Propositions 2 and 3. Indeed, from these propositions, it fol-
lows that (Glob.)-LMTE holds for this system. Hence, there exist
a non increasing continuous functions λs : R+ → R+, a function
s : R2n → R+ \ {0} and a non decreasing continuous function
s : R+ → R+ and a locally Lipschitz function S : R2n → R2n×2n

such that (10) and (9) hold. Restricting (10) to this context, we

have that S =

[
P Q
Q> R

]
satisfies

dϕS(w) +

[
P (w) Q(w)
Q>(w) R(w)

]
ϕw(w)

+ ϕw(w)>
[
P (w) Q(w)
Q>(w) R(w)

]
≤ −λs

[
P (w) Q(w)
Q>(w) R(w)

]
, (71)

where
ϕw(w) =

[
Fz(z, x) Fx(z, x)

0 fx(x)

]
and

Fz(z, x) =
∂f

∂x
(x+ z) +

∂K

∂x
(x+ z)(h(x)− h(x+ z))

−K(x+ z)
∂h

∂x
(x+ z))

Fx(z, x) =
∂f

∂x
(x+ z)− ∂f

∂x
(x)

+
∂K

∂x
(x+ z)(h(x)− h(x+ z))

+K(x+ z)(
∂h

∂x
(x)− ∂h

∂x
(x+ z)).

The result is directly obtained restricting these matrix inequal-
ities to the upper left elements.

B. A design procedure inspired from the necessary condition

Even if most of the results exposed so far are analysis tools,
it is possible to deduce synthesis tools from them. Indeed,
Equations (69) and (70) establish that for all x0 the dynamics

ż = F (z,X(x0, t))

is a contraction when z 7→ P (z,X(x0, t)) is considered as a
(parameterized and time varying) Riemannian metric on Rn.
Assuming that p is a constant (and not a function), it yields
that the metric induced by P is complete. In that case, (69)
is a sufficient condition for z to converge toward zero and so
for the observer to converge.

Finding P and K such that (69) and (70) hold is not an easy
task. A context in which this is possible is when considering a
correction term P in the form of the (Riemannian) gradient of
the output map h for a metric P arising from a detectability
property. This is the path which is followed in [27] (see also
[28]) to obtain semi-global or local result. In our context,
assuming stronger assumptions, and considering the same
gradient based observer a global result may be obtained.

Proposition 6 (Sufficient condition for observer): Assume
that

1) The system (66) is infinitesimally detectable (see [27]).
In other words, there exists a function P` : Rn → Rn×n
and positive real numbers (γ, λ, p`, p`) such that the
following property holds for all x in Rn.

p` I ≤ P`(x) ≤ p` I , (72)

LfP`(x) ≤ −λP`(x) + γ
∂h

∂x
(x)>

∂h

∂x
(x) . (73)

2) The vector field κ : Rn → Rn defined as κ(x) =
P`
−1(x)∂h∂x (x)> is a Killing vector field6 for P`. In other

words,
LκP`(x) = 0 , ∀x ∈ Rn . (74)

Then picking P (w) = P`(x + z), and K(x) = γκ(x)
inequalities (69) and (70) hold and consequently the first
subsystem in (67) is a global full-order observer.
Proof : Note that for all v in Rn we have,

v>dϕP (z, x)v =
∂v>P`(z + x)v

∂z
F (z, x)

+
∂v>P`(z + x)v

∂x
G(z, x). (75)

With the particular structure of F , G and P it implies

dϕP (z, x) = dfP`(z + x)

+ γ(h(x)− h(x+ z)) d`P`(z + x) . (76)

6 Killing vector field: ∀x ∈ Rn , v>LκP`(x)v = 0, ∀v such that
∂h
∂x

(x)v = 0 .
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On the other hand,

P (z, x)
∂F

∂z
(z, x) = P`(z + x)

∂f

∂x
(x+ z)

− γ ∂h
∂x

(x+ z)
∂h

∂x
(x+ z)

+ γ(h(x)− h(x+ z))P`(z + x)
∂`

∂x
(x+ z) (77)

Hence, (69) becomes

dϕP (z, x) + P (z, x)
∂F

∂z
(z, x) +

∂F

∂z
(z, x)>P (z, x)

= LfP`(x+ z)− 2γ
∂h

∂x
(x+ z)

∂h

∂x
(x+ z)

+ γ(h(x)− h(x+ z))L`P`(x+ z) . (78)

With (73) and (74), it implies that

dϕP (z, x) + P (z, x)
∂F

∂z
(z, x) +

∂F

∂z
(z, x)>P (z, x)

≤ −λP (z, x) . (79)

Then (69) and (70) hold. This property implies that the observer
dynamics is a (global) contraction and with (72) ensures that the
estimation error z converges to zero.

Assuming the gradient is a Killing vector field is equivalent
to assume that the level sets of h are totally geodesic and h
is a Riemannian submersion. See [6, Theorem 8.1 on 3 ⇔ 5].
In [27] the later condition is not needed. But without loss of
generality, it can be imposed via a modification of P .

VIII. CONCLUSION

In this paper we have given a characterization of the
property of global exponential stability of an invariant man-
ifold in terms of property on the variational system. This
framework allows the construction of new kind of Lyapunov
function to characterize this property. Note however that for
this type of Lyapunov function to be constructed it is required
that the convergence rate toward the manifold is larger then
an expansion rate in the manifold. The obtained Lyapunov
function is a degenerate Riemannian energy integral to the
manifold.
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APPENDIX

In this appendix, we will prove that c(x) in (57) is lower bounded. Firstly, we note that for all x in R, c(x) > 0, and c(x)
is continuous function of x. We prove the claim by showing that there exists ε > 0 such that c(x) > ε for sufficiently large x.
It follows, by definition, that

c(x) = min
x̃

lim
T→+∞

∫ T

0

exp(λss) exp

(
−2λs+ 2

cos(x)− cos(exp(νs)x)

ν

)[
1 + x̃

exp(νs) sin(exp(νs)x)− sin(x)

ν

]2

ds

≥ exp

(
−4

ν

)
min
x̃

lim
T→+∞

∫ T

0

exp (−[2λ− λs]s)
[
1 + x̃

exp(νs) sin(exp(νs)x)− sin(x)

ν

]2

ds. (80)

It can be checked that c(0) > 0. In the following computation, without loss of generality, we assume that x > 0 and the case
where x < 0 can be handled in a similar fashion. For computing the right-hand side of the above inequality, we will need the
following equalities.[
1 + x̃

exp(νs) sin(exp(νs)x)− sin(x)

ν

]2

=

[
1− x̃ sin(x)

ν

]2

+ 2

[
1− x̃ sin(x)

ν

]
x̃

exp(νs) sin(exp(νs)x)

ν
+ x̃2 exp(2νs) sin(exp(νs)x)2

ν2

exp(νs) sin(exp(νs)x)

ν
=

1

ν2x
[ν exp(νs)x] sin(exp(νs)x) ,

exp(2νs) sin(exp(νs)x)2

ν2
=

exp(2νs)

2ν2
[1− cos(2 exp(νs)x)]

=
exp(2νs)

2ν2
− exp(νs)

4ν3x
[2ν exp(νs)x] cos(2 exp(νs)x)]

We can now decompose the integral computation on the RHS of (57) into

I(T ) =

∫ T

0

exp (−[2λ− λs]s)
[
1 + x̃

exp(νs) sin(exp(νs)x)− sin(x)

ν

]2

ds

=

[
1− x̃ sin(x)

ν

]2

I1(T ) + 2
1− x̃ sin(x)

ν

ν2x
x̃I2(T ) +

x̃2

2ν2
I3(T )− x̃2

4ν3x
I4(T ),

where the terms I1, I2, I3 and I4 are computed individually below.
The computation of I1:

I1(T ) =

∫ T

0

exp (−[2λ− λs]s) ds

=
1− exp (−[2λ− λs]T )

2λ− λs
The computation of I3:

I3(T ) =

∫ T

0

exp (−[2λ− λs]s) exp(2νs)ds

=

∫ T

0

exp (−[2λ− λs − 2ν]s) ds

=
1− exp (−[2λ− λs − 2ν]T )

2λ− λs − 2ν

The computation of I2: By taking

s =
1

ν
log
(τ
x

)
, τ = exp(νs)x

we have that

I2(T ) =

∫ T

0

exp (−[2λ− λs]s) [ν exp(νs)x] sin(exp(νs)x)ds

=

∫ exp(νT )x

x

exp

(
−[2λ− λs]

1

ν
log
(τ
x

))
sin(τ)dτ

=

∫ exp(νT )x

x

(x
τ

) 2λ−λs
ν

sin(τ)dτ.



16

Let us split the integration above into a sum of integration over intervals. Define a function K2(x, T ) by K2(x, T ) =
exp(νT )−1

2π x− 1 which satisfiesx+ 2(K2(x, T ) + 1)π = exp(νT )x. It follows then that for all T such that K2(x, T )
is in N

I2(T ) =

K2(x,T )∑
k=0

∫ x+2(k+1)π

x+2kπ

(x
τ

) 2λ−λs
ν

sin(τ)dτ

=

∫ x+2π

x

K2(x,T )∑
k=0

(
x

τ + 2kπ

) 2λ−λs
ν

 sin(τ)dτ.

It can be checked that the integrand above can be bounded as follows. For any τ > 0 we have that

K2(x,T )∑
k=0

(
x

τ + 2kπ

) 2λ−λs
ν

≥
∫ K2(x,T )+1

0

(
x

τ + 2πr

) 2λ−λs
ν

dr

=
1

2π

∫ 2[K2(x,T )+1]π

0

(
x

τ + r

) 2λ−λs
ν

dr

=
1

2π

x
2λ−λs
ν

1− 2λ−λs
ν

(τ + r)1− 2λ−λs
ν

∣∣∣2[K2(x,T )+1]π

0

=
1

2π

x
2λ−λs
ν

1− 2λ−λs
ν

[
(τ + 2[K2(x, T ) + 1]π)1− 2λ−λs

ν − τ1− 2λ−λs
ν

]
=

1

2π

ν

2λ− λs − ν
x

2λ−λs
ν

[
1

τ
2λ−λs−ν

ν

− 1

(τ + 2[K2(x, T ) + 1]π)
2λ−λs−ν

ν

]

=
x

2π

ν

2λ− λs − ν

(x
τ

) 2λ−λs−ν
ν

[
1− 1

(1 + 2[K2(x,T )+1]π
τ )

2λ−λs−ν
ν

]
.

On the other hand, when we consider the case τ > 2π, the integrand can be upper-bounded by

K2(x,T )∑
k=0

(
x

τ + 2kπ

) 2λ−λs
ν

≤
∫ K2(x,T )

−1

(
x

τ + 2πr

) 2λ−λs
ν

dr

=
1

2π

∫ 2K2(x,T )π

−2π

(
x

τ + r

) 2λ−λs
ν

dr

=
1

2π

x
2λ−λs
ν

1− 2λ−λs
ν

(τ + r)1− 2λ−λs
ν

∣∣∣2K2(x,T )π

−2π

=
1

2π

x
2λ−λs
ν

1− 2λ−λs
ν

[
(τ + 2K2(x, T )π)1− 2λ−λs

ν − (τ − 2π)1− 2λ−λs
ν

]
=

1

2π

ν

2λ− λs − ν
x

2λ−λs
ν

[
1

(τ − 2π)
2λ−λs−ν

ν

− 1

(τ + 2K2(x, T )π)
2λ−λs−ν

ν

]

=
x

2π

ν

2λ− λs − ν

(
x

τ − 2π

) 2λ−λs−ν
ν

[
1− 1

(1 + 2K2(x,T )π
τ−2π )

2λ−λs−ν
ν

]
.

Consequently, when we evaluate I2(T ) at the limit T →∞, it is lower-bounded as follows:

I2(∞) ≥ x

2π

ν

2λ− λs − ν

∫ x+2π

x
sin(τ)≥0

(x
τ

) 2λ−λs−ν
ν

sin(τ)dτ +

∫ x+2π

x
sin(τ)<0

(
x

τ − 2π

) 2λ−λs−ν
ν

sin(τ)dτ


≥ x

2π

ν

2λ− λs − ν

( x

x+ 2π

) 2λ−λs−ν
ν

∫ x+2π

x
sin(τ)≥0

sin(τ)dτ +

(
x

x− 2π

) 2λ−λs−ν
ν

∫ x+2π

x
sin(τ)<0

sin(τ)dτ


=
x

π

ν

2λ− λs − ν

[(
x

x+ 2π

) 2λ−λs−ν
ν

−
(

x

x− 2π

) 2λ−λs−ν
ν

]
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At the same time, it is upper-bounded by

I2(∞) ≤ x

2π

ν

2λ− λs − ν

∫ x+2π

x
sin(τ)≥0

(
x

τ − 2π

) 2λ−λs−ν
ν

sin(τ)dτ +

∫ x+2π

x
sin(τ)<0

(x
τ

) 2λ−λs−ν
ν

sin(τ)dτ


≤x
π

ν

2λ− λs − ν

[
1 −

(
x

x+ 2π

) 2λ−λs−ν
ν

]
Therefore, we can establish that

|I2(∞)| ≤ x

π

ν

2λ− λs − ν

[(
x

x− 2π

) 2λ−λs−ν
ν

−
(

x

x+ 2π

) 2λ−λs−ν
ν

]
It implies that there exists a real number x such that we have :

|I2(∞)| ≤ νx

2[2λ− λs − ν]
∀x ≥ x

The computation of I4: By taking

s =
1

ν
log
( τ

2x

)
, τ = 2 exp(νs)x , cos(τ) ≥ 1

we get

I4(T ) =

∫ T

0

exp (−[2λ− λs]s) exp(νs)[2ν exp(νs)x] cos(2 exp(νs)x)]ds

=

∫ 2 exp(νT )x

2x

exp

(
−[2λ− λs − ν]

1

ν
log
( τ

2x

))
cos(τ)dτ

=

∫ 2 exp(νT )x

2x

(
2x

τ

) 2λ−λs−ν
ν

cos(τ)dτ

Similar to the computation of bound for I2, we can split the integration above into a sum of integration over intervals.
Let us define K4(x, T ) by

K4(x, T ) =
2 exp(νT )− 1

2π
x− 1

which satisfies
x+ 2(K4(x) + 1)π = 2 exp(νT )x.

We obtain as before that for all T such that K4(x, T ) is in N

I4(T ) =

K4(x,T )∑
k=0

∫ x+2(k+1)π

x+2kπ

(
2x

τ

) 2λ−λs−ν
ν

cos(τ)dτ

=

∫ x+2π

x

K4(x,T )∑
k=0

(
2x

τ + 2kπ

) 2λ−λs−ν
ν

 cos(τ)dτ

where we have
K4(x)∑
k=0

(
2x

τ + 2kπ

) 2λ−λs−ν
ν

≥ x

π

ν

2λ− λs − 2ν

(
2x

τ

) 2λ−λs−2ν
ν

[
1− 1

(1 + 2[K4(x,T )+1]π
τ )

2λ−λs−2ν
ν

]
and similarly for τ > 2π,

K4(x,T )∑
k=0

(
2x

τ + 2kπ

) 2λ−λs−ν
ν

≤ x

π

ν

2λ− λs − 2ν

(
2x

τ − 2π

) 2λ−λs−2ν
ν

[
1− 1

(1 + 2K4(x,T )π
τ−2π )

2λ−λs−2ν
ν

]
This yields, for T =∞,

I4(∞) ≥ x

π

ν

2λ− λs − 2ν

∫ x+2π

x
cos(τ)≥0

(
2x

τ

) 2λ−λs−2ν
ν

cos(τ)dτ +

∫ x+2π

x
cos(τ)<0

(
2x

τ − 2π

) 2λ−λs−2ν
ν

cos(τ)dτ





18

≥ x

π

ν

2λ− λs − 2ν

( 2x

x+ 2π

) 2λ−λs−2ν
ν

∫ x+2π

x
cos(τ)≥0

cos(τ)dτ +

(
2x

x− 2π

) 2λ−λs−2ν
ν

∫ x+2π

x
cos(τ)<0

cos(τ)dτ


=

2x

π

ν

2λ− λs − 2ν

[(
2x

x+ 2π

) 2λ−λs−2ν
ν

−
(

2x

x− 2π

) 2λ−λs−2ν
ν

]
Hence, for sufficiently large x, we have

I4(∞) ≥ − νx

2λ− λs − 2ν
∀x ≥ x

Combining all of the above computed bounds on I1, I2, I3 and I4, we have that for all x larger than x,

I(∞) ≥
[
1− x̃ sin(x)

ν

]2
1

2λ− λs
− 2

∣∣∣1− x̃ sin(x)
ν

∣∣∣
ν2x

|x̃| νx

2[2λ− λs − ν]
+

x̃2

2ν2

1

2λ− λs − 2ν
− x̃2

4ν3x

νx

2λ− λs − 2ν

≥
[
1− x̃ sin(x)

ν

]2
1

2λ− λs
− 1

2λ− λs − ν

∣∣∣∣1− x̃ sin(x)

ν

∣∣∣∣ |x̃|ν +
1

4

1

2λ− λs − 2ν

x̃2

ν2
∀x ≥ x

The right hand side is a polynomial of degree 2 in x̃
ν which is positive definite since we have

1

[2λ− λs − ν]2
<

1

2λ− λs
1

2λ− λs − 2ν
.
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