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Abstract. In this paper, we provide an analytical formulation for the geometrico-
static problem of continuum planar parallel robots. This formulation provides to
an analytical computation of a set of equations governing the equilibrium con-
figurations. We also introduce a stability criterion of the computed configura-
tions. This formulation is based on the use of Kirchhoff’s rod deformation theory
and finite-difference approximations. Their combination leads to a quadratic ex-
pression of the rod’s deformation energy. Equilibrium configurations of a planar
parallel robot composed of two hinged flexible rods are computed according to
this new formulation and compared with the ones obtained with state-of-the-art
approaches. By assessing equilibrium stability with the proposed technique, new
unstable configurations are determined.

1 Introduction

The need of developing robots which can safely interact with their environments has
lead robotics researchers to design a new type of robot manipulators named contin-
uum robots [7]. Most of these mechanisms feature a serial architecture, in which rigid
bodies and joints are replaced by an assembly of slender rods deformed by wires, elec-
tromagnets, fluidic actuators or other types of actuation. Continuum robots, inspired by
biological systems such as trunks, tentacles, and snakes, have been used in many appli-
cations in which the problem of manipulation in confined, or hard-to-reach workspace,
is crucial, like minimally invasive surgery [8, 9, 11].

The concept of parallel continuum robots was introduced in [5,6]. These first works
dealt with the design of continuum Gough-Stewart-like platforms. The robot legs were
modeled by using the Cosserat rod theory, and the system of nonlinear ordinary differ-
ential equations characterizing the robot’s equilibrium configurations was solved by a
purely numerical approach (shooting method). More recently, several designs of con-
tinuum planar parallel robots (CPPRs) have been proposed [1–4], and their geometrico-
static problems were analyzed. These mechanisms were modeled by using the Kirch-
hoff’s rod theory, and the authors proposed a quasi-analytical description of the robot
equilibrium configurations. This quasi-analytical form was obtained under the strict
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condition that external wrenches can only be applied to the platform, and that the de-
formations are planar. Wrenches applied to other bodies cannot be handled, and spatial
robots cannot be modeled. Additionally, according to [1–5], stability analysis of equi-
librium configurations is not straightforward. Stability can be assessed according to the
numerical method introduced in [12].

In this paper, an alternative formulation stemming from a simpler mathematical
framework is introduced. Our approach allows analytical computation of the manipula-
tor’s total potential energy and of its geometrical constraint equations. The minimization
of the potential energy subject to geometrical constraints allows for the computation of
robot equilibrium configurations. Furthermore, equilibrium stability can be assessed by
computing the Hessian matrix of a Lagrangian function [10].

The paper is structured as follows. Section 2 deals with the analytical formulation
of the geometrico-static problems and with the computation of the Lagrange function
Hessian matrix for generic CPPRs. Section 3 focuses on the geometrico-static analysis
of a CPPR composed of two hinged flexible rods. Comparison of results obtained with
our approach and with the shooting method are provided. The stability analysis, based
on the positiveness of the Hessian matrix, is checked on known stable and unstable
equilibria. Further, previously undetected unstable configurations are determined. In
the last Section, conclusions are drawn.

2 Geometrico-static Modelling of CPPRs

2.1 Deformation energy of a planar slender rod

Let us consider an undeformed straight slender rod (Fig. 1(a)), made of an isotropic ma-
terial and having a constant cross-section along its longitudinal direction. By using the
Kirchhoff’s modeling assumption (shear and extensibility of the beam are neglected),
the deformation energy, when considering only deformations in the plane (Oxy), is
given by:

Ve =
1

2

∫ L

0

E Izz θ
′2 ds (1)

where E is the material Young’s modulus, Izz is the area moment of inertia of the
cross-section, θ′ = dθ/ds is the derivative of the rotation θ of the rod cross-section (see
Fig. 1(a)), L is the rod length, and s is the curvilinear abscissa along the rod.

It is possible to approximate the expression of θ′ by using finite differences [11].
For this, let us discretize the rod into N elements of equal length `e = L/N (Fig. 1(b)).
The expression of the deformation energy thus becomes:

Ve ≈
N∑
i=1

Vei, where Vei =
1

2

∫ `e

0

E Izz θ
′2
i ds (2)

with θ′i being the derivative of the rotation θi of the element i (Fig. 1(b)). The expression
of θ′i can be approximated by using finite differences as follows:

θ′i =
θi − θi−1

`e
, (3)
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Fig. 1. Parameterization of the deformation of a slender rod

with θ1 = θ0 if the rod is assumed to be clamped at its base (s = 0).
Then, introducing Eq. (3) into Eq. (2) leads to:

Vei =
1

2

E Izz
`e

(θi − θi−1)2 (4)

From Eq. (4), we can notice that the deformation energy is analogous to the energy of
a torsional spring of stiffness Keq = E Izz/`e located between elements i− 1 and i.

Now, considering external constant force fi and moment mi applied at node i4, the
potential energy associated to this loading is equal to:

Vli = −fTi (pi − p0
i )−mi (θi − θ0i ) = −

[
(pi − p0

i )
T θi − θ0i

]T
wi (5)

where (.)0 denotes the undeformed state [11], wi = [fTi mi]
T is the external loading,

and pi is the position of node i, which can be computed by the recursive formula:

pi = pi−1 + `e

[
cos θi
sin θi

]
, for i = 2, . . . , N, (6)

with p1 being a known position if the rod is clamped at s = 0.
Thus, the total potential energy of the rod, function of rotations θ1 to θN , is:

Vrod(θ1, ..., θN ) =

N∑
i=1

(Vei + Vli) + Vl,(N+1) (7)

2.2 Potential energy of CPPRs

Let us consider a CPPR composed of n continuum chains (called legs) (Fig. 2(a)). In
this paper, legs will be considered as identical, actuated by a revolute motor at one end
(points Ak, k = 1, ..., n) and attached to a rigid platform via passive revolute joints at
the other end (points Bk, k = 1, ..., n)5.

4 Gravitational loads were neglected for brevity sake, but they can be introduced into Eq. (5) as
nodal external actions fi and mi

5 Other types of joints could be considered as well, but we focus on revolute joints for the sake
of brevity.
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Fig. 2. Schematics of CPPR

The total potential energy of the CPPR is given by:

Vtot(qa,θ,p, φ) =

n∑
k=1

Vrodk(qak,θk,wk)− fT (p− p0)−m (φ− φ0) (8)

where Vrodk is the total potential energy of the leg k, which is a function of the rotations
θk = [θk2 . . . θkNk ]

T (θkj being the deformation of the element j for leg k, andNk be-
ing the number of elements for the same leg), of the motor variables qa = [qa1 . . . qan]

T

(qa1 = θk1), and of the nodal loadings wk = [wT
k1 . . .w

T
kN ] (wki is the nodal wrench

on the node i of the leg k), f is a constant force exerted on the robot platform, m is
a constant moment, p is the location of the force application point P , and φ is the
platform’s orientation (Fig. 2(a)). Moreover, θ = [θT1 , . . . ,θ

T
n ]
T .

Variables qa, θ, φ and p are related by the following geometric constraints:

Φk = pBk(p, φ)− pBk(qak,θk) = 0 (9)

where pBk is the location of the center of the platform’s revolute joint for the leg k, and

pBk(p, φ) = p+R(φ, z)pPBk , (10)

where R(φ, z) is the (planar) rotation matrix of angle φ around the z-axis and pPBk
the constant vector between points P and Bk in the platform frame, and pBk(θk) can
be computed from (6), starting from the known rod extremity located at point Ak. In
what follows, we denote as Φ the vector stacking all constraints Φk.

2.3 Geometrico-static model for CPPRs

Feasible robot configurations x = [θT pT φ]T are stable static equilibria for fixed motor
positions qa. They appears if and only if the robot internal configuration x leads to
a minimum of the potential energy Vtot. Lagrange conditions provide the following
characterization of local extrema. Under the condition that ∇xΦ(qa,x) is full rank, x
is a local extremum for a fixed motor position qa if and only if there exist multipliers
λ ∈ RnΦ (nΦ being the length of the constraint vector Φ) such that

∇xVtot(qa,x) +∇xΦ(qa,x)λ = 0, Φ(qa,x) = 0. (11)
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Note that the expression at the left-hand side of Eq. (11) is the gradient ∇xL(qa,x) of
the Lagrangian function

L(qa,x) = Vtot(qa,x) +Φ(qa,x)
Tλ (12)

The implicit geometrico-static model (11) is a system ofm equations (m = mx + nΦ,
wheremx is the dimension of x) andm+n unknowns. As a consequence, fixing n vari-
ables to desired values yields a square system, which generically has a finite number
of solutions. The forward geometrico-static problem (FGSP) consists in fixing the n
motor positions qa and computing n controlled coordinates, the uncontrolled coordi-
nates x and the Lagrange multipliers λ so that (qa,x,λ) = (qa,θ,p, φ,λ) is solution
to Eq. (11). The inverse geometrico-static problem (IGSP) consists in assigning the n
controlled coordinates (p, φ if n = 3, a subset of it if n < 3, and p, φ and some other
variables in θ if n > 3) and computing the corresponding n motor positions qa, the
remaining unknown variables in θ, and the Lagrange multipliers λ.

2.4 Equilibrium stability

At this stage, we do not know if the configuration qa and x solution of the geometrico-
static model (11) is stable or not. Without loss of generality, in what follows, we define
the stability conditions based on the FGSP equations.

Consider a set of solutions (q∗a,x
∗,λ∗) to Eqs. (11). The stability of the configura-

tion (q∗a,x
∗) can be checked by verifying the following second-order condition [10]:

Hp(q∗a,x
∗,λ∗) = ZTHZ � 0 (13)

in which:

– H = ∇x,xL(q∗a,x∗,λ∗) is the Hessian of the Lagrangian L (see (12)) with respect
to the variables in x computed for the configuration (q∗a,x

∗,λ∗)
– Z is the matrix that spans the null space of∇xΦ(q∗a,x

∗) computed at (q∗a,x
∗), i.e.

∇xΦ(q∗a,x
∗)Z = 0 (14)

2.5 Solver

It is generally impossible to find a closed-form solution for Eq. (11) because of its non-
linearity. Therefore, we use a trust-region algorithm. A multi-start procedure is used in
order to identify as many equilibria as possible, i.e. the algorithm is run several times
with a random selection of the initial guess.

3 Case study

In this Section, we study the CPPR composed of two rods presented in [1] (Fig. 2(b)).
It is called a RFRFR robot because it is composed of two actuated revolute (R) joints,
each being mounted on the ground and attached at one extremity of a flexible rod (F ).
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Fig. 3. Stable solution and computation time for solving the FGSP, for qa1 = 120 deg,
qa2 = 60 deg

Both flexible rods are connected at their tip through a passive revolute (R) joint. Param-
eters of the rods are: L = 1 m, circular cross-section of radius 1 mm, E = 210 GPa.
The distance `A1A2

between the two motors is `A1A2
= 0.5 m.

The aim of this study is not to perform a full geometrico-static evaluation of the
robot, but to illustrate the main capabilities of our method, namely the simple equilib-
rium evaluation and the straightforward stability analysis. First, we compute solutions
of the FGSP for qa1 = 120 deg, qa2 = 60 deg. We identify a single stable solution
(Fig. 3(a)). The evolution of the computational time with respect to the total number of
elements for this configuration is provided in Fig. 3(b). Results are provided for a CPU
Inter Core i7-6700HQ, 2.60 GHz, 8 Gb of RAM. The convergence time becomes high
(> 10 s) for a number of elements larger than 100. However, this convergence time is
also highly dependent on the initial guess. If the solution is close enough, the algorithm
converges in a few iterations.

Accuracy of the computed solutions for both the forward and inverse geometrico-
static problems is assessed in Fig. 4. We compare our results with those obtained by
the geometrically exact shooting method [5] directly applied to the set of differential
equations characterizing the robot. Obviously, the accuracy of our method is directly
related to the number of elements that we used. In general, a difference of less than
1 mm (for a robot composed of two rods of 1 m) on the prediction of the location of the
end-effector is obtained when the number of elements per leg exceeds 100.

Finally, we check the stability of the computed equilibria based on criterion (13).
All equilibria identified as stable in [1–4] (Figs. 3 and 4) lead to the positive-definiteness
of the Hessian, whereas the unstable equilibrium shown in [2] (Fig. 5(a)), did not sat-
isfy the condition (13). Based on the criterion (13), we are able to find more unstable
configurations (Fig. 5(b)) than those identified before.

These results show that our analytical formulation is consistent with state-of-the-art
methods in terms of configuration prediction, at the cost of a high number of elements.
However, contrary to previous approaches, it has the advantage of providing an analyti-
cal formulation of the problem, leading to a straightforward computation of the stability
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Fig. 4. Comparison of our method with respect to the shooting method [5] in terms of robot
configuration estimation, as a function of the number of elements Nelts per leg.
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checking criterion (13), for qa1 = 120 deg,
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Fig. 5. Unstable configurations.

condition. This formulation can be very useful for the singularity and stability analysis
of this type of robots, which is still an open research question.

4 Conclusion

In this paper, we provide an analytical formulation of the geometrico-static problem of
CPPRs, leading to an analytical computation of set of equations that must be solved
in order to find equilibrium configurations. We also provide a stability criterion. This
formulation is based on the use of the Kirchhoff’s rod theory, and the use of finite-
difference approximations. This formulation leads to a quadratic expression of the rod
deformation energy.

The solutions provided by our method were compared with the geometrically exact
solutions computed with the shooting method. Results show that, for having a good
prediction accuracy, a high number of elements must be used. However, the analytical
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formulation of the problem, leading to a straightforward computation of the stability
condition, is a major advantage, as it can be very useful for the singularity and stability
analysis of CPPRs which is still an open research question. In the future, the com-
plete analysis of the geometrico-static performance of several CPPRs, among which
the RFRFR robot, will be carried out with our method.
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