Antoine Houdard

Arthur Leclaire

Nicolas Papadakis

Julien Rabin

Wasserstein Generative Models for Patch-based Texture Synthesis

Keywords:

 L'archive ouverte pluridisciplinaire

Introduction

Image synthesis consists in creating photorealistic pictures while prescribing some desired attributes. Two main strategies have been investigated in the literature. One can either sample an image distribution using a generative model learnt from a large image dataset, as in GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF]. On the other hand, one can turn to exemplar-based synthesis, that is, generating new images which exhibit features that are similar to the ones of a single example, as in [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF], Shaham et al., 2019] (possibly using "perceptual features" extracted with a neural network trained on an image database [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF]). The latter is the main topic of this paper. In the literature of exemplar-based synthesis, most effort has focused on texture synthesis, which can produce a large texture sample from a small observation, in an efficient manner. The exemplar texture is often assumed to be perceptually stationary, i.e. with no large geometric deformations nor changes in lighting transformations, and we adopt this stationary setting here. Texture models can be broadly classified between parametric [START_REF] Zhu | Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling[END_REF], Portilla and Simoncelli, 2000, Gatys et al., 2015] and non-parametric [START_REF] Efros | [END_REF]Leung, 1999, Kwatra et al., 2005] models. Related applications include dynamic texture synthesis [START_REF] Xia | Synthesizing and Mixing Stationary Gaussian Texture Models[END_REF], texture inpainting [START_REF] Galerne | Texture inpainting using efficient gaussian conditional simulation[END_REF], 3D texture mapping [START_REF] Gutierrez | On demand solid texture synthesis using deep 3d networks[END_REF], texture interpolation [START_REF] Yu | Texture mixer: A network for controllable synthesis and interpolation of texture[END_REF], morphing [START_REF] Bergmann | Learning texture manifolds with the periodic spatial gan[END_REF], expansion [START_REF] Zhou | Non-stationary texture synthesis by adversarial expansion[END_REF] or procedural generation [START_REF] Henzler | Learning a neural 3d texture space from 2d exemplars[END_REF].

Motivation In this work, we consider the local representation of images obtained by the extraction of patches, which are small sub-images of size s × s (where s usually ranges from 3 to 16). This representation takes profit of the self-similarities of natural images, and subsequently lies at the core of very efficient image restoration methods [START_REF] Buades | A non-local algorithm for image denoising[END_REF], Zoran and Weiss, 2011, Lebrun et al., 2013]. It is particularly well adapted to textural content where structural redundancies can be exploited to form new textures with a simple iterative copy/paste procedure [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF]. Besides, considering global statistics on patches was proven fruitful in designing efficient and stable texture models [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF]. In the following, we use optimal transport (OT) distances to compare patch empirical distributions in a relevant way.

While deep learning approaches have recently shown impressive performance for image synthesis [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], patch-based methods are still competitive when only a single image is available for training [START_REF] Bergmann | Learning texture manifolds with the periodic spatial gan[END_REF], Shaham et al., 2019], both considering the computational cost and the visual performance. Moreover, deep learning methods are still difficult to interpret, whereas patch-based models offer a better understanding of the synthesis process and its cases of success and failure. However, patch-based approaches suffer from three main limitations in practice. To begin with, patches are often processed independently and then combined to form a recomposed image. This leads to low frequency artifacts such as blurring because the patches overlap [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF]. In addition, optimization has to be performed sequentially in a coarseto-fine manner (both in image resolution and patch size) starting from a good initial guess. Last, global patch statistics must be controlled along the optimization to prevent strong visual artifacts [START_REF] Kaspar | Self tuning texture optimization[END_REF]. We tackle all these aspects in the proposed OT framework.

Related work

The model proposed in this paper falls into the scope of texture optimization, which formulates synthesis as the minimization of an energy (that may encode visual features or global statistics) starting from a random initialization. Such a framework can embrace famous parametric texture synthesis algorithms through a pixelwise optimization, e.g. [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF] (which matches responses to a bank of complex steerable filters) and [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] (which matches responses to a pre-learnt neural network). A related framework has been introduced in [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF], with an energy that reflects, at multiple scales, the distances of patches from the synthesis to the ones of the exemplar. The corresponding synthesis algorithm consists in iterating patch nearest-neighbor projections in a coarse-to-fine manner. The main drawback of this energy is that it is oblivious of the global statistics of the output image, and thus exhibits trivial minima. This model has been improved in [START_REF] Gutierrez | Optimal patch assignment for statistically constrained texture synthesis[END_REF] where discrete OT plans are iteratively used to enforce the patch distribution of the exemplar. Because of the cost of discrete OT, this algorithm has strong limitations in terms of computational time and output size. In contrast, the models of [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF]Rabin, 2019] are based on semi-discrete OT maps which can be estimated offline, and thus copes with these constraints. In parallel, several models based on Generative Adversarial Networks [START_REF] Goodfellow | Generative adversarial nets[END_REF] have been proposed, which allow for feedforward synthesis of general images [START_REF] Shaham | Singan: Learning a generative model from a single natural image[END_REF] or texture images [START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF], Bergmann et al., 2017] from a single image example. When considering the training of a generative network on an image dataset based on the minimization of the discrepancy between distributions, the latter introduction of Wasserstein GANs [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF] (WGAN) has offered an elegant solution to mode collapse issues.

Alternative techniques to train generative convolutional neural network (CNN) also took profit from the OT framework (e.g. Sliced-Wasserstein distance in the latent space of auto-encoder [START_REF] Kolouri | Sliced wasserstein auto-encoders[END_REF]). Although achieving state-of-the art performance, GANs suffer from some limitations. To begin with, GANs require to optimize a discriminative network, which makes the process unstable and requires a large number of additional parameters [START_REF] Goodfellow | Generative adversarial nets[END_REF], Mescheder et al., 2018]. However the dual formulation of Wasserstein-1 distances allows to restrict to 1-Lipschitz discriminative networks. Different strategies has thus been proposed to enforce such a constraint (e.g. weight clipping or gradient penalty [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF]), thus only approximating the true Wasserstein-1 distance. In [START_REF] Chen | A gradual, semi-discrete approach to generative network training via explicit wasserstein minimization[END_REF], the optimisation of the Wasserstein distance in WGAN is driven by the semi-discrete formulation of OT between the discrete distribution of training images and the density of generated images. Finally, we note that the OT approach in Generative Networks is mainly considered for comparing distributions of generated images and not for prescribing statistics on a single synthesized image.

Contributions In this context, we propose to use OT to constrain the patch distribution of the synthesized image to be close to the one of a unique example image. By proposing a formulation that directly handles the patches of the generated image, our work implicitly addresses the aforementioned limitations of patch-based methods (aggregation, multi-scale optimization, and statistical control). The main contributions are (i) A new and versatile framework for image synthesis from a single example using multi-scale patch statistics and optimal transport; (ii) The computation of the gradient in the discrete and semi-discrete settings used to derive stable algorithms for image synthesis and generative network training from a single example; (iii) Application of the proposed framework for image optimization and generative network for texture synthesis and inpainting.

Outline The paper is organized as follows. To begin with, we recall the OT framework in Section 2. In Section 3, we propose a new model for image synthesis via explicit optimization of the discrete formulation of the Wasserstein distance between patch distributions, at different resolutions. Then, we consider in Section 4 the case where the synthesized images are generated by a convolutional neural network trained with a stochastic algorithm using the semi-discrete Wasserstein formulation. Finally, we discuss about qualitative evaluation of a texture synthesis method and we propose a new metric based on our framework for this purpose.

Background on Optimal Transport

Let X , Y be two compact spaces included in R d and c : X × Y → R be a continuous cost function. We consider two measures µ, ν supported on X , Y, respectively, and we denote by Π(µ, ν) the probability distributions on X × Y having marginals µ and ν. Definition 1 (OT cost and Wasserstein distance). The OT cost is defined by

OT c (µ, ν) = inf π∈Π(µ,ν) c(x, y)dπ(x, y).
(1)

If c(x, y) = x -y p , p ≥ 1, then W p (µ, ν) = OT c (µ, ν) 1 p defines the p-Wasserstein distance.
In the following, theoretical results will be formulated for a general OT cost but the experiments focus on the W 2 cost. Also, we will repeatedly use the dual formulation of OT.

Theorem 1 (Semi-dual formulation [Santambrogio, 2015]). If X and Y are compact and the cost c is continuous, then

OT c (µ, ν) = max ϕ∈C(Y) ϕ c (x)dµ(x) + ϕ(y)dν(y), (2)
where ϕ : Y → R and its c-transform is defined by ϕ c (x) = min y∈Y [c(x, y) -ϕ(y)].

Image optimization

In this section we formulate an energy that will constrain the patch distribution of an image to be close to a target distribution for the OT cost. Using the semi-dual formulation of OT, we end up with a non-convex concave saddle-point problem. We then propose a pixelwise optimization algorithm for this energy, which exhibits a good empirical behavior (stability and convergence). Finally we extend this energy in a multiscale fashion in order to address texture synthesis, and we make the connection with the texture optimization framework of [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF].

Setup of the problem

For an image u ∈ R n with n pixels, we consider the collection of its patches P u = (P 1 u, . . . , P n u), that is, the list of all sub-images of size s × s extracted from u. To simplify, we consider periodic boundary conditions so that the number of patches is exactly n. Notice that P j is a linear operator whose adjoint P T j maps a given patch q to an image whose j-patch is q and is zero elsewhere. Consider also the empirical patch distribution of an image u ∈ R n defined by µ u = 1 n n i=1 δ Piu . Given an example texture image v ∈ R m , we aim at generating an image u ∈ R n whose patch distribution µ u is close to µ v for the OT cost.

From the semi-dual formulation of Theorem 1, this amounts to minimize the function

w(u) = OT c (µ u , µ v) = max ϕ∈R m f (ϕ, u), (3)
where

f (ϕ, u) = 1 n n i=1 ϕ c (P i u) + 1 m m j=1 ϕ j . (4)
Solving (3) is now equivalent to min u∈R n max ϕ∈R m f (ϕ, u).

(5)

From the OT theory [Santambrogio, 2015], we know that f is concave in ϕ which will be helpful in practice. However, the function f is not convex in the second variable u, and thus we will focus on approaching local minima of w in (3).

Theoretical results

In this paragraph, we will study the differential properties of the function f introduced in (3). The first result, stated without proof, is a standard derivation of the gradient w.r.t. ϕ. Theorem 2. Let u ∈ R n and ϕ ∈ R m . For any i, let j (i) ∈ arg min j c(P i u, y j) -ϕ j (with an arbitrary choice in case of ex-aequo). Then, f (•, u) admits a super-gradient at ϕ given by

g j (ϕ, u) = 1 m - 1 n n i=1 1 j (i)=j (6)
The regularity in u is essentially linked to the differential property of the Wasserstein distance w.r.t. its arguments, which is here linked to the positions of points in µ u . To analyze the situation, we consider the open Laguerre cells

L j (ϕ) = {x | ∀k = j, c(x, y j) -ϕ j < c(x, y k) -ϕ k }. For any σ : {1, . . . , n} → {1, . . . , m}, denote A σ (ϕ) = {u ∈ R n | ∀i, P i u ∈ L σ(i) (ϕ)} and A(ϕ) = σ A σ (ϕ). In other words, A(ϕ) is the set of images whose patches have no ex-aequo values for ϕ c . Since c is continuous, it is straightforward to see that A σ (ϕ) is an open subset of R n . Theorem 3. Assume that c is differentiable w.r.t. the first variable. Let ϕ ∈ R m and u ∈ A σ (ϕ). Then f (ϕ, •) is differentiable at u and ∇ u f (ϕ, u) = 1 n n i=1 P T i ∇ u c(P i u, y σ(i)). (7)
Proof. Since A σ (ϕ) is open, for v sufficiently close to u, we have also that v ∈ A σ (ϕ) and thus

f (ϕ, v) = 1 n n i=1 c(P i v, y σ(i)) -ϕ σ(i) + 1 m m j=1 ϕ j (8)
and the result follows by applying the chain-rule to the first term.

Finally, the following theorem provides the gradient of w at particular points u where the associated optimal dual potential ϕ * leads to no ex-aequo.

Theorem 4. Let u ∈ R n and ϕ ∈ arg max ϕ f (ϕ, u) such that u ∈ A(ϕ). Then w in (3) is differentiable at u and ∇w(u) = ∇ u f (ϕ , u).
Proof. Since u ∈ A(ϕ) there exists a map σ : {1, . . . , n} → {1, . . . , m} such that u ∈ A σ (ϕ).

Since ϕ is optimal and its c-transform makes no ex-aequo for the patches P i u, we have in particular that the map P i u → y σ(i) realizes the OT from µ u to ν. Then, for v close to u, we still have v ∈ A σ (ϕ) and thus the same map also realizes the OT from µ v to ν, which implies that ϕ ∈ arg max ϕ f (ϕ, v). Therefore for v close to u, we have w(v) = f (ϕ , v) which suffices to conclude.

Let us emphasize that the hypothesis of Theorem 4 can be true only in very specific cases. Indeed, the fact that P i u → y σ(i) is an OT map from µ u to ν implies, from mass conservation, that m divides n.

Fortunately for the applications at hand, such condition is easily met as one can sample the target patch distribution accordingly. In addition, we only use the gradient ∇ u f (ϕ, u) during optimization.

A one-scale texture synthesis algorithm

We now detail our texture synthesis algorithm that estimates an image u minimizing (3), so that the patch distribution of u is close to the one of an example image v. To do so, we look for a local saddle point of the problem (5) with an iterative alternate scheme on ϕ and u, starting with an initial noise image u 0 . For a fixed u k , we perform a gradient ascent, using the super-gradient given in Theorem 2 to obtain an approximation ϕ k+1 of ϕ * ∈ arg max ϕ f (ϕ, u k). A gradient-descent step is then realized on u, using the gradient given in Theorem 3. In practice we consider the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with learning rate 0.01. For texture synthesis, in all the experiments, we consider the quadratic cost c(x, y) = 1 2 x -y 2 . In this particular case, the gradient w.r.t. u reads

∇ u f (ϕ k+1 , u k) = 1 n n i=1 P T i P i u k - n i=1 P T i y j k+1 i , (9)
where

j k+1 i = arg min j 1 2 P i u k -y j 2 -ϕ k+1 j . (10)
In (9), notice that n i=1 P T i corresponds to an uniform patch aggregation. To simplify, we consider periodic conditions for patch extraction, so that n i=1 P T i P i = pI, where p = s × s denotes the number of pixels in the patches. Hence, from (9) and considering a step size η n p , η > 0, the update of u through gradient descent can be formulated as:

u k+1 = (1 -η)u k + ηv k , (11
)
where

v k = 1 p n i=1 P T i y j k+1 i , (12)
can be interpreted as the image formed with the patches from the exemplar image v which are the nearest neighbor to the patches of u k in the sense of (10). The gradient step then mixes the current image u k with v k . In the case ϕ = 0, the minimum in (10) is reached by associating to each patch of u k its nearest neighbor in the set {y 1 , . . . , y n } patches of v, which exactly corresponds to the texture synthesis algorithm proposed in [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF]]. This image synthesis process is illustrated in Figure 1, with a comparison of image synthesis for different patch sizes. With this formulation, patch distributions are only considered for one given patch size s × s. Therefore, this method cannot take into account variations that may occur at scales larger than s, a limitation which is overcome by the multi-scale extension introduced in the next section.

Multi-scale Texture Generation

In the patch-based literature, a common way to deal with multi-scale is to create a pyramid of down-sampled and blurred images. Let S l be an operator that creates a down-sampled and blurred version of an image for a scale l ∈ {1, ..., L}. The image at scale l is of size n/2 l-1 × n/2 l-1 and denoted u l = S l (u). The multi-scale texture synthesis is then obtained by minimizing

L(u) = L l=1 max ϕ f v l (u l , ϕ), (13)
Algorithm 1 Multi-scale Texture synthesis procedure Input: target image v, initial image u 0 , learning rates η u and η ϕ , number of iterations N u and N ϕ , number of scales L Output: image u u ← u 0 and ϕ l = 0 for l = 1 . . . L for k = 1 to N u do for l = 1 to L do for j = 1 to N ϕ do compute g l a super-gradient for scale l ϕ

l ← ϕ l + η ϕ g l (ϕ l , S l (u)) end for G l (u, ϕ l) ← (D u S l (u)) T ∇ u f v l (ϕ l , S l (u)) end for u ← u -η u (k) L l=1 G l (u, ϕ l) we end for where f v l (u l , ϕ) = 1 n n j=1 min i c(P j u l , P i v l) -ϕ i + 1 m m i=1 ϕ i . (14
)
This loss is the sum of OT costs defined on different scales of u. In the case where the cost is • p , this loss can be interpreted as the sum of W p p distances. In this work, we set p = 2 for the experiments since it lowers the computation time using the fact that x -y 2 = x 2 + y 2 -y|x . However the method would still work for any continuous cost c. As for the single-scale case, an alternate scheme is considered to minimize the loss L in (13). Considering smoothing operators S l , with differential at u given by D u S l (u), the gradient descent update of u relies on the following relation combining different scales:

∇ u L(u) = L l=1 (D u S l (u)) T ∇ u f v l (u l , ϕ l) = L l=1
G l (u, ϕ l).

(15)

Experiments

The multi-scale synthesis process is presented in Algorithm 1. Figures 2 and3 present comparisons for synthesis realized from 128 × 128 and 256 × 256 exemplar textures with the two methods [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF] (patch size ranging from s = 32 to s = 8) and [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] (VGG-19 features). In the same way than our Algorithm 1, these methods aim at optimizing the pixels of an image in order to constrain some information: the patches in a nearest neighboor way for [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF] and the Gram matrices of VGG features for [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF]. We also show additional results of texture synthesis in Figures 4 obtained with Algorithm 1.

For these experiments, we used the original code of [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] (https://github. com/leongatys/DeepTextures) and our own implementation of Texture Optimization [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF]. With our method, the evolution of the loss function is also drawn to illustrate the numerical stability of the optimization scheme. The value f (ϕ k+1 , u k), which is an approximation of l W 2 2 (µ u k l , ν l) between the distributions of patches from u k and v at all scales l = 1 • • • L, is almost always decreasing along the iterations k.

While it is already known [START_REF] Liu | Texture synthesis through convolutional neural networks and spectrum constraints[END_REF] that the approach of [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] might have color inconsistencies, it mostly suffers here from the small resolution of the input for which it is difficult to extract deep features. Additionally, one can observe that contrarily to our method and [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF], the approach of [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF] does not rely on statistics and thus does not respect the distribution of features of the original sample. Therefore, it must be initialized with a good guess (permutation of patches) instead of any random image.

In all experiments, we used the Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] optimizer from the torch.optim package of PyTorch in order to perform the gradient descent for the image variable u in Algorithm 1.

Original [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF] [[START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] Our (Alg. 1) Loss eq. (13)

Figure 2: Texture synthesis from a 128 × 128 sample by image optimization. Comparison of our multi-scale approach using s = 4 and L = 4 (see Alg. 1) with Kwatra [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF] (patch size ranging from s = 32 to s = 8) and Gatys [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] (VGG-19 features).

We also used the KeOps library [START_REF] Charlier | Kernel operations on the gpu, with autodiff, without memory overflows[END_REF] that performs efficiently the nearest neighbor projections involved in the computations of c-transforms.

Additionally, we used the following parameters:

• patch size s = 4;

• 100 iterations of gradient ascent on ϕ with gradient step 0.8 Verbatim copies We can notice that the proposed method yields results with some verbatim copies. This well-known phenomenon actually occurs for other image optimization approaches and can be observed for instance in the experiments of [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] and [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF]. This is also expected in our case since we only enforce the patch distribution and parts of the original image are local minima for the proposed loss. Although these local copies can clearly be observed when we have few samples, they become less obvious when the algorithm has access to more samples. To illustrate this point, Figure 5 shows synthesis results for the same texture, first from a 128 × 128 crop of the example texture, then from the full 256 × 256 texture.

Texture inpainting

The framework proposed for texture synthesis can be extended to texture inpainting, by taking the patches outside a masked area as the target ones. By optimizing only the pixels within the masked area, the very same algorithm yields an efficient texture inpainting method, as illustrated in Figure 6.

Discussion As previously mentioned, the proposed approach can be seen as a generalization of the iterative texture synthesis method [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF]. The visual results are competitive with the state-of-the-art of patch-based synthesis methods. The process requires 1 second to run one iteration for a 256 × 256 image on a GPU Nvidia K40m, and 150 iterations are enough to reach a good visual result, as illustrated by convergence plots in Figure 2. However, the whole optimization has to be done each time a new image is synthesized. In order to define a versatile algorithm that can generate new samples on the fly, we will now rely on continuous generative models and convolutional neural networks.

Generative Network

In this section, we consider the problem of training a network to generate images that have a prescribed patch distribution at multiple scales.

The semi-discrete formulation

Let us consider a generator g θ , parameterized by θ ∈ Θ ⊂ R d that goes from a latent space Z, assumed to be compact, to the space of images. Given a random vector Z of distribution ζ in the latent space Z, the generated random image is g θ (Z), and has distribution g θ ζ (defined for any Borel set A by

g θ ζ(A) = ζ(g -1 θ (A))).
In the following, we will assume that for dζ-almost all z, θ → g θ (z) is differentiable and we denote by J θ g θ (z) the corresponding Jacobian matrix. The patches of the output image are distributed according to

µ θ = 1 n n i=1 P i g θ ζ. (16
)
One can assume that µ θ is absolutely continuous w.r.t. the Lebesgue measure; this is indeed the generic case, which happens except for very specific choices of g θ and ζ. Since the target distribution ν is still discrete, computing W p (µ θ , ν) falls into the semi-discrete case of OT. The semi-dual formulation of OT then writes

OT c (µ θ , ν) = max ϕ F (ϕ, θ) where F (ϕ, θ) = E Z∼ζ   1 n n i=1 ϕ c (P i g θ (Z)) + 1 m m j=1 ϕ j   (17)
Note that F can be related to the function f we introduced in the previous section, since

F (ϕ, θ) = E Z∼ζ [f (ϕ, g θ (Z))] .
(18) Therefore we can consider the gradients of f w.r.t. u or ϕ as stochastic gradients for F . Indeed, from Theorem 2 we get that g(ϕ, g θ (Z)) is a stochastic super-gradient w.r.t. ϕ, and from Theorem 3 we get

∇ θ f (ϕ, g θ (z)) = J θ (g θ (z)) T ∇ u f (ϕ, u = g θ (z)), (19)
which exists as soon as ϕ, g θ (z) satisfies the hypothesis of Theorem 3. Notice that, except in degenerate cases, this hypothesis is likely to be true (e.g. for the Euclidean cost, it will be true as soon as g θ ζ is absolutely continuous w.r.t. the Lebesgue measure).

In this semi-discrete framework of OT, θ → OT c (µ θ , ν) is expected to be smoother than in the discrete case. We do not provide a precise result here. However, if θ is a point of differentiability, the envelope theorem ensures that

∇ θ OT c (µ θ , ν) = ∇ θ E[f (ϕ , g θ (Z))] (20
) where ϕ is an optimal dual variable for the OT from µ θ to ν, and if we can differentiate under the expectation, we get

∇ θ OT c (µ θ , ν) = E[∇ θ f (ϕ , g θ (Z))]. (21)

Proposed algorithm

All the previous considerations together with the multiscale formalism we defined in Section 3 lead us to propose the Algorithm 2 for minimizing the following loss w.r.t. the parameters θ

L(θ) = L l=1 max ϕ l E z∼ζ f v l (ϕ l , g θ (z) l) . (22)
In practice, for each iteration k and at each layer l we first update ϕ l as proposed in [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF]. Then we sample an image and perform a stochastic gradient step in θ.

The fully convolutional neural network designed for texture generation in [START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF] is taken for g θ . The main advantage of convolutional networks is that, once learnt, they can generate arbitrarily large images. In our PyTorch implementation, we use the Adam optimizer to estimate the parameters θ. We run the algorithm for 10000 iterations with a learning-rate 0.0005. An averaged stochastic gradient ascent (ASGA) with 10 inner iterations is used for computing ϕ . In this setting, 30' are required to train our generator with a GPU Nvidia K40m.

Algorithm 2 Multi-scale Convolutional Texture generation with stochastic gradient descent Input: target image v, initial weight θ 0 , learning rate η θ , number of iterations N u and N ϕ , number of scales L Output: generator parameters θ

for k = 1 to N u do for l = 1 to L do compute ϕ l with ASGA sample z from ζ G l (θ) ← ∇ θ f v l (ϕ l , g θ (z) l) end for θ ← θ -η θ (k) L l=1 G l (θ) end for

Experimental results and discussions

In Figure 7 , comparisons with two methods are presented for input textures of size 128×128. We first consider the Texture Networks method [START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF], which consists in training a generative network using VGG-19 feature maps computed on a texture sample. Note that the very same CNN architecture has been used for our model. We also compare to SinGAN [START_REF] Shaham | Singan: Learning a generative model from a single natural image[END_REF], a recent GAN technique to generate images from a single example relying on patch sampling.

Figure 8 then presents more detailed comparisons for input textures of size 256 × 256, with two additional synthesis methods from the literature: PSGAN [START_REF] Bergmann | Learning texture manifolds with the periodic spatial gan[END_REF] which is a previous approach applying GAN framework to the learning of a CNN, and Texto [START_REF] Leclaire | A fast multi-layer approximation to semi-discrete optimal transport[END_REF] which also constrains patch distributions with OT. In all our experiments, we used the official PyTorch implementations of SINGAN (github.com/tamarott/SinGAN), PSGAN (github. com/zalandoresearch/famos) and Texture Networks (github.com/JorgeGtz/TextureNets_ implementation), with their default parameters. For all the experiments of this section realized with Algorithm 2, we used the same generative network than the one proposed in [START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF] with the following parameters

• patch size s = 4
• 10 iterations of stochastic gradient ascent on ϕ with gradient step 0.8 √ k with randomly generated images of size 256 × 256 at each iteration • 10000 iterations of gradient descent on the parameters of the generator G with Adam optimizer with learning rate lr = 0.0005

• number of scales L = 5

Figure 7 shows that small sample resolution (128 × 128) makes difficult the extraction of relevant deep features, and impacts negatively the quality of Texture Networks. On the other hand, the two other methods based on patches are more robust and give satisfying results. It is interesting to notice that, for all generators, some specific patterns are learnt and repeated across the generated images. More specifically, when using patches, those patterns are almost local copies of the original image.

For instance, we can observe on the radishes image in Figure 7 that one particular leave seems to appear many times in our case, and patches on the border of images generated with SinGAN are copies from the input. This seems natural considering that the optimization is only performed on sampled patches, but it also shows that there is room for improvement.

As illustrated in Figure 8, the results obtained with our method are visually close to the ones from Texto [START_REF] Leclaire | A fast multi-layer approximation to semi-discrete optimal transport[END_REF] which also minimizes OT distance between patch distribution. However, the patch-aggregation step from Texto makes the results blurrier than our method since we overcome the aggregation issue by design. Although Texture networks [START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF] produce textures that look sharper than our results, they may fail to reconstruct larger structures as in the fourth image. Observe as well that patch-based networks are less likely to create visual artifacts (checkerboard patterns, false colors, etc). These experiments show that enforcing the patch distribution permits to learn convolutional neural network for the purpose of texture generation. Despite the already nice results we obtained here, we think that more thorough investigation on the network architecture and the learning parameters could yield qualitatively better results. [START_REF] Shaham | Singan: Learning a generative model from a single natural image[END_REF], PSGAN [START_REF] Bergmann | Learning texture manifolds with the periodic spatial gan[END_REF] and Texto [START_REF] Leclaire | A fast multi-layer approximation to semi-discrete optimal transport[END_REF].

Evaluation of texture synthesis methods

The precise evaluation of texture synthesis methods is a complex and open question. The visual quality is strongly subjective and there exists no universal perception metric. Some metrics have been proposed to evaluate generated images, with for instance the SIFID (Single Image FID) introduced in the SINGAN paper [START_REF] Shaham | Singan: Learning a generative model from a single natural image[END_REF] or the metric given by the feature correlations of VGG as used in [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF]. We give in Table 1 the scores for these two metrics corresponding to the results presented in Figure 8. As expected, these metrics favor the methods that actually optimize the given features. Therefore, we also propose a new evaluation metric for texture synthesis that measures the Wasserstein distance between patch distribution at each scale, which should favor our method. The corresponding results are also given in Table 1. As expected, our methods and the Texto one, which also minimizes OT distance between patches distribution, perform better for the proposed OT loss, whereas the Texture Networks [START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF] obtain better results with the metric based on VGG features and inception network. However, our methods are competitive with the state-of-the art methods for all these metrics since we obtain the best results for two of the four proposed textures with Algorithm 1. Moreover, we can notice that existing metrics are not always relevant. In the last texture of Figure 8, [START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF] presents smaller values for both SIFID and VGG score, whereas the synthesized texture does not match the input one in term of large-scale coherence.

Conclusion

In this paper, we propose an original image generation framework from a single sample, which combines three popular topics in image processing and machine learning: patch-based methods, optimal transport and deep generative models. For both pixel optimization and convolutional network optimization, we achieve results comparable to the state-of-the-art in texture synthesis. The flexibility of our method also allowed us to propose a texture inpainting algorithm. Dealing only with the patch distribution of the synthesized textures through OT costs, the pixel optimization method relates to a classical patch-based model [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF]. In many patchbased synthesis methods, the different scales and the aggregation of the patches are treated separately. The strength of our approach then comes from the integration of the different synthesis steps into a single gradient descent on the image. Notice that we have restricted conditions regarding the number of target patches on the existence of the functional gradient. However, this is not a limitation for considered applications and numerical experiments show a clear convergence.

Still considering the optimal transport framework, we then propose to learn a convolutional neural network for texture synthesis. Our method produces images of arbitrary size, whose patch distributions at various scales are close in 2-Wasserstein distance to the ones of the reference image used for training. This is a significant advantage over several methods in the literature relying on the VGG-19 deep network [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], which then require a more complex optimization and a larger memory capacity.

This work tries to make the best of two worlds: on one hand, it makes use of generative models based on CNN which yield state-of-the-art performance, but are usually difficult to train (requiring large dataset, relying on adversarial unstable optimization, prone to mode collapse, etc); on the other hand, our model explicitly uses a patch based representation combined with an optimal transport distance which makes it possible to train on a single image and guarantees the quality of the generated images.

Our model can be framed as an exact Wasserstein-GAN model for patch, without the limitation of parameterizing the discriminator, nor the need for regularization (WGAN-GP). When optimizing directly on an image, i.e. without the limitation of the generative network, the generated images are local copies of the exemplar one. This demonstrates the limitations of high-capacity GANs that can overfit training datasets, which raises interesting questions about privacy.

Additionally, as already shown with inpainting examples, the proposed approach has many direct applications in computer graphics and vision, and can be helpful for artists or designers (texture generation in video games, image restoration).

Figure 1 :

 1 Figure 1: Influence of patch-size s for the single-scale method (Algorithm 1 with L = 1).

√kFigure 3 :

 3 Figure 3: Texture synthesis from a 256 × 256 sample by image optimization. Comparison of our multi-scale approach using s = 4 and L = 5 (see Alg. 1) with[START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF] (patch size ranging from s = 32 to s = 8) and[START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] (VGG-19 features).

Figure 4 :

 4 Figure 4: Texture synthesis of size 256 × 256 from a 128 × 128 sample by image optimization using our multi-scale approach with s = 4 and L = 4 (see Alg. 1).

Figure 5 :Figure 6 :

 56 Figure 5: Comparison when using input images with different sizes, effect on verbatim copies. The 128 × 128 original image is a crop from the 256 × 256 original image. Since our method is patch-based, it is likely that the synthesized texture have local copies of the original one. This effect is more obvious when the input image is small, see for instance the same flower copied many times in the 256 × 256 version of the second image.

Figure 7 :

 7 Figure 7: Texture synthesis from a generative network trained on a single 128 × 128 sample.Comparison of our multi-scale approach Alg. 2 (with s = 4, L = 5) with[START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF] (using VGG-19 features) and SinGAN[START_REF] Shaham | Singan: Learning a generative model from a single natural image[END_REF].

Figure 8 :

 8 Figure 8: Texture synthesis from a single 256×256 sample of a high-definition texture. Comparison of Alg. 1 and Alg. . 2 (with s = 4 and L = 5) with [Ulyanov et al., 2016] (using VGG-19 features), Sin-GAN[START_REF] Shaham | Singan: Learning a generative model from a single natural image[END_REF], PSGAN[START_REF] Bergmann | Learning texture manifolds with the periodic spatial gan[END_REF] and Texto[START_REF] Leclaire | A fast multi-layer approximation to semi-discrete optimal transport[END_REF].

Table 1 :

 1 Evaluation of texture synthesis methods for the results of Figure8. The best result is given in bold font and the second best is underlined. The last line shows the mean over all images.VGG score (cross-correlation of VGG features as in[START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] and Ulyanov) (×10 3) Our (Alg. 1) Our (Alg. 2) Ulyanov SINGAN PSGAN Texto

	0.43	1.13	0.11	0.93	0.27	1.22
	0.02	0.06	0.08	0.10	0.91	0.07
	0.08	0.18	0.18	0.17	1.14	0.18
	1.23	1.82	0.17	0.37	0.49	1.67
	0.44	0.80	0.14	0.39	0.70	0.79
	122	233	218	299	224	260
	6	19	9	8	512	24
	141	151	54	207	753	152
	865	922	190	394	1366	1030
	283	331	118	227	714	367
	0.45	0.48	0.65	0.54	0.68	0.49
	0.15	0.16	0.24	0.24	0.43	0.16
	0.09	0.10	0.17	0.26	0.34	0.11
	0.74	0.78	1.22	0.79	1.19	0.75
	0.36	0.38	0.57	0.46	0.66	0.38

SIFID (first max pooling features) proposed in SINGAN

[START_REF] Shaham | Singan: Learning a generative model from a single natural image[END_REF]

Our (Alg. 1) Our (Alg. 2) Ulyanov SINGAN PSGAN Texto Proposed: Multiscale OT distance Our (Alg. 1) Our (Alg. 2) Ulyanov SINGAN PSGAN Texto

Acknowledgements

This study has been carried out with financial support from the French State, managed by the French National Research Agency, through the GOTMI project (ANR-16-CE33-0010-01). The authors also acknowledge the French GdR ISIS through the support of the REMOGA project.