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Transience of a symmetric random walk in infinite measure

Timothée Bénard

Abstract

We consider a random walk on a second countable locally compact topological space endowed

with an invariant Radon measure. We show that if the walk is symmetric and if every subset which

is invariant by the walk has zero or infinite measure, then one has transience in law for almost

every starting point. We then deduce a converse to Eskin-Margulis recurrence theorem.
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Introduction

The starting point of this text is an article published by A. Eskin and G.
Margulis in 2004 which studies the recurrence properties of random walks
on homogenenous spaces [6]. Let G be a real Lie group, Λ Ď G a discrete
subgroup, and denote by X “ G{Λ the quotient space. A probability measure
µ on G induces a random walk on X, with transition probabilities pµ‹δxqxPX .
The two authors ask about the position of the walk at times n for large
values of n. They manage to show a surprising result : if G is a simple real
algebraic group and if Λ has finite covolume in G, then for every starting
point x P X, the sequence of probabilities of position pµ‹n ‹ δxqně0 has all its
weak-‹ limits of mass 1. One says there is no escape of mass. This reminds
the behavior of the unipotent flow highlighted by S.G. Dani and Margulis
[4, 7], who prove that the trajectories of a unipotent flow on X spend most
of their time inside compact sets of X. Eskin-Margulis’ result is actually the
starting point of a fruitful analogy leading to the classification of stationnary
probability measures on X, thanks to the work of Y. Benoist and J-F. Quint
[2, 3], followed by Eskin and E. Lindenstrauss [5]. They show that the Cesaro
averages n´1

řn´1

k“0 µ
‹k ‹ δx converge for every starting point x P X, with limit

either the Haar probability on X or some equiprobability on a finite set. The
very limited possible options reflect a phenomenon of rigidity, similar to the
one noticed by M. Ratner for the unipotent flow.

This text asks the question of a converse to Eskin-Margulis theorem:

Is the absence of escape of mass characteristic of random walks on homo-
geneous spaces of finite volume, or could it also happen for walks in infinite
volume?

We show that in finite volume and under reasonable conditions, there is
always escape of (all the) mass. More precisely, for almost every starting point
x P X, the sequence of probabilities of position pµ‹n ‹δxqně0 Cesaro-converges
to the zero measure.

Plus, the average can be removed if the walk is symmetric, i.e. if µ is
invariant under the inversion map : G Ñ G, g ÞÑ g´1.

Theorem 2.1. Let G be a semisimple connected real Lie group with finite cen-
ter, Λ Ď G a discrete subgroup of infinite covolume in G, and µ a probability
on G whose support generates a Zariski-dense subgroup of G.

Then for almost every x P G{Λ, one has the weak-‹ convergence :

1

n

n´1ÿ

k“0

µ‹k ‹ δx ÝÑ
nÑ`8

0 (1)
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Moreover, if the probability measure µ is symmetric, then the convergence
can be strengthened :

µ‹n ‹ δx ÝÑ
nÑ`8

0 (2)

This result of transience in law contrasts strongly with the article [9], in
which R. Prohaska studies the properties of punctual recurrence of a random
walk on a homogeneous space G{Λ. He notably shows that if the walk has
a density1 and if the space G{Λ carries a G-invariant Radon measure with
quadratic growth, then there is almost sure recurrence : for every starting
point x P G{Λ, almost every trajectory with origin x has a subsequence
converging towards x.

The convergence in average (1) of our result 2.1 essentially relies on Chacon-
Ornstein theorem and Howe-Moore theorem. The convergence (2) is more
delicate. The difficulty comes from the fact that the Markov operator Pµ :
f ÞÑ

ş
G
fpg.qdµpgq attached to the walk may have no spectral gap in infinite

covolume : its spectral radius on L2pG{Λq can be equal to 1. We circumvent
this problem using a theorem of convergence for backwards martingales and
obtain a very general statement, that does not rely on the algebraic frame of
homogenenous spaces.

Theorem 2.1 is thus a corollary of our Theorem 1.1 :

Theorem 1.1. Let X be a locally compact second countable topological space
equipped with a Radon measure λ, let Γ be a locally compact second countable
group acting continuously on X and preserving the measure λ, let µ be a
probability measure on Γ whose support generates Γ as a closed group.

If the probability measure µ is symmetric and if every measurable Γ-invariant
part of X has zero or infinite λ-measure, then for λ-almost every starting point
x P X, one has the weak-‹ convergence :

µ‹n ‹ δx ÝÑ
nÑ`8

0

To put it in a nutshell, a symmetric random walk on an infinite quasi-
ergodic space is always transient in law.

1i.e. is given by a probability measure µ on G which is not singular with the Haar measure on G.
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1 A general result for transience in law

1.1 Notations and statement of Theorem 1.1

Let X be a locally compact second countable topological space and λ a Radon
measure on X, i.e. a positive measure that is finite on compact subsets of X.
Let Γ be a locally compact second countable group acting continuously on X
and preserving the measure λ. Let µ be a probability measure on Γ whose
support generates Γ as a closed group.

This setting allows to define a random walk on X whose transition prob-
abilities are pµ ‹ δxqxPX . In other words, given a starting point x P X and a
measurable subset A Ď X, the probability to move from x to A in one step
is µtg P Γ, g.x P Au.

We now introduce a few terminologies :

• The probability measure µ is symmetric if µ “ i‹µ where i : Γ Ñ Γ, g ÞÑ
g´1 denotes the inverse map.

• The Markov operator Pµ attached to µ acts on the set of non-negative
measurable functions on X via the formula

Pµϕpxq :“

ż

G

ϕpgxqdµpgq

It extends into a contraction on the spaces LppX, λq for every p P r1,8s.

• A measurable subset A Ď X is Γ-invariant if for all g P Γ, one has
λpA∆gAq “ 0. This is equivalent to say that Pµ1A “ 1A λ-a.e. on X.

Let us check the equivalence stated in the definition of a Γ-invariant subset.
The point is to show the converse direction, so we consider a measurable subset
A Ď X such that Pµ1A “ 1A λ-a.e. on X. This means that for λ-almost every
x P X, µ-almost every g P G, one has 1Apgxq “ 1Apxq. Fubini theorem then
implies that for µ-almost every g P Γ, one has λpA∆gAq “ 0. The subgroup
D Ď Γ generated by such elements g is dense in Γ and leaves the set A λ-a.e.-
invariant. So we just need to check that the λ-a.e.-invariance is preserved by
taking limits. Let g P Γ, pgnq P DN such that gn Ñ g, let ϕ P C0

c pXq. By
dominated convergence,

ż

gnA

ϕdλ ´

ż

gA

ϕdλ “

ż

A

ϕpgn.q ´ ϕpg.q dλ ÝÑ
nÑ`8

0

We deduce that
ş

A
ϕdλ “

ş
gA
ϕdλ. As this is true for every ϕ P C0

c pXq, one

concludes that λpA∆gAq “ 0.

We now state the main result of this text, expressing that a symmetric
random walk on an infinite “quasi-ergodic” space is transient in law. The
proof is given in section 1.3.
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Theorem 1.1. Let X be a locally compact second countable topological space
equipped with a Radon measure λ, let Γ be a locally compact second countable
group acting continuously on X and preserving the measure λ, let µ be a
probability measure on Γ whose support generates Γ as a closed group.

If the probability measure µ is symmetric and if every measurable Γ-invariant
part of X has zero or infinite λ-measure, then for λ-almost every starting point
x P X, one has the weak-‹ convergence :

µ‹n ‹ δx ÝÑ
nÑ`8

0

Remarks.

1) The assumption on the measure λ implies that the Γ-orbit of λ-almost
every point of X is unbounded in X. There is equivalence if the action of Γ
preserves a distance inducing the topology on X.

2) Without the assumption of symmetry, the proof gives the convergence
in average

1

n

n´1ÿ

k“0

µ‹k ‹ δx ÝÑ
nÑ`8

0

We can not hope for the convergence of probabilities pµ‹n ‹δxqně0 if we remove
the hypothesis of symmetry. For example, let us consider SZ a Z–cover of
a hyperbolic compact surface. One can realize its unitary bundle T 1SZ as a
homogeneous space G{Λ whereG “ SL2pRq and Λ Ď G is a discrete subgroup.

Set µ “ δu1
where u1 :“

ˆ
1 1
0 1

˙
. The µ-walk on G{Λ is now a deterministic

process that corresponds to a discretized horocycle flow on T 1SZ. One can
check that every subset of T 1SZ which is invariant under the walk has zero
or infinite measure (direct consequence of Howe-Moore theorem, see proof of
Theorem 2.1). However, the walk is almost everywhere recurrent [1], so we
can not have the convergence µ‹n ‹ δx Ñ 0 for almost every x.

We now summarize the proof of Theorem 1.1. The key point is to
show that for λ-almost every starting point x P X, the sequence of position
probabilities pµ‹2n ‹ δxqně0 has a weak-‹ limit (which is a measure on X of
mass less or equal than 1). We obtain this using the symmetry of µ and a
theorem of convergence for backwards martingales, extended beforehand to a
context where measures are σ-finite. Once the convergence of pµ‹2n ‹ δxqně0

is established, we just need to check that the sequence of Cesaro averages
p 1

n

řn´1

k“0 µ
‹k ‹ δxqně1 weakly converges to the zero measure. This comes from

Chacon-Ornstein theorem and does not use the symmetry assumption on the
probability measure µ.

5



1.2 Backwards martingales

This section extends the convergence theorem for backwards martingales, well
known for probability spaces (“Lévy’s downward theorem”, [11], section 14.4),
to the case of σ-finite measure spaces. We will use it to prove Theorem 1.6.

First, let us recall the definition of conditional expectation.

Definition 1.2 (Conditional expectation). Let pΩ,Fq be a measurable space,
Q a sub-σ-algebra of F , and m a positive measure on pΩ,Fq whose restriction
m|Q is σ-finite. Then, for every function f P L1pΩ,F , mq, there exists a
unique function f 1 P L1pΩ,Q, mq such that for all Q-measurable subset A P Q,
one has mpf 1Aq “ mpf 1 1Aq. We denote this function by Empf |Qq.

We show the following.

Theorem 1.3 (Convergence a.s. of backwards martingales). Let pΩ,F , mq be
a measured space, pQnqně0 a decreasing sequence of sub-σ-algebras of F such
that for all n ě 0, the restriction m|Qn

is σ-finite. Then, for any function
f P L1pΩ,F , mq, there exists ψ P L1pΩ,F , mq such that we have the almost
sure convergence :

Empf |Qnq ÝÑ
nÑ`8

ψ (m-a.e.)

Remark. If the measure m is σ-finite with respect to the tail-algebra
Q8 :“

Ş
ně0 Qn, then Theorem 1.3 can be deduced from the probabilistic

case (by restriction to Q8-mesurable domains of finite measure), and we can
precise that ψ “ Empf |Q8q. On the extreme opposite, if the tail algebra
Q8 does not contain any subset of Ω with m-measure in s0,`8r, then, the
integrability of ψ implies that ψ “ 0.

The key point is lemma 1.4, that allows to control the ratio of two con-
ditional expectations in infinite measure by some conditional expectation in
finite measure.

Lemma 1.4. Let pΩ,F , mq be a measured space and Q Ď F be a sub-σ-algebra
such that m|Q is σ-finite. Let f, h P L1pΩ,F , mq be integrable functions with
h ą 0. Then one has almost sure equality :

Empf |Qq “ Emph|QqEhmp
f

h
|Qq (m-a.e.)

Proof. One can assume f ě 0. Denote

ϕ “ Empf |Qq, ψ “ Emph|QqEhmp
f

h
|Qq
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These are two non-negative Q-mesurable functions on Ω and we want to show
they coincide almost everywhere. As the measure m|Q is σ-finite, it is enough
to check they have the same integral on every Q-mesurable subset. Let A P Q.

ż

A

ψ dm “

ż

A

hEhmp
f

h
|Qq dm “

ż

A

f

h
dhm “

ż

A

ϕdm

Lemma 1.5. Keep the setting of Theorem 1.3 and assume moreover that
mpΩq “ `8. Let f P L1pΩ,F , mq be an integrable function with f ě 0. Then
for every ε ą 0,

mtlim supEmpf |Qnq ă εu ą 0

Proof. We fix a function h : Ω Ñs0,`8r which is measurable, positive,
bounded and satisfies mphq “ 1 (and will be adjusted later). Lemma 1.4
allows to write for n ě 0 :

Empf |Qnq “ Emph|QnqEhmp
f

h
|Qnq (m-a.e.)

On the one hand, Emph|Qnq ď ||h||8 m-a.e.
On the other hand, the convergence theorem for backwards martingales in

finite measure ([11], 14.4) asserts that

Ehmp
f

h
|Qnq Ñ Ehmp

f

h
|Q8q (m-a.e.)

This last function is non-negative and satisfies
ş

Ω
Ehmpf

h
|Q8q dhm “ ||f ||L1pmq,

giving the inequality

hmtEhmp
f

h
|Q8q ď 2||f ||L1pmqu ě

1

2

Combining the above observations, we proved the existence of some non-
zero measure subset of Ω on which

lim supEmpf |Qnq ď 2||h||8||f ||L1pmq (˚)

Let ε ą 0. As mpΩq “ `8, one can choose h from the start such that
||h||8 ă ε

2||f ||
L1pmq

and inequality p˚q then gives the expected result.

We conclude section 1.2 proving the convergence theorem for backwards
martingales in infinite measure.
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Proof of Theorem 1.3. One can assume f ě 0. Fix ε ą 0 and denote

Ω1 :“ tω P Ω, lim sup
nÑ`8

Empf |Qnqpωq ´ lim inf
nÑ`8

Empf |Qnqpωq ą εu

We need to show that mpΩ1q “ 0. Argue by contradiction assuming
mpΩ1q ą 0. As Ω1 is Q8-mesurable, one has for all n ě 0 the equality

Empf |Qnq|Ω1 “ Em|Ω1 pf|Ω1|Qn|Ω1q (m|Ω1-a.e.)

The convergence theorem for backwards martingales in finite measure and
the definition of Ω1 imply that mpΩ1q “ `8. Applying lemma 1.5 to the
restrictions Ω1, m|Ω1, pQn|Ω1qně0, f|Ω1, one deduces that

m|Ω1tlim supEmpf |Qnq ă εu ą 0

This contradicts the definition of Ω1 or the non-negativeness of f , which
together lead to lim supEmpf |Qnq ą ε m|Ω1-almost everywhere.

1.3 Convergence of back-and-forths and proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1 on the transience in law of
a random walk in infinite measure. The proof will use an extension of Rota’s
“alternierende verfahren” theorem (see [10]) to the case of random walks in
infinite measure (Theorem 1.6).

Given a probability measure µ on a group Γ, we shall denote by qµ :“ i‹µ

the image of µ under the inverse map i : Γ Ñ Γ, g ÞÑ g´1.

Theorem 1.6 (Convergence of back-and-forths). Let X be a locally compact
second countable topological space equipped with a Radon measure λ, let Γ
be a locally compact second countable group acting continuously on X and
preserving the measure λ, and let µ be a probability measure on Γ.

There exists a family of finite measures pνxqxPX P Mf pXqX such that for
λ-almost every x P X, one has the weak-‹ convergence :

pµ‹n ‹ qµ‹nq ‹ δx ÝÑ
nÑ`8

νx

Proof. The proof is inspired by the phenomenon of equidistribution of fibres
observed by Benoist-Quint in [3]. Denote

B :“ ΓN‹

, β :“ µN‹

, T : B Ñ B, pbiqiě1 ÞÑ pbi`1qiě1

the one-sided shift. One introduces a σ-finite fibred dynamical system pBX , βX , TXq
setting

• BX :“ B ˆ X

• βX :“ β b λ P MRadpB ˆ Xq
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• TX : BX Ñ BX , pb, xq ÞÑ pTb, b´1
1 xq.

Let B and X denote the borel σ-algebras of B and X. The borel σ-algebra
of BX is then the product algebra B b X . For all n ě 0, define the sub-σ-
algebra of the n-fibres of TX by setting

Qn :“ pTXq´npB b X q

It is a sub-σ-algebra of B b X such that for all c P BX , the smallest Qn-
mesurable subset of BX containing c is the n-fibre pTXq´npTXqnpcq. The
restriction βX

|Qn
is a σ-finite measure because βX is σ-finite with respect to

the σ-algebra B b X and is preserved by TX .

As a first step, we will fix a continuous function with compact support
f P C0

c pXq and show that the sequence pµ‹n ‹ qµ‹n ‹ δxqpfqqně0 converges in
R for λ-almost every x. To this end, we express pµ‹n ‹ qµ‹n ‹ δxqpfq using a
conditional expectation and we apply Theorem 1.3. Denote

rf : BX Ñ R, pb, xq ÞÑ fpxq, ϕn :“ EβX p rf |Qnq P L1pBX ,Qnq

We first give an explicit formula for the function ϕn. Intuitively, given a

point c “ pb, xq P BX , the value ϕnpcq stands for the mean value of rf on the
smallest Qn-measurable subset of BX containing c. By definition, this subset
is the n-fibre going through c and is identified with the product Γn under the
bijection

hn,c : Γn Ñ pTXq´npTXqnpcq, a “ pa1, . . . , anq Ñ paT nb, a1 . . . anb
´1
n . . . b´1

1 .xq

The following lemma asserts that ϕnpcq is nothing else than the mean value

of rf on pTXq´npTXqnpcq ” Γn with respect to the measure µbn.

Lemma 1.7. Let n ě 0. For βX-almost every pb, xq P BX, one has

ϕnpb, xq “

ż

Γn

fpa1 . . . anb
´1
n . . . b´1

1 xq dµbnpaq

Proof of lemma 1.7. This result is extracted from [3] (lemma 3.3). We recall
the proof. Up to considering separately the positive and negative parts of
f , one may assume f ě 0. Denote by ϕ1

n : BX Ñ r0,`8s the map defined
by the right-hand side of the above equation. We show it coincides almost
everywhere with ϕn by proving it also satisfies the axioms for the conditional
expectation characterizing ϕn.

As the value ϕ1
n at a point c P BX only depends on pTXqnpcq, the map

ϕ1
n is Qn-measurable. It remains to show that for every A P Qn, one has

the equality βXp1A
rfq “ βXp1Aϕ

1
nq. Writing A as A “ pTXq´npEq where

E P B b X and remembering the measure λ is preserved by Γ, one computes
that :
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βXp1Aϕ
1
nq “

ż

BˆXˆΓn

1Apb, xqfpa1 . . . anb
´1
n . . . b´1

1 xq dµbnpaqdβpbqdλpxq

“

ż

BˆXˆΓn

1EpT nb, b´1
n . . . b´1

1 xqfpa1 . . . anb
´1
n . . . b´1

1 xq dµbnpaqdβpbqdλpxq

“

ż

BˆXˆΓn

1EpT nb, xqfpa1 . . . anxq dµbnpaqdβpbqdλpxq

“

ż

BˆX

1EpT nb, xqfpb1 . . . bnxq dβpbqdλpxq

“

ż

BˆX

1EpT nb, b´1
n . . . b´1

1 xqfpxq dβpbqdλpxq

“ βXp1A
rfq

which concludes the proof of lemma 1.7.

Lemma 1.7 implies that for λ-almost every x P X,
ż

B

ϕnpb, xq dβpbq “ pµ‹n ‹ qµ‹n ‹ δxqpfq (˚˚)

But our Theorem 1.3 on convergence of backwards martingales asserts
the sequence of conditional expectations pϕnqně0 converges βX-almost-surely.
Noticing that ||ϕn||8 ď ||f ||8, the dominated convergence theorem and equa-
tion p˚˚q imply that for λ-almost every x P X, the sequence

ppµ‹n ‹ qµ‹n ‹ δxqpfqqně0

has a limit in R.

We deduce from the previous paragraph that for λ-almost every x P X,
the sequence of probability measures pµ‹n ‹ qµ‹n ‹ δxqně0 has a weak-‹ limit
(which is a measure on X whose mass is less or equal to one, and possibly
null). It is indeed a standard argument, that uses the separability of the
space of continuous functions with compact support on X equipped with the
supremum norm pC0

c pXq, ||.||8q, and the representation of non negative linear
forms on C0

c pXq by Radon measures (Riesz theorem). This concludes the
proof of Theorem 1.6.

We finish the section with the proof that a symmetric random walk on an
infinite quasi-ergodic space is always transient in law. Recall first the precise
statement.
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Theorem 1.1. Let X be a locally compact second countable topological space
equipped with a Radon measure λ, let Γ be a locally compact second countable
group acting continuously on X and preserving the measure λ, let µ be a
probability measure on Γ whose support generates Γ as a closed group.

If the probability measure µ is symmetric and if every measurable Γ-invariant
part of X has zero or infinite λ-measure, then for λ-almost every starting point
x P X, one has the weak-‹ convergence :

µ‹n ‹ δx ÝÑ
nÑ`8

0

Proof of Theorem 1.1. We just need to prove that for λ-almost every x P X,
one has the convergence µ‹2n ‹ δx ÝÑ 0. According to Theorem 1.6 and the
symmetry of µ, the sequence pµ‹2n ‹ δxqně0 converges to a finite measure, so it
is enough to check the following convergence in average : for λ-almost every
x P X,

1

n

n´1ÿ

k“0

µ‹n ‹ δx ÝÑ 0

As announced in section 1.1, we show this last convergence without using
the assumption of symmetry on µ. We need to check that for every non-
negative continuous function with compact support ϕ P C0

c pXq`,

1

n

n´1ÿ

k“0

P k
µϕ ÝÑ 0 ( λ-a.e.)

where Pµ denotes the Markov operator of the walk (see section 1.1).
Chacon-Ornstein theorem (cf [8]) implies that the sequence of functions

p 1
n

řn´1

k“0 P
k
µϕqně1 converges almost-surely to some function ψ : X Ñ R`. As

the functions P k
µϕ are uniformly bounded in L2pX, λq, Fatou lemma implies

that ψ is λ-integrable. Furthermore, the function ϕ being bounded, the dom-
inated convergence theorem applied to the probability space pΓ, µq gives the
Pµ-invariance

Pµψ “ ψ (λ-a.e.)

We now infer that ψ is Γ-invariant, meaning that for g P Γ, one has the
equality ψ ˝ g “ ψ λ-a.e. on X. To this end, observe that the Pµ-invariance
of ψ expresses ψ as a barycenter of translates ψ ˝ g :

ż

Γ

ψ ˝ g dµpgq “ ψ (λ-a.e.)

But the functions ψ ˝ g all are in L2pX, λq and have the same norm as ψ. The
strict convexity of balls in a Hilbert space then gives for µ-almost every g P Γ,
the equality ψ ˝ g “ ψ λ-almost everywhere. As the support of µ generates Γ
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as a closed subgroup, we infer by a method already discussed in section 1.1,
that for all g P Γ, one has ψ˝g “ ψ λ-a.e., which is the Γ-invariance annonced
above.

The Γ-invariance of ψ implies that for every constant c ą 0, the set tψ ą cu
is Γ-invariant, so has zero or infinite λ-measure by hypothesis. As ψ2 is
integrable, we must have λtψ ą cu “ 0. Finally, we get that ψ “ 0 λ-almost
everywhere, which finishes the proof.

2 Application : A converse to Eskin-Margulis recur-

rence theorem

2.1 Statement of Theorem 2.1

We use Theorem 1.1 to show that a Zariski-dense symmetric random walk
on a homogeneous space G{Λ of infinite volume is transient in law (Theo-
rem 2.1). The difficulty lies in the fact that the Markov operator Pµ of the
walk may not have a spectral grap, meaning its action on L2pG{Λq may have
a spectral radius equal to 1. Our result can be seen as a converse to Eskin-
Margulis recurrence theorem stating that a “Zariski-dense random walk on a
homogeneous space with finite volume is uniformly recurrent in law”.

Theorem (Eskin-Margulis, 2004, [6]). Let G be a semisimple connected real
Lie group with finite center, Λ Ď G a lattice, µ a probability measure on G

whose support is compact and generates a Zariski-dense subgroup of G.
Then the random walk on G{Λ induced by µ is uniformly recurrent in law.

We explain the above terminology :

A subgroup of G is Zariski-dense if it is dense from an algebraic point
of view. More formally, denote by g the Lie algebra of G, and Ad : G Ñ
Autpgq, g ÞÑ Tepg.g´1q its adjoint representation. A subgroup Γ Ď G is
Zariski-dense if every polynomial function on the space of endomorphisms
of g that vanishes on AdpΓq also vanishes on AdpGq.

The uniform recurrence in law means that if K is some big enough compact
subset of G{Λ, then for every starting point x P G{Λ, the µ-walk starting from
x will have a very strong probability to be in K at time n, as long as n is large
enough. More formally, we ask that for every ε ą 0, there exists a compact
subset K Ď G{Λ such that for every x P G{Λ, there exists a rank Nx ě 0
such that if n ě Nx then µ‹n ‹ δxpKq ě 1 ´ ε.

We show the following converse to Eskin-Margulis theorem :

12



Theorem 2.1. Let G be a semisimple connected real Lie group with finite cen-
ter, Λ Ď G a discrete subgroup of infinite covolume in G, and µ a probability
on G whose support generates a Zariski-dense subgroup of G.

Then for almost every x P G{Λ, one has the weak-‹ convergence :

1

n

n´1ÿ

k“0

µ‹k ‹ δx ÝÑ
nÑ`8

0 (1)

Plus, if the probability measure µ is symmetric, then the convergence can
be strengthened :

µ‹n ‹ δx ÝÑ
nÑ`8

0 (2)

Remarks. 1) Theorem 2.1 is still true under the more general assumption
that the subgroup generated by the support of µ has unbounded projections
in the non-compact factors of G (see the proof).

2) Whether or not µ is symmetric, we get for almost every x P G{Λ the
existence of an extraction σ : N Ñ N such that

µ‹σpnq ‹ δx Ñ
nÑ`8

0

Hence, the phenomenon observed by Eskin and Margulis can not happen in
a context of infinite measure.

3) Theorem 2.1 describes the asymptotic behavior of probabilities of posi-
tion for almost every starting point x P G{Λ. One may not hope for transience
in law for every starting point as it is possible that the orbit Γ.x is finite.

4) It is reasonable to believe that convergence (2) could hold without as-
sumption of symmetry on µ.

2.2 Proof of Theorem 2.1

Theorem 2.1 is a consequence of Theorem 1.1 and the remark 2) that follows.
To apply these, we need to check that the Haar measure on G{Λ gives zero or
infinite mass to any subset invariant by the walk. This will be a consequence
of Howe-Moore theorem. First recall its statement (cf. [12], Theorem 2.2.20)
:

Theorem (Howe-Moore). Let G be a semisimple connected real Lie group
with finite center, and π a continuous morphism from G to the unitary group
of a separable Hilbert space pH, x., .yq. Assume that every factor Gi of G has
a trivial set of fixed points, i.e. HGi :“ tx P H, Gi.x “ xu is t0u.

Then for every v, w P H, one has

xπpgq.v, wy Ñ
gÑ8

0
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In the above statement, the notation g Ñ 8 means that g leaves every
compact subset of G. Also recall the definition of factors of G we will use in
the sequel. Denote by g the Lie algebra of G. It can be uniquely decomposed
as a direct sum of simple ideals : g “ g1 ‘ ¨ ¨ ¨ ‘ gs. The factors of G
are the immersed connected subgroups G1, . . . , Gs of G whose Lie algebras
are g1, . . . , gs. They are closed in G and commute mutually : for i ‰ j P
t1, . . . , su and gi P Gi, gj P Gj one has gigj “ gjgi. Lastly, the product map
π : G1 ˆ ¨ ¨ ¨ ˆGs Ñ G, pg1, . . . , gsq ÞÑ g1 . . . gs is a morphism of groups which
is onto and has finite kernel. In the sequel, we will say that a subgroup Γ Ď G

has unbounded projections in the factors of G if for every i P t1, . . . , su, the
projection of π´1pΓq Ď G1 ˆ ¨ ¨ ¨ ˆ Gs in Gi is unbounded

Howe-Moore theorem implies a lemma of rigidity.

Lemma 2.2. Let G be a semisimple connected real Lie group with finite
center, Γ Ď G a subgroup with unbounded projections in the factors of G.
Let pH, ρq be a unitary representation of G on a separable Hilbert space.

If HG “ t0u then HΓ “ t0u

Proof of lemma 2.2. Denote by G1, . . . , Gs the factors of G. Up to pulling
back the representation of G by the product map π : G1 ˆ ¨ ¨ ¨ ˆ Gs Ñ
G, pg1, . . . , gsq ÞÑ g1 . . . gs, one may assume that G is a direct product of
quasi-simple2 connected real Lie groups with finite center G “ G1 ˆ ¨ ¨ ¨ ˆGs.
Assume s “ 2. The hypothesis HG “ t0u implies that HG1 X HG2 “ t0u.
Thus, we can decompose

H “ HG1 ‘ HG2 ‘ H1

where H1 is the orthogonal of HG1 ‘ HG2 in H. Moreover, each subspace
is invariant by G. Let v P H be a Γ-invariant vector. Decompose v as
v “ v1 ` v2 ` v1 with vi P HGi , v1 P H1. The representation of G on H leads
to a unitary representation of G2 on HG1 and the Γ invariance of v implies
that v1 is invariant under p2pΓq, projection of Γ on the factor G2. As p2pΓq
is unbounded in G2, one can apply Howe-Moore theorem to obtain v1 “ 0.
In the same way v2 “ 0. Thus v “ v1 P H1. The representations of G1 and
G2 induced by G on H1 have no non-trivial fix point. Hence, we can apply
Howe-Moore theorem one more time to infer that v1 “ 0. Finally, HΓ “ t0u.

For the general case where s ě 1, argue by induction on s using the previous
method and the decomposition of H as HG1ˆ¨¨¨ˆGs´1 ‘ HGs ‘ H1.

We infer from the last lemma that for a group G with no compact factor,
the Haar measure on G{Λ is “quasi-ergodic”.

2A real Lie group is said to be quasi-simple if its Lie algebra is simple.
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Lemma 2.3. Keep the setting of Theorem 2.1 and assume the group G has
no compact factor. Let Γ be the smallest closed subgroup of G that contains
the support of µ, and λ a Haar measure on G{Λ.

Then every Γ-invariant subset of G{Λ has zero or infinite λ-measure.

Remark. In finite volume, the action of Γ on the homogeneous space G{Λ
has no reason to be ergodic for the Haar measure. This is obvious if Λ is the
trivial subgroup, but we can also construct examples where Λ is Zariski-dense.
To this end, denote by D the Poincaré disk, set G “ SL2pRq ” Isom`pDq ”
T 1

D, and consider a Schottky subgroup S0 Ď G whose limit set L0 on the
boundary of D is contained under four geodesic arcs, which are disjoint and
small enough. Set Γ “ Λ “ S0. For some non-zero measure subset of unitary
vectors x P T 1

D, the set ĎxΛ X BD “ xL0 does not intersect the limit set L0

of Γ. Given such an x and looking in the quotient space, the orbital map
Λ Ñ ΓzG, g ÞÑ Γxg is proper, so its image can not be dense. Thus, the right
action of Λ on ΓzG is not ergodic, or equivalently, the left action of Γ on G{Λ
is not ergodic.

Proof of lemma 2.3. Argue by contradiction assuming the existence of some
Γ-invariant measurable subset A Ď G{Λ such that λpAq Ps0,`8r. Consider
the regular unitary representation of G on L2pG{Λq, given by the formula
g.f “ fpg´1.q. The caracteristic function 1A P L2pG{Λq is a non-zero fix
point for the action of Γ. As G has no compact factor, lemma 2.2 and the
Zariski-density of µ imply there exists a non-zero fix point ϕ P L2pG{Λq for
the action of G. Such a functon is λ-a.e. constant, implying that λ has finite
mass. Absurd.

We conclude by the proof of Theorem 2.1, converse to Eskin-Margulis re-
currence theorem.

Proof of Theorem 2.1. Assume first that the group G has no compact factor.
If the probability measure µ is symmetric, then convergence (2) comes from
lemma 2.3 and Theorem 1.1. If there is no assumption of symmetry, we
still get the convergence in Cesaro average (1) via the remark 2q following
Theorem 1.1.

We now explain how to reduce Theorem 2.1 to the case where G has no
compact factor. Denote by G1, . . . , Gs the factors of G, and π the induced
finite cover of G, i.e. π : G1 ˆ ¨ ¨ ¨ ˆ Gs Ñ G, pg1, . . . , gsq ÞÑ g1 . . . gs. There
exists a probability measure rµ on Πs

i“1Gi whose support is π´1psupp µq and
such that the rµ-walk on Πs

i“1Gi{π
´1pΛq lifts the µ-walk on G{Λ. It is enough

to show our result of transience for this rµ-walk. Denote by G1, . . . , Gk the
non compact factors of G and p : Πs

i“1Gi Ñ Πk
i“1Gi, pgiqiďs ÞÑ pgiqiďk the

projection on their product (notice that k ě 1 otherwise G would have a

15



discrete subgroup of infinite covolume). Then the projection ppπ´1pΛqq is a
discrete subgroup of infinite covolume in Πk

i“1Gi. It is enough to prove our
result of transience for the image p‹rµ on Πk

i“1Gi. But this probability measure
is Zariski-dense. Hence, we have reduced Theorem 2.1 to the case of a group
with no compact factor, which finishes the proof.
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