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Abstract

We are interested in the study of Blaschke-Santaló diagrams describing the possible inequalities involving the first
Dirichlet eigenvalue, the perimeter and the volume, for different classes of sets. We give a complete description of the
diagram for the class of open sets in Rd, basically showing that the isoperimetric and Faber-Krahn inequalities form
a complete system of inequalities for these three quantities. We also give some qualitative results for the Blaschke-
Santaló diagram for the class of planar convex domains: we prove that in this case the diagram can be described as the
set of points contained between the graphs of two continuous and increasing functions. This shows in particular that
the diagram is simply connected, and even horizontally and vertically convex. We also prove that the shapes that fill
the upper part of the boundary of the diagram are smooth (C1,1), while those on the lower one are polygons (except
for the ball). Finally, we perform some numerical simulations in order to have an idea on the shape of the diagram; we
deduce both from theoretical and numerical results some new conjectures about geometrical inequalities involving the
functionals under study in this paper.
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1 Introduction
In this paper, we are interested in describing all possible geometrical inequalities that are invariant under homotheties
and involving the three following quantities: the volume, the perimeter, and the first Dirichlet eigenvalue of a given
shape.

A Blaschke-Santaló diagram is a tool that allows to visualize all possible inequalities between three quantities depend-
ing on the shape of a set: it was named as a reference to [5] and [52], where the authors were looking for the description
of inequalities involving three geometrical quantities for a given convex set. Usually in convex geometry, Blaschke-
Santaló diagrams are studied for purely geometrical fuctionals. We refer to [33] for more details and to [4, 22, 23] for
some recent results in this purely geometrical setting.

More recently, some interest has grown for geometrical inequalities involving the spectral quantities of a given shape
Ω ⊂ Rd, like the eigenvalues of the Laplacian on the set Ω with Dirichlet boundary conditions on ∂Ω: therefore, the
approach by Blaschke-Santaló diagrams has been applied in this context, see for example [14] and [3], see also [57, 43].

In the present paper, we propose to study an example mixing geometric and spectral quantities. In order to be more
precise, let us define the Blaschke-Santaló diagrams we are interested in in this paper: given C a class of open sets of
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Rd, we define

DC =
{

(x, y) ∈ R2, ∃Ω ∈ C such that |Ω| = 1, P (Ω) = x, λ1(Ω) = y
}

:=
{ (

P (Ω), λ1(Ω)
)
, Ω ∈ C, |Ω| = 1

}
,

where |Ω| denotes the volume of the set Ω, P (Ω) = Hd−1(∂Ω) is its perimeter, and λ1(Ω) is its first Dirichlet eigenvalue,
which can be quickly defined with the following variational formulation:

λ1(Ω) := min


ˆ

Ω

|∇u|2dx
ˆ

Ω

u2dx

, u ∈ H1
0 (Ω) \ {0}

 , (1)

where H1
0 (Ω) denotes the completion for the H1-norm of the space C∞c (Ω) of infinitely differentiable functions of

compact support in Ω.

Remark 1 We recall the following behavior with respect to homothety:

∀t > 0, λ1(tΩ) =
λ1(Ω)

t2
, |tΩ| = td|Ω| and P (tΩ) = td−1P (Ω).

This allows us to give a scaling invariant formulation of the diagram: if C is a class of nonempty and bounded open sets
in Rd, then

DC =
{

(x, y) ∈ R2, ∃Ω ∈ C such that P (Ω)/|Ω|
d−1
d = x, |Ω| 2dλ1(Ω) = y

}
:=

{ (
P (Ω)

|Ω| d−1
d

, |Ω| 2dλ1(Ω)

)
, Ω ∈ C

}
.

We are now in position to state the first main result in this paper:

Theorem 1.1 Let O be the class of C∞ open sets in Rd, we have:

DO =
((
P (B),+∞

)
×
(
λ1(B),+∞

))
∪
{(
P (B), λ1(B)

)}
,

where B is a ball of volume 1.

Let us give a few comments on this result:

• the most famous inequalities in this framework are the isoperimetric and the Faber-Krahn inequalities, stating that

∀Ω ∈ O such that |Ω| = 1, P (Ω) ≥ P (B) and λ1(Ω) ≥ λ1(B). (2)

In terms of the diagram, it says thatDO is included in the “up-right” quadrant defined by the point (P (B), λ1(B)).
Theorem 1.1 asserts that the diagram is in fact exactly this quadrant (see the next point for a discussion about
whether the boundary of the quadrant should be included or not in the diagram); in other words, inequalities given
in (2) are exhaustive in the sense that any other inequality that is invariant with homotheties and only involves
the three quantities (P, λ1, | · |) are already taken into account in (2); we say that this is a complete system of
inequalities in the class O.

• one could wonder why we chose to work with C∞ domains: the main reason is that there are several definitions
of perimeter, that all agree for smooth enough sets (say Lipschitz sets) but may disagree for nonsmooth sets. In
the smooth framework, the equality cases in (2), up to translations, occurs if and only if Ω is the ball B (see for
example [47, Section 2] and [35, Example 2.11] respectively for the first and second inequalities). It explains why
the boundary of the quadrant (except the point (P (B), λ1(B))) is not included in the diagram. Also, it shows
that Theorem 1.2 is the strongest statement in the sense that for any subclass of Lipschitz domains that contains
C∞-domains, the diagram is the same.

However, when working with nonsmooth domains, equality in (2) may happen for sets different from a ball. If we
choose to work with the De Giorgi’s perimeter for example, one has P (B) = P (B\K), for any Borel set K with
zero Lebesgue measure. On the other hand, for the Faber-Krahn inequality, we have λ1(B) = λ1(B\K) as soon
as K is a set of zero capacity, see for example [31, Remark 3.2.2]. In remark 2.1 we deduce from Theorem 1.1 a
full description of the diagram for the class of non necessarily smooth sets when P is the perimeter of De Giorgi:
this description could be different for another definition of the perimeter, but as shown by Theorem 1.1, this can
only affect the boundary of the diagram.
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It is now natural to restrict the class of sets, so that the corresponding Blaschke-Santaló diagram becomes more
challenging to understand: a natural class that has been extensively studied in the purely geometrical context is the class
of planar convex sets. The Blaschke-Santaló diagram of (P, λ1, | · |) in this specific case has been first numerically
studied by P. Antunes and P. Freitas in [2]. We would like to give a theoretical description of the diagram, in the same
spirit of [14, 4] . We obtain the following main result:

Theorem 1.2 Let K2 be the class of convex planar open sets:

K2 =
{

Ω ⊂ R2, Ω is convex and open
}
.

We denote x0 = P (B) = 2
√
π, where B is a disk of area 1. Then there exist two functions f : [x0,+∞) → R and

g : [x0,+∞)→ R such that

1. the diagram DK2 is made of all points in R2 lying between the graphs of f and g, more precisely:

DK2 =
{

(x, y) ∈ R2, x ≥ x0 and f(x) ≤ y ≤ g(x)
}
, (3)

2. the functions f and g are continuous and strictly increasing,

3. for every x > x0, let Ω ∈ K2 such that |Ω| = 1 and λ1(Ω) = x, then

• if P (Ω) = g(x), then Ω is C1,1,

• if P (Ω) = f(x), then Ω is a polygon.

4. f(x) ∼
x→∞

π2

16x
2, g(x) ∼

x→∞
π2

4 x
2, f ′(x0) = 0 and lim sup

x→x0

g(x)−g(x0)
x−x0

≥ λ1(B)
3
√
π

(
λ1(B)
π − 2

)
.

Let us comment about this result and its proof:

• this result gives a good understanding of the shape of the diagram DK2 : it says in particular that it is simply
connected, and even horizontally and vertically convex.

• in other words, the knowledge of f and g is enough to describe all possible (scaling invariant) inequalities involving
the three quantities (P, λ1, | · |), in the class of convex sets of R2: these functions quantify in which way one can
improve inequalities (2) if one knows that the shape Ω is convex, and not only just an open set.

• of course, it is not expected to have an explicit formula for functions f and g. Up to our knowledge, Theorem 1.2
is one of the first qualitative and complete description of a Blaschke-Santaló diagram while we do not have a good
knowledge of the shapes that achieve the boundary of the diagram. Compare with [57, 43] where it is still an open
problem whether the Blaschke-Santaló diagram for the triplet (λ1, T, | · |) where T denotes the torsional rigidity,
is simply connected (or horizontally and vertically convex, which is a stronger statement), both for the class of
open domains (see [57, Problem 3]) and for the class of convex domains ([43, Conjecture 2]).

• the proof of the first two points in Theorem 1.2 is therefore the most involved part of this paper (see also Section
3.2.1); it relies in particular on a perturbation lemma (see Lemma 3.5) among convex sets and involving functionals
P, λ1 and | · |, which states that if we denote K2

1 the set of planar convex domains with unit area endowed with the
Hausdorff distance dH , then

1. the ball is the only local minimizer of the perimeter, as well as the only local minimizer of λ1, in (K2
1, d

H)

2. however, there is no local maximizer of the perimeter in (K2
1, d

H), and no local maximizer of λ1 that is C1,1.

We believe this Lemma is interesting in itself; its second part is not easy to prove at all. It uses the tools and
results of shape optimization under convexity constraints studied in [38, 40, 41]. It mainly explains the restriction
to dimension 2. Up to our knowledge, the results given in Theorem 1.2 or in Lemma 3.5 are open in dimension 3
or higher. We also denote Kd the set of convex open subsets of Rd when d ≥ 3, and DKd denotes the associated
Blaschke-Santaló diagram. Notice that some results from Section 3.2 are stated and proved in arbitrary dimensions
(see Propositions 3.2 and 3.7). In Section 4.2, we discuss the case of higher dimensions and conjecture that as for
the planar case, DKd is given by the set of points contained between two continuous and increasing curves, see
Conjecture 2.

• the third assertion provides some regularity (or non-regularity) properties for domains lying on the boundary of
the diagram. If follows from results of [40], see Corollary 3.13. We note that to be able to apply [40], we have to
prove a Serrin’s type lemma on convex sets, where no regularity assumption is made: see Lemma 3.11, which is
given for arbitrary dimensions and is rather interesting in itself. The C1,1 regularity of the upper optimal domains
allows us to restrict the fourth assertion of the perturbation Lemma 3.5 to the case of smooth domains, which is
easier to prove, see also [39].
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• though it is not expected to compute explicitly f and g, the last point in Theorem 1.2 provides some results about
the asymptotic behavior of f and g near +∞ and near x0 = P (B), see Proposition 3.7, Corollary 3.17 (which are
stated and proved in arbitrary dimensions), and Corollary 3.22 (which is proved only in dimension 2). We actually
provide an improvement to the result f ′(x0) = 0, which is the main novelty about these asymptotics: more
precisely, investigating the lower part of the diagram for x close to P (B) is related to the following question: for
what exponent α may we expect that there is an inequality of the form

λ1(Ω)− λ1(B) ≥ c (P (Ω)− P (B))
α

for Ω ∈ K2
1 close to the ball and for some c > 0 independent of Ω. We show in the second part of Theorem 3.19

that α must necessarily be greater or equal to 3/2 for such an inequality to be valid, and we show evidence that
such an inequality is likely to be true with α = 3/2 (see the first part of Theorem 3.19 and Proposition 3.21) even
though we are not yet in position to prove it, see Section 4.1. Finally, we compare the conjectured inequality (with
the exponent 3/2) with the sharp quantitative Faber-Krahn inequality proved in [11], see Remark 4.1.

In the following section, we give a proof of Theorem 1.1. In Section 3, we focus on the case of convex planar domains:
we first recall theoretical information that was known about the diagram, and provide numerical simulations. We then
prove the main lemma about perturbation results in the class of convex sets in R2 (Lemma 3.5), and then deduce that
the boundary of the diagram is made of the graph of two increasing and continuous functions (see Theorem 3.9), and
furthermore that the diagram is simply connected (see Theorem 3.14). This eventually leads to the proof of Theorem 1.2.
We also describe the asymptotics of f and g near +∞ and x0, see Proposition 3.7 and Section 3.3. In the last Section,
we discuss related problems and new possible conjectures.

2 Proof of Theorem 1.1
As explained below the statement of Theorem 1.1, the inclusion

DO ⊂
((
P (B),+∞

)
×
(
λ1(B),+∞

))
∪
{(
P (B), λ1(B)

)}
is due to the isoperimetric and Faber-Krahn inequalities with equality cases, see for example [47, Section 2] and [35,
Example 2.11]. It remains to show the reverse inclusion.

Step 1: we first show, using a homogenization strategy, that for any µ ∈ (0,+∞), there exists a sequence (Ωn)n∈N of
C∞ open sets with unit area such that:

P (Ωn) −→
n→+∞

P (B) (4)

and
λ1(Ωn) −→

n→+∞
λ1(B) + µ. (5)

Let n ∈ N∗, we cover Rd by cubes (Pni )i∈N of size 2/n. From each cube Pni such that Pni ⊂ B we remove the ball
Tni of radius ad,n centered at the center of the cube, where:

ad,n =

{
Cdn

−d/(d−2) if d ≥ 3,
exp(−C2n

2) if d = 2
and Cd =


(

2dµ
d(d−2)ωd

) 1
d−2

if d ≥ 3,

2µ/π if d = 2,

with ωd classically denoting the volume of the unit ball.

We consider n sufficiently big so that ad,n < 1
n . Let us define Λn := B\

⋃
i∈In

Tni , Where In := {i ∈ N | Pni ⊂ B}.

In order to preserve the total measure, we use the sets Ωn = Λn ∪
⋃
i∈In

(vd + Tni ) which are smooth and with unit

volume, where vd ∈ Rd is chosen such that B ∩
⋃
i∈In

(vd + Tni ) = ∅ (see Figure 1).
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vd

Figure 1: The domains Ωn

We have:
P (Ωn) = P (B) + 2× Card(In)P (Tn1 ) ≤ P (B) +Mdn

dad−1
d,n −→n→∞ P (B),

where Md dimensional constant.

LetAn : L2(B)→ L2(B) be the resolvent operator of the Dirichlet Laplacian on Λn, which associates to f ∈ L2(B)
the unique solution u ∈ H1

0 (Λn) to −∆u = f , extended by zero outside Λn.
[16, Theorem 1.2] shows that, for every f ∈ L2(B), An(f) strongly converges to A(f) in L2(B), where A is the

resolvent operator of −∆ + µ in H1(B) with Dirichlet boundary conditions on ∂B. In particular, in view of [31,
Theorem 2.3.2], the eigenvalues of An converge to the corresponding eigenvalue of A; as a consequence, we have

lim
n→+∞

λ1(Λn) = λ1(B) + µ. This implies lim
n→+∞

λ1(Ωn) = lim
n→+∞

λ1(Λn) = λ1(B) + µ.

Step 2: In this step, we analyze the effect on the perimeter and the first Dirichlet eigenvalue of adding a flat ellipsoid to
a given open set, rescaled so that the total volume remains 1.

Given Ω a smooth open set of volume 1, as well as ε ∈ (0, 1) andα ∈ (−∞, 1], we consider Ωε,α :=
[(

1− εd
) 1
d Ω
]
∪

Eε,α, where Eε,α is a translated and rescaled version of{
(x1, ..., xd) ∈ Rd | x2

1

ε2(1−α)d+2α
+

1

ε2α

d∑
k=2

x2
k < 1

}

so that
[(

1− εd
) 1
d Ω
]
∩ Eε,α = ∅ and |Eε,α| = εd. Note first that |Ωε,α| = (1− εd) + εd = 1.

Then for every α ≤ 1 and ε ∈ (0, 1) we have by Faber-Krahn inequality:

λ1(Eε,α) ≥ λ1

(
ε

B1

|B1|1/d

)
= |B1|2/dλ1(B1)× 1

ε2
,

where B1 is a ball of unit radius.
Since

[(
1− εd

) 1
d Ω
]
∩ Eε,α = ∅, we have that λ1(Ωε,α) = min

(
λ1

(
(1 − εd) 1

dΩ
)
, λ1(Eε,α)

)
, which leads to the

following fact:

if ε is such that
λ1(Ω)

(1− εd) 2
d

≤ |B1|2/dλ1(B1)× 1

ε2
, then λ1(Ωε,α) = λ1

(
(1− εd) 1

dΩ
)

=
λ1(Ω)

(1− εd)2/d
. (6)

On the other hand, given ε ∈ (0, 1), it is clear that the function α ∈ (−∞, 1] 7→ P (Ωε,α) is continuous, and we have

P (Ωε,1) = P ((1− εd)1/dΩ) + P (Eε,1) = (1− εd)1−1/dP (Ω) + γdε
d−1 and P (Ωε,α) −→

α→−∞
+∞, (7)

where γd is the perimeter of the unit ball.

Conclusion: let x > P (B) and y > λ1(B). We want to prove that there exists Ω a smooth open set of unit volume such
that P (Ω) = x and λ1(Ω) = y. To that end, we use the previous steps, and will adjust the parameters µ ∈ (0,+∞),
n ∈ N, ε ∈ (0, 1), α ∈ (−∞, 1].

• First, we use step 1 above that leads to the existence of a sequence of open sets (Ωn)n∈N of unit volume and such
that P (Ωn) converges to P (B) and λ1(Ωn) converges to λ1(B) + µ where µ will be chosen later.
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• For each n ∈ N, we then use the second step to obtain Ωε,αn for ε ∈ (0, 1) and α ∈ (−∞, 1]. We notice now that

if λ1(Ωn) < y then one can find εn = εn(y) ∈ (0, 1) such that y =
λ1(Ωn)

(1− εdn)2/d
.

We therefore assume from now on that µ < y − λ1(B) and n is large enough so that λ1(Ωn) < y. By assuming
also that µ is close to y − λ1(B), we have λ1(Ωn) as close to y as we want for n large enough, and then clearly
εn is close to 0.

In particular this implies λ1(Ωn)

(1−εdn)
2
d
≤ |B1|2/dλ1(B1)

ε2n
, so using (6), this leads to

λ1(Ωεn,αn ) = y,

independently of α ∈ (−∞, 1].

• Finally, as we just noticed that one can assume εn as small as we want, and as P (Ωn) is close to P (B) if n is
large, the first formula in (7) shows that P (Ωεn,1n ) ≤ x, and therefore by continuity of α ∈ (−∞, 1] 7→ P (Ωεn,α)
and using the second part of (7), we deduce that there exists α such that P (Ωεn,αn ) = x.

This concludes the proof. �

Remark 2.1 As explained in the introduction (comments on Theorem 1.1), if O′ is a class of open domains that may
contain nonsmooth sets, say for example the class of open subsets of Rd, the diagram DO′ depends on the choice of the
perimeter. For example, if we consider the distributional (De Giorgi’s) perimeter, we are able to prove

DO′ =
([
P (B),+∞

)
×
(
λ1(B),+∞

))
∪
{(
P (B), λ1(B)

)}
,

which differs from DO as it contains the vertical half-line {(P (B), `), ` > λ1(B)}.

• if we take Ω ∈ O′ such that λ1(Ω) = λ1(B), then the H1-capacity of the symmetrical difference Ω∆B is
equal to zero, which also implies that its d-dimensional Lebesgue measure is also equal to zero. Thus since the
distributional perimeter doesn’t detect sets with zero d-dimensional Lebesgue measure we have P (Ω) = P (B),
and thus the horizontal half line (P (B),+∞)× {λ1(B)} is not in the diagram.

• On the other hand, if we take ` > λ1(B), we are able to construct a set K` ∈ O′ with unit measure such that
P (K`) = P (B) and λ1(K`) = `. Let us introduce r0, r1 > 0, such that:

– r1 is the radius of the ball B ⊂ Rd of unit measure.

– r0 is chosen such that λ1

(
{x ∈ Rd, ‖x‖ < r0}

)
= `, so in particular r0 < r1.

One can then choose N` ∈ N∗ large enough so that

– ∀k ∈ J0, N` − 1K, λ1

({
x ∈ Rd, r0 + k(r1−r0)

N`
< ‖x‖ < r0 + (k+1)(r1−r0)

N`

})
> `.

We take

K` := B\
N`−1⋃
k=0

{
x ∈ Rd, ‖x‖ = r0 +

k(r1 − r0)

N`

}
.

We have λ1(K`) = λ1

(
{x ∈ Rd, ‖x‖ < r0}

)
= ` and P (K`) = P (B), because the d-dimensional Hausdorff

measure of
⋃N`−1
k=0

{
x ∈ Rd, ‖x‖ = r0 + k × (r1 − r0)/N`

}
is equal to zero and thus not detected by the De

Giorgi’s perimeter.

3 The case of convex domains
Finding estimates of λ1 via geometric quantities is a question that has interested various communities. If Theorem 1.1
shows that Faber-Krahn and isoperimetric inequalities form a complete system of inequalities in the case of open sets,
this is no longer the case if one restricts the class of domains to convex or simply connected ones. We focus in this
section on the case of convex sets, see Section 4.3 for some comments on the case of simply connected sets.

3.1 Known inequalities and numerical simulations
Let us recall the well-known inequalities providing estimates of λ1 in terms of perimeter and volume:
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1. One early result in this direction is due to G. Polya who proved in [49] (1959) that for any convex planar domain
Ω one has:

λ1(Ω) <
π2

4

(
P (Ω)

|Ω|

)2

. (8)

This inequality actually holds for simply connected planar sets, see [48]. It is also sharp, as equality is attained
asymptotically by a family of vanishing thin rectangles. It is noticed in [34] that Polya’s proof of inequality
(8) holds for convex sets in higher dimensions, and the authors extend it to a larger class of sets. Recently, a
generalization for p ∈ (1,+∞) in the case of the first p-Laplacian eigenvalue was obtained, see [21, 10].

2. Another classical result is proven by E. Makai in [44] (1960): it gives a lower estimate of the fundamental fre-
quency of a planar convex set Ω:

λ1(Ω) >
π2

16

(
P (Ω)

|Ω|

)2

. (9)

The inequality is sharp, as equality is attained asymptotically by a family of vanishing thin triangles. This result
was recently extended to higher dimensions by L. Brasco [9, Corollary 5.1.]: for d ≥ 2, he proves:

∀Ω ∈ Kd, λ1(Ω) ≥
( π

2d

)2
(
P (Ω)

|Ω|

)2

, (10)

which is also sharp, as equality is attained asymptotically by a certain family of “collapsing pyramids”. Note that
[9] also generalizes such an inequality for the first p-Laplacian eigenvalue, where p ∈ (1,+∞).

3. The Payne-Weinberger’s inequality [48] states that for every planar, open and simply connected set Ω, one has:

λ1(Ω)− λ1(B) ≤ λ1(B)

(
1

J2
1 (j01)

− 1

)(
P (Ω)2

4π|Ω|
− 1

)
, (11)

where B is the disk of same measure as Ω and J1 is the Bessel function of the first kind of order one and j01 is the
first zero of the Bessel function of the first kind and of order zero. Moreover, equality is achieved only when Ω is
a disk. For large values of P (Ω), this inequality is weaker than (8). But for values of P (Ω) close to P (B), (11)
provides a quantitative estimate of the Faber-Krahn deficit λ1(Ω) − λ1(B) by the isoperimetric deficit. It shows
in particular that when the perimeter of Ω is close to the perimeter of the ball with the same measure, then the
eigenvalues are also close to each other. One can find results in the same spirit for convex domains in arbitrary
dimensions in [8, 21].

The stated inequalities give an explicit region in R2 which contains DK2 and is, up to our knowledge, the smallest
known set containing DK2 , see Figure 2.
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Figure 2: The smallest known domain that contains the diagram (in yellow).
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In order to have an idea on the shape of DK2 , P. Antunes and P. Freitas [2] generated random convex polygons of unit
area and whose number of sides is between 3 and 8. In this paper, we first get a slight improvement of the numerical
diagram by generating 105 polygons whose numbers of sides are between 3 and 30, see Figure 3. Note that the problem
of generating convex polygons is rather interesting in itself: in [51], one can find a brief introduction and an efficient
method of generating random convex polygons, the algorithm is based on a work of P. Valtr [56]. We notice that with
these random polygons we get a quite good description of the lower boundary of the diagram, in contrast with the upper
part of the diagram part which seems more “sparse”. This may be explained by the fact that the domains which lay on
the lower boundary are polygons while those on the upper one are smooth (see Corollary 3.13). We also notice:

• on one hand, that regular polygons lay on the lower boundary of the diagram as well as superequilateral triangles
(that is, an isosceles triangle whose aperture (angle between its two equal sides) is greater that π/3).

• on the other hand, that we expect thin stadiums (domains obtained by adding two half disks to the extremities of
a rectangle) to be a good approximation of domains describing the upper part of the diagram: it is easy to prove
that they realize asymptotically equality in (8), and they are better candidates that any random polygons or shapes
we have tested.
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Figure 3: Blaschke-Santaló diagram obtained by generating 105 random convex polygons with at most 30 edges.

By adding the later special shapes to the diagram, one can obtain an improved version of DK2 , see Figure 4: indeed
we note that thanks to Theorem 3.14, we can say that it contains the surface lying between the lowest points of the
diagram (given by random polygons) and the one given by the stadiums: this zone provides an improved numerical
estimation of the diagram, see Figure 4. Actually, since the problem of theoretically finding the extremal shapes (those
on the boundary of the diagram) is most certainly challenging (see Section 4.1) and actually likely unreachable, it is
interesting to try to provide numerical computation of optimal shapes. Then, once a precise description of the upper
and lower boundaries is obtained, from Theorem 1.2 this implies a precise description of the diagram. As mentioned
before, we prove in Corollary 3.13 that the domains realizing the lower boundary of the diagram are polygons while
those realizing the upper one are quite smooth (C1,1): this suggests that we should use two different shape optimization
approaches. We refer to [26] for a more detailed numerical study of the optimal shapes describing the boundary of DK2

and also a numerical study of other Blaschke-Santaló diagrams.
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Figure 4: An improved description of the diagram.

We note that by taking advantage of (2), it is also classical to represent Blaschke-Santaló diagram as subset of [0, 1]2,
in our situation, this means to consider the set

{(
P (B)/P (Ω), λ1(B)/λ1(Ω)

)
| Ω ∈ K2

1

}
, see Figure 5 below.

Figure 5: Blaschke-Santaló diagram represented in [0, 1]2.
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3.2 Proof of Theorem 1.2
As the proof of Theorem 1.2 is quite involved, we proceed in several paragraphs: we first prove that the diagram is
closed and path-connected, which rely on the use of Hausdorff convergence and classical results, see Proposition 3.2.
Then in Section 3.2.3 we state and prove the main perturbation lemma (Lemma 3.5). With these preliminaries, we are
in position to prove the four assertions of Theorem 1.2:

1. see Theorem 3.14,

2. see Theorem 3.9,

3. see Corollary 3.13,

4. see Proposition 3.7 and Corollaries 3.17 and 3.20,

where the proofs of Theorems 3.9 and 3.14 are both using Lemma 3.5. Finally, we note that, as their proofs do not rely
on the perturbation lemma, Propositions 3.2 and 3.7 and Corollary 3.17 are stated and proved for arbitrary dimension
d ≥ 2.

3.2.1 Strategy of proof of the first and second assertions of Theorem 1.2

Before detailing the proofs, let us first give a few comments on the strategy of proof of the first two assertions of Theorem
1.2, which are consequences of Lemma 3.5. We decompose the proof into two main steps (both steps use Lemma 3.5):
in Theorem 3.9 we define f and g as the lower and upper parts of the diagram (see (14) and (15)), and show that these
functions are continuous and strictly increasing. Then in Theorem 3.14 we show (3) which implies that DK2 is simply
connected: as already mentioned in the introduction the simple connectedness property of a Blaschke-Santaló diagram
may be rather complicated to prove. If we were able to find explicitly the extremal domains (those who are on the
upper and lower boundaries of the diagram) then we could use them to construct continuous paths via Minkowski sums,
relating the upper boundary to the lower one, and prove that this process fills all the surface between the upper and
lower curves (in fact it is because one can observe that these explicit optimal sets have a continuous dependence in the
abscissa x: this seems to be a difficult statement to achieve without knowing explicitly these optimal shapes). In our
situation, finding the explicit extremal domains is at least very challenging (see Conjecture 1 for example) and very
likely impossible. Nevertheless, we manage to overpass this difficulty and give a proof of the simple-connectedness
of the diagram without knowing the extremal sets (see the proof of Theorem 3.14): the proof is also based on the
construction of suitable Minkowski paths and the use of the perturbation Lemma 3.5. We believe that our approach can
be generalized and applied to other diagrams, in the sense that once a similar perturbation lemma is achieved for a triplet
of functionals (instead of (P, λ1, | · |)), a similar strategy can be used to obtain qualitative results for its Blaschke-Santaló
diagram.

3.2.2 The diagram is closed

We recall the following definition:

Definition 3.1 The Minkowski sum of two subsets X and Y of Rd is the set X + Y := {x+ y, (x, y) ∈ X × Y }.

Proposition 3.2 Take d ≥ 2, the diagram DKd is a closed and connected by arcs subset of R2.

Proof.

• Let (xn, yn)n a sequence of elements of DKd converging to (x, y) in R2. Let us show that (x, y) ∈ DKd .

We have, by definition, the existence of a sequence (Ωn)n of convex open sets such that

∀n ∈ N, |Ωn| = 1, P (Ωn) = xn and λ1(Ωn) = yn.

We recall that for any Ω ∈ Kd, one has the following inequality:

d(Ω) < Cd
P (Ω)d−1

|Ω|d−2
, (12)

where d(Ω) denotes the diameter of Ω and Cd is a dimensional constant, see [24, Lemma 4.1].

In particular, the sequence (P (Ωn))n is bounded (because it is convergent), since the sets (Ωn)n are in Kd1 , by
(12), (d(Ωn))n is also bounded, and given that the considered functionals are invariant by translation, we can
assume that the domains (Ωn)n are contained in a bounded box. Then by Blaschke selection Theorem (see for
example [53, Th. 1.8.7]), there exists a convex domain Ω∗ such that (Ωn) converges up to a subsequence (for
which we keep the notation (Ωn)) for the Hausdorff distance to Ω∗.

It is well known that the involved functionals (perimeter, volume and λ1) are continuous for the Hausdorff distance
among convex bodies, see for example [53] and [32, Theorem 2.3.17]. So we can write:

|Ω∗| = lim
n→+∞

|Ωn| = 1

P (Ω∗)= lim
n→+∞

P (Ωn) = x

λ1(Ω∗)= lim
n→+∞

λ1(Ωn) = y

and this concludes the proof.
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• Take Ω0,Ω1 ∈ Kd1 , we denote Ωt := (1−t)Ω0+tΩ1

|(1−t)Ω0+tΩ1|1/d
, since t ∈ [0, 1] 7−→ (1 − t)Ω0 + tΩ1 ∈ (Kd, dH) and

the functionals (| · |, P, λ1) are continuous for the Hausdorff distance, we have by composition that t ∈ [0, 1] 7−→(
P (Ωt), λ1(Ωt)

)
∈ DKd ⊂ R2 is also continuous and relates Ω0 to Ω1.

�

Corollary 3.3 Take d ≥ 2, for every p ≥ P (B) and l ≥ λ1(B), the optimization problems

inf / sup
{
λ1(Ω) / Ω ∈ Kd, |Ω| = 1 and P (Ω) = p

}
and inf / sup

{
P (Ω) / Ω ∈ Kd, |Ω| = 1 and λ1(Ω) = l

}
have solutions.

Proof. Take p ≥ P (B), by inequalities (8) and (10) and the positivity of λ1 and the perimeter, we have:

∀y ∈ R such that (p, y) ∈ DKd , 0 ≤ y ≤ π2

4
p2,

∀x ∈ R such that (x, l) ∈ DKd , 0 ≤ x ≤ 2d

π
l,

this implies that the supremum and infimum of {y / (p, y) ∈ DKd} (resp. {x / (x, l) ∈ DKd}) are finite. If (yn)n
(resp. (xn)) is a minimizing or maximizing sequence (i.e. such that lim

n→+∞
yn = inf / sup {y / (p, y) ∈ DKd} and

lim
n→+∞

xn = inf / sup {x / (x, l) ∈ DKd}), then the sequence (p, yn)n (resp. (xn, l)n ) converges in R2 and thus by

Proposition 3.2 the limit is in the closed set DKd , thus the existence of solutions of the problems in Kd.
�

3.2.3 Main lemma

In the following, we will denote

Kd1 := {Ω ∈ Kd, |Ω| = 1}, and Kd1,p := {Ω ∈ Kd, |Ω| = 1, P (Ω) = p},

for d ≥ 2 and p ≥ P (B) with B being the ball of Rd of volume 1.

Before stating the perturbation lemma, we recall useful classical result on the volume of the Minkowski sum of convex
sets. For more details on the Brunn-Minkowski theory, we refer for example to [53].

Proposition 3.4 There exist d + 1 bilinear (for Minkowski sum and dilatation) forms Wk : Kd × Kd −→ R, for
k ∈ [[0; d]], named Minkowski mixed volumes, such that for every K1,K2 ∈ Kd and t1, t2 ∈ R+, we have:

|t1K1 + t2K2| =
d∑
k=0

(
d
k

)
td−k1 tk2Wk(K1,K2). (13)

Moreover, the Wk are continuous for the Hausdorff distance, in the sense that if two sequences of convex bodies (Kn
1 )n

and (Kn
2 )n converge to some convex bodies K1 and K2 both for the Hausdorff distance, one has:

lim
n→+∞

Wk(Kn
1 ,K

n
2 ) = Wk(K1,K2).

Now, we state the perturbation Lemma.

Lemma 3.5 (Perturbation Lemma) We endow the space of convex bodies with the Hausdorff distance. We have:

1. the ball is the only local minimizer of the perimeter in K2
1;

2. the ball is the only local minimizer of λ1 in Kd1 , where d ≥ 2;

3. there is no local maximizer of the perimeter in K2
1;

4. a C1,1 convex domain cannot be a local maximizer of λ1 in K2
1.

Remark 2 Notice that one of the main difficulties for this lemma is to show that one can perturb a given convex domain
in order to increase or decrease its perimeter or its eigenvalue, and still remain convex. Of course, if the domain is
smooth and uniformly convex, such perturbations are easy to build. But it is a difficult task, in general, to build any
perturbation of a general convex domain, see for example [37, 38]. This mainly explains why the first, third and fourth
points are only given when d = 2. Note that we trust that the first point could easily be obtained for the perimeter,
using the same strategy as the for the second point: as we will use this result only in dimension 2, we chose to show a
more elementary proof for the first point, that works well in dimension two but does not seem easy to adapt to higher
dimension.
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Proof. We prove each assertion:

1. Let Ω ∈ K2
1\{B}. We use the Minkowski sum to build a perturbation of Ω that decreases the perimeter. We

denote B1 the ball of radius 1 (which is not the same as B whose volume is 1); then, given s > 0 sufficiently
small, Steiner formulas give:

|Ω + sB1| = |Ω|+ P (Ω)s+ |B1|s2, and P (Ω + sB1) = P (Ω) + sP (B1),

so considering

Ωs :=
(Ω + sB1)√
|Ω + sB1|

∈ K2
1,

where s > 0, we obtain

P (Ωs) =
P (Ω + sB1)√
|Ω + sB1|

=
P (Ω) + sP (B1)√
|Ω|+ P (Ω)s+ |B1|s2

.

By denoting f : s ∈ [0,+∞) 7→ P (Ωs), a simple computation shows

f ′(0) =
P (B1)− P (Ω)2

2|Ω|√
|Ω|

which is such that f ′(0) < 0 by isoperimetric inequality P 2(Ω)
|Ω| ≥ 4π = 2P (B1).

So for s > 0 small enough, we have P (Ωs) < P (Ω0) = P (Ω). Since Ω+sB converges to Ω when s→ 0 and the
measure is continuous, both for the Hausdorff distance in K2, we have that Ωs −→

s→0
Ω for the Hausdorff distance.

This shows that Ω is not a local minimizer of the perimeter in K2
1.

2. Let Ω ∈ Kd1\{B}. We now build a perturbation that decreases λ1: as Ω is not a ball, there exists a hyperplane H
such that Ω is not symmetric with respect to H . We choose coordinates so that H = {(x, y) ∈ Rd−1×R, y = 0}.
We introduce the sets:

IΩ :=
{
x ∈ Rd−1 / ∃y ∈ R, (x, y) ∈ Ω

}
and JxΩ := {y ∈ R / (x, y) ∈ Ω} where x ∈ IΩ.

Since Ω is convex and of volume 1, it is bounded and non-empty, thus the sets IΩ and JxΩ (where x ∈ IΩ) are also
convex, bounded and non-empty. We can then introduce y1, y2 : IΩ → R such that:

∀x ∈ IΩ, y1(x) = inf JxΩ and y2(x) = sup JxΩ.

By convexity of Ω, we can write:

Ω = {(x, y) ∈ Rd−1 × R, x ∈ IΩ and y1(x) < y < y2(x)},

with y1 convex and y2 concave.

Now, we define a displacement field V : Rd −→ Rd by:

V (x, y) =
(

0,−1

2

(
y1(x) + y2(x)

))
.

Let Ωt := (Id + tV )(Ω), for 0 ≤ t ≤ 1, where Id : x ∈ Rd 7−→ x ∈ Rd is the identity map. The process of
deforming Ω = Ω0 to the symmetric set Ω1 through the path t 7−→ Ωt is a variant of the so called continuous
Steiner symmetrization (see [13] for example). It is well known that the volume is preserved throughout this
continuous process; moreover, we can show that convexity of domains is also preserved. Indeed, for every t ∈
[0, 1]:

Ωt =

{
(x, y) ∈ R2, x ∈ I and

(
1− t

2

)
y1(x)− t

2
y2(x) < y < − t

2
y1(x) +

(
1− t

2

)
y2(x)

}
.

Yet, the facts that IΩ is convex, the function − t
2y1 +

(
1− t

2

)
y2 is concave and the function

(
1− t

2

)
y1 − t

2y2 is
convex yield that Ωt is convex.

Moreover, we have that Ωt −→
t→0+

Ω for the Hausdorff distance. Indeed

dH(Ωt,Ω) = dH(∂Ωt, ∂Ω)

:= max
(

sup
a∈∂Ωt

inf
a′∈∂Ω

‖a− a′‖, sup
b∈∂Ω

inf
b′∈∂Ωt

‖b− b′‖
)

≤ t

2
sup
x∈I
|y1(x) + y2(x)| −→

t→0+
0.

Finally, as Ω is not symmetric with respect to H , it was proven in [15, Lemma 3.1] that the continuous sym-
metrization strictly decreases the first eigenvalue, and since Ωt −→

t→0+
Ω for the Hausdorff distance, we conclude

that Ω is not a local minimizer of λ1 is Kd1 .
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3. On one hand, from [38, Theorem 2.1, Remark 2.2], we deduce that any local maximizer of the perimeter under
volume and convexity constraints must be a polygon (more precisely, in [38] they consider local minimum where
the word local in understood for theW 1,∞-norm on the so-called gauge function of the set ; but this is in particular
the case if we consider local minimum for the Hausdorff distance).

On the other hand, no polygon can be a local maximizer of the perimeter in K2
1: to prove this, we use a parallel

chord movement. More precisely if Ω is a polygon, one can consider A,B,C three consecutive corners so that
ABC forms a triangle. One can move B along the line passing through B and being parallel to the line (AC).
This way, the volume is preserved, and the perimeter must increase when moving B away from the perpendicular
bisector of [A,C] (which is possible at least in one direction).

From the two previous remarks, we deduce that there is no local maximizer of the perimeter under convexity and
volume constraints.

4. In [39], the authors show that a local maximum of λ1 inK2
1 is a polygon, this proves that any smooth (in particular

C1,1) domain is not a local maximizer of λ1 in K2
1.

One can deduce the following result which gives a refinement of Lemma 3.5 concerning the perimeter functional:

Corollary 3.6 Let Ω ∈ K2
1. Then for any sequence (pn) converging to P (Ω) such that pn ≥ P (B) for all n ∈ N, there

exists a sequence (Ωn) of elements of K2
1 converging to Ω for the Hausdorff distance, and such that P (Ωn) = pn for

all n ∈ N.

Proof. If Ω 6= B, by Lemma 3.5, we can build a sequence (Kn)n of elements of K2
1 converging to Ω for the Hausdorff

distance, and such that P (K2n) < P (Ω) < P (K2n+1) for every n ∈ N and since (pn) is bounded, we can also assume
K0 and K1 such that pn ∈ [P (K0), P (K1)] for all n ∈ N. We will use this sequence (Kn) to build (Ωn) : for n ∈ N,

• if pn = P (Ω), we take Ωn = Ω and define σ(n) = n.

• if pn > P (Ω), then as P (K2k+1) converges to P (Ω) from above and pn ≤ P (K1), we can define σ(n) :=
max {2k + 1 / P (K2k+1) ≥ pn}and consider the function:

φn : t 7−→ P

 tKσ(n) + (1− t)Ω√∣∣∣tKσ(n) + (1− t)Ω
∣∣∣
 .

This function φn is continuous and since pn ∈ [φn(0), φn(1)] = [P (Ω), P (Kσ(n))], by the intermediate value
Theorem there exists tn ∈ [0, 1] such that φn(tn) = pn, we then take:

Ωn :=
tnKσ(n) + (1− tn)Ω√∣∣∣tnKσ(n) + (1− tn)Ω

∣∣∣ ∈ K
2
1,pn .

• if pn < P (Ω), we set σ(n) := max {2k | P (K2k) ≤ pn} and choose Ωn as in the previous case.

It remains to show that the sequence (Ωn) converges to Ω for the Hausdorff distance. If the set I := {n ∈ N / pn 6=
P (Ω)} is finite, then the sequence (Ωn) is equal to Ω for n large enough. If on the other hand I is infinite, the fact
that P (Kn) −→

n→+∞
P (Ω) implies that lim

n→+∞
σ(n) = +∞, which gives lim

n→+∞
Kσ(n) = Ω, thus (tnKσ(n) + (1 −

tn)Ω) −→
n→+∞

Ω for the Hausdorff distance, then by continuity of the measure, we get that Ωn −→
n→+∞

Ω for the

Hausdorff distance.
If Ω = B, one may reproduce the same strategy as above by considering a sequence (Kn)n of elements of K2

1

converging to B for the Hausdorff distance such that P (B) < P (Kn) for every n ∈ N (second assertion of Lemma 3.5)
and then use Minkowski sums and intermediate value Theorem to construct the sets (Ωn). �

3.2.4 Study of the boundary of the diagram

We define functions f and g by:

f : [P (B),+∞) −→ R
p 7−→ min

{
λ1(Ω) ,Ω ∈ Kd, |Ω| = 1 and P (Ω) = p

} (14)

g : [P (B),+∞) −→ R
p 7−→ max

{
λ1(Ω) , Ω ∈ Kd, |Ω| = 1 and P (Ω) = p

} (15)

and we recall that these optimization problems admit solutions, see Corollary 3.3. By definition (and by the isoperimetric
inequality), we have

DKd ⊂
{

(x, y) ∈ R2 | x ≥ P (B) and f(x) ≤ y ≤ g(x)
}
. (16)

In this section, we will first give the asymptotics of f and g near +∞ for arbitrary dimension d ≥ 2, then we prove
the second part of Theorem 1.2, which is stated again below in Theorem 3.9. To obtain the first part of Theorem 1.2, we
need to show the reverse inclusion of (16), which will be obtained with Theorem 3.14.
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Proposition 3.7 Take d ≥ 2, we have

g(x) ∼
x→∞

π2

4
x2 and f(x) ∼

x→∞

π2

4d2
x2.

Proof. By inequalities (10) and (8), one has:

∀K ∈ Kd1,
π2

4d2
P (K)2 ≤ λ1(K) <

π2

4
P (K)2.

Then:

∀x ≥ P (B),
π2

4d2
x2 ≤ f(x) ≤ g(x) <

π2

4
x2.

However, since the right- and left-hand-side inequalities are respectively attained in the limiting case of flat collapsing
cuboids and collapsing pyramids (see [9, Corollary 5.1.]), we have the stated equivalences. �

Remark 3.8 In this paper, all the study is done for shapes of volume 1. It is interesting to wonder about what would
happen if one removes such constraint: we believe that in this case the diagram would be given by:

{
(
P (Ω), λ1(Ω)

)
| Ω ∈ Kd} =

{
(x, y) | x > 0 and y ≥ λ1(B)P (B)

2
d−1

x
2
d−1

}
,

where the boundary corresponds to balls. We note that the idea of "relaxing" the volume constraint has been successfully
used in [43] to give some qualitative properties of the boundary of the diagram involving the first Dirichlet eigenvalue,
the torsion and the volume.

Theorem 3.9 Assume d = 2. Then functions f and g are continuous and strictly increasing.

Remark 3.10 Some of the properties of f and g come with minor efforts, namely the lower semicontinuity of f (or upper
one of g). But to prove the full continuity and monotonicity, we use Lemma 3.5, and this explains why Theorem 3.9 is
restricted to dimension 2. Compare to [43, Theorem 1.1] where the authors could not prove that the upper part of the
diagram is the graph of a continuous and increasing function.

Proof. We start by proving the continuity of f . Let p0 ∈ [P (B),+∞[.
For every p ∈ [P (B),+∞[, by Corollary 3.3, there exists Ωp a solution of the following minimization problem:

min
{
λ1(Ω) | Ω ∈ K2

1 and P (Ω) = p
}
.

• We first show an inferior limit inequality. Let (pn)n≥1 real sequence converging to p0 such that

lim inf
p→p0

λ1(Ωp) = lim
n→+∞

λ1(Ωpn).

Up to translations, as the perimeter of (Ωpn)n∈N∗ is uniformly bounded, one may assume that the domains
(Ωpn)n∈N∗ are included in a fixed ball: then by Blaschke selection Theorem, (Ωpn) converges to a convex set
Ω∗ for the Hausdorff distance, up to a subsequence that we denote pn again for simplicity.

By the continuity of the perimeter, the volume and λ1 for the Hausdorff distance among convex sets, we have:
|Ω∗| = lim

n→+∞
|Ωpn | = 1,

P (Ω∗) = lim
n→+∞

P (Ωpn) = lim
n→+∞

pn = p0,

λ1(Ω∗) = lim
n→+∞

λ1(Ωpn) = lim inf
p→p0

λ1(Ωp).

Then by definition of f (since Ω∗ ∈ K2
1 and P (Ω∗) = p0), we obtain:

f(p0) ≤ λ1(Ω∗) = lim
n→+∞

λ1(Ωpn) = lim inf
p→p0

λ1(Ωp) = lim inf
p→p0

f(p).

• It remains to prove a superior limit inequality. Let (pn)n≥1 be a real sequence converging to p0 such that:

lim sup
p→p0

f(p) = lim
n→+∞

f(pn).

By Corollary 3.6, there exists a sequence (Kn)n≥1 of K2
1 converging to Ωp0 for the Hausdorff distance, and such

that P (Kn) = pn for every n ∈ N∗.
Using the definition of f one can write

∀n ∈ N∗, f(pn) ≤ λ1(Kn).

Passing to the limit, we get:

lim sup
p→p0

f(p) = lim
n→+∞

f(pn) ≤ lim
n→+∞

λ1(Kn) = λ1(Ωp0) = f(p0).

14



As a consequence we finally get lim
p→p0

f(p) = f(p0), so f is continuous on [P (B),+∞[. The same method can be

applied to prove the continuity of g.

• We now prove that f is strictly increasing. Let us assume by contradiction that it is not the case: then by conti-
nuity of f and the fact that lim

+∞
f = +∞ (see Proposition 3.7), we deduce the existence of a local minimum of f

at a point p0 > P (B). Using Corollary 3.3, this means there exists Ω∗ ∈ K2
1 and ε > 0 such that

P (Ω∗) = p0 and ∀p ∈ (p0 − ε, p0 + ε), λ1(Ω∗) = f(p0) ≤ f(p),

which implies
∀Ω ∈ K2

1 such that P (Ω) ∈ (p0 − ε, p0 + ε), λ1(Ω∗) ≤ λ1(Ω).

Because of the continuity of the perimeter in K2
1, this would imply that Ω∗ is a local minimum (for the Hausdorff

distance) of λ1 in K2
1, which, from the first point in Lemma 3.5 implies that Ω∗ must be a ball, which in turn

contradicts P (Ω∗) > P (B).

• We finally prove that g is strictly increasing. Assuming by contradiction that this is not the case, then there
exist p2 > p1 ≥ P (B) such that g(p2) < g(p1), and from the equality case in the isoperimetric inequality,
we necessarily have p1 > P (B). Since g is continuous, it reaches its maximum on [P (B), p2] at a point p∗ ∈
(P (B), p2), that is to say

∀Ω ∈ K2
1 such that [P (B), p2], g(p∗) ≥ λ1(Ω). (17)

Using Corollary 3.3 again, one knows that the problem

min{P (Ω), Ω ∈ K2
1 and λ1(Ω) = g(p∗)} (18)

admits a solution K∗ ∈ K2
1.

On one hand, (17) implies that K∗ is a local maximum (for the Hausdorff distance) of λ1 in K2
1. From Lemma

3.5 we deduce that K∗ cannot be C1,1.

On the other hand, K∗ is also a solution of (18). We want to apply the regularity result [40, Theorem 2] which
shows that K∗ is C1,1, which is a contradiction. This theorem applies as, denoting m(Ω) = (λ1(Ω), |Ω|) ∈ R2

(which are the constraints in (18) besides the convexity constraint, the latter being dealt with by its own infinitely
dimensional Lagrange multiplier, see the proof of [40, Theorem 2]), it is well known that the first order shape
derivative (see for example [32] for definitions) writes:

∀ξ ∈ C∞(R2,R2), m′(K∗).ξ =

(
−
ˆ
∂K∗
|∇u1|2ξ · n∂K∗dσ,

ˆ
∂K∗

ξ · n∂K∗dσ
)
,

where u1 is the first normalized Dirichlet eigenfunction onK∗: the convexity ofK∗ is used here to provide enough
smoothness so that this formula is valid (indeed it is well-known that u1 ∈ H2(Ω) so its gradient has a trace on
∂K∗, see also [31, Theorem 2.5.1]). Therefore this shape derivative at K∗ is in L∞(∂K∗)2 (see [40, Section 3.3]
for the link between shape derivatives and derivatives in term of the gauge function as considered in [40, Theorem
2]), and also that it is onto: indeed, if it was not, we would have the existence of c ≥ 0 such that |∇u1| = c on
∂K∗. With Lemma 3.11 proven just below, this would imply that K∗ is a ball, which is again impossible. We
conclude that g is strictly increasing, which ends the proof.

�
In the previous proof, we used the following lemma:1

Lemma 3.11 Let Ω be an open and bounded convex set in Rd, and u1 solution of (1), that is to say a first eigenfunction
of the Dirichlet-Laplacian in Ω. We also assume that there exists c ≥ 0 a constant such that

|∇u1| = c on ∂Ω. (19)

Then Ω is a ball and c > 0.

Remark 3.12 The result in Lemma 3.11 deals with a well-known problem that goes back to the famous result by J. Serrin
[54]. The main difficulty here is that we do not assume regularity for Ω or u1, except the one given by the convexity of
Ω. There is an extensive literature on extensions of [54], some of which weakening these regularity assumptions, but we
did not find a direct answer to the question raised in Lemma 3.11: the closest result we could find was [42, Theorem 1
and Remark (2) in Section 5]. Therefore, we adapt the regularity theory of free boundary problems by taking advantage
of the convexity of Ω, which makes the context favorable.

Proof. First note that from regularity theory, u1 ∈ H2(Ω) ∩W 1,∞(Ω) (see for example [30]), so ∇u1 has a trace on
∂Ω, which shows that (19) has a meaning in the sense of traces. Also u1 ∈ C0(Ω) can be extended by 0 outside Ω, and
then u1 ∈ C0(Rd).

1We thank Bozhidar Velichkov for helping us with the proof of this lemma.
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• Let us first exclude the case c = 0. Assuming to the contrary that the hypotheses of the lemma are satisfied with
c = 0, we have

∀ϕ ∈ H1(Ω),

ˆ
Ω

∇u1 · ∇ϕdx = λ1(Ω)

ˆ
Ω

u1ϕdx+

ˆ
∂Ω

(∂nu1)ϕdσ.

As ∂nu1 = 0 on ∂Ω and applying this property with ϕ ≡ 1, we obtain λ1(Ω)
´

Ω
u1dx = 0, which is a contradic-

tion as u1 > 0 in Ω.

• Assume c > 0. In order to apply [54], we aim at proving that (19) implies regularity of the domain Ω. To that
end, we use the theory of regularity for free boundaries: in our context, we want to apply [19, Theorem 1.2] with
f := λ1(Ω)u1 ∈ C0(Rd) ∩ L∞(Rd), which says that as Ω is a Lipschitz domain, if one can prove that (19) is
valid in the sense of viscosity, then Ω must actually be C1,α for some α > 0. From there it is very classical with
[36] that Ω is actually C∞, which implies that u1 ∈ C∞(Ω) and so [54] applies and provides the conclusion.

Therefore, let us prove that |∇u1| = c in the sense of viscosity: this means that for every x0 ∈ Ω and every
ϕ ∈ C2

c (Rd),

1. if x0 ∈ Ω, ϕ(x0) = u1(x0) and ϕ ≤ u1 (resp. ϕ ≥ u1), then ∆ϕ(x0) ≤ f(x0) (resp. ∆ϕ(x0) ≥ f(x0)),

2. if x0 ∈ ∂Ω, ϕ(x0) = u1(x0) and ϕ+ ≤ u1 (resp. ϕ+ ≥ u1), then |∇ϕ(x0)| ≤ c (resp. |∇ϕ(x0)| ≥ c),
where ϕ+ : x ∈ Rd 7−→ max(ϕ(x), 0).

For the first point, this follows from the regularity of u1 inside Ω, namely u1 ∈ C2(Ω). Let us focus on the second
point and take x0 ∈ ∂Ω and ϕ ∈ C2

c (Rd). In order to simplify the computations, we choose x0 as the origin which
allows to consider x0 = 0: we will do a blow-up at x0, so we denote

Ωr =
Ω

r
, and ∀x ∈ Rd, ur(x) =

u1(rx)

r
, ϕr(x) =

ϕ(rx)

r
.

We then claim:

1. (Ωr)r>0 is increasing and one can define
Ω0 :=

⋃
r>0

Ωr

which is a cone (it is the (interior of the) usual tangent of Ω at x0 in the context of convex geometry). We
also have that (∂Ωr)r>0 converges to ∂Ω0 locally in the Hausdorff sense.

2. as u1 ∈ W 1,∞(Ω), up to a subsequence (ur)r>0 converges locally uniformly to a function u0 defined and
Lipschitz on Rd. Moreover, as for r > 0, one has −∆ur(x) = rf(rx)− cHd−1

|∂Ωr
in the sense of distribution

in Rd, we have at the limit (using the previous point to justify the convergence):

∆u0(x) = cHd−1
|∂Ω0

.

As Ω0 is a cone, this implies that u0 is 1-homogeneous: indeed, for λ ∈ (0,∞), consider uλ0 : x 7→ 1
λu0(λx).

It is easy to see that uλ0 has the same Laplacian as u0 (in the sense of distribution in Rd), so v := u0 − uλ0 is
harmonic in Rd. As∇v is bounded, from Liouville Theorem we deduce that v is affine, but as v(0) = 0 and
∇v(0) = 0, we deduce that v = 0, which means u0 is 1-homogeneous.

3. as ϕ is smooth, (ϕr)r>0 converges locally uniformly to an affine function ϕ0(x) that is such that, up to a
choice of coordinates,

∀x ∈ Rd, ϕ0(x) := Axd

where A = |∇ϕ(x0)|.
4. (a) Assume now u1 ≥ ϕ+. Then u0(x) ≥ ϕ0(x) = Axd in Rd. If A = 0 then A ≤ c. Otherwise, we

get {u0 > 0} ⊃ {xd > 0}. From convexity of Ω0 we obtain equality of these two domains. Then as
u0 and x 7→ cxd both satisfy the same Cauchy problem with conditions on ∂{xd > 0}, we deduce that
u0(x) = c(xd)+, and then clearly u0 ≥ ϕ0 implies c ≥ A.

(b) Assume finally that u1 ≤ ϕ+. We reproduce here a proof similar to [50, Lemma 5.31]. Using that u0

is 1-homogeneous and nonnegative, we get that the trace of u0 on Sd−1 is a first eigenfunction of the
Laplace-Beltrami operator on Ω0∩Sd−1 with Dirichlet boundary condition on ∂Ω0∩Sd−1 corresponding
to the eigenvalue d− 1. As Ω0 ∩ Sd−1 ⊂ Sd−1

+ := Sd−1 ∩ {xd > 0} and the Laplace-Beltrami of Sd−1
+

is also d− 1 we obtain that Ω0 = {xd > 0} and as in the previous case u0(x) = c(xd)+ and c ≤ A.
We have therefore shown that |∇u1| = c is satisfied in the sense of viscosity, which as mentioned above,
concludes the proof.

�
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Theorem 3.9 allows us to prove the equivalence between 4 optimization problems.

Corollary 3.13 Let p > P (B). The following problems are equivalent:

(I) min{λ1(Ω) | Ω ∈ K2
1 and P (Ω) = p}

(II) min{λ1(Ω) | Ω ∈ K2
1 and P (Ω) ≥ p}

(III) max{P (Ω) | Ω ∈ K2
1 and λ1(Ω) = f(p)}

(IV) max{P (Ω) |Ω ∈ K2
1 and λ1(Ω) ≤ f(p)}.

in the sense that any solution to one of the problem also solves the other ones. Moreover, any solution to these problems
is a polygon.

Similarly the following problems are equivalent :

(I’) max{λ1(Ω) | Ω ∈ K2
1 et P (Ω) = p}

(II’) max{λ1(Ω) | Ω ∈ K2
1 et P (Ω) ≤ p}

(III’) min{P (Ω) | Ω ∈ K2
1 et λ1(Ω) = g(p)}

(IV’) min{P (Ω) | Ω ∈ K2
1 et λ1(Ω) ≥ g(p)}.

and any solution is C1,1.

Proof. Let us prove the equivalence between the first four problems.

• We first show that any solution of (I) solves (II): let Ωp be a solution to (I). Then for every Ω ∈ K2
1 such that

P (Ω) ≥ p, one has:
λ1(Ω) ≥ f

(
P (Ω)

)
≥ f(p) = λ1(Ωp),

where we used the monotonicity of f given by Theorem 3.9: therefore Ωp solves (II).

• Reciprocally, let now Ωp be a solution of (II): we want to show that Ωp must be of perimeter p. We notice that

f(p) ≥ λ1(Ωp) ≥ f
(
P (Ωp)

)
≥ f(p),

where the first inequality follows as problem (II) allows more candidates than in the definition of f , and the last
inequality uses again the monotonicity of f . Therefore f(p) = f

(
P (Ωp)

)
, and since f is strictly increasing, we

obtain P (Ωp) = p, which implies that Ωp solves (I).

We proved the equivalence between problems (I) and (II); equivalence between problems (III) and (IV) is shown by
similar manipulations.

It remains to prove the equivalence between (I) and (III).

• Let Ωp be a solution of (I), which means that Ωp ∈ K2
1, P (Ωp) = p and λ1(Ωp) = f(p). Then for every Ω ∈ K2

1

such that λ1(Ω) = f(p) we have:
f(p) = λ1(Ω) ≥ f

(
P (Ω)

)
,

thus, since f is increasing, we get p = P (Ωp) ≥ P (Ω), which means Ωp solves (III).

• Let now Ω′p be a solution of (III), then we have:

f(p) = λ1(Ω′p) ≥ f
(
P (Ω′p)

)
,

thus, by monotonicity of f we get p ≥ P (Ω′p). On the other hand, since Ω′p solves (III) and that there exists Ωp
solution to (I), we have P (Ω′p) ≥ p which finally gives P (Ω′p) = p and shows that Ω′p solves (I).

The same approach can be applied to prove the equivalence between the second four problems. It remains finally to
show the geometrical properties of optimal shapes:

• Let Ω be a solution of one of the first four problems. Thanks to the previous equivalence, it is necessarily a solution
to (III), which enters the category of “reverse isoperimetric problems”. We want to apply [40, Theorem 4] (see
also [40, Example 8] for a similar problem, even though here λ1 appears in the constraint of the problem): to that
end one needs to see that the constraints in (III), that is to say m(Ω) = (λ1(Ω), |Ω|) = (f(p), 1) have a first order
derivative which is onto. As in the end of the proof of Theorem 3.9, this follows from Lemma 3.11. We deduce
that [40, Theorem 4] applies and therefore Ω is a polygon.

• Let Ω be a solution of one of the last four problems: thanks to the equivalence, it is necessarily a solution of (III’)
so again as in the end of the proof of Theorem 3.9 we apply [40, Theorem 2, Corollary 2] (as in [40, Example 8],
we also use [40, Propositions 5-6]) which shows that Ω is C1,1.

�
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3.2.5 Simple-connectedness of the diagram

In order to complete the proof of Theorem 1.2, we now need the following result:

Theorem 3.14 We have:
DK2 =

{
(x, y) ∈ R2, x ≥ P (B) and f(x) ≤ y ≤ g(x)

}
,

thus, DK2 is simply connected.

Proof. We consider a coordinate system (O,~i,~j). Since the involved functionals are invariant by rotations and trans-
lations, we preliminarily remark that one may assume if needed that every domain contains the origin O and that its
diameter is colinear to the axis (O,~i).

For a given convex body K, we denote by diam(K) its diameter and by hK and ρK respectively the support and
radial functions of K defined by

∀θ ∈ S1, hK(θ) = sup{〈x, θ〉, x ∈ K}, ρK(θ) = sup{λ ≥ 0, λθ ∈ K}. (20)

Step 1: Minkowski sum and continuous paths:

Let K0,K1 ∈ K2
1 such that P (K0) = P (K1) = p. Define:

∀t ∈ [0, 1], Kt :=
(1− t)K0 + tK1√
|(1− t)K0 + tK1|

. (21)

• Since t ∈ [0, 1] 7−→ (1− t)K0 + tK1 ∈ (K2, dH) and the functionals (| · |, P, λ1) are continuous for the Hausdorff
distance, we have by composition that t ∈ [0, 1] 7−→

(
P (Kt), λ1(Kt)

)
∈ R2 is also continuous.

• We also notice that thanks to the linearity of the perimeter for the Minkowski sum, as well as the Brunn-Minkowski
inequality (see for example [53, Theorem 7.1.1]), one has:

∀t ∈ [0, 1], P
(
(1− t)K0 + tK1

)
= (1− t)P (K0) + tP (K1) = p,

and |(1− t)K0 + tK1|
1
2 ≥ (1− t)|K0|

1
2 + t|K1|

1
2 = 1,

which implies
∀t ∈ [0, 1], P

(
Kt

)
≤ p. (22)

This shows that given two convex domains with same perimeter, (21) defines a continuous path linking them, which
“stays on the left” as we can see on Figure 6.

P

λ1

P (B)

λ1(B)

•K1

•K0

Figure 6: The path goes on the left

For p ≥ P (B) and for each K0,K1 ∈ K2
1,p, we therefore denote ΓK0,K1 the following closed path:

ΓK0,K1
: [0, 1] −→ R2

t 7−→

{ (
P (K2t), λ1(K2t)

)
if t ∈ [0, 1

2 ],(
P (K0), (2− 2t)λ1(K1) + (2t− 1)λ1(K0)

)
if t ∈ [ 1

2 , 1].

We note that as defined above, the path ΓK0,K1 contains two components:

• the first one corresponding to t ∈
[
0, 1

2

]
, which is included in the diagram DK2 ,
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• and the second one corresponding to t ∈
[

1
2 , 1
]
, which is just "fictional" (not necessarily included in DK2 ) and is

introduced in order to obtain a closed path so as we can use the index theory.

Step 2: Continuity of the paths ΓK0,K1 with respect to (K0,K1):

Let p0 > P (B). Take K0,K1 ∈ K2
1,p0 and (Kn

0 ) and (Kn
1 ) two sequences of K2

1 converging respectively to K0 and
K1 for the Hausdorff distance and such that P (Kn

0 ) = P (Kn
1 ) for all n ∈ N∗. Let ε > 0: we will prove that:

∃Nε,∀n ≥ Nε,∀t ∈ [0, 1],
∥∥ ΓK0,K1

(t)− ΓKn
0 ,K

n
1

(t)
∥∥ < ε.

We have for every t ∈ [ 1
2 , 1]:∥∥ ΓK0,K1

(t)− ΓKn
0 ,K

n
1

(t)
∥∥ ≤ |P (K0)− P (Kn

0 )|+ (2− 2t)|λ1(K1)− λ1(Kn
1 )|+ (2t− 1)|λ1(K0)− λ1(Kn

0 )|
≤ |P (K0)− P (Kn

0 )|+ |λ1(K1)− λ1(Kn
1 )|,

so the estimate is easy to obtain thanks to the convergence of (Kn
0 ), (Kn

1 ) and the continuity of λ1 and P .
For every t ∈ [0, 1

2 ], we have∥∥ ΓK0,K1
(t)− ΓKn

0 ,K
n
1

(t)
∥∥ ≤ ∣∣P (K2t)− P (Kn

2t)
∣∣+
∣∣λ1(K2t)− λ1(Kn

2t)
∣∣. (23)

We want to control
∣∣P (K2t)−P (Kn

2t)
∣∣ and

∣∣λ1(K2t)−λ1(Kn
2t)
∣∣ independently of t. For the perimeter this will easily

follow from the behavior of perimeter and volume with respect to Minkowski sums; for the eigenvalue the situation is
more involved and we will use a quantitative version of its continuity with respect to the Hausdorff distance:

• We first notice that for all t ∈ [0, 1/2] and n ∈ N:

|(1− 2t)K0 + 2tK1| ≥ 1, |(1− 2t)Kn
0 + 2tKn

1 | ≥ 1 and P (K2t), P (Kn
2t) ≥ P (B).

Therefore using Proposition 3.4∣∣P (K2t)− P (Kn
2t)
∣∣ =

|P 2(K2t)− P 2(Kn
2t)|

P (K2t) + P (Kn
2t)

≤ 1

2P (B)

∣∣∣ P (K0)2

|(1− 2t)K0 + 2tK1|
− P (Kn

0 )2

|(1− 2t)Kn
0 + 2tKn

1 |

∣∣∣
≤

∣∣P (K0)2
(
(1− 2t)2W0(Kn

0 ,K
n
1 ) + 4t(1− 2t)W1(Kn

0 ,K
n
1 ) + 4t2W2(Kn

0 ,K
n
1 )
)

−P (Kn
0 )2
(
(1− 2t)2W0(K0,K1) + 4t(1− 2t)W1(K0,K1) + 4t2W2(K0,K1)

)∣∣
≤

2∑
k=0

(
P (K0)2|Wk(Kn

0 ,K
n
1 )−Wk(K0,K1)|

+|Wk(K0,K1)| × |P (Kn
0 )2 − P (K0)2|

)
︸ ︷︷ ︸

HnK0,K1

. (24)

By continuity of the perimeter, P , W0,W1 and W2 for the Hausdorff distance, we have lim
n→+∞

Hn
K0,K1

= 0 while

Hn
K0,K1

does not depend on t.

• The result [17, Lemma 2.1] states that if Ω1 and Ω2 are starlike planar domains with radial functions ρΩ1 and ρΩ2

for which there exists r0 > 0 such that ρΩ1 , ρΩ2 ≥ r0 and ‖ρΩ1 − ρΩ2‖∞ ≤ r0, then:∣∣λ1(Ω1)− λ1(Ω2)
∣∣ ≤ 3

r3
0

λ1(B1)‖ρΩ1
− ρΩ2

‖∞. (25)

We want to apply this result to (K2t,K
n
2t) for t ∈ [0, 1

2 ] and n large enough. We therefore seek for a suitable r0

such that the conditions of [17, Lemma 2.1] are satisfied.

Let t ∈
[
0, 1

2

]
and n ∈ N∗ sufficiently large so that P (Kn

0 ), P (Kn
1 ) ≤ p0 + 1. This implies by (22) that

P (Kn
2t) ≤ p0 + 1 for every t ∈

[
0, 1

2

]
. We now use the classical inequality (see for example [6]) that asserts that

for any convex body Ω ∈ Kd, one has:

r(Ω) ≥ |Ω|
P (Ω)

,

where r(Ω) denotes the inradius of Ω. In particular if Ω ∈ K2
1 and P (Ω) ≤ p0 + 1, we have:

r(Ω) ≥ r0 :=
1

p0 + 1
> 0. (26)

One can apply this result to K2t and Kn
2t, and this implies that one can assume without loss of generality that K2t

and Kn
2t contain the ball of center O and radius r0, and this gives ρK2t

≥ r0 and ρKn
2t
≥ r0.
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We moreover have:∥∥ρK2t
− ρKn

2t

∥∥
∞ ≤

‖ρK2t
‖∞ ‖ρKn

2t
‖∞

r2
0

dH(K2t,K
n
2t) (see [7, Proposition 2])

≤ (p0 + 1)2

r2
0

dH(K2t,K
n
2t) (we used ‖ρΩ‖∞ ≤ diam(Ω) ≤ P (Ω) ≤ p0 + 1).

On the other hand, we have:

dH(K2t,K
n
2t) =

∥∥hK2t
− hKn

2t

∥∥
∞

=

∥∥∥∥∥ (1− 2t)hK0
+ 2thK1√

|(1− 2t)K0 + 2tK1|
−

(1− 2t)hKn
0

+ 2thKn
1√

|(1− 2t)Kn
0 + 2tKn

1 |

∥∥∥∥∥
∞

≤ (1− 2t)

∥∥∥∥∥ hK0√
|(1− 2t)K0 + 2tK1|

−
hKn

0√
|(1− 2t)Kn

0 + 2tKn
1 |

∥∥∥∥∥
∞

+2t

∥∥∥∥∥ hK1√
|(1− 2t)K0 + 2tK1|

−
hKn

1√
|(1− 2t)Kn

0 + 2tKn
1 |

∥∥∥∥∥
∞

≤ 1√
|(1− 2t)Kn

0 + 2tKn
1 |

(∥∥hK0 − hKn
0

∥∥
∞ +

∥∥hK1 − hKn
1

∥∥
∞

)
+ (‖hK0

‖∞ + ‖hK1
‖∞)

∣∣∣∣∣ 1√
|(1− 2t)Kn

0 + 2tKn
1 |
− 1√

|(1− 2t)K0 + 2tK1|

∣∣∣∣∣
≤

(
dH(K0,K

n
0 ) + dH(K1,K

n
1 )
)

+ (‖hK0
‖∞ + ‖hK1

‖∞)×
∣∣∣ |(1− 2t)Kn

0 + 2tKn
1 | − |(1− 2t)K0 + 2tK1|

∣∣∣
≤

(
dH(K0,K

n
0 ) + dH(K1,K

n
1 )
)

+ (‖hK0‖∞ + ‖hK1‖∞)×
2∑
k=0

|Wk(Kn
0 ,K

n
1 )−Wk(K0,K1)|︸ ︷︷ ︸

GnK0,K1

.

We then obtain the following estimate:

∀t ∈
[
0,

1

2

]
,
∥∥ρK2t − ρKn

2t

∥∥
∞ ≤

(p0 + 1)2

r2
0

×GnK0,K1
. (27)

As for Hn
K0,K1

, by continuity argument we have lim
n→+∞

GnK0,K1
= 0. Then, we for n sufficiently large (indepen-

dently on t), we have
∥∥ρK2t

− ρKn
2t

∥∥
∞ ≤ r0.

We are finally able to apply (25) on K2t and Kn
2t. We get that for n sufficiently large, we have

∀t ∈
[
0,

1

2

]
,
∣∣λ1(K2t)− λ1(Kn

2t)
∣∣ ≤ 3

r3
0

λ1(B1)‖ρKn
2t
− ρK2t

‖∞ ≤
3λ1(B1)

r5
0

(p0 + 1)2GnK0,K1
. (28)

By (23), (24), (28) and the fact that lim
n→+∞

GnK0,K1
= lim

n→+∞
Hn
K0,K1

= 0, we conclude that there exists Nε ∈ N∗

such that:
∀n ≥ Nε, sup

t∈[0,1]

∥∥ ΓK0,K1
(t)− ΓKn

0 ,K
n
1

(t)
∥∥ < ε.

Step 3: The arcs go infinitely to the right when the perimeter increases:

Let p ≥ P (B) and (K0,K1) two elements of K2
1,p; taking advantage of the invariance with translation and rotation,

we choose to align the diameters of K0 and K1 with the same axe (say (O,~i)). We prove here that this implies:

∀t ∈ [0, 1] P
(
Kt

)
≥ p

2
,

where (Kt)t∈[0,1] is defined in (21).

As mentioned in the beginning of the proof, we can assume that the diameter of every involved convex K ∈ K2
1 is

aligned with (O,~i), thus the diameter of K is given by

diam(K) = hK(0) + hK(π),
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where hK is the support functional of K, defined in (20). On the other hand we denote εK the width in the direction
orthogonal to (O,~i):

εK := hK (π/2) + hK (−π/2) .

We easily get the following estimates from Figure 7:

2× diam(K) ≤ P (K) ≤ 4× diam(K) and |K| ≤ εK × diam(K) ≤ 2|K|,

In particular if K ∈ K2
1,p, then

diam(K) ≤ p

2
and εK ≤

2

diam(K)
≤ 8

p
.

•

diam(K) = hK(0) + hK(π)

hK
(
π
2

)

hK
(
−π2
)εK

O −→
i

−→
j

Figure 7: The convex contains a quadrilateral and is contained in a rectangle

We denote by dt and εt the diameter and width in the direction orthogonal to (O,~i) of (1 − t)K0 + tK1, where
t ∈ [0, 1]. We have:

dt := max
θ∈[0,2π]

(
h(1−t)K0+tK1

(θ) + h(1−t)K0+tK1
(π + θ)

)
= max

θ∈[0,2π]

(
(1− t)× (hK0

(θ) + hK0
(π + θ)) + t× (hK1

(θ) + hK1
(π + θ))

)
≤ (1− t)× max

θ∈[0,2π]
(hK0(θ) + hK0(π + θ)) + t× max

θ∈[0,2π]
(hK1(θ) + hK1(π + θ))

= (1− t)×
(
hK0

(0) + hK0
(π)︸ ︷︷ ︸

d0=diam(K0)

)
+ t×

(
hK1

(0) + hK1
(π)︸ ︷︷ ︸

d1=d(K1)

)
(because the diameters of K0 and K1 are colinear to (O,~i))

= h(1−t)K0+tK1
(0) + h(1−t)K0+tK1

(π)

≤ max
θ∈[0,2π]

(
h(1−t)K0+tK1

(θ) + h(1−t)K0+tK1
(π + θ)

)
= dt.

Thus, we have the equalities:{
dt = h(1−t)K0+tK1

(0) + h(1−t)K0+tK1
(π) = (1− t)d0 + td1.

εt = h(1−t)K0+tK1
(π/2) + h(1−t)K0+tK1

(−π/2) = (1− t)ε0 + tε1.

This implies:

∀t ∈ [0, 1], |(1− t)K0 + tK1| ≤ dt × εt =
(
(1− t)d0 + td1

)
×
(
(1− t)ε0 + tε1

)
≤

(
(1− t)p

2
+ t

p

2

)
×
(

(1− t)8

p
+ t

8

p

)
= 4

Finally, we get:

∀t ∈ [0, 1], P (Kt) = P
( (1− t)K0 + tK1√
|(1− t)K0 + tK1|

)
=

(1− t)P (K0) + tP (K1)√
|(1− t)K0 + tK1|

≥ p

2
.

Step 4: Relevant paths and conclusion

We denote E :=
{

(x, y) ∈ R2 | x ≥ P (B) and f(x) ≤ y ≤ g(x)
}

. We already noticed that DK2 ⊂ E . Assume by
contradiction that there exists A(xA, yA) ∈ E \ DK2 . From Proposition 3.2, there exists r > 0 such that B(A, r) ⊂
E\DK2 . We are interested in analyzing if A is inside a judiciously chosen closed curve: to that end, let us introduce the
set:

I =
{
p ≥ xA +

r

2
/ ∃K1,K2 ∈ K2

1,p such that A is in the interior of ΓK1,K2

}
.

We note that for every p ≥ xA + r
2 and K1,K2 ∈ K2

1,p, the path ΓK1,K2
does not cross the point A. Indeed:
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• A /∈ {ΓK1,K2
(t) | t ∈

[
0, 1

2

]
}, because {ΓK1,K2

(t) | t ∈
[
0, 1

2

]
} is contained in DK2 , which is not the case for

the point A as assumed above.

• A /∈ {ΓK1,K2
(t) | t ∈

[
1
2 , 1
]
} = {(P (K1), (2− 2t)λ1(K2) + (2t− 1)λ1(K1)) | t ∈

[
1
2 , 1
]
}, because P (K1) =

P (K2) = p ≥ xA + r
2 > xA.

Moreover, as we do not know whether ΓK1,K2 is a simple closed curve, we define the interior of ΓK1,K2 as the set of
points A such that the index (also called winding number) of A with respect to the closed curve ΓK1,K2

is not zero, that
is to say ind(ΓK1,K2

, A) 6= 0. We will also say that A is exterior to ΓK1,K2
if this index is zero.

Using the first step, we note that xA + r/2 ∈ I: indeed using Corollary 3.3 we know that there exist K1 and K2

respectively solutions of the problems

min
{
λ1(Ω), Ω ∈ K2

1,xA+r/2

}
and max

{
λ1(Ω), Ω ∈ K2

1,xA+r/2

}
,

and as the path ΓK1,K2
stays on the left of xA+r/2 and its vertical arc is on the right ofA, using thatB(A, r)∩DK2 = ∅

we deduce that A is in the interior of ΓK1,K2
, thus xA + r/2 ∈ I and in particular I is not empty. It is also bounded

from above, as using Step 3, when the perimeter of two domains K1,K2 is sufficiently large, A cannot be in the interior
of ΓK1,K2 . As a consequence, we can define p0 = sup I ∈ [xA + r/2,+∞). We analyze the two following cases:

• Case 1: p0 /∈ I , i.e. for every K1,K2 ∈ K2
1,p0 , A is in the exterior of ΓK1,K2 .

As p0 is defined as the supremum of I , there exists (pn)n≥1 converging to p0 and (Kn
1 ,K

n
2 )n≥1 two sequences

of elements of K2
1,pn such that A is in the interior of ΓKn

1 ,K
n
2

.

By Blaschke selection Theorem, there exist (Kp0
1 ,Kp0

2 ) such that up to a subsequence (that we do not denote)
Kn

1 −→
n→∞

Kp0
1 and Kn

2 −→
n→∞

Kp0
2 for the Hausdorff distance. Using the result of Step 2 we get that:

∀ε > 0,∃nε ∈ N∗,∀t ∈ [0, 1],
∥∥∥ ΓKp0

1 ,K
p0
2

(t)− ΓKnε
1 ,Knε

2
(t)
∥∥∥ < ε,

so for a sufficiently small value of ε > 0, by continuity of the index under this uniform estimate, we have:

ind
(
ΓKp0

1 ,K
p0
2
, A
)

= ind
(
ΓKnε

1 ,Knε
2
, A
)
.

This is a contradiction (see Figure 8) sinceA is in the interior of ΓKpnε
1 ,K

pnε
2

(ie. ind
(
ΓKpnε

1 ,K
pnε
2

, A
)
6= 0) while

as Kp0
1 ,Kp0

2 ∈ K2
1,p0 , it must also be in the exterior of ΓKp0

1 ,K
p0
2

(ie. ind
(
ΓKp0

1 ,K
p0
2
, A
)

= 0).

P

λ1

P (B)

λ1(B)

•Kp0
1

•Kp0
2

•
Knε

1

•Knε
2

•

p0xA

yA

pnε

Figure 8: Using compactness to find sets Kp0
1 and Kp0

2

• Case 2: p0 ∈ I , i.e. there exist Kp0
1 ,Kp0

2 ∈ K2
1,p0 such that A is in the interior of ΓK1,K2

.
Consider pn = p0 + 1/n for n ≥ 1. By Corollary 3.6, there exist (Kn

1 ,K
n
2 ) two sequences in K2

1,pn such that
Kn

1 −→
n→∞

Kp0
1 and Kn

2 −→
n→∞

Kp0
2 for the Hausdorff distance, see Figure 9.

Similarly to the first case, using Step 3 and the continuity of the index (with respect to the curve) we have for n
large enough

ind
(
ΓKp0

1 ,K
p0
2
, A
)

= ind
(
ΓKn

1 ,K
n
2
, A
)
.

This is also a contradiction since A is in the interior of ΓKp0
1 ,K

p0
2

while as pn > sup I , it must be in the exterior
of ΓKn

1 ,K
n
2

.
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P

λ1

P (B)

λ1(B)

•
K1

•
K2

•

p0xA

yA

pn

•Kn
1

•Kn
2

Figure 9: Using Corollary 3.6 to increase the perimeter

We obtained a contradiction in both cases, which proves that DK2 = E . Thus DK2 ⊂ R2 does not contain any hole
and so is simply connected. This concludes the proof. �

The following result is a direct consequence of Theorem 3.14.

Corollary 3.15 The diagram DK2 is vertically and horizontally convex.

3.3 Asymptotics of the diagram
Upper behavior: It has been proven in [46] and [18, Proposition 5.5] that

Proposition 3.16 Let B1 be a ball of radius 1 in Rd with d ≥ 2, and p > d.

1. If γ <
d(d+ 1)P (B1)

4λ1(B1)(λ1(B1)− d)
, then B1 is a local minimizer of P − γλ1 in a W 2,p-neighborhood with volume

constraint, in the sense that there exists η = η(γ) > 0 such that

P (Bϕ1 )− P (B1) ≥ γ [λ1(Bϕ1 )− λ1(B1)]

for every Bϕ1 such that |Bϕ1 | = |B1| and being nearly spherical in the sense that

Bϕ1 :=
{
tx(1 + ϕ(x)), t ∈ [0, 1[, x ∈ Sd−1

}
with ϕ : Sd−1 → R satisfying ‖ϕ‖W 2,p(Sd−1) ≤ η.

2. If γ >
d(d+ 1)P (B1)

4λ1(B1)(λ1(B1)− d)
, thenB1 is not a local minimizer P −γλ1 among domains with given volume; more

precisely, for η > 0, there exists ϕ : Sd−1 → R such that

|Bϕ1 | = |B1|, ‖ϕ‖W 2,p(Sd−1) ≤ η, and P (Bϕ1 )− P (B1) < γ [λ1(Bϕ1 )− λ1(B1)] .

Corollary 3.17 Let d ≥ 2, x0 = P (B1)

|B1|
d−1
d

and g the function defined in Section 3.2.4. Then

lim sup
x→x0

g(x)− g(x0)

x− x0
≥

4|B1|
d+1
d λ1(B1)

(
λ1(B1)− d

)
d(d+ 1)P (B1)

. (29)

Remark 3.18 When d = 2, inequality (29) becomes

lim sup
x→x0

g(x)− g(x0)

x− x0
≥
√
π

3
λ1(B1)×

(
λ1(B1)− 2

)
≥ 12.9264,

where the numerical lower bound is obtained by using a lower numerical value of λ1(B1) = j2
0,1 (where j0,1 denotes

the first zero of the Bessel function J0).

Proof. Given γ >
d(d+ 1)P (B1)

4λ1(B1)(λ1(B1)− d)
and n ∈ N∗, from Proposition 3.16, there exists ϕn : Sd−1 → R such that

|B1| = |Bϕn1 |, ‖ϕn‖W 2,p(Sd−1) ≤
1

n
, and P (Bϕn1 )− P (B1) < γ [λ1(Bϕn1 )− λ1(B1)] .
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Defining Ωn =
Bϕn1

|Bϕn1 |
1/d and B = B1

|B1|1/d
having unit area, we get

P (Ωn)− P (B) =
P (Bϕn1 )− P (B1)

|B1|
d−1
d

<
γ

|B1|
d−1
d

[λ1(Bϕn1 )− λ1(B1)] =
γ

|B1|
d+1
d

[λ1(Ωn)− λ1(B)] .

Defining xn = P (Ωn), we get, as g is defined as a maximum:

xn − x0 <
γ

|B1|
d+1
d

(g(xn)− g(x0)).

When n diverges to +∞, xn goes to x0, and therefore

lim sup
x→x0

g(x)− g(x0)

x− x0
≥ lim
n→+∞

g(xn)− g(x0)

xn − x0
≥ |B1|

d+1
d

γ
,

where γ is arbitrary chosen in

(
d(d+ 1)P (B1)

4λ1(B1)(λ1(B1)− d)
,+∞

)
.

This ends the proof. �

Lower behavior: In the next result, we study the stability of the ball for the minimality of λ1− c[P −P (B)]α in order
to have information about the behavior of the lower part of the diagram near the ball:

Theorem 3.19 Let B1 be the ball of radius 1 in Rd with d ≥ 2, and p > d.

1. Then there exists c > 0 and η > 0 such that

λ1(Bϕ1 )− λ1(B1) ≥ c
[
P (Bϕ1 )− P (B1)

]3/2
for every Bϕ1 such that |Bϕ1 | = |B1| and being nearly spherical with ‖ϕ‖W 2,p(Sd−1) ≤ η.

2. If however α ∈ (0, 3/2), then for any c > 0 and η > 0, there exists ϕ : Sd−1 → R such that

|Bϕ1 | = |B1|, ‖ϕ‖W 2,p(Sd−1) ≤ η, and λ1(Bϕ1 )− λ1(B1) < c
[
P (Bϕ1 )− P (B1)

]α
.

Remark 3 Such nearly spherical sets were considered by Fuglede in [27] where he was studying the stability of the
ball for the usual isoperimetric problem. See also [11] where the authors use nearly spherical sets when studying the
quantitative Faber-Krahn inequality, and [18] for a more general approach about stability among smooth deformations
of a given set.

Proof.

1. Let ϕ : Sd−1 → R such that |Bϕ1 | = |B1| and the barycenter of Bϕ1 is 0. From [27], there exists η1 > 0 and
C1 > 0 such that

P (Bϕ1 )− P (B1) ≤ C1‖ϕ‖2H1(Sd−1) if ‖ϕ‖W 1,∞(Sd−1) ≤ η1.

Moreover, using [18, Theorem 1.3 and Section 5.2] (see also [11, Theorem 3.3] in the context ofC2,α-perturbations),
there exists η2 > 0 and c2 > 0 such that

λ1(Bϕ1 )− λ1(B1) ≥ c2‖ϕ‖2H1/2(Sd−1) if ‖ϕ‖W 2,p(Sd−1) ≤ η2.

Therefore, setting η = min{η1, η2} and assuming ‖ϕ‖W 2,p(Sd−1) ≤ η, we get for c > 0:

λ1(Bϕ1 )− λ1(B1)− c
[
P (Bϕ1 )− P (B1)

]3/2
≥ c2‖ϕ‖2H1/2(Sd−1) − cC

3/2
1 ‖ϕ‖3H1(Sd−1),

but from a Gagliardo-Nirenberg type inequality (see for example [12]), we have that there exists C3, C4 > 0 such
that

‖ϕ‖H1(Sd−1) ≤ C3‖ϕ‖2/3H1/2(Sd−1)
‖ϕ‖1/3

H2(Sd−1)
≤ C4‖ϕ‖2/3H1/2(Sd−1)

‖ϕ‖1/3
W 2,p(Sd−1)

,

(we used p > d ≥ 2) therefore

λ1(Bϕ1 )− λ1(B1)− c
[
P (Bϕ1 )− P (B1)

]3/2
≥ ‖ϕ‖2H1/2(Sd−1)

[
c2 − cC3/2

1 C3
4‖ϕ‖W 2,p(Sd−1)

]
,

which is positive if ‖ϕ‖W 2,p(Sd−1) ≤ η is small enough.
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2. Assume to the contrary that for every ϕ : Sd−1 → R such that |Bϕ1 | = |B1| and ‖ϕ‖W 2,p(Sd−1) ≤ η, we have

λ1(Bϕ1 )− λ1(B1) ≥ c
[
P (Bϕ1 )− P (B1)

]α
,

where α ∈ [0, 3/2) and c > 0. We choose the origin as the center of B1 so that Bar(B1) = 0 where Bar denotes
the barycenter of a given shape. We also denote Vol : Ω 7→ |Ω|.
We now use the framework from [18], and in particular, if J denotes a shape functional, then J ′(B1), J ′′(B1)
denote respectively the first and second order derivatives of ϕ 7→ J(Bϕ1 ). From [18, Proposition 4.5] the perimeter
functional satisfies (ITH1,W 1,∞ ) which means there exists ω1 a modulus of continuity such that

P (Bϕ1 )− P (B1) = P ′(B1).ϕ+
1

2
P ′′(B1).(ϕ,ϕ) + ω1(‖ϕ‖W 1,∞(Sd−1))‖ϕ‖2H1(Sd−1).

Moreover, B1 is a stable critical shape of P under volume constraint and up to translations (see [18, Section 5.1]),
which means that there exists µ ∈ R a Lagrange multiplier such that

P ′(B1).ϕ = µVol′(B1).ϕ, ∀ϕ ∈W 1,∞(Sd−1)

and there exists c1 > 0 such that

(P−µVol)′′(B1).(ϕ,ϕ) ≥ c1‖ϕ‖2H1(Sd−1), ∀ϕ ∈W 1,∞(Sd−1) such that Vol′(B1).ϕ = 0 and Bar′(B1).ϕ = 0.

Therefore, one gets that there exists η1 > 0 such that for any ϕ ∈W 1,∞(Sd−1) satisfying

Vol′(B1).ϕ = 0, Bar′(B1).ϕ = 0 and ‖ϕ‖W 1,∞(Sd−1) ≤ η1,

one has

P (Bϕ1 )− P (B1) ≥ 1

2
(P − µVol)′′(B1).(ϕ,ϕ) +

µ

2
Vol′′(B1).(ϕ,ϕ)− c1

4
‖ϕ‖2H1(Sd−1)

≥ c1
2
‖ϕ‖2H1(Sd−1) − C1‖ϕ‖2L2(Sd−1),

for someC1 ∈ R (coming from the fact that Vol′′(B) is a continuous quadratic form on L2(Sd−1), see [18, Section
2.2]).

Similarly, from [18, Theorem 1.4] λ1 satisfies (ITH1/2,W 2,p ) and moreover B1 is a critical point of λ1 under
volume constraint, and λ′′1(B1) is a continuous quadratic form on H1/2(Sd−1), so there exists η2 > 0 such that
for any ϕ ∈W 2,p(Sd−1) satisfying

Vol′(B1).ϕ = 0, Bar′(B1).ϕ = 0 and ‖ϕ‖W 2,p(Sd−1) ≤ η2,

one has
λ1(Bϕ1 )− λ1(B1) ≤ C2‖ϕ‖2H1/2(Sd−1).

Therefore we get as above, setting η = min{η1, η2}:

∀ϕ such that ‖ϕ‖W 2,p(Sd−1) ≤ η, Vol′(B1).ϕ = 0, and Bar′(B1).ϕ = 0,

‖ϕ‖2H1(Sd−1) ≤ C‖ϕ‖
2/α

H1/2(Sd−1)
+ C̃‖ϕ‖2L2(Sd−1),

for some (C, C̃) ∈ R2
+. Using scaling, and looking at the expressions of Vol′(B1),Bar′(B1), we finally obtain:

∀ϕ such that
ˆ
Sd−1

ϕ = 0, and ∀i ∈ J1, dK,
ˆ
Sd−1

xiϕ(x) = 0,

‖ϕ‖2H1(Sd−1) ≤ Cη
2/α−2‖ϕ‖2−2/α

W 2,p(Sd−1)
‖ϕ‖2/α

H1/2(Sd−1)
+ C̃‖ϕ‖2L2(Sd−1). (30)

We want to get a contradiction by testing such interpolation inequality for an oscillating function ϕ. To that end
(see [55, pages 139-141] for more details), we denote Hk the space of spherical harmonics of degree k ∈ N (that
is, the restriction to Sd−1 of homogeneous polynomials in Rd, of degree k) and (Y k,l)1≤l≤dk an orthonormal basis
of Hk with respect to the L2(Sd−1) scalar product. The family (Y k,l)k∈N,1≤l≤dk is a Hilbert basis of L2(Sd−1),
so any function ϕ in L2(Sd−1) can be decomposed:

ϕ(x) =

∞∑
k=0

dk∑
l=1

αk,l(ϕ)Y k,l(x), for x ∈ Sd−1, with αk,l(ϕ) =

ˆ
Sd−1

Yk,lϕ.

Moreover, for s ∈ R+, ‖ϕ‖Hs(Sd−1) is equivalent to
(∑

k∈N(1 + k)2s
∑
l |αk,l|2

)1/2
.
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We therefore choose ϕk = Yk,1 for k ≥ 2. As H0 is made of constant functions and H1 = span(xi)i∈J1,dK, we
have

∀k ≥ 2,

ˆ
Sd−1

ϕk = 0 and ∀i ∈ J1, dK,
ˆ
Sd−1

xiϕk(x) = 0

so that (ϕk)k≥2 are admissible for (30). Moreover

∀s ≥ 0, ‖ϕk‖Hs(Sd−1) ∼
k→∞

ks, and ‖ϕk‖W 2,p(Sd−1) ≥ ‖ϕk‖H2(Sd−1)

so that (30) gives k2 = O(k4−4/αk1/α + 1) which contradicts the assumption α < 3/2 and concludes the proof.

�

Corollary 3.20 Take α ∈ (0, 3/2), d ≥ 2 and x0 = P (B1)

|B1|
d−1
d

, we have

lim inf
x→x0

f(x)− f(x0)

(x− x0)α
= 0.

Proof. Take c > 0. By the second assertion of Theorem 3.19, for every n ∈ N∗ there exists ϕn : Sd−1 → R such that

|Bϕn1 | = |B1|, ‖ϕn‖W 2,p(Sd−1) ≤
1

n
, and 0 ≤ λ1(Bϕn1 )− λ1(B1) < c×

[
P (Bϕn1 )− P (B1)

]α
.

The last inequality is equivalent to

0 ≤ |Bϕn1 |
2
dλ1(Bϕn1 )− |B1|

2
dλ1(B1) < c× |B1|

d+1
d

(
P (Bϕn1 )

|Bϕn1 |
d−1
d

− P (B1)

|B1|
d−1
d

)α
,

so, we get
0 ≤ f(xn)− f(x0) ≤ c× |B1|1+ 1

d (xn − x0)α,

where xn := P (Bϕn1 )/|Bϕn1 |
d−1
d −→

n→+∞
P (B1)/|B1|

d−1
d = x0, because ‖ϕn‖W 2,p(Sd−1) ≤ 1

n −→
n→+∞

0.

Thus, we can write

∀c > 0, 0 ≤ lim inf
x→x0

f(x)− f(x0)

(x− x0)α
≤ lim inf

n→+∞

f(xn)− f(x0)

(xn − x0)α
≤ c|B1|1+ 1

d .

Finally, we get the result lim inf
x→x0

f(x)−f(x0)
(x−x0)α = 0.

�

The most interesting part of Theorem 3.19 and Corollary 3.20 is that the exponent 3/2 was apparently unknown and
seems to be optimal (see Section 4); in the planar case d = 2, we actually improve the result of Corollary 3.20 and
retrieve the same exponent in a completely different (and independent) way, by studying the asymptotics of λ1 and P
for regular polygons:

Proposition 3.21 Let d = 2 and for n ≥ 3, denote Sn the regular n−gon with unit area (and again B denotes the disk
of unit area). We have: (

λ1(Sn)− λ1(B)
)
∼

n→∞
β0 ×

(
P (Sn)− P (B)

)3/2
,

with

β0 :=
4× 3

3
2 ζ(3)λ1(B)

π
15
4

,

where ζ : x ∈ (1,+∞) 7−→
∞∑
n=1

1
nx is the Riemann zeta function.

Proof. We take the asymptotic expansion of the fundamental frequency of regular polygons found in [45] :

λ1(Sn)− λ1(B) =
4ζ(3)λ1(B)

n3
+ o

(
1

n3

)
(31)

and

P (Sn)− P (B) = 2
√
n

√
tan

π

n
− 2
√
π =

π
5
2

3
× 1

n2
+ o

(
1

n3

)
. (32)

Then we can write:
λ1(Sn)− λ1(B)(
P (Sn)− P (B)

)3/2 ∼
n→+∞

4× 3
3
2 ζ(3)λ1(B)

π
15
4

= β0.

�
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This proposition allows us to get the following asymptotic property on f .

Corollary 3.22 Let d = 2, x0 and f defined in Section 3.2.4. Then

1. ∀α ∈ (0, 3/2), f(x)− f(x0) = o
(
(x− x0)α

)
,

in particular by taking α = 1, we get that f is differentiable at x0 and f ′(x0) = 0.

2. 0 ≤ lim inf
x→x0

f(x)−f(x0)
(x−x0)3/2

≤ lim sup
x→x0

f(x)−f(x0)
(x−x0)3/2

≤ β0.

Remark 3.23 Enlightened with the results of Theorem 3.19 and Corollary 3.20, which are stated for arbitrary dimen-
sions, we believe that the first assertion holds for d ≥ 2. Unfortunately, we did not manage to prove it because of the
lack of information on the asymptotic behaviour of xn := P (Bϕn1 )/|Bϕn1 |

d−1
d introduced in the proof of Corollary 3.20.

Proof. Take α ∈ (0, 3/2], we introduce the integer valued function which associates to x ∈
(
x0, P (S3)

)
the integer

nx := max{n ≥ 3, P (Sn) ≥ x}, note that lim
x→x0

nx = +∞.

We have:

0 ≤ f(x)− f(x0)

(x− x0)α
≤

f
(
P (Snx)

)
− f

(
P (B)

)(
P (Snx+1)− P (B)

)α (because x ≥ P (Snx+1) and f(x) ≤ f
(
P (Snx)

)
)

≤ λ1(Snx)− λ1(B)

(P (Snx+1)− P (B))α
(by the definition of f )

=
λ1(Snx)− λ1(B)(
P (Snx)− P (B)

)α × ( P (Snx)− P (B)

P (Snx+1)− P (B)

)α

∼
x→x0

4ζ(3)λ1(B)
n3
x(

π
5
2

3 ×
1
n2
x

)α ×
 π

5
2

3 ×
1
n2
x

π
5
2

3 ×
1

(nx+1)2

α

(by (31) and (32))

∼
x→x0

β0 ×
(
π5/2

3

1

n2
x

)3/2−α

(because nx −→
x→x0

+∞),

thus, if α ∈ (0, 3/2), we have lim
x→x0

f(x)−f(x0)
(x−x0)α = 0, which is equivalent to the first assertion. On the other hand if

α = 3/2, we get the proof of the second assertion. �

4 Further remarks and Conjectures

4.1 About DK2

Our theoretical and numerical studies highlight some remaining open problems about DK2 :

1. is it true that f and g defined in (14) and (15) are convex?

2. is it true that

g′(x0) =

√
π

3
λ1(B1)×

(
λ1(B1)− 2

)
and f(x)− f(x0) ∼

x→x0

c(x− x0)3/2

for some c > 0? These questions are closely related to the following: for γ >
√
π

3 λ1(B1) ×
(
λ1(B1) − 2

)
, can

we find c > 0 and V a neighborhood of B in K2
1 (for the Hausdorff distance) such that

∀Ω ∈ V, c(P (Ω)− P (B))3/2 ≤ λ1(Ω)− λ1(B) ≤ γ(P (Ω)− P (B)) ?

Proposition 3.16 and Theorem 3.19 shows that such inequalities are valid in a smooth neighborhood of B, but it
is well-known that achieving a similar result in a non-smooth neighborhood requires more work (see for example
[1, 28] and [18, Section 6]). We note that numerical evidence that will appear in [26] suggests that the optimal
value of the constant c is given by the β0 introduced in Proposition 3.21. It also supports that the inequality may
in fact be global, which means we conjecture the following inequality:

∀Ω ∈ K2
1, λ1(Ω)− λ1(B) ≥ β0 ×

(
P (Ω)− P (B)

)3/2
.

Remark 4.1 It is interesting to note that if we combine the conjectured inequality

λ1(Ω)− λ1(B) ≥ c
(
P (Ω)− P (B)

)3/2
, (33)
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with the famous quantitative isoperimetric inequality of [29], which affirms the existence of a constant αd , depending
only on the dimension d, such that for every Borel set Ω ⊂ Rd, one has

P (Ω)− P (B) ≥ αd ×A(Ω)2,

where A(Ω) is the so called Fraenkel asymmetry of the set Ω, we get that for every Ω ∈ K2
1

λ1(Ω)− λ1(B) ≥ cα3/2
d ×A(Ω)3.

The exponent 3 is not optimal, it is higher than the optimal one given in [11], where the authors prove that there exists
a dimensional constant σd such that for every open set Ω ⊂ Rd with unit measure, one has

λ1(Ω)− λ1(B) ≥ σd ×A(Ω)2. (34)

Nevertheless, we note that inequality (33) is stronger in some cases than (34). Indeed, if we take the regular polygons
(Sn) introduced in Proposition 3.21, we have by straightforward computations:

P (Sn)− P (B) ∼
n→∞

µ2 ×A(Sn),

where µ2 is a positive constant. Thus, for sufficiently large values of n, we have

λ1(Ω)− λ1(B) ≥ c
(
P (Sn)− P (B)

)3/2 ≥ c′ ×A(Sn)3/2,

where c′ is a positive constant. This shows that (34) is (in this case) weaker than the conjecture (33).

One could also wonder if we can improve our understanding of the shapes realizing the boundary of the diagram, that
is to say solutions of the optimization problems in Corollary 3.13. For example, one can state:

Conjecture 1 The regular polygons are on the lower part of ∂DK2 .

This result seems to be verified numerically. Using Theorem 3.9, we will observe however (see the proof below) that
this statement (regular polygons are on the lower boundary) is actually a stronger statement than Polya’s conjecture in
the restricted class of convex sets. Recall that this conjecture states that among polygons of fixed measure and whose
number of sides is bounded byN , the regularN -gon has the lowest first Dirichlet eigenvalue. This conjecture is expected
to be valid for any polygon, but even in the class of convex polygons, the result is not known (for N ≥ 5) and already
expected to be very challenging.

Indeed, let us take N ≥ 3 and denote Ω∗N the regular polygon of unit measure and N sides. By the isoperimetric
inequality for polygons (see [47, Theorem 5.1]), we have P (Ω) ≥ P (Ω∗N ), for every convex polygon Ω of unit measure
and at most N sides. Now, if we assume that the regular polygon Ω∗N is on the lower boundary of the diagram, that is to
say λ1(Ω∗N ) = f

(
P (Ω∗N )

)
, then by monotonicity of f , we conclude that: λ1(Ω∗N ) = f

(
P (Ω∗N )

)
≤ f

(
P (Ω)

)
≤ λ1(Ω),

with equality if and only if Ω is equal to Ω∗N up to rigid motions.

4.2 About DKd for d ≥ 3

As stated in the introduction, a major part of our results for convex sets are restricted to the planar case mainly because
some of the assertions of Lemma 3.5 are only given in dimension 2 and seem to be rather challenging to extend to higher
dimensions, see Remark 2. Nevertheless, we believe that once a similar result is proven for d ≥ 3, it would be possible
to apply the same strategy developed in the present paper to prove the following conjecture:

Conjecture 2 We denote x0 = P (B) where B is a ball of unit volume.

1. the diagram DKd is made of all points in R2 lying between the graphs of f and g, more precisely:

DKd =
{

(x, y) ∈ R2, x ≥ x0 and f(x) ≤ y ≤ g(x)
}
, (35)

where f and g are defined in (14) and (15).

2. functions f and g are continuous and strictly increasing.

4.3 About DSd where Sd is the class of simply connected domains
We decided to focus on two classes of domains, O the class of open domains in Rd, and Kd the class of convex domains
in Rd. But one could also focus on an intermediate class which is

Sd = {Ω ⊂ Rd, Ω is open, bounded and simply-connected}.

We give here some thoughts about the Blaschke-Santaló diagram of (λ1, P, | · |) in this class, denoted DSd : note first
that as for the class of open domains, there is uncertainty about the definition of the perimeter P . But since we are not
giving any specific statement here, we consider part of the investigation to decide in which way a change in the definition
of P may affect the shape of DSd .
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1. Assume first that d = 2: since inequalities (8) and (11) also hold for the class of planar simply connected domains,
the diagram DS2 is bounded from above by a continuous function, and therefore different from the diagram of
open sets DO described in Theorem 1.1. However, we expect that the lower boundary of the diagram is simply
given by the horizontal half line [P (B),+∞)× {λ1(B)}. More precisely we formulate:

Conjecture 3 There exists h a continuous and increasing function such that

DS2 = {
(
P (B), λ1(B)

)
} ∪ {(x, y) | x > P (B), λ1(B) < y ≤ h(x)}.

This is supported by the fact that we can find shapes with a high perimeter but whose first Dirichlet-eigenvalue is
close to the one of the ball, for example by adding a thin tail to a ball (see for example [20] for results on tailed
domains).

Finally, notice that we do not know whether we should expect h and g to be equal or not. This is probably also a
challenging question.

2. If we now assume d ≥ 3, the class of simply connected domains behave very differently. Actually, we can
introduce an even more restrictive class of domains, namely

S̃d = {Ω ⊂ Rd, Ω is open and homeomorphic to a ball}.

We believe that in this case we have
DSd = DS̃d = DO.

To support this conjecture, we refer to the construction described in [18, Remark 6.2] and inspired by [25].

3. It would also be interesting to study the diagram in the class of sharshaped domains. In dimension 2, it is not clear
whether we expect the diagram to be the same as the diagram for simply connected sets or not. In dimension higher
than 3 however, it would be more natural to expect that the diagram differs from the one of simply connected sets,
but we did not investigate this question yet.
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