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Abstract 24 

Fire disturbance is a significant component of the climate system. Analysis of satellite-25 

derived burned areas has allowed the identification of fire patches and their morphology as a 26 

new resource for tracking fire spread to improve fire models used to assess the impact of 27 

fires on climate and the carbon cycle. A critical parameter of the flood-fill algorithm used to 28 

create fire patches is the cut-off (in days) below which it aggregates two contiguous burned 29 

pixels to the same fire patch. However, the current level of validation is insufficient to 30 

understand the effect of the cut-off values and sensor resolutions on the subsequent fire-31 

patch morphology. The FRY v1.0 database of functional fire-patch traits (e.g., size, 32 

elongation, and direction) emanates from the analyses of two global burned-area products 33 

derived from MODIS and MERIS sensors with different spatial and temporal resolutions and 34 

with cut-off values of 3, 5, 9, and 14 days. To evaluate whether the FRY products are 35 

conserving the spatial features of fire patches and what are the most realistic cut-off values 36 

to use in different sub-regions of North America, we propose a new functional diversity trait-37 

based approach, which compares the satellite-derived fire patches to forest service 38 

perimeters as reference data. This paper shows the accuracy of the FRY fire patches ≥ 300 39 

ha in North America during 2005–2011. Our analysis demonstrates that fire patches with a 40 

high cut-off of 14 days and those derived from MODIS sensors, with their high temporal 41 

resolution, better conserve the fire diversity in North America. In conclusion, our statistical 42 

framework can be used for assessing satellite-derived fire patches. Furthermore, the 43 

temporal resolution of satellite sensors is the most important factor in identifying fire patches 44 

— thus space agencies should consider it when planning the future development of cost-45 

effective climate observation systems. 46 

1. Introduction 47 

Fire is the source of approximately one third of aerosol, greenhouse gas and other trace gas 48 

emissions. This biomass burning leads to major effects on the abundance and diversity of 49 
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vegetation, carbon and water cycling, and as a result, the overall climate system (Andreae, 50 

2019; Andreae and Merlet, 2001; Bowman et al., 2009; van der Werf et al., 2010). Spatial 51 

and temporal monitoring of fire disturbances is thus essential to benchmark the fire models 52 

used to assess fire-climate feedbacks and the impact of fires on climate and the carbon 53 

cycle. Indeed, fire disturbance is one of the Essential Climate Variables (ECVs) that is listed 54 

by the Global Climate Observation System (GCOS) as a critical component in the climate 55 

system (WMO, 2016). 56 

Out of the different satellite-derived fire disturbance products, burned areas are the most 57 

commonly used for the development and evaluation of fire modules embedded in Dynamic 58 

Global Vegetation Models (DGVMs) (Bistinas et al., 2014; Hantson et al., 2016; Mouillot et 59 

al., 2014). However, burned-area products alone do not allow a process-oriented 60 

development of fire modules. For instance, a bias of ignition numbers can compensate a 61 

bias of fire size in a model, and still match observed burned area (e.g., Yue et al., 2014). 62 

One critical aspect of fire modules not yet evaluated on a systematic basis is how they 63 

simulate the spread of fires. Many models simulate fire spread based on Rothermel’s 64 

equation (Rothermel, 1972). This equation assumes that fires form an ellipse of burned area 65 

centred on each ignition point — it assumes homogeneous vegetation and topography, and 66 

a constant wind direction (Rabin et al., 2017). 67 

Fire-patch products have emerged from pixel-level burned-area products. These fire-patch 68 

products work on the principle that contiguous burned pixels occurring during the same 69 

period of time can be aggregated into a single patch. The critical parameter in those 70 

algorithms is called the cut-off (in days), defined as the maximum time period below which 71 

consecutive neighbouring burned pixels can be grouped into the same patch. For example, 72 

at the continental or local scale, Archibald and Roy (2009), and Nogueira et al. (2017) used 73 

a cut-off of 8 days in Africa and central Brazil respectively, while Fusco et al. (2019) used a 74 

cut-off of 9 days in the United States. At the global scale, Hantson et al. (2015) used a cut-75 

off of 14 days, while Laurent et al. (2018a) tested cut-offs of 3, 5, 9, and 14 days to produce 76 
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the global FRY v1.0 fire-patch functional traits database. A source of uncertainty in the 77 

determination of the cut-off parameter arises from the fact that burned areas derived from 78 

low Earth orbit satellite observations are not continuous in time. For example, the presence 79 

of clouds may mask burned-area pixels that occur between two consecutive observations 80 

with clear-sky conditions as implemented in new algorithms accounting for uncertainty in the 81 

date-of-burning (Andela et al., 2019; Campagnolo et al., 2019; Oom et al., 2016). 82 

Geostationary satellites might be better, but they are still affected by persistent clouds. The 83 

arbitrary choice of a cut-off value in fire-patch products and the current lack of assessment 84 

of their uncertainties (Boschetti et al., 2019; Padilla et al., 2014) hinders the use of these 85 

products for quantitative evaluation of fire models.  86 

Assessment of uncertainties in satellite-derived ECVs is essential if they are to be used 87 

effectively in climate modelling (WMO, 2016). Two assessments (validation and 88 

intercomparison) are required by GCOS: where validation is the process of assessing the 89 

accuracy of satellite-derived products using independent reference data (Boschetti et al., 90 

2006). Based on the GCOS scientific and technical requirements, the Land Product 91 

Validation (LPV) subgroup of the Committee on Earth Observation Satellites (CEOS) 92 

Working Group on Calibration and Validation (WGCV) is developing protocols for the 93 

assessment of uncertainties in products based on satellite observations at five different 94 

validation stages (Boschetti and Justice, 2009). Considerable effort has been put into the 95 

validation of moderate spatial resolution burned-area products at the global scale, reaching 96 

CEOS validation stage 3 (Padilla et al., 2014). The validation relies on the acknowledged 97 

cross-tabulation approach of quantifying omission and commission errors in addition to the 98 

overall accuracy using high-resolution imagery as reference data. (Boschetti et al., 2006). 99 

However, the evaluation does not cover fire-patch morphology, which is needed to model 100 

fire spread processes. Fire spread can be subject greater error than is found in burned area, 101 

because pixels may be wrongly committed or omitted particularly at the fire-patch edge 102 

(Humber et al., 2019). 103 
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At the local scale, in central Brazil, Nogueira et al. (2017) assessed overlapping fire patches 104 

using high-resolution Landsat imagery as reference data and estimated patch-to-patch 105 

correlations of their morphological features. In a similar approach, Chuvieco et al. (2018, 106 

2016) used forest service perimeters, while Andela et al. (2019) used high-resolution 107 

imagery and fire duration by combining perimeters of fire patches using VIIRS active fire 108 

detection. Fusco et al. (2019) assessed the positive and negative rates of detection between 109 

fire patches and forest service reports in the United States. In this study, we propose an 110 

original statistical framework for fire ecology, to probe the spatial conservation of fire-patch 111 

morphology across sensors. 112 

We evaluated the fire-patch functional traits products provided in the global FRY v1.0 113 

database described by Laurent et al. (2018a). This database allows series of data to be 114 

calculated with different cut-offs of 3, 6, 9, and 14 days from two global burned-area 115 

products: MERIS Fire_cci version 4.1 (FireCCI41; Chuvieco et al., 2016) and MODIS 116 

MCD64A1 collection 6 (MCD64A1; Giglio et al., 2018). The MERIS and MODIS sensors 117 

have different temporal (~1 day with MODIS to 3 days with MERIS) and spatial (~300 m with 118 

MERIS to 500 m with MODIS) resolutions. These contrasting temporal and spatial 119 

resolutions allowed us to examine whether a higher temporal resolution or a higher spatial 120 

resolution leads to the best evaluation performance, and to specify future requests for new 121 

global burned-area developments. This issue is still open because Laurent et al. (2018a) 122 

performed only an intercomparison between the two sensors — i.e., they performed a CEOS 123 

validation stage 0, but no evaluation. 124 

To assess whether the FRY products (Laurent et al., 2018a) provide realistic fire-patch traits, 125 

we applied a new functional diversity trait-based approach widely used in species 126 

assemblage comparative studies (Mouillot et al., 2013; Villéger et al., 2013, 2008). The 127 

approach compares the functional space built on morphological traits of individual fire 128 

patches, of assemblages of fire patches ≥ 300 ha from the two FRY products with cut-offs of 129 

3, 5, 9, and 14 days to reference data derived from forest service perimeters (Canadian 130 
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Forest Service, 2014; U.S. Geological Survey, 2017) in North America during the period 131 

2005–2011. This method is now considered as a statistical reference framework in 132 

community ecology; we tested its efficiency when applied to fire-patch assemblages defined 133 

by their morphological traits. We examined whether the FRY-FireCCI41 product based on 134 

the MERIS sensor with a lower temporal resolution and a higher spatial resolution is better 135 

or worse than the FRY-MCD64A1 based on the MODIS sensor regarding fire-patch 136 

diversity; and what are the most realistic cut-off parameter values to use in different sub-137 

regions of North America.  138 

2. Methods 139 

2.1. Data 140 

2.1.1. FRY v1.0 database 141 

FRY is a global database of fire patches, defined by their morphological features, also 142 

known as their functional traits. These features are established from two satellite-derived 143 

pixel-level burned-area products and computed with four cut-off values (Laurent et al., 144 

2018a, 2018b). The two FRY products correspond to the processing of global burned-area 145 

products from FireCCI41 and MCD64A1. Both burned-area products overlapped during the 146 

2005–2011 time period. MCD64A1 (Giglio et al., 2018) is based on the MODIS sensor 147 

aboard the Terra and Aqua satellites, with a spatial resolution of 500 m and a temporal 148 

resolution of one day. It was created by hybrid algorithms that combine thermal information 149 

from the MODIS MCD14A1 collection 6 active fire product (Giglio et al., 2016) and post-fire 150 

reflectance. FireCCI41 (Chuvieco et al., 2016) uses the post-fire reflectance from the MERIS 151 

sensor, aboard the Envisat satellite with a spatial resolution of 300 m at nadir and a temporal 152 

resolution of three days.  153 

The flood-fill algorithm used to determine the FRY patches aggregates neighbouring burned 154 

pixels with differences in the date-of-burning below a given time threshold, defined as cut-off 155 

values of 3, 5, 9, and 14 days. If the time elapsed between the date-of-burning of two 156 
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neighbouring pixels exceeds the cutoff value, a new fire patch is created (Laurent et al., 157 

2018a). FRY also aims to provide functional fire-patch traits as morphological descriptors 158 

relevant to the underlying spreading processes (Laurent et al., 2018a). For example, the 159 

traits include size and geometric features such as morphological complexity, as well as the 160 

elongation and direction of an ellipse fitted to each fire patch. We considered only fire 161 

patches ≥ 300 ha, because of the inaccurate morphologies of smaller patches (Nogueira et 162 

al., 2017), and higher omission and commission errors for small fires in burned-area 163 

products both globally (Padilla et al., 2015; Randerson et al., 2012; Roteta et al., 2019), and 164 

in North America (Sparks et al., 2015). 165 

2.1.2. Reference data 166 

As reference data, we used fire patches from the Canadian National Fire Database (CNFD; 167 

Canadian Forest Service, 2014) and the Wildland Fire Perimeters Database (WFPD; U.S. 168 

Geological Survey, 2017) recorded during the 2005–2011 period coincident with the FRY 169 

products. CNFD and WFPD provide homogeneous high spatial resolution daily fire-patch 170 

data collected by different agencies from ground measurements, aerial products or high-171 

resolution satellite sensors. They have been used previously as reference data for validation 172 

exercises based on their standard data assemblage protocol over North America (Chuvieco 173 

et al., 2018). We checked both CNFD and WFPD fire patches to remove fire duplicates at 174 

interstate borders or the border between the United States and Canada, and those recorded 175 

by different agencies within the same country. Similarly, we also removed fire patches from 176 

WFPD empirically drawn as circles around active fires identified by MODIS sensors. We also 177 

grouped into a common patch some fires that had been split into spatially distinct patches in 178 

these databases; this process makes them compatible with the way FRY treats patches. To 179 

create the reference data, we rasterized CNFD and WFPD fire patches ≥ 300 ha to the 180 

spatial resolutions of each FRY product (i.e., 300 m and 500 m), and derived their functional 181 

traits following the same approach as in FRY (Laurent et al., 2018a). 182 
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2.2. Functional diversity trait-based approach 183 

To assess the agreement between the FRY products and the reference data, we adopted 184 

the functional diversity trait-based statistical framework proposed by Mouillot et al. (2013) 185 

and Villéger et al. (2013, 2008). This approach was initially developed in functional ecology 186 

to compare ecological communities (assemblages of individuals defined by their functional 187 

traits and abundances) based on functional traits (i.e., characteristics of organisms related 188 

by their functions, e.g., plant height for light interception; Garnier et al., 2016). We applied 189 

this framework to compare fire-patch products by considering each fire-patch product as a 190 

community and each fire patch as an individual defined by its morphological traits. This 191 

approach complements the usual omission and commission errors performed for accuracy 192 

assessment. Low commission and omission errors ensure most burned pixels are identified, 193 

and in turn, that fire patched overlap between products. Comparing fire-patch morphology 194 

reinforces this information by quantifying how the remaining small omission and commission 195 

errors affect burned pixels at the fire-patch boundary and in turn modify fire shapes. The 196 

approach includes four steps (Fig. 1). 197 
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 198 

Fig. 1: Theoretical functional diversity trait-based approach adapted from Mouillot et al. 199 

(2013) and Villéger et al. (2013, 2008) to assess satellite-derived fire patches in four steps. 200 

Functional trait (Ftrait) is a morphological feature of the fire patch. Functional diversity indices 201 

(FDIs) include functional fire-patch number (Ffp), functional richness (Fric) and functional 202 
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dispersion (Fdis). Continental scale tile-to-tile Standardized Major Axis (SMA) regression of 203 

FDIs, and tile-level functional beta diversity (Fβ), functional turnover (Fturn) and functional 204 

nestedness (Fnest) were used in the assessment. For a simple graphical display, the first step 205 

shows tiles from only one product and the reference data. Similarly, the second, third and 206 

fourth steps show a functional space. This space has only two functional traits in one tile; in 207 

addition, the third step-Fric and the fourth steps show convex hull volumes as a circle. A 208 

Venn diagram illustrates these cases. 209 

2.2.1. First step: sample the fire-patch products 210 

To sample the fire-patch products by 2° tiles across the continent, we grouped the list of fire 211 

patches belonging to a set of 10 products according to their central geographic coordinates 212 

into 2° x 2° spatial tiles (Fig. 1; First step). This tile resolution allows us to get tiles with more 213 

than three fire patches in each product and optimizes computing time. This method has 214 

previously been used for global analysis (Hantson et al., 2015; Laurent et al., 2019). We 215 

assigned the geographic coordinates of each tile (bottom left corner) over the entire sample 216 

area as the tile ID name. Similarly, we used the cut-off values from each FRY product and 217 

the spatial resolution from each reference data set as the product ID name.  218 

2.2.2. Second step: build the functional space 219 

To build the functional space of the fire patches for each satellite-derived product and cut-off 220 

value within each tile, we selected the functional traits of size, elongation, and direction, from 221 

the FRY database as the three essential non-correlated fire spread traits, which are 222 

independent of pixel resolution (Fig. 1; Second step). Before building the multidimensional 223 

Euclidean space, we normalized the functional traits of size and elongation applying the 224 

Box-Cox method using the ‘boxcoxfit’ R function from the ‘geoR’ R library (Ribeiro and 225 

Diggle, 2016). For size, the function became the reciprocal square root transformation, and 226 

for elongation, the function became the exponential transformation. 227 



11 

Likewise, functional traits were overall standardized to generate a trait distribution with a 228 

mean that equalled 0 and a variance that equalled 1 using the ‘decostand’ R function from 229 

the ‘vegan’ R library (Oksanen et al., 2016). Standardizing implies that all traits are 230 

considered equally important for the analysis and makes functional spaces comparable 231 

within and across products. The three continuous transformed and scaled functional traits 232 

were suitable for building the functional space without using ordination methods to reduce or 233 

synthesize axes, as is required when using more than three dimensions (Maire et al., 2015). 234 

Then, we located each fire patch according to its functional trait values into the functional 235 

space built on the three selected functional trait axes. The method then compares the FRY 236 

products with the reference data based on the dissimilarities between their functional 237 

volumes. 238 

2.2.3. Third step: assessment of the functional structure 239 

To assess the functional structure of the fire-patch products, defined as the distribution of 240 

individual fires in the functional space built within each tile and for each product, we first 241 

computed three functional diversity indices: 242 

• Functional fire-patch index is the number of patches per tile (Fig. 1; Third step-Ffp). 243 

Accurately conserving functional fire patches from satellite-derived products means 244 

that the pixel aggregation method accurately represents the fractionation of total 245 

burned area into patch number. It complements the fire size distribution index widely 246 

used in global (e.g., Hantson et al., 2015; Laurent et al., 2018a) and regional studies 247 

(e.g., Malamud et al., 1998; Moreno et al., 2011). 248 

• The functional richness is the convex hull volume in the functional space driven by 249 

the range of extreme values of patch traits in a product (Fig. 1; Third step-Fric). 250 

Differences in functional richness between the products correspond to differences in 251 

the convex hull volume upon gathering all the fire patches belonging to the product. 252 

Conserving functional richness from satellite-derived products means that convex 253 
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hull volumes driven by extreme values on three traits (size, elongation and direction) 254 

are accurately represented — and independently of the patch morphological features 255 

inside this convex hull volume.  256 

• Functional dispersion is the mean distance of individual fire patches to the average 257 

position of all the fire patches in the multidimensional functional space (Fig. 1; Third 258 

step-Fdis). The differences in functional dispersion represent differences in the 259 

deviation of fire-patch trait values from the centre of the functional space filled by the 260 

product. Conserving functional dispersion from satellite-derived products means that 261 

the distribution of individual fire-patch traits within the functional space is accurately 262 

represented, so we can expect same fire-patch morphologies beside the extreme 263 

values as tested with functional richness. 264 

The values of functional richness range between 0 and 1 because it is the proportion of the 265 

functional space filled by the fire patches present in a product compared to the functional 266 

space filled by all the fire patches present in all the products to be evaluated. Similarly, 267 

functional dispersion ranges between 0 and 1 because it is scaled by the maximum value 268 

possible considering all the fire patches present in a product. We computed both indices 269 

using the ‘dbFD’ R function from the ‘FD’ R library (Laliberté et al., 2015; Laliberte and 270 

Legendre, 2010).  271 

We then regressed across tiles the functional diversity indices computed from each FRY 272 

product against the ones computed from the reference data using the standardized major 273 

axis (SMA) method (Warton et al., 2006) to assess their spatial extent. The aim here is to 274 

test whether the continental pattern of fire diversity within tiles is conserved across the 275 

products; and thus if satellite-derived pyrodiversity indices are robust indicators of fire 276 

regimes. SMA error is measured perpendicular to the SMA line — not along the y-axis as in 277 

ordinary least squares regression. It is the appropriate method for summarising a bivariate 278 
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relationship between products, given uncertainties in both global products (Boschetti et al., 279 

2019; Padilla et al., 2014) and forest service perimeters (e.g., Short, 2015, 2014).  280 

Bivariate SMA lines with a squared correlation coefficient (r2) that were significant at the 95% 281 

level were inferred, assuming x and y observations are independent. The inference 282 

consisted of testing if the slope equals 1 and the intercept equals 0 at the 95% significance 283 

level. SMA lines were estimated and inferred using the ‘sma’ R function from the ‘smatr’ R 284 

library (Warton et al., 2012) for each functional diversity index, of which functional fire-patch 285 

number and dispersion were log10-transformed for an approximately normal distribution. 286 

Two additional SMA lines were estimated and inferred in the boreal and temperate regions 287 

defined in the Global Fire Emission Database (GFED; Giglio et al., 2013) across North 288 

America to further assess the relationships by region with potentially contrasting results 289 

because of different longitudes and fire types. 290 

We finally qualified the SMA lines to find the line of best fit following a statistical criterion 291 

proposed previously to assess simulations (Mesplé et al., 1996) with five possible outcomes, 292 

ordered by increasing bias: an unbiased relationship (slope ≈ 1, intercept ≈ 0) when two 293 

products entirely agree (Fig. 1; Third step-a); a constantly biased relationship (slope ≈ 1, 294 

intercept ≠ 0) when one product is systematically overestimating or underestimating the 295 

other (Fig. 1; Third step-b); a proportionally biased relationship (slope ≠ 1, intercept ≈ 0) 296 

when one product gives values that are higher or lower than those from the other by an 297 

amount that is proportional to the value of the observations (Fig. 1; Third step-c); and an 298 

additional outcome, the combination of both a constantly and proportionally biased 299 

relationship (slope ≠ 1, intercept ≠ 0; Fig. 1; Third step-d). We graded the lines of best fit 300 

according to r2 when several lines fall into the same outcome (Fig. 1; Third step-e). Finally, 301 

no significant relationship occurs when the correlation is not significant (p > 0.05). 302 

2.2.4. Fourth step: assessment of the functional dissimilarity 303 
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As a final step, we assessed the functional dissimilarity between fire-patch products within 304 

tiles to capture whether or not two convex hull volumes entirely overlap (best agreement with 305 

similar trait value range). We estimated and decomposed the functional beta diversity into its 306 

two components of turnover and nestedness (Villéger et al., 2013; Figure 1; Fourth step):  307 

• Functional beta diversity is the dissimilarity in convex hull volumes in the fire-patch 308 

functional space between two products. It is the sum of functional turnover and 309 

functional nestedness. Functional beta diversity equals 0 for perfect overlap (Fig. 1; 310 

Fourth step-a) and equals 1 for a total mismatch. Between these two extremes, 311 

different values of functional beta diversity result from different values of functional 312 

turnover and functional nestedness (Fig. 1; Fourth step-e and f).  313 

• Functional turnover is the proportion of convex hull volumes in the functional space 314 

not shared between two products, driven by differences in trait values. When 315 

functional beta diversity equals 0, functional turnover also equals 0 because the two 316 

volumes perfectly overlap. When functional beta diversity equals 1, functional 317 

turnover also equals 1, if the two similar convex hull volumes are in total mismatch 318 

(Fig. 1; Fourth step-b and c), or equals 0 if one volume is included inside the other 319 

one. 320 

• Functional nestedness is the proportion of convex hull volumes in the functional 321 

space shared between two products, driven by differences in functional richness. 322 

Functional nestedness is the difference between functional beta diversity and 323 

functional turnover. When functional beta diversity equals 1, functional nestedness 324 

also equals 1 if one volume fills only a small portion of the other (Fig. 1; Fourth step-325 

d).  326 

We computed functional beta diversity and its two components using the all.intersect R 327 

function from the ‘rcdd’ R library (Geyer et al., 2017). Differences in functional dissimilarities 328 

across cut-off values and within cut-off values were estimated using ANOVA analysis and 329 
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means were compared using Fisher’s least significant difference test, both of them at the 330 

95% significance level — these are available using the ‘aov’ R function from ‘stats’ R library 331 

(R Core Team, 2017) and the ‘LSD.test’ R function from ‘agricolae’ R library (De Mendiburu, 332 

2014). 333 

3. Results 334 

We show below how indices of fire-patch morphological trait diversity  are conserved 335 

between the satellite-derived products and the reference data across 141 tiles in North 336 

America (mainland United State and Canada), including 68 tiles (48%) in Boreal North 337 

America (BONA) and 73 tiles (52%) in Temperate North America (TENA). 338 

3.1. Functional structure 339 

When we compared the functional diversity indices across tiles in North America between 340 

the FRY products and the reference data, we found that the functional structure in the FRY-341 

MCD64A1 product was more correlated with the reference data and had smaller bias than 342 

the FRY-FireCCI41 product (Figs. 2 and 3). 343 

Functional fire-patch number relationships revealed significant correlations between the FRY 344 

products and reference data across North America, BONA and TENA, with all the cut-off 345 

values. Correlations with the reference data were stronger in the FRY-MCD64A1 product 346 

than in the FRY-FireCCI41 product, particularly in BONA. In the FRY-MCD64A1 product r2 347 

varied from 0.21 to 0.45 (p < 0.001) whereas in the FRY-FireCCI41 product, r2 varied from 348 

0.20 to 0.33 (p < 0.001). Such relationships were all proportionally biased across North 349 

America in both FRY products, but unbiased in both BONA and TENA in the FRY-MCD64A1 350 

product, and unbiased only in TENA in the FRY-FireCCI41 product. In both FRY products, 351 

correlations increased with increasing cut-off values across North America and BONA, but 352 

decreased slightly with increasing cut-off values in TENA. Based on the higher r2 (p < 0.001), 353 

the line of best fit between both FRY products and the reference data was with a cut-off of 354 

14 days across North America (r2 = 0.28 and r2 = 0.31 for the FRY-FireCCI41 and FRY-355 
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MCD64A1 products respectively) and BONA (r2 = 0.33 and r2 = 0.45 for the FRY-FireCCI41 356 

and FRY-MCD64A1 products respectively), whereas best fit was with a cut-off of 3 days in 357 

TENA (r2 = 0.23 and r2 = 0.29 for the FRY-FireCCI41 and FRY-MCD64A1 products 358 

respectively) as well as with cut-offs of 5 and 9 days in FRY-FireCCI41. In turn, fire-patch 359 

number is well conserved in both FRY products with high cut-off values across North 360 

America and BONA, yet small cut-off values in TENA. Overall, better performance was 361 

found with the FRY-MCD64A1 product. 362 

Continental functional richness relationships highlighted the differences between the FRY 363 

products and reference data in the chosen 3D trait space. In the FRY-FireCCI41 product, r2 364 

varied from 0.04 to 0.03 (p < 0.05), and such weak relationships with the reference data 365 

were significant only with cut-offs of 9 and 14 days across North America. In the FRY-366 

MCD64A1 product, r2 varied from 0.08 to 0.19 (p < 0.01) and was significant with all cut-offs 367 

across North America and TENA, and with cut-offs of above 5 days in BONA. In both FRY 368 

products, all the relationships with the reference data were constantly biased, and the 369 

correlations were stronger in the FRY-MCD64A1 product than in the FRY-FireCCI4 product. 370 

Additionally, the correlations increased with increasing cut-off values across North America 371 

and BONA but decreased slightly with increasing cut-off values in TENA. Based on the 372 

higher r2 (p < 0.001), the line of best fit between the FRY-MCD64A1 product and the 373 

reference data was with a cut-off of 14 days across North America (r2 = 0.19) and with cut-374 

offs of both 9 and 14 days in BONA (r2 = 0.15), and with a cut-off of 3 days in TENA (r2 = 375 

0.15). Whereas the line of best fit between the FRY-FireCCI41 product and reference data 376 

was with a cut-off of 14 days across North America (r2 = 0.04). We conclude here that the 3D 377 

volumes, driven by extreme values of fire size, elongation and direction, are less spatially 378 

conserved than fire-patch number but still significant with better performances by the FRY-379 

MCD64A1 product with high cut-off values across North America and BONA as well as small 380 

cut-off values in TENA. 381 



17 

Finally, functional dispersion relationships between the FRY products and the reference data 382 

highlighted an additional better performance by the FRY-MCD64A1 product over FRY-383 

FireCCI41. In the FRY-FireCCI41 product, r2 varied from 0.06 to 0.08 (p < 0.05), and such 384 

relationships with the reference data were significantly correlated only with high cut-off 385 

values in TENA. With the FRY-MCD64A1 product, values of r2 were slightly higher, and 386 

varied from 0.05 to 0.12 (p < 0.05). They were significant for all the cut-off values across 387 

North America and BONA. In both FRY products, all the relationships with the reference 388 

data were likewise unbiased. Furthermore, correlations increased with increasing cut-off 389 

values across North America and BONA, but decreased slightly with increasing cut-off 390 

values in TENA. Based on the higher r2 (p < 0.001), the line of best fit between the FRY-391 

MCD64A1 product and the reference data was with a cut-off of 14 days across North 392 

America (r2 = 0.07), and with cut-offs of 9 and 14 days in BONA (r2 = 0.12). However, the line 393 

of best fit between the FRY-FireCCI41 product and reference data was with a cut-off of 9 394 

days in TENA (r2 = 0.08). We therefore conclude that the distribution of fire patches within 395 

the 3D volumes conserves less information in the FRY products, but they are still significant 396 

and the overall performance is better in the FRY-MCD64A1 product with high cut-off values. 397 
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398 
Fig. 2. Relationships of functional diversity indices between the FRY v1.0 FireCCI41 product 399 

and the reference data. Different colours identify data across tiles (n) in North America (NA), 400 
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Boreal North America (BONA) and Temperate North America (TENA). The left column refers 401 

to the number of fire patches (Ffp), middle column to functional richness (Fric) and the right 402 

column to functional dispersion (Fdis). The upper panel shows the Standardized Major Axis 403 

(SMA) line statistics. The squared correlation coefficient is represented by a rectangle and a 404 

filled rectangle when it is significant (p < 0.05). In addition, for every significant squared 405 

correlation coefficient, the SMA slope represented by a triangle and a filled triangle when it is 406 

significant (p > 0.05), SMA intercept represented by a point and a filled point when it is 407 

significant (p > 0.05), and confidence intervals at the 95% level are provided. The lower 408 

panel shows the scatter plots with SMA lines for every significant squared correlation 409 

coefficient (p < 0.05). The horizontal axis presents the functional diversity indices in the 410 

reference data and the vertical axis in the FRY- FireCCI4 cut-off values. Both axes are in 411 

log10-scale for Ffp and Fdis. Each point is a 2° tile containing multiple patches. 412 
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413 
Fig. 3. Relationships of functional diversity indices between the FRY v1.0 MCD64A1 product 414 

and the reference data. Different colours identify data across tiles (n) in North America (NA), 415 
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Boreal North America (BONA) and Temperate North America (TENA). The left column refers 416 

to the number of fire patches (Ffp), middle column to functional richness (Fric) and the right 417 

column to functional dispersion (Fdis). The upper panel shows the Standardized Major Axis 418 

(SMA) line statistics. The squared correlation coefficient is represented by a rectangle and a 419 

filled rectangle when it is significant (p < 0.05). In addition, for every significant squared 420 

correlation coefficient, the SMA slope represented by a triangle and a filled triangle when it is 421 

significant (p > 0.05), SMA intercept represented by a point and a filled point when it is 422 

significant (p > 0.05), and confidence intervals at the 95% level are provided. The lower 423 

panel shows the scatter plots with SMA lines for every significant squared correlation 424 

coefficient (p < 0.05). The horizontal axis presents the functional diversity indices in the 425 

reference data and the vertical axis in the FRY-MCD64A1 cut-off values. Both axes are in 426 

log10-scale for Ffp and Fdis. Each point is a 2° tile containing multiple patches. 427 

3.3. Functional dissimilarity 428 

We compared the overlap of functional spaces within tiles between FRY products and the 429 

reference data, as a complementary indicator of functional similarities. We found that the 430 

functional dissimilarities were lower between the FRY-MCD64A1 product and reference data 431 

than between the FRY-FireCCI41 product and reference data (Figs. 4, 5, 6 and 7 and Table 432 

S4). This result confirms the better performance of the FRY-MCD64A1 product in conserving 433 

fire-patch morphology with more overlapping functional spaces. 434 

Functional beta diversity in the FRY-MCD64A1 product (beta diversity from 0.22 to 0.96) 435 

was lower than in the FRY-FireCCI41 product (beta diversity from 0.24 to 0.97). That means 436 

a higher overlap between functional spaces between the reference data and the FRY-437 

MCD64A1 product than between the reference data and the FRY-FireCCI41 product. In both 438 

FRY products, the functional beta diversity was on average higher in BONA than in TENA 439 

and significantly different (p < 0.05), indicating lower agreement with reference data in 440 

BONA. For example, the overlap between functional spaces in California (Figs. 5 and 7 in 441 
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columns labelled California) on the 3 traits was higher than in Quebec (e.g., Figs. 5 and 7 in 442 

columns labelled Quebec), particularly on the size axis when related to the fire-patch 443 

elongation. We also found the functional beta diversity decreased with increasing cut-off 444 

values in both FRY products across North America and BONA and TENA (Figs. 4 and 6). 445 

That means an increase in the overlap between functional spaces. However, only in the 446 

FRY-FireCCI41 product, was functional beta diversity derived from fire patches with a cut-off 447 

of 3 days significantly lower (p < 0.05) than that with a cut-off of 14 days across North 448 

America and in BONA. 449 

In both FRY products, functional beta diversity was mostly driven by functional turnover, 450 

indicating a low overlap of functional spaces between the FRY products and reference data; 451 

this was due to a translation of functional spaces rather than the inclusion of a smaller one 452 

into the other. We observed that functional turnover decreased with increasing cut-off 453 

values, indicating higher overlap between functional spaces, and in turn, a better agreement 454 

between functional spaces of fire patches generated with high cut-off values and functional 455 

spaces generated with reference data. Furthermore, functional turnover was on average 456 

also significantly (p < 0.05) higher in BONA than in TENA, thereby indicating lower 457 

agreement with reference data in BONA. For example, on the size axis when related to the 458 

elongation in Quebec (e.g., Figs. 5 and 7 in columns labelled Quebec) there is a tendency 459 

for translation in functional spaces, especially in the FRY-FireCCI41 product. This tile in 460 

Quebec in the FRY-MCD64A1 product is also a clear example of how functional 461 

dissimilarities complement functional diversity indices. Here the two assemblages have 462 

similar functional volumes and individual distribution in this volume but translated, thus 463 

functional spaces do not overlap. 464 

Functional nestedness varied slightly with cut-off values across North America but 465 

decreased with increasing cut-off values in BONA and increased with increasing cut-off 466 

values in TENA. This occured in both FRY products, indicating the inclusion of one 467 

functional space into the other and in agreement with decreasing turnover. While in the FRY-468 
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FireCCI41 product functional nestedness on average was higher in TENA because of 469 

differences in functional richness between the product and reference data; in the FRY-470 

MCD64A1 product, it varied slightly between regions. However, none of those differences 471 

were significant. For example, in Florida (e.g., Figs. 5 and 7 in columns labelled Florida), 472 

there are considerable differences in functional spaces due to their different volumes leading 473 

to the inclusion of the smaller volume of the reference data and thus a high nestedness. 474 

475 
Fig. 4. Functional dissimilarities within tiles between the FRY v1.0 FireCCI41 product and 476 

the reference data in North America (NA), Boreal North America (BONA) and Temperate 477 

North America (TENA). Functional beta diversity (Fβ) is the sum of functional turnover (Fturn) 478 

and functional nestedness (Fnest) as explained in the text. Means across cut-off values with 479 
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the same letter and means within cut-off values with the same number are not significantly 480 

different (p < 0.05). 481 
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482 
Fig. 5. Examples of functional dissimilarities within tiles between FRY v1.0 FireCCI41 (blue 483 

volume) and the reference data (green volume) in California (Tile 34N, -120W), Florida (Tile 484 

26N, -82W) and Quebec (Tile 50N, -72W) for specific traits considered: size, direction, 485 
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elongation of patches. Functional beta diversity (Fβ) is the sum of functional turnover (Fturn) 486 

and functional nestedness (Fnest) as explained in the text. 487 

 488 

Fig. 6. Functional dissimilarities within tiles between the FRY v1.0 MCD64A1 product and 489 

the reference data in North America (NA), Boreal North America (BONA) and Temperate 490 

North America (TENA). Functional beta diversity (Fβ) is the sum of functional turnover (Fturn) 491 

and functional nestedness (Fnest) as explained in the text. Means across cut-off values with 492 

the same letter and means within cut-off values with the same number are not significantly 493 

different (p < 0.05). 494 

 495 
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 496 

Fig. 7. Examples of functional dissimilarities within tiles between FRY v1.0 MCD64A1 (red 497 

volume) and the reference data (green volume) in California (Tile 34N, -120W), Florida (Tile 498 

26N, -82W) and Quebec (Tile 50N, -72W) for specific traits considered: size, direction, 499 
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elongation of patches. Functional beta diversity (Fβ) is the sum of functional turnover (Fturn) 500 

and functional nestedness (Fnest) as explained in the text. 501 

4. Discussion 502 

4.1 A new statistical framework 503 

We evaluated the conservation of fire-patch morphology delivered in the satellite-derived 504 

FRY database against reference data using a new functional trait-based approach. The 505 

approach is a generic and synthetic surrogate to patch-patch regressions on morphological 506 

traits (Andela et al., 2019; Chuvieco et al., 2018, 2016; Nogueira et al., 2017), and goes 507 

beyond classical omission and commission errors (Fusco et al., 2019) used previously in 508 

comparative pyrogeography.  509 

Our approach has the advantage of assessing fire-patch accuracy using a synthetic view of 510 

traits. Although here we built a functional space from three traits, more traits could be 511 

included using ordination methods to reduce the data (Maire et al., 2015). However, 512 

because the approach is sensitive to the addition of traits as well as to their correlations (Zhu 513 

et al., 2017), it is, critical to make conscious decisions when selecting the traits (Gitay and 514 

Noble, 1997). Here we selected three non-correlated essential traits related to fire spread. 515 

We did not select functional traits of morphological complexity (e.g., perimeter/area ratio, 516 

fractal dimension) as they are highly dependent on resolution.  517 

The functional trait-based approach enables an assessment of satellite-derived fire patches 518 

both across and within tiles, complementing each other. Across 2° tiles, it allows the 519 

assessment of the spatial conservation of functional fire-patch diversity measured by 520 

indices, such as functional fire patches, richness and dispersion between the two different 521 

global satellite sensor products and the reference data. Within tiles, it allows the assessment 522 

of the dissimilarities of functional diversity of fire-patch assemblages and detect where 523 

mismatching occurs. Within tiles, we could also detect whether beta diversity was driven by 524 
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functional trait value differences or by richness differences. Although it is not a direct 525 

outcome, it also allows us to explore which functional traits drive dissimilarities within tiles by 526 

visual checking (e.g., Figs. 5 and 7).  527 

In addition to fire patches, the approach proposed can be applied to assess emerging 528 

satellite-derived trait products such as Essential Biodiversity Variables (EBVs; Kissling et al., 529 

2018; Pereira et al., 2013). The approach is also suitable for large- and small-scale 530 

(Carmona et al., 2016) pyrogeography studies such as the recent study of Africa by 531 

Hempson et al. (2018). The availability of fire-patch traits (Laurent et al., 2018a), is opening 532 

up a new field of research on functional pyrogeography, by linking biogeography and 533 

landscape ecology indices within a functional ecology statistical framework. 534 

4.2 Optimal cut-off values for fire-patch morphology  535 

The primary outcome of our analysis is that satellite-derived fire-patch morphology 536 

conservation varied with the cut-off value. Out of the four cut-off values assessed, high cut-537 

off values generated fire patches with morphologies closest to the reference data in North 538 

America and particularly in BONA (Figs. 2, 3, 4 and 6, and Table S4). However, in TENA, 539 

the correlations slightly decreased with increasing cut-off values, but differences were not 540 

significant. Still, the unexpected decrease of correlation with increasing cut-off values in 541 

TENA in the FRY products may be because small fires, such as sugarcane fires in Florida 542 

(McCarty et al., 2009)  mistakenly reached the threshold of 300 ha with increasing cut-off 543 

values (Figs. S1, S3, S5, and S7, and Tables S1 and S2), but were unreported in the 544 

reference data (Figs. S9, S11, S13 and S14, and Table S3). Additionally, the omission and 545 

commission errors of satellite-derived burned-area products (Boschetti et al., 2019; Padilla 546 

et al., 2014; Randerson et al., 2012; Roteta et al., 2019), together with the uncertainties in 547 

the date-of-burning, can cause fragmentation of large fires leading to more fire patches 548 

(Figs. S13, S14, S15 and S16), and thus weak structural relationships between the FRY 549 

products and reference data. Furthermore, the functional dissimilarities were lower on 550 
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average with a cut-off of 14 days across North America and in BONA and TENA (Figs. 4 and 551 

6, and Table S4). Previous observations led to an estimated cut-off of 10 days in the same 552 

regions, which was the highest of the assessed values (4, 6, 8, and 10 days; Andela et al., 553 

2019), and is in agreement with our results. 554 

Fire-patch conservation also varied with region. For a given cut-off value, functional 555 

dissimilarities of FRY products with reference data were higher in BONA than TENA. 556 

Interestingly, the spatial relationships on functional structure (Figs. 2 and 3) were stronger in 557 

BONA than in TENA. That means that despite presenting a similar regional pattern of 558 

functional fire-patch diversity values between the FRY products and the reference data, 559 

functional fire-patch traits were regionally dissimilar.  560 

For example, in the FRY-MCD64A1 product, functional richness was constantly biased 561 

across North America and in BONA and TENA (Fig. 3), and functional dissimilarities were 562 

higher because of trait value differences (Fig. 6 and Table S4). Those trait value differences, 563 

particularity for extremes, were more notable in BONA (e.g., Figs. 5 and 7 in Quebec and 564 

Figs. S13 and S14). In contrast, functional dissimilarities driven by functional richness 565 

differences and thus convex hull volume differences were more notable in TENA (e.g., Figs. 566 

5 and 7 in columns labelled Florida and Figs. S13 and S14), showing contrasting 567 

performances on fire-patch morphology conservation between BONA and TENA. The fact 568 

that the functional turnover contributed more on average than functional nestedness also 569 

supports that result (e.g., Figs. 5 and 7 in columns labelled Quebec). This result based on 570 

our new statistical framework agrees well with previous studies using products of burned 571 

area (e.g., Andela et al., 2019; Hantson et al., 2015) and active fire (Oom et al., 2016) for 572 

fire-patch identification, arguing that the suitability of cut-off values can change regionally.  573 

4.3 High temporal resolution for fire-patch morphology  574 

We found that the MODIS sensors with the highest temporal resolution better capture fire-575 

patch morphology than the MERIS sensor that has a higher spatial resolution. Fire patches 576 
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in the FRY-MCD64A1 product based on MODIS sensors with a temporal resolution of 1 day 577 

were closer to the reference data than in the FRY-FireCCI41 product (Figs. 4 and 5, and 578 

Table S4) based on the MERIS sensor that had a temporal resolution of 3 days. 579 

Furthermore, the FRY-MCD64A1 product showed a stronger spatial correlation of the 580 

functional structure (Fig. 3) and lower functional dissimilarities (Fig. 6, and Table S4) with the 581 

reference data than the FRY-FireCCI41 product (Figs. 4 and 5, and Table S4). For example, 582 

in BONA, where fires tend to be extensive and spread for weeks and even months (Wang et 583 

al., 2014), fire-patch morphology was better conserved in the FRY-MCD64A1 product than 584 

in the FRY-FireCCI41 product (Figs. 2 and 3, and Figs. 5 and 7 in columns labelled 585 

Quebec), in which uncertainties in the date-of-burning at the pixel-level in the raw data can 586 

make large fires appear fragmented (Figs. S13 and S14).  587 

Our results suggest that high temporal resolution reduces uncertainties in the date-of-588 

burning in fast-spreading fires (e.g., grassland fires) or short duration fires (e.g., cropland 589 

fires or fires near human settlements where firefighters react quickly). For example, fire 590 

patch number in the FRY-FireCCI41 product related to cropland fires in Idaho and, in 591 

particular, sugarcane fires in Florida (McCarty et al., 2009) (Figs. S1, S3, and S13 and Table 592 

S1) were approximately one-third of those  in the FRY-MCD64A1 product (Figs. S5, S7 and 593 

S14, and Table S2). These results suggest that the number of burned pixels in these 594 

cropland systems are higher in FRY-FireCCI41 and affects patch assemblage. 595 

No other studies have assessed the fire patches derived from the same two burned-area 596 

products used here. However, they have been assessed for the MCD64A1 product alone 597 

(Andela et al., 2019; Fusco et al., 2019) and for previous versions of both products 598 

(Nogueira et al., 2017) in which the results from the two satellite sensors depended on traits. 599 

Our assessment agrees well with the results of the validation of those burned-area products 600 

(Padilla et al., 2014). Thus, satellite sensors with high temporal resolutions are more likely to 601 

characterize fire patches accurately and thus would be a more cost-effective observation 602 

system to consider in future ECV requirement updates (Mouillot et al., 2014; WMO, 2016). 603 
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This result implies that the low temporal resolution MERIS sensor should be abandoned in 604 

the newly delivered FireCCI51 burned-area product. A merger of the high temporal 605 

resolution data from the MODIS sensors at its highest spatial resolution of 250 m should 606 

now act as the reference ESA Fire CCI product (Chuvieco et al., 2018). 607 

4.4. Uncertainties and the way forward 608 

We obtained low correlations between the functional diversity indices derived from the 609 

satellite-derived FRY products and reference data. This result causes us to question both 610 

the quality of the burned-area products at the pixel-level and the fire patches that resulted 611 

from the pixel aggregation flood-fill algorithm. Despite being widely used as the only 612 

homogeneous source of global information on burned area, spatial intercomparisons of 613 

satellite-derived burned-area products (Humber et al., 2018) with satellite-derived reference 614 

data based on fine-scale (Boschetti et al., 2019, 2016; Rodrigues et al., 2019; Sparks et al., 615 

2015) or local inventories (Fusco et al., 2019; Turco et al., 2019), remain spatially poorly 616 

correlated regarding burned area only, with intrinsic theoretical uncertainty varying between 617 

12.78% and 13.90% in TENA and between 53.53% and 65.87% in BONA (Brennan et al., 618 

2019). Thus, we expected a low correlation between observations and fire-patch 619 

morphology; this expectation was based on the already low spatial correlation between the 620 

data and the burned-area products, and significant commission and omission errors in both 621 

the MCD64A1 (Boschetti et al., 2019) and FireCCI41 (Padilla et al., 2015) burned-area 622 

products. Yet we still find that our correlation coefficients capture a realistic estimation of the 623 

agreement on fire-patch morphologies. Fire-patch morphologies are more sensitive to 624 

omission and commission errors at the pixel level, but produce different fire shapes as a 625 

consequence of boundary misrepresentation (Humber et al., 2019). Thus, we suggest that, 626 

besides increasing the effort in detecting small missing fires (e.g., Roteta et al., 2019), more 627 

effort should be devoted to better boundary delimitation.  628 
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We attribute this low agreement to remaining uncertainties on the date-of-burning and fire 629 

location at the pixel-level in the raw satellite data, but we also acknowledge issues in the 630 

reference data (e.g., Short, 2015, 2014) and discrepancies in pixel-aggregation methods 631 

(Andela et al., 2019; Artés et al., 2019; Campagnolo et al., 2019; Oom et al., 2016). The 632 

flood-fill algorithm used in FRY (Laurent et al., 2018a) can over-aggregate pixels, and fail to 633 

split concomitant fire-starts merging into one final single fire patch. This phenomenon is 634 

most likely to occur in a savanna ecosystem, so we would expect it to occur less frequently 635 

in North America (Oom et al., 2016). However, we anticipate improvements in fire patch 636 

delineation to result from a more efficient method of pixel aggregation — new satellite-637 

derived fire patches are still emerging. 638 

The trait-based approach used here has been widely used in community ecology over the 639 

past few decades (Chao et al., 2019). Gitay and Noble (1997) have discussed the critical 640 

issues regarding the choice of traits to consider and how to seek them; Maire et al. (2015) 641 

the sensitivity of indices to the selection and reduction of traits; and Zhu et al. (2017) heir 642 

correlations. We acknowledge that combining the assessments of the functional structures 643 

and dissimilarities is crucial because fire-patch assemblages can lead to similar functional 644 

diversity indices (Chao et al., 2019). Furthermore, by using complementary indices as we 645 

did, it is possible to efficiently differentiate assembly processes (Münkemüller et al., 2012). 646 

For future trait-based assessments, we suggest both the spatial location and date-of-burning 647 

of fire patches should be considered as essential fire regime traits. Although we omitted the 648 

spatial location of the fire patches from our analysis, that was because we expected low 649 

commission and omission errors at the boundaries of fire patches, i.e., we assumed that 650 

most overlapping patches would be captured, an assumption based on the work of Nogueira 651 

et al. (2017), who found more than 70% of fire patches to be ≥ 300 ha identified. For 652 

example, Hempson et al. (2018) considered the fire return interval as a trait to examine the 653 

spatial and temporal overlap between patches and Wiegand et al. (2017) implemented the 654 
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spatial location of individuals in plant diversity. Fire return interval can thus be used for more 655 

comprehensive regional pyrodiversity analysis.  656 

Although our approach benefits from its versatility across scales (Carmona et al., 2016), the 657 

sensitivity analysis of tile size by biome remains for future studies. For example, Matthews et 658 

al. (2019) explored the species-area relationships to determine the spatial resolution 659 

capturing all species types. Similarity, Turco et al. (2019) observed that increasing tile 660 

resolution improved correlations between satellite-derived burned area and reference data in 661 

Europe.  662 

Despite those limitations, the functional trait-based approach proposed here presents a 663 

significant advance in fire patch trait assessment — it allows a comprehensive assessment 664 

of fire spread diversity to be derived from the FRY products across North America. 665 

5. Conclusions 666 

We implemented and tested the efficiency of a functional trait-based approach for the new 667 

topic of satellite-derived fire-patch morphology assessment. We showed that this method 668 

can be used for assessing satellite-derived fire patches beyond assessments based on 669 

commission and omission errors in satellite-derived burned-area products. The approach 670 

relies on fire-patch traits and with just a few indices can synthesize an intercomparison of 671 

burned-area products or pyroregions. The approach opens up a new and promising field of 672 

research.  673 

These results demonstrate that the more reliable fire-patch maps can be created by using a 674 

fixed cut-off value — in North America that cut-off value is 14 days. Furthermore, satellite 675 

sensor monitoring at a higher temporal resolution will lead to improvements in burned-area 676 

mapping and the identification of fire patches; thus, high frequency monitoring from satellites 677 

is the most cost-effective climate observation system.  678 
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Using this trait-based approach, we can assess burned-area products at the pixel level — 679 

assessments that will underpin pyrogeographical analysis and model benchmarking through 680 

the emerging topic of fire-patch identification and the related fire-patch properties such as 681 

fire size and fire spreading. 682 
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List of Figure Captions 934 

Fig. 1: Theoretical functional diversity trait-based approach adapted from Mouillot et al. 935 

(2013) and Villéger et al. (2013, 2008) to assess satellite-derived fire patches in four steps. 936 

Functional trait (Ftrait) is a morphological feature of the fire patch. Functional diversity indices 937 
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(FDIs) include functional fire-patch number (Ffp), functional richness (Fric) and functional 938 

dispersion (Fdis). Continental scale tile-to-tile Standardized Major Axis (SMA) regression of 939 

FDIs, and tile-level functional beta diversity (Fβ), functional turnover (Fturn) and functional 940 

nestedness (Fnest) were used in the assessment. For a simple graphical display, the first step 941 

shows tiles from only one product and the reference data. Similarly, the second step shows 942 

the fire patches present in a functional space of only two traits in one tile, and the fourth step 943 

shows functional spaces as a circle. A Venn diagram illustrates these cases.  944 

Fig. 2. Relationships of functional diversity indices between the FRY v1.0 FireCCI41 product 945 

and the reference data. Each point is a 2° tile containing multiple patches. Left column refers 946 

to the number of fire patches (Ffp), middle column to functional richness (Fric) and the right 947 

column to functional dispersion (Fdis). The squared correlation coefficient (r2) is provided. In 948 

addition, for every significant r2 (p < 0.05), the Standardized major axis (SMA) lines, SMA 949 

slope (b), SMA intercept (a), and confidence intervals at the 95% level (95% CI) are 950 

provided. Different colours identify data across tiles (n) in North America (NA) Boreal North 951 

America (BONA) and Temperate North America (TENA). The horizontal-axis presents the 952 

functional diversity index in the reference data and the vertical-axis in the FRY-FireCCI41 953 

cut-off values. Both axes are in log10-scale for Ffp and Fdis. 954 

Fig. 3. Relationships of functional diversity indices between the FRY v1.0 MCD64A1 product 955 

and the reference data. Each point is a 2° tile containing multiple patches. Left column refers 956 

to the number of fire patches (Ffp), middle column to functional richness (Fric) and the right 957 

column to functional dispersion (Fdis). The squared correlation coefficient (r2) is provided. In 958 

addition, for every significant r2 (p < 0.05), the Standardized major axis (SMA) lines, SMA 959 

slope (b), SMA intercept (a), and confidence intervals at the 95% level (95% CI) are 960 

provided. Different colours identify data across tiles (n) in North America (NA), Boreal North 961 

America (BONA) and Temperate North America (TENA). The horizontal axis presents the 962 
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functional diversity index in the reference data and the vertical axis in the FRY-MCD64A1 963 

cut-off values. Both axes are in log10-scale for Ffp and Fdis. 964 

Fig. 4. Functional dissimilarities within tiles between the FRY v1.0 FireCCI41 product and 965 

the reference data in North America (NA), Boreal North America (BONA) and Temperate 966 

North America (TENA). Functional beta diversity (Fβ) is the sum of turnover (Fturn) and 967 

nestedness (Fnest) as explained in the text. Means across cut-off values with the same letter 968 

and means within cut-off values with the same number are not significantly different (p < 969 

0.05). 970 

Fig. 5. Examples of functional dissimilarities within tiles between FRY v1.0 FireCCI41 (blue 971 

volume) and the reference data (green volume) in California (Tile 34N, -120W), Florida (Tile 972 

26N, -82W) and Quebec (Tile 50N, -72W) for specific traits considered: size, direction, 973 

elongation of patches. 974 

Fig. 6. Functional dissimilarities within tiles between the FRY v1.0 MCD64A1 product and 975 

the reference data in North America (NA), Boreal North America (BONA) and Temperate 976 

North America (TENA). Functional beta diversity (Fβ) is the sum of turnover (Fturn) and 977 

nestedness (Fnest) as explained in the text. Means across cut-off values with the same letter 978 

and means within cut-off values with the same number are not significantly different (p < 979 

0.05). 980 

Fig. 7. Examples of functional dissimilarities within tiles between FRY v1.0 MCD64A1 (red 981 

volume) and the reference data (green volume) in California (Tile 34N, -120W), Florida (Tile 982 

26N, -82W) and Quebec (Tile 50N, -72W) for specific traits considered: size, direction, 983 

elongation of patches. 984 

 985 



47 

List of Figure Captions in Supplementary Data 986 

Fig. S1. Functional diversity indices in the FRY v1.0 FireCCI41 product in North America. 987 

Functional fire patches (Ffp), functional richness (Fric) and functional dispersion (Fdis). 988 

Fig. S2. Functional diversity indices in the FRY v1.0 FireCCI41 product in California (Tile 989 

34N, -120W). Functional fire patches (Ffp), functional richness (Fric) and functional dispersion 990 

(Fdis). 991 

Fig. S3. Functional diversity indices in the FRY v1.0 FireCCI41 product in Florida (Tile 26N, 992 

-82W). Functional fire patches (Ffp), functional richness (Fric) and functional dispersion (Fdis). 993 

Fig. S4. Functional diversity indices in the FRY v1.0 FireCCI41 product in Quebec (Tile 50N, 994 

-72W). Functional fire patches (Ffp), functional richness (Fric) and functional dispersion (Fdis). 995 

Table S1. Statistical summary of functional diversity indices (FDIs) in the FRY v1.0 996 

FireCCI41 product across North America (NA), Boreal North America (BONA) and 997 

Temperate North America (TENA). Functional fire patches (Ffp), functional richness (Fric) and 998 

functional dispersion (Fdis). 999 

Fig. S5. Functional diversity indices in the FRY v1.0 MCD64A1 product in North America 1000 

(mainland United State and Canada). Functional fire patches (Ffp), functional richness (Fric) 1001 

and functional dispersion (Fdis). 1002 

Fig. S6. Functional diversity indices in the FRY v1.0 MCD64A1 product in California (Tile 1003 

34N, -120W). Functional fire patches (Ffp), functional richness (Fric) and functional dispersion 1004 

(Fdis). 1005 
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Fig. S7. Functional diversity indices in the FRY v1.0 MCD64A1 product in Florida (Tile 26N, 1006 

-82W). Functional fire patches (Ffp), functional richness (Fric) and functional dispersion (Fdis). 1007 

Fig. S8. Functional diversity indices in the FRY v1.0 MCD64A1 product in Quebec (Tile 50N, 1008 

-72W). Functional fire patches (Ffp), functional richness (Fric) and functional dispersion (Fdis). 1009 

Table S2. Statistical summary of functional diversity indices (FDIs) in the FRY v1.0 1010 

MCD64A1 product in North America (NA), Boreal North America (BONA) and Temperate 1011 

North America (TENA). Functional fire patches (Ffp), functional richness (Fric) and functional 1012 

dispersion (Fdis). 1013 

Fig. S9. Functional diversity indices in the reference data at two spatial resolutions (i.e., 300 1014 

m and 500 m) in North America (mainland United State and Canada). Functional fire 1015 

patches (Ffp), functional richness (Fric) and functional dispersion (Fdis). 1016 

Fig. S10. Functional diversity indices in the reference data at two spatial resolutions (i.e., 1017 

300 m and 500 m) in California (Tile 34N, -120W). Functional fire patches (Ffp), functional 1018 

richness (Fric) and functional dispersion (Fdis).  1019 

Fig. S11. Functional diversity indices in the reference data at two spatial resolutions (i.e., 1020 

300 m and 500 m) in Florida (Tile 26N, -82W). Functional fire patches (Ffp), functional 1021 

richness (Fric) and functional dispersion (Fdis). 1022 

Fig. S12. Functional diversity indices in the reference data at two spatial resolutions (i.e., 1023 

300 m and 500 m) in Quebec (Tile 50N, -72W). Functional fire patches (Ffp), functional 1024 

richness (Fric) and functional dispersion (Fdis). 1025 
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Table S3. Statistical summary of functional diversity indices (FDIs) in the reference data at 1026 

two spatial resolutions (i.e., 300 m and 500 m) in North America (NA), Boreal North America 1027 

(BONA) and Temperate North America (TENA). Functional fire patches (Ffp), functional 1028 

richness (Fric) and functional dispersion (Fdis). 1029 

Table S4. Statistical summary of functional dissimilarities between the FRY v1.0 products 1030 

and the reference data at two spatial resolutions (i.e., 300 m and 500 m) in North America 1031 

(NA), Boreal North America (BONA) and Temperate North America (TENA). Functional beta 1032 

diversity (Fbeta) and its two components of turnover (Fturn) and nestedness (Fnest). 1033 

Fig. S13. Frequency density of fire-patch size in the FRY v1.0 FireCCI41 product (blue 1034 

points) and reference data at 300 m resolution (green points) across North America (NA), 1035 

Boreal North America (BONA) and Temperate North America (TENA). The frequency 1036 

density of fire-patch size was calculated as in Moreno et al. (2011). 1037 

Fig. S14. Frequency density of fire-patch size in the FRY v1.0 MCD64A1 product (red 1038 

points) and reference data at 500 m resolution (green points) across North America (NA), 1039 

Boreal North America (BONA) and Temperate North America (TENA). The frequency 1040 

density of fire-patch size was calculated as in Moreno et al. (2011). 1041 

Fig. S15. Burned area (ha) per tile (n) in the FRY v1.0 FireCCI41 product and reference 1042 

data at 300 m resolution across North America (NA), Boreal North America (BONA) and 1043 

Temperate North America (TENA). 1044 

Fig. S16. Burned area (ha) per tile (n) in the FRY v1.0 MCD64A1 product and reference 1045 

data at 500 m resolution across North America (NA), Boreal North America (BONA) and 1046 

Temperate North America (TENA). 1047 






