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Abstract. A code-modulated Visual Evoked Potential Brain Computer Interface
(c-VEP BCI) allows for spelling from a virtual keyboard of flashing characters.
All characters flash simultaneously, and each character flashes according to a
predefined pseudo-random binary sequence, circular-shifted by a different time lag.
For a given character, the pseudo-random stimulus sequence evokes a VEP in the
electroencephalogram (EEG) of the subject, which can be used as a template. This
template is usually obtained during a calibration phase and it is applied for the target
identification during the spelling phase. A downside of a c-VEP BCI system is that
it needs a long calibration phase to reach good performance. This paper proposes an
unsupervised method that avoids the calibration phase in a c-VEP BCI, by extracting
relative lags from the VEP responses, between successive characters, and predicting the
full word using a dictionary. We tested it in offline experiments on a public dataset.
We simulated the spelling of four groups of words with a different total number of
characters selected from an English dictionary. Each experiment is parameterized by
the number of stimulus cycles. The obtained results show that a word-prediction-based
auto-calibration method in c-VEP BClIs can be efficient and effective.

Keywords: Brain Computer Interface, c-VEP BCI, auto-calibration, word prediction

1. Introduction

A Brain Computer Interface (BCI) is a hardware and software communication system
that converts electro-physiological input from the user into an output that allows
to control external devices and to communicate [1]. Omne of the uses of BCI is
to restore linguistic communication by word spelling. Among the BCIs based on
electroencephalographic signals (EEG) there are several BCI spellers based on different
paradigms, such as the P300 Speller [2], BCI spellers based on motor imagery (MI) [3]
and BCI spellers that use the Visual Evoked Potential (VEP). Among VEP BCI
spellers it is possible to distinguish different systems depending on the specific stimulus
modulation design used [4]: frequency modulated VEP BCIs, such as the steady
state evoked potential (SSVEP) BCI [5], and BCI systems using pseudo-random code-
modulated VEP (¢c-VEP) [6].

Each type of BCI needs a calibration phase, in which the system sets the parameters
to extract the relevant information from the EEG signal, in term of spatial or temporal
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filters and classifiers. This phase is fundamental but it is really annoying, long and
tedious for the subject. It is considered time consuming and one of the limitations for
the diffusion of the BCI system in real applications [7]. A solution to this limitation is
the development of a system that avoids the calibration phase. Many studies underline
the importance of a calibration-free BCI and propose different strategies to reduce
the calibration time duration. Kraudelat et al. [8] proposed a Zero-training method
in which they showed how to learn good spatial filters and classifiers from data of
previous sessions, which eliminates the necessity of going through a calibration during
each session of a subject. This method can reduce the duration of the calibration phase
or even avoid the calibration for “experienced” BCI users. Many works [3] proposed
similar approaches based on transfer learning methods [9]. Lu et al. [10] proposed
an adaptive online learning method for a P300 speller. The first step of the method
consists in defining offline a generic subject-independent model from a EEG data set of
several subjects, in order to find the specific structure of the P300 response. Then, with
a new subject the system automatically captures subject-specific EEG characteristics
during online operation without a supervised calibration. The final decision is made by
labels predicted by either the subject-independent model or the adapted subject-specific
model, depending on a confidence score. They demonstrated that after the spelling of
10—20 characters with the online adaptation, the accuracy of the adapted model reached
the accuracy value of a trained supervised subject-specific model. Lotte et al. [11]
proposed a method to reduce calibration time in which they increased the training set
size by adding numerous artificial EEG signals from a few signals recorded from the
user. They demonstrated that with this method the classification accuracy increased
with respect to existing approaches, especially when the training trial size available is
small. Kindermans et al. [12] proposed an unsupervised model incorporating a transfer
learning method and a language model for a P300 speller BCI. They demonstrated that
this unsupervised model can reach even better performance than the supervised model.

Many BCI systems exploit a language model to improve the performance of the
systems [13]. Thanks to the prior language information it is possible to include features,
such as word completion or automatic error correction that allow to improve accuracy
and typing speed of the speller-BCIs [14]. Among the BCI spellers that include a
language model, Gembler et al. [15] developed a dictionary-driven ¢-VEP BCI, and
proved that the incorporation of word prediction allows to increase the performance of
a c-VEP system.

In our work we propose an unsupervised classifier for a c-VEP BCI system exploiting
only the language information. The proposed model extracts relative lags between
successive characters from the VEP responses and then predicts the full word using a
dictionary, eliminating the calibration phase. To the best of our knowledge, this is the
first work proposing a word-prediction-based auto-calibration method for ¢-VEP BClIs.

This paper is organized as follows. Section 2 briefly presents the standard c-
VEP BCI system and summarizes the main parts that characterize this type of BCI.
Section 3 presents the proposed auto-calibration method. The experiments and results
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are detailed, respectively, in Section 4 and Section 5, followed by the discussion and
concluding remarks in Section 6 and Section 7.

2. The c-VEP BCI system

In a ¢-VEP BCI system, all characters flash simultaneously according to a predefined
pseudo-random binary sequence circular-shifted by a different time lag [6] for each
character. The sequences with maximum length, called m-sequences [16], are generally
applied as stimulus sequences in c-VEP BCI. The m-sequence has specific properties of
correlation: it is nearly orthogonal to its time shifted sequence and its auto-correlation
function is close to a unit impulse function. Therefore, for a given character, the m-
sequence generates a VEP response largely dependent on the characteristics of the
stimulus code [4]. The VEP response recorded in the electroencephalogram (EEG)
of the subject can be used as a template [17]. This template is obtained during a
calibration phase at the beginning of each session.

During the calibration phase the user gazes at the reference character C'. and all the
characters flash simultaneously for N stimulus cycles. The raw EEG data X, € R"*¢*s
is recorded during n = 1, ..., N stimulus cycles from ¢ channels. The evoked response
R € R?** of the reference character can be obtained averaging the time-windowed EEG
data X, from N stimulus cycles from ¢ channels. The number of channels ¢ can be the
same as ¢ or a subset, if we choose to consider only the channels in which the evoked
response is most prominent. To improve the signal to noise ratio (SNR) of the system
the Canonical Correlation Analysis (CCA) is applied as spatial filter [18] to compute a
reference template T,.(t) [6]. The goal of CCA is to find the two transformations Wy and
Ws which maximize the correlation between the raw EEG data X, and the expected
VEP response S, that can be obtained by concatenating N times the evoked response
of the reference character.

WLXSTW,
CCA(X,S) = max X > (1)
WxWs \/WEX XTWx - /WESSTW
Then the spatially filtered EEG data z,, is obtained.

z, = Wx X, (2)

The reference template 7, is computed by averaging z, over N stimulus cycles. The
templates T} of all other K characters in the virtual keyboard are obtained by shifting
the reference template T, by a specific time lag 7, = 7 - k, where 7 is the time lag
between the flashing sequences of two consecutive characters and £ =0,1,2,3, ..., K is
the index of the corresponding character in the virtual keyboard.

T(t) = To(t — 73) (3)

The calibration phase is followed by a spelling phase. During the spelling phase
the user can gaze at a character of his/her choice, called target, for a number of
stimulus cycles V. Then, by template matching, it is possible to identify the target
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that the subject is gazing at. The correlation p;, (4) between the spatially filtered EEG
xr = Wx X, recorded during the online spelling phase, and each template T}, obtained
during the calibration phase, is computed. Hence, the system outputs the detected
character Kiqrget (5) by selecting the one that corresponds to the index of the template
with the highest value of correlation.

ZL’TTk
Pr = ———r (4)
Vaxl - T, T
k:target = arg ;nax Pk (5)

3. Auto-calibration by word spelling and prediction

To tackle the limits of speller-BCls caused by long and tedious calibration phases, we
propose an auto-calibration method for a ¢c-VEP BCI system, that allows to spell words
and uses word prediction to avoid the traditional calibration phase. The framework
of the method is shown in figure 1. The detailed explanation of the auto-calibration
method (AC) is as follows.

(i) The average response of the first character X4, € R is computed over N stimulus
cycles, where ¢ is the number of channels and s the number of samples of the
stimulus cycles. X, is computed using the time-windowed EEG recorded while the
user is gazing at the first character, but since the system has not been calibrated,
the first character is unknown at this step. For the first character the relative
position is 0.

(ii) For the second character, the average response X,, € R*® is computed over N
stimulus cycles. X4, is shifted by (I - 7) time samples, where 7 is the time lag
between two consecutive characters and [ is the index of the corresponding character
in the virtual keyboard. This produces L shifted averages X; (6), [ =0,...,L — 1,
where L is the number of characters on the virtual keyboard.

X, = Xaa(t—(1-7)) (6)

(iii) The correlation p; between the initial average response X,, and the average
response of the second character X; is computed.

(iv) Using the lag lna (7) which produces the maximum correlation between X,
and X,,, the relative position of the second character with respect to the first
is computed.

lmaz = argmax corr(Xg,, Xi) (7)
!

(v) Among all pairs of characters separated by [ only retain those corresponding to the

beginning of valid words within a dictionary.

This method is repeated for the following characters, until we are left with a single
word. At that moment, we will have recovered the original letter, and the absolute
position of X, can thereafter be used during the computation of the time lag.
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Figure 1. Outline of the auto-calibration method for a c-VEP BCI to spell the target

word “SUN_”".
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In order to guarantee the uniqueness of each word belonging to the dictionary a
character “_” is added at the end of each word, in this way each word has a unique
sequence of lags, independently of the type and size of the dictionary. Moreover it
allows the system to understand when the spelling of a word is concluded.

The auto-calibration method can be improved considering not only the most
correlated character, as explain at the step (iv), but also the second most correlated
one. However the latter is taken into account only if its correlation value is higher than
a specific percentage P. of the correlation value of the most correlated character. The
second most correlated character gives the lag I3 42, as shown in figure 2.

The coefficient ¢, j, is introduced, for each character of the word excluding the first
(n =2, ..., Nenars) and for the k* most correlated character.

COTT(X(117 Xlk,maz) (8)
COTT(XaJ’ leaz)

Onk =

Clearly the coefficient ¢, is always equal to 1, because it corresponds to the
character with highest correlation (lya: = l1maz). Then, we can use the coefficient
n2 of the character corresponding to l3,,.,; as a representation of the distance of its
correlation with respect to the highest one, and we can apply the threshold P, to choose
whether it has to be considered as a spelling candidate or not. The system will give
as output the word belonging to the dictionary with the highest value of @y, (9),
computed as the average of the ¢, 1 and ¢,2 in the path ¢ through the (Nepgrs — 1)
characters. Each path i is obtained combining all the possible suggested lags (/4. and

l2,max> .

Z Son,l"i_ Z 9071,2

nepath; nepath;

ath; — 9
Prath: Nchars —1 ( )

4. Data and experiments

We investigated data from the public dataset of Spiiler et al. [17]. Nine healthy subjects
participated in the c-VEP BCI experiment. Each subject took part in two identical
sessions. For five subjects the session was performed in the same day, for the other four
on different days. For a complete subject review refer to [17].

The EEG signal of the subjects was recorded from a Brainproducts Acticap system
with 32 channels, with a g.tec g.USBamp (600 Hz sampling rate). They used 30
electrodes located at Fz, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2,
P4, P6, PO9, PO7, PO3, POz, PO4, POS8, PO10, O1, POO1, POO2, O2, OI1h, OI2h
and Iz. The remaining two electrodes were used for electrooculography (EOG). The
reference electrode was positioned at Oz and the ground electrode was positioned at
FCz. Each session consisted of 10 stimulus cycles per target. In each run the subject
had to spell 32 targets on a virtual keyboard twice, using the c-VEP BCI system, so in
total one session consisted in 640 trials. The arrangement of the targets in the keyboard
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CHAR 2 CHAR 3 CHAR 4
Ppath1 = 1
27 WAR 8
@51 =1 P =1
10(lag) | ok BL M EO | |
®21=1 |IS KU OY WA
(ppach =0.87
26
=0.62 KUE 041 =1
CHAR 1 B2 " "
0 |
57 (ppath_? =0.93
SUN
=1 GIB MOH SUN oi=1 -
AC CE EG Gl
2(lag) |IK KM MO PR | |
0,,=0.78|SU TV UW WY
13 24 4A Ppatns = 0.8
26
— GIA  SUM SUM
most correlated 05, = 0.62 Ps1=1 -

——2nd most correlated

Figure 2. Spelling of the word “SUN_” applying the improved auto-calibration
method (see Section 3). In red the lag l,,4, of the most correlated character and in
blue the lag l3 ;,q, of the second most correlated character, with their corresponding
values of ¢, 1 and ¢, 2, where n indicates the character position in the word. The
figure shows that for characters 2 and 3 two lags are found, while for character 4 only
the most correlated lag is considered. This is because the values of ¢392 and @32 are
higher than the threshold P, while ¢4 o is lower. At the end, the system proposes the
word belonging to the dictionary with the highest value of ¢pq¢, that respects the lag
sequences defined during the spelling.

was conformed to the principle of equivalent neighbors [6]. Each target was modulated
by a 63-bit binary m-sequence with a stimulus presentation rate of 60 Hz, hence the
length of a stimulus cycle was t, = 63/60 = 1.05 s. The modulation sequence of each
target was shifted by 2 bits with respect to its preceding target, hence the time lag
between two consecutive targets was 7 = 2/60 = 0.033 s.

4.1. Offline experiments

The signals were pre-processed using a Butterworth filter between 2 and 15 Hz. We
simulated the spelling of four different groups of 5 words called 3-char, 4-char, 5-
char and sentence. Each group has a different number of characters per word and
consequently a different total number of characters. The composition of the groups
of words is detailed in table 1. The words belonging to 3-char, 4-char and 5-
char groups are randomly selected from a free corpus of ten thousand English words
downloaded from the Wikipedia corpus, that was used as dictionary for the auto-
calibration method. For the sentence group, the sentence chosen to be spelled was
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Table 1. Composition of the groups of words applied in the experiments.

Word group # total chars # words # chars per word

3-char 15 5 3
4-char 20 5 4
5-char 25 ) 5
sentence 51 6 [5,12]

“BRAIN_.COMPUTER_INTERFACE_LETS_ EVERYONE_COMMUNICATE”. The dic-
tionary was modified appending the character “_”at the end of each word, as explained
in Section 3.

The channels OI1lh, OI2h and Iz are not considered for our experiments because
the amplitude of the EEG signal is too low. We conducted experiments with different
methods and we use the following convention to name them: standard calibration (C),
explained in Section 2, the auto-calibration method considering only the most correlated
character (AC1) and the auto-calibration method considering the two most correlated
characters (AC2), explained in Section 3.

For the experiments with method C we performed the same pre-processing as
applied in [17]. Then we applied the CCA spatial filter to N stimulus cycles of
the character “A” to compute an average absolute response X, used as reference
template. Finally, we followed the process described in Section 2. Each experiment
was parameterized by the number of stimulus cycles, in two different ways. The
former experiments evaluated the performance of methods C, AC1, AC2 with the same
number of stimulus cycles for each group of words. The latter experiments evaluated
the performance of AC2 method to spell the same groups of words with a number
of stimulus cycles fixed to 10 for the first character and following the parameterized
number of stimulus cycles for all the other characters belonging to each word. This can
be considered as an option of the AC2 method, called AC2* method.

5. Results

5.1. Comparison between methods

Figure 3 shows the accuracy reached by all subjects of the dataset to spell different
groups of words applying the C method, explained in Section 2, the AC1 and AC2
methods explained in Section 3. The composition of each group of words is described
in table 1.

The accuracy is computed as the ratio of characters well spelled parameterized by
the number of stimulus cycles. The results reached in Session 1 show that the average
accuracy achieved with the C method is higher than the average accuracy reached
applying both the AC1 and AC2 methods, except for the 3-char, 4-char and 5-char
groups for which the average accuracy with the AC2 method is higher for 3 and 4
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Figure 3. Boxplots of accuracy reached by all subjects for spelling four different
groups of words parameterized by the number of stimulus cycles in Session 1 and
Session 2, applying the standard calibration (C) in violet, the auto-calibration method
considering only the most correlated character (AC1) in green, and the auto-calibration
method considering the two most correlated characters (AC2) in light blue. The box
edges represent quartiles, diamond markers represent the mean and dash lines denote
the median. Outliers are marked with red crosses.
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Figure 4. Evolution of AC2 method performance over sessions. Diamond markers
represent the average accuracy reached across repetitions for a subset of subjects, with
the 3-char group (pink), the 4-char group (green), the 5-char group (blue) and the
sentence group (purple). The transparent zones indicate the standard deviation values.
The subset of subjects includes all subjects that reached an average accuracy higher
than 30 % across stimulus cycles and groups of words.

stimulus cycles, even if the dispersion is larger with respect to C method.

On the contrary, in Session 2 the average accuracy attained with the C method
is lower than the average accuracy reached with the AC2 method for all the tested
groups of words and for all the numbers of stimulus cycles. The only exception is for
the spelling of a sentence with 3 and 4 stimulus cycles, for which the average accuracy
of the C method is the highest.

Generally, comparing the results reached across sessions, we can observe that the
average accuracy improved increasing the number of stimulus cycles, for all methods,
and the dispersion in Session 1 is larger with respect to Session 2, in particular for AC1
and AC2 methods.

Moreover it is evident that the AC2 method performed better than the AC1 method
for all the tested cases reported in figure 3.

5.2. Method AC2

To evaluate the performance of the AC2 method we selected the subset of six subjects
with good performance, reaching an average accuracy higher than 30 % across the
number of stimulus cycles and the groups of words. The subjects not included in this
subset are AE, AA, AH, for more details refer to [17].

In figure 4 is presented the performance reached with the AC2 method across
sessions. The trends in figure 4 confirm the improvement of the performance increasing
the number of stimulus cycles, except for the 3-char and the 5-char groups, for which
the performance decreased in Session 2 from 15 to 20 stimulus cycles. Specifically for
the 3-char group the average accuracy is equal to 93 % with 15 stimulus cycles and
equal to 85 % with 20 stimulus cycles, while for the 5-chars group the corresponding
values are respectively 95 % and 91 %. Nevertheless, it is evident that the results in
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Figure 5. Boxplots of accuracy reached with the AC2 method (light blue) and
the AC2* method (dark blue) in Session 1 and Session 2. The box edges represent
quarterlies, diamond markers represent the mean and dash lines denote the median.
Outliers are marked with red crosses.

Session 2 are less spread than in Session 1, as we can also observe in figure 3.

In Session 1 the /-char and the 5-char groups obtained better performance on
average with respect to other groups. Instead in Session 2 the accuracy reached for the
3-char group is higher than the other groups, especially for 3 and 4 stimulus cycles. On
the contrary we can observe that for more than 4 stimulus cycles the performance for
all groups is really close, except for the 4-char group with 15 and 20 stimulus cycles.
Comparing the two plots it is clear that the variability of the performance is larger for
low numbers of repetitions (3 and 4 stimulus cycles) across groups and sessions.

In order to evaluate a possible improvement of the performance with a lower
number of stimulus cycles and, at the same time, avoiding a very long stimulation
time, the methods AC2 and AC2* are compared in the boxplots shown in figure 5. The
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performance of both methods is compared across sessions on the same subset of best
subjects evaluated in figure 4. The average accuracy increases with the AC2* method,
reaching values always higher than the ones obtained with the AC2 method, usually
close to the accuracy reached with 10 stimulus cycles. This is especially evident for the
Session 2, with the exception of the sentence group, indicating a particular benefit for
the performance with a lower number of stimulus cycles.

6. Discussion

The objective of our work is to develop a method for a c-VEP BCI with no calibration
phase. The AC1 and AC2 methods proposed in our work were tested for four different
groups of words to evaluate the stability of the method when varying the number of
characters of a single word and the total number of characters to spell.

The results shown in figure 3 and, in particular, figure 4 demonstrate that there is
no clear prevalence in terms of number of stimulus cycles with respect to the number
of characters in the word. However, it appears that the performance is lower with a
low number of stimulus cycles for a high number of characters, but when increasing the
number of stimulus cycles, the performance is comparable for all the groups of words,
except for sentence group. Indeed it is evident that the performance for the sentence
group is lower with respect to other groups of words. In this case we simulated the
spelling of a sentence with a total of 51 characters and 6 words with a maximum of 12
characters per word. We chose this sentence with long words in order to evaluate the
efficacy of the method in a more complex scenario. In fact with longer words the risk of
not reaching the correct spelling of the target word increases, because the probability of
not correctly identifying a character increases and, consequently, the wrong identification
of the word in the dictionary. This justifies the lower performance of the spelling of the
sentence group compared to other groups of words.

This aspect may be improved including, for example, the error correction [14] in
an online implementation of the method, to reduce the wrong target word identification
caused by the erroneous selection of single characters.  Furthermore, in online
applications, the subject may initially spell shorter words in order to become familiar
with the system, improving the ability to use it and consequently improving the
repeatability of the VEP responses, thus limiting errors also when spelling of long words.

The repeatability of the VEP responses is fundamental for c-VEP BCI systems and
in particular to achieve good performance with the proposed auto-calibration method.
The results in figure 3 show a consistent dispersion with all methods, especially in
Session 1, demonstrating that for some subjects it is possible to obtain very good
results also with a lower number of stimulus cycles, but for others it is difficult to
reach good results. Figure 6 shows the repetitions of each character realigned with
respect to the unshifted m-sequence for one of the best and one of the worst performers
in Session 1, in terms of accuracy (subject AD and subject AE, respectively). We can
notice visible bands of activation (red zone) for all the repetitions for the subject AD
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Figure 6. The first four stimulus cycles of each target character realigned with respect
to the unshifted m-sequence and the average realigned response with the standard
deviation in Session 1, for subject AD and subject AE, respectively.
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Figure 7. Average response of each channel over the first four realigned stimulus
cycles of each character in Session 1, for subject AD and subject AE, respectively.

and an average with a low standard deviation. On the other hand, for subject AE it
is not possible to define specific zones of activation because there is a visible variability
between the repetitions, also demonstrated by the standard deviation computed over
all stimulus cycles, which is greater than for subject AD. Moreover figure 7 shows the
average response over all the realigned repetitions for each channel for the same two
subjects. We can notice that for subject AE some electrodes in the occipital part did
not work well. For sure they influenced the low accuracy reached for the subject in the
offline experiments. Instead for subject AD all the electrodes have the same response
shape, with a difference in amplitude. So we can affirm that the performance of the
auto-calibration method is influenced by the quality of the data. In particular it is
important to have a good VEP response repeatability between the stimulus cycles for
each character.

The quality of the data is fundamental to build a high performance BCI system.
There are many factors that can influence the EEG variability. Some of them can
be controlled, for example the design of the system and the hardware used for the
acquisition of EEG signals, the application of specific algorithms and the control of
some external factors like noise. But we can not control the state of subject, like the loss
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of concentration, visual fatigue, distraction and motivation [19]. The EEG variability
influences the performance of the BCI system from a session to another. With the auto-
calibration method it is possible to face the problem of inter-session variability because
for each session the system is not calibrated with signals acquired in a different time, but
it is based on the data acquired during the specific session considering all the possible
factors that can influence the it. This explains why with a lower number of stimulus
cycles, for many subjects, the accuracy reached with the auto-calibration method is
higher than the accuracy reached with the standard calibration method. However, we
can notice that the performance with the calibration method increased with the number
of stimulus cycles. Indeed, generally, in c-VEP BCI the performance increases with a
longer calibration phase [6, 20].

Analyzing the results showed in figure 3 it is evident that with the auto-calibration
method the accuracy increased when considering the two most correlated characters.
A possible explanation is that if we analyze the stimulus modulation applied to collect
the dataset [17], each character flashes according to a binary sequence of 63-bit and
the sequence generated for each character is 2-bit circularly shifted with respect to the
sequence of the consecutive characters [6]. This means that the time shift between two
consecutive characters is 2 bit/60 Hz = 0.033 s. Therefore the timing precision of the
VEP response is fundamental to distinguish the response of each character. In fact it
is possible that some stimulation parameters can influence the VEP response, such as
stimulus proximity and the lag between two adjacent stimuli [20]. The subject could be
distracted by the interference caused by consecutive characters in the keyboard which
adds the difficulty to focus the attention on the target character. This is also proved by
the fact that when applying the AC2 method the couple of lags detected corresponds
to two consecutive character, as shown for example in figure 2.

6.1. Performance evaluation

To compare the potential effectiveness of the method with the actual state of art of online
c-VEP BCI, we compute the theoretical information transfer rate (ITR) [1], following
equation (10). The ITR returns the amount of information contained in a selection in
bits per minute (bpm).

1-P

Where N is the number of classes, equal to 32, which is the number of characters in the
virtual keyboard, P is the accuracy (the percentage of characters correctly spelled) and
T is average time required for the prediction. We computed the theoretical ITR for the
spelling of all word groups comparing the values reached with the AC2 method and the
AC2* method, across sessions, for the subset of best subjects.

The time T was computed as the average time required to select a character, taking
in account the number of stimulus cycles for the total number of characters for each
group of words. For instance for the 3-char group the time 7" is computed as the number
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Table 2. Theoretical average ITR (bpm), computed for AC2 method for 3, 4 and 10
stimulus cycles (s.c.) and AC2* method for 3 and 4 stimulus cycles (s.c.).

ITR (bpm) Session 1 ITR (bpm) Session 2
3 s.c. 4 s.c. 10 s.c. 3 s.c. 4 s.c. 10 s.c.
AC2 AC2* AC2 AC2* AC2 AC2 AC2* AC2 AC2* AC2
3-char 25.1 27.6 254 27.1 17.3 26.6 33.1 26.6 35.7 18.5
4-char 16.7 23.3 21.8 26.4 20.7 21.1 259 21.1 285 18
5-char 15.8 28.9 15.1  28.2 20.1 20.3  29.6 20.3 29.7 16.7
sentence 12.7 22.1 16.4  20.3 15.8 6.7 13.3 6.7 11 16

of stimulus cycles multiplied by the duration of one stimulus cycle (1.05 s) for the AC2
method. Instead for the AC2* method we computed an average T, taking in account
that the first character is flashed for 10 stimulus cycles, thus for each group of words
the specific time T" was computed following the parameter reported in table 1.

The results listed in table 2 show that even if the duration increased with the
AC2* method with respect to the AC2 method with 3 and 4 repetitions, nevertheless
the ITR increased thanks to the improvement of the average accuracy. Indeed the ITR
is a parameter to evaluate BCI performance that takes in account both speed (1/7)
and accuracy, in this case the benefit reached in term of accuracy by the AC2* method
overcompensates the increase of time required to spell a character with respect to the
AC2 method. On the other hand, we can notice that with 10 stimulus cycles the duration
increased excessively and, although the average accuracy is higher, the I'TR is lower with
respect to the ITR computed for 3 and 4 repetitions.

The average theoretical ITR, listed in table 2, demonstrates that both proposed
methods, AC2 and AC2*, could compete with the state-of-art of BCI speller with
language model [13, 14]. Furthermore, considering for example a subject who reaches
an accuracy of 100 % in the spelling of a sentence (figure 5 Session 1), we can obtain
with the AC2* method an ITR of around 54 bpm with 3 stimulus cycles and around
52 bpm with 4 stimulus cycles. These theoretical results can effectively compete with,
for example, the work proposed by Gembler et al. [15], in which they reported an average
ITR value of 57 bpm for the spelling of a sentence in a ¢-VEP BCIL.

6.2. Further remarks

The proposed auto-calibration is one component contributing to the performance of c-
VEP. At least two more improvements should be made. First, the language model
should be integrated into an online application, including specific features such as
error correction and word completion [14]. Second, different strategies may improve
the repeatability of the VEP responses, which is crucial for the performance of the
method. One way is to investigate the influence of the stimulus modulation in order
to design an appropriate interface for the auto-calibration c-VEP BCI system. Indeed
the stimulus modulation is crucial to obtain a high performance ¢-VEP BCI. Many
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studies [20, 21, 22| investigated several parameters to understand their influence in a
c-VEP system but analyzing these studies is clear that it is not possible to define an
universal optimal stimulus parameter setting suitable for each BCI user in a ¢-VEP BCI
system.

7. Conclusion

The method presented in our work is a proof of concept of auto-calibration for a c-
VEP BCI speller. The method exploits only prior language information and not prior
information from other training subjects. The intuition of the method is to use the
fundamental property that characterizes the VEP response elicited from pseudo-random
stimulus sequence. The response of each character is identical, but circularly-shifted
with a specific time sample lag. The method is based on the extraction of the time lag of
the VEP response of each character with respect to the VEP of the first character during
the spelling of the target word. After the spelling of each character, the system finds
within the dictionary all the possible words whose letters respect the sequence of relative
lags. Offline experiments were simulated to test the proposed auto-calibration method
compared to the standard calibration method. We demonstrated that our method can
compete with the current state-of-art of BCI spellers [14, 15].

Furthermore, the proposed method shows promising results to develop a calibration-
free c-VEP BCI. This opens also a new perspective to the diffusion of BCI systems more
user-friendly and adaptable to each user.
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