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Abstract

In this paper, we propose a framework to train a generative model for texture image
synthesis from a single example. To do so, we exploit the local representation
of images via the space of patches, that is, square sub-images of fixed size (e.g.
4 × 4). Our main contribution is to consider optimal transport to enforce the
multiscale patch distribution of generated images, which leads to two different
formulations. First, a pixel-based optimization method is proposed, relying on
discrete optimal transport. We show that it is related to a well-known texture
optimization framework based on iterated patch nearest-neighbor projections, while
avoiding some of its shortcomings. Second, in a semi-discrete setting, we exploit
the differential properties of Wasserstein distances to learn a fully convolutional
network for texture generation. Once estimated, this network produces realistic
and arbitrarily large texture samples in real time. The two formulations result in
non-convex concave problems that can be optimized efficiently with convergence
properties and improved stability compared to adversarial approaches, without
relying on any regularization. By directly dealing with the patch distribution of
synthesized images, we also overcome limitations of state-of-the art techniques,
such as patch aggregation issues that usually lead to low frequency artifacts (e.g.
blurring) in traditional patch-based approaches, or statistical inconsistencies (e.g.
color or patterns) in learning approaches.

1 Introduction

Image synthesis consists in creating photorealistic pictures while prescribing some desired at-
tributes. Two main strategies have been investigated in the literature. One can either sam-
ple an image distribution using a generative model learnt from a large image dataset, as in
GANs [Goodfellow et al., 2014]. On the other hand, one can turn to exemplar-based synthesis,
that is, generating new images which exhibit features that are similar to the ones of a single example,
as in [Gatys et al., 2015, Shaham et al., 2019] (possibly using “perceptual features” extracted with a
neural network trained on an image database [Johnson et al., 2016]). The latter is the main topic of
this paper. In the literature of exemplar-based synthesis, most effort has focused on texture synthesis,
which can produce a large texture sample from a small observation, in an efficient manner. The
exemplar texture is often assumed to be perceptually stationary, i.e. with no large geometric defor-
mations nor changes in lighting transformations, and we adopt this stationary setting here. Texture
models can be broadly classified between parametric [Zhu et al., 1998, Portilla and Simoncelli, 2000,
Gatys et al., 2015] and non-parametric [Efros and Leung, 1999, Kwatra et al., 2005] models. Re-
lated applications include dynamic texture synthesis [Xia et al., 2014], texture inpainting
[Galerne and Leclaire, 2017], 3D texture mapping [Gutierrez et al., 2018], texture interpolation
[Yu et al., 2019], morphing [Bergmann et al., 2017], expansion [Zhou et al., 2018] or procedural
generation [Henzler et al., 2019].
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Motivation In this work, we consider the local representation of images obtained by the extrac-
tion of patches, which are small sub-images of size s × s (where s usually ranges from 3 to 16).
This representation takes profit of the self-similarities of natural images, and subsequently lies at
the core of very efficient image restoration methods [Buades et al., 2005, Zoran and Weiss, 2011,
Lebrun et al., 2013]. It is particularly well adapted to textural content where structural re-
dundancies can be exploited to form new textures with a simple iterative copy/paste proce-
dure [Efros and Leung, 1999]. Besides, considering global statistics on patches was proven fruitful in
designing efficient and stable texture models [Galerne et al., 2018]. In the following, we use optimal
transport (OT) distances to compare patch empirical distributions in a relevant way.

While deep learning approaches have recently shown impressive performance for image synthe-
sis [Karras et al., 2019], patch-based methods are still competitive when only a single image is
available for training [Bergmann et al., 2017, Shaham et al., 2019], both considering the computa-
tional cost and the visual performance. Moreover, deep learning methods are still difficult to interpret,
whereas patch-based models offer a better understanding of the synthesis process and its cases
of success and failure. However, patch-based approaches suffer from three main limitations in
practice. To begin with, patches are often processed independently and then combined to form
a recomposed image. This leads to low frequency artifacts such as blurring because the patches
overlap [Kwatra et al., 2005]. In addition, optimization has to be performed sequentially in a coarse-
to-fine manner (both in image resolution and patch size) starting from a good initial guess. Last,
global patch statistics must be controlled along the optimization to prevent strong visual artifacts
[Kaspar et al., 2015]. We tackle all these aspects in the proposed OT framework.

Related work The model proposed in this paper falls into the scope of texture optimization, which
formulates synthesis as the minimization of an energy (that may encode visual features or global
statistics) starting from a random initialization. Such a framework can embrace famous parametric
texture synthesis algorithms through a pixelwise optimization, e.g. [Portilla and Simoncelli, 2000]
(which matches responses to a bank of complex steerable filters) and [Gatys et al., 2015] (which
matches responses to a pre-learnt neural network). A related framework has been introduced
in [Kwatra et al., 2005], with an energy that reflects, at multiple scales, the distances of patches from
the synthesis to the ones of the exemplar. The corresponding synthesis algorithm consists in iterating
patch nearest-neighbor projections in a coarse-to-fine manner. The main drawback of this energy is
that it is oblivious of the global statistics of the output image, and thus exhibits trivial minima. This
model has been improved in [Gutierrez et al., 2017] where discrete OT plans are iteratively used to
enforce the patch distribution of the exemplar. Because of the cost of discrete OT, this algorithm
has strong limitations in terms of computational time and output size. In contrast, the models
of [Galerne et al., 2018, Leclaire and Rabin, 2019] are based on semi-discrete OT maps which can
be estimated offline, and thus copes with these constraints. In parallel, several models based on
Generative Adversarial Networks [Goodfellow et al., 2014] have been proposed, which allow for feed-
forward synthesis of general images [Shaham et al., 2019] or texture images [Ulyanov et al., 2016,
Bergmann et al., 2017] from a single image example. When considering the training of a generative
network on an image dataset based on the minimization of the discrepancy between distributions,
the latter introduction of Wasserstein GANs [Arjovsky et al., 2017] (WGAN) has offered an elegant
solution to mode collapse issues.

Alternative techniques to train generative convolutional neural network (CNN) also took profit
from the OT framework (e.g. Sliced-Wasserstein distance in the latent space of auto-encoder
[Kolouri et al., 2019]). Although achieving state-of-the art performance, GANs suffer from some
limitations. To begin with, GANs require to optimize a discriminative network, which makes the
process unstable and requires a large number of additional parameters [Goodfellow et al., 2014,
Mescheder et al., 2018]. However the dual formulation of Wasserstein-1 distances allows to restrict
to 1-Lipschitz discriminative networks. Different strategies has thus been proposed to enforce such a
constraint (e.g. weight clipping or gradient penalty [Gulrajani et al., 2017]), thus only approximating
the true Wasserstein-1 distance. In [Chen et al., 2019], the optimisation of the Wasserstein distance
in WGAN is driven by the semi-discrete formulation of OT between the discrete distribution of
training images and the density of generated images. Finally, we note that the OT approach in
Generative Networks is mainly considered for comparing distributions of generated images and not
for prescribing statistics on a single synthesized image.
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Contributions In this context, we propose to use OT to constrain the patch distribution of the
synthesized image to be close to the one of a unique example image. By proposing a formulation that
directly handles the patches of the generated image, our work implicitly addresses the aforementioned
limitations of patch-based methods (aggregation, multi-scale optimization, and statistical control).
The main contributions are (i) A new and versatile framework for image synthesis from a single
example using multi-scale patch statistics and optimal transport; (ii) The computation of the gradient
in the discrete and semi-discrete settings used to derive stable algorithms for image synthesis and
generative network training from a single example; (iii) Application of the proposed framework for
image optimization and generative network for texture synthesis and inpainting.

Outline The paper is organized as follows. To begin with, we recall the OT framework in Section 2.
In Section 3, we propose a new model for image synthesis via explicit optimization of the discrete
formulation of the Wasserstein distance between patch distributions, at different resolutions. Then,
we consider in Section 4 the case where the synthesized images are generated by a convolutional
neural network trained with a stochastic algorithm using the semi-discrete Wasserstein formulation.
Finally, we discuss about qualitative evaluation of a texture synthesis method and we propose a new
metric based on our framework for this purpose.

2 Background on Optimal Transport

Let X ,Y be two compact spaces included in Rd and c : X × Y → R be a continuous cost function.
We consider two measures µ, ν supported on X ,Y , respectively, and we denote by Π(µ, ν) the
probability distributions on X × Y having marginals µ and ν.
Definition 1 (OT cost and Wasserstein distance). The OT cost is defined by

OTc(µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y). (1)

If c(x, y) = ‖x− y‖p, p ≥ 1, then Wp(µ, ν) = OTc(µ, ν)
1
p defines the p-Wasserstein distance.

In the following, theoretical results will be formulated for a general OT cost but the experiments
focus on the W2 cost. Also, we will repeatedly use the dual formulation of OT.
Theorem 1 (Semi-dual formulation [Santambrogio, 2015]). If X and Y are compact and the cost c
is continuous, then

OTc(µ, ν) = max
ϕ∈C(Y)

∫
ϕc(x)dµ(x) +

∫
ϕ(y)dν(y), (2)

where ϕ : Y → R and its c-transform is defined by ϕc(x) = miny∈Y [c(x, y)− ϕ(y)].

3 Image optimization

In this section we formulate an energy that will constrain the patch distribution of an image to be
close to a target distribution for the OT cost. Using the semi-dual formulation of OT, we end up with
a non-convex concave saddle-point problem. We then propose a pixelwise optimization algorithm for
this energy, which exhibits a good empirical behavior (stability and convergence). Finally we extend
this energy in a multiscale fashion in order to address texture synthesis, and we make the connection
with the texture optimization framework of [Kwatra et al., 2005].

3.1 Setup of the problem

For an image u ∈ Rn with n pixels, we consider the collection of its patches Pu = (P1u, . . . , Pnu),
that is, the list of all sub-images of size s× s extracted from u. To simplify, we consider periodic
boundary conditions so that the number of patches is exactly n. Notice that Pj is a linear operator
whose adjoint PTj maps a given patch q to an image whose j-patch is q and is zero elsewhere.
Consider also the empirical patch distribution of an image u ∈ Rn defined by µu = 1

n

∑n
i=1 δPiu.

Given an example texture image v ∈ Rm, we aim at generating an image u ∈ Rn whose patch
distribution µu is close to µv for the OT cost.
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From the semi-dual formulation of Theorem 1, this amounts to minimize the function
w(u) = OTc (µu, µv) = max

ϕ∈Rm
f(ϕ, u), (3)

where

f(ϕ, u) =
1

n

n∑
i=1

ϕc(Piu) +
1

m

m∑
j=1

ϕj . (4)

Solving (3) is now equivalent to
min
u∈Rn

max
ϕ∈Rm

f(ϕ, u). (5)

From the OT theory [Santambrogio, 2015], we know that f is concave in ϕ which will be helpful in
practice. However, the function f is not convex in the second variable u, and thus we will focus on
approaching local minima of w in (3).

3.2 Theoretical results

In this paragraph, we will study the differential properties of the function f introduced in (3). The
first result, stated without proof, is a standard derivation of the gradient w.r.t. ϕ.
Theorem 2. Let u ∈ Rn and ϕ ∈ Rm. For any i, let j?(i) ∈ arg minj c(Piu, yj) − ϕj (with an
arbitrary choice in case of ex-aequo). Then, f(·, u) admits a super-gradient at ϕ given by

gj(ϕ, u) =
1

m
− 1

n

n∑
i=1

1j?(i)=j (6)

The regularity in u is essentially linked to the differential property of the Wasserstein distance w.r.t.
its arguments, which is here linked to the positions of points in µu. To analyze the situation, we
consider the open Laguerre cells Lj(ϕ) = {x | ∀k 6= j, c(x, yj)− ϕj < c(x, yk)− ϕk}. For any
σ : {1, . . . , n} → {1, . . . ,m}, denote Aσ(ϕ) = {u ∈ Rn | ∀i, Piu ∈ Lσ(i)(ϕ)} and A(ϕ) =
tσAσ(ϕ). In other words, A(ϕ) is the set of images whose patches have no ex-aequo values for ϕc.
Since c is continuous, it is straightforward to see that Aσ(ϕ) is an open subset of Rn.
Theorem 3. Assume that c is differentiable w.r.t. the first variable. Let ϕ ∈ Rm and u ∈ Aσ(ϕ).
Then f(ϕ, ·) is differentiable at u and

∇uf(ϕ, u) =
1

n

n∑
i=1

PTi ∇uc(Piu, yσ(i)). (7)

Proof. Since Aσ(ϕ) is open, for v sufficiently close to u, we have also that v ∈ Aσ(ϕ) and thus

f(ϕ, v) =
1

n

n∑
i=1

(
c(Piv, yσ(i))− ϕσ(i)

)
+

1

m

m∑
j=1

ϕj (8)

and the result follows by applying the chain-rule to the first term.

Finally, the following theorem provides the gradient of w at particular points u where the associated
optimal dual potential ϕ∗ leads to no ex-aequo.
Theorem 4. Let u ∈ Rn and ϕ? ∈ arg maxϕ f(ϕ, u) such that u ∈ A(ϕ?). Then w in (3) is
differentiable at u and∇w(u) = ∇uf(ϕ?, u).

Proof. Since u ∈ A(ϕ?) there exists a map σ : {1, . . . , n} → {1, . . . ,m} such that u ∈ Aσ(ϕ?).
Since ϕ? is optimal and its c-transform makes no ex-aequo for the patches Piu, we have in particular
that the map Piu 7→ yσ(i) realizes the OT from µu to ν. Then, for v close to u, we still have
v ∈ Aσ(ϕ?) and thus the same map also realizes the OT from µv to ν, which implies that ϕ? ∈
arg maxϕ f(ϕ, v). Therefore for v close to u, we have w(v) = f(ϕ?, v) which suffices to conclude.

Let us emphasize that the hypothesis of Theorem 4 can be true only in very specific cases. Indeed, the
fact that Piu 7→ yσ(i) is an OT map from µu to ν implies, from mass conservation, that m divides n.
Fortunately for the applications at hand, such condition is easily met as one can sample the target
patch distribution accordingly. In addition, we only use the gradient∇uf(ϕ, u) during optimization.
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3.3 A one-scale texture synthesis algorithm

We now detail our texture synthesis algorithm that estimates an image u minimizing (3), so that the
patch distribution of u is close to the one of an example image v. To do so, we look for a local saddle
point of the problem (5) with an iterative alternate scheme on ϕ and u, starting with an initial noise
image u0. For a fixed uk, we perform a gradient ascent, using the super-gradient given in Theorem
2 to obtain an approximation ϕk+1 of ϕ∗ ∈ arg maxϕ f(ϕ, uk). A gradient-descent step is then
realized on u, using the gradient given in Theorem 3. In practice we consider the Adam optimizer
[Kingma and Ba, 2014] with learning rate 0.01. For texture synthesis, in all the experiments, we
consider the quadratic cost c(x, y) = 1

2‖x− y‖
2. In this particular case, the gradient w.r.t. u reads

∇uf(ϕk+1, uk) =
1

n

(
n∑
i=1

PTi Piu
k −

n∑
i=1

PTi yjk+1
i

)
, (9)

where

jk+1
i = arg min

j

1

2
‖Piuk − yj‖2 − ϕk+1

j . (10)

In (9), notice that
∑n
i=1 P

T
i corresponds to an uniform patch aggregation. To simplify, we consider

periodic conditions for patch extraction, so that
∑n
i=1 P

T
i Pi = pI, where p = s × s denotes the

number of pixels in the patches. Hence, from (9) and considering a step size η np , η > 0, the update
of u through gradient descent can be formulated as:

uk+1 = (1− η)uk + ηvk, (11)

where

vk =
1

p

n∑
i=1

PTi yjk+1
i

, (12)

can be interpreted as the image formed with the patches from the exemplar image v which are the
nearest neighbor to the patches of uk in the sense of (10). The gradient step then mixes the current
image uk with vk. In the case ϕ = 0, the minimum in (10) is reached by associating to each patch of
uk its nearest neighbor in the set {y1, . . . , yn} patches of v, which exactly corresponds to the texture
synthesis algorithm proposed in [Kwatra et al., 2005].

Original
synthesized s = 3 synthesized s = 5 synthesized s = 7 Original synthesized s = 3 synthesized s = 5 synthesized s = 7

Figure 1: Influence of patch-size s for the single-scale method (Algorithm 1 with L = 1).

This image synthesis process is illustrated in Figure 1, with a comparison of image synthesis for
different patch sizes. With this formulation, patch distributions are only considered for one given
patch size s× s. Therefore, this method cannot take into account variations that may occur at scales
larger than s, a limitation which is overcome by the multi-scale extension introduced in the next
section.

3.4 Multi-scale Texture Generation

In the patch-based literature, a common way to deal with multi-scale is to create a pyramid of
down-sampled and blurred images. Let Sl be an operator that creates a down-sampled and blurred
version of an image for a scale l ∈ {1, ..., L}. The image at scale l is of size n/2l−1 × n/2l−1 and
denoted ul = Sl(u). The multi-scale texture synthesis is then obtained by minimizing

L(u) =

L∑
l=1

max
ϕ

fvl(u
l, ϕ), (13)
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Algorithm 1 Multi-scale Texture synthesis procedure
Input: target image v, initial image u0, learning rates ηu and ηϕ, number of iterations Nu and Nϕ,
number of scales L
Output: image u
u← u0 and ϕl = 0 for l = 1 . . . L
for k = 1 to Nu do

for l = 1 to L do
for j = 1 to Nϕ do

compute gl a super-gradient for scale l
ϕl ← ϕl + ηϕgl(ϕl, Sl(u))

end for
Gl(u, ϕl)← (DuSl(u))

T ∇ufvl(ϕl, Sl(u))
end for
u← u− ηu(k)

∑L
l=1Gl(u, ϕl) we

end for

where

fvl(u
l, ϕ) =

1

n

n∑
j=1

min
i

[
c(Pju

l, Piv
l)− ϕi

]
+

1

m

m∑
i=1

ϕi. (14)

This loss is the sum of OT costs defined on different scales of u. In the case where the cost is ‖ · ‖p,
this loss can be interpreted as the sum ofW p

p distances. In this work, we set p = 2 for the experiments
since it lowers the computation time using the fact that ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 〈y|x〉. However
the method would still work for any continuous cost c. As for the single-scale case, an alternate
scheme is considered to minimize the loss L in (13). Considering smoothing operators Sl, with
differential at u given by DuSl(u), the gradient descent update of u relies on the following relation
combining different scales:

∇uL(u) =

L∑
l=1

(DuSl(u))
T ∇ufvl(ul, ϕ?l ) =

L∑
l=1

Gl(u, ϕ
?
l ). (15)

3.5 Experiments

The multi-scale synthesis process is presented in Algorithm 1. Figures 2 and 3 present comparisons
for synthesis realized from 128 × 128 and 256 × 256 exemplar textures with the two methods
[Kwatra et al., 2005] (patch size ranging from s = 32 to s = 8) and [Gatys et al., 2015] (VGG-
19 features). In the same way than our Algorithm 1, these methods aim at optimizing the pix-
els of an image in order to constrain some information: the patches in a nearest neighboor way
for [Kwatra et al., 2005] and the Gram matrices of VGG features for [Gatys et al., 2015]. We also
show additional results of texture synthesis in Figures 4 obtained with Algorithm 1.

For these experiments, we used the original code of [Gatys et al., 2015] (https://github.
com/leongatys/DeepTextures) and our own implementation of Texture Optimization
[Kwatra et al., 2005]. With our method, the evolution of the loss function is also drawn to illustrate
the numerical stability of the optimization scheme. The value f(ϕk+1, uk), which is an approxima-
tion of

∑
lW

2
2 (µuk

l
, νl) between the distributions of patches from uk and v at all scales l = 1 · · ·L,

is almost always decreasing along the iterations k.

While it is already known [Liu et al., 2016] that the approach of [Gatys et al., 2015] might have
color inconsistencies, it mostly suffers here from the small resolution of the input for which it is
difficult to extract deep features. Additionally, one can observe that contrarily to our method and
[Gatys et al., 2015], the approach of [Kwatra et al., 2005] does not rely on statistics and thus does
not respect the distribution of features of the original sample. Therefore, it must be initialized with a
good guess (permutation of patches) instead of any random image.

In all experiments, we used the Adam [Kingma and Ba, 2014] optimizer from the torch.optim
package of PyTorch in order to perform the gradient descent for the image variable u in Algorithm 1.
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Original [Kwatra et al., 2005] [Gatys et al., 2015] Our (Alg. 1) Loss eq. (13)

Figure 2: Texture synthesis from a 128 × 128 sample by image optimization. Comparison of our
multi-scale approach using s = 4 and L = 4 (see Alg. 1) with Kwatra [Kwatra et al., 2005] (patch
size ranging from s = 32 to s = 8) and Gatys [Gatys et al., 2015] (VGG-19 features).

We also used the KeOps library [Charlier et al., 2020] that performs efficiently the nearest neighbor
projections involved in the computations of c-transforms.

Additionally, we used the following parameters:

• patch size s = 4;

• 100 iterations of gradient ascent on ϕ with gradient step 0.8√
k

at iteration k;

• 200 iterations of gradient descent on the image with Adam optimizer with learning rate
lr = 0.05;

• the number of scales L = log2(R)− 3 depends on the size R of the original image:

– L = 4 for 128× 128 images
– L = 5 for 256× 256 images
– L = 6 for 512× 512 images

7



Original
Our method

(Alg. 1) [Kwatra et al., 2005][Gatys et al., 2015] Original
Our method

(Alg. 1) [Kwatra et al., 2005][Gatys et al., 2015]

Figure 3: Texture synthesis from a 256 × 256 sample by image optimization. Comparison of our
multi-scale approach using s = 4 and L = 5 (see Alg. 1) with [Kwatra et al., 2005] (patch size
ranging from s = 32 to s = 8) and [Gatys et al., 2015] (VGG-19 features).

Verbatim copies We can notice that the proposed method yields results with some verbatim copies.
This well-known phenomenon actually occurs for other image optimization approaches and can be
observed for instance in the experiments of [Gatys et al., 2015] and [Kwatra et al., 2005]. This is
also expected in our case since we only enforce the patch distribution and parts of the original image
are local minima for the proposed loss. Although these local copies can clearly be observed when
we have few samples, they become less obvious when the algorithm has access to more samples. To
illustrate this point, Figure 5 shows synthesis results for the same texture, first from a 128× 128 crop
of the example texture, then from the full 256× 256 texture.

Texture inpainting The framework proposed for texture synthesis can be extended to texture
inpainting, by taking the patches outside a masked area as the target ones. By optimizing only the
pixels within the masked area, the very same algorithm yields an efficient texture inpainting method,
as illustrated in Figure 6.

Discussion As previously mentioned, the proposed approach can be seen as a generalization of the
iterative texture synthesis method [Kwatra et al., 2005]. The visual results are competitive with the
state-of-the-art of patch-based synthesis methods. The process requires 1 second to run one iteration
for a 256× 256 image on a GPU Nvidia K40m, and 150 iterations are enough to reach a good visual
result, as illustrated by convergence plots in Figure 2. However, the whole optimization has to be
done each time a new image is synthesized. In order to define a versatile algorithm that can generate
new samples on the fly, we will now rely on continuous generative models and convolutional neural
networks.
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Original Synthesis (Alg. 1) Original Synthesis (Alg. 1) Original Synthesis (Alg. 1) Original Synthesis (Alg. 1)

Figure 4: Texture synthesis of size 256× 256 from a 128× 128 sample by image optimization using
our multi-scale approach with s = 4 and L = 4 (see Alg. 1).

Original

128 × 128

Synthesis

256 × 256

Original

256 × 256

Synthesis

512 × 256

Original

128 × 128

Synthesis

256 × 256

Original

256 × 256

Synthesis

512 × 256

Figure 5: Comparison when using input images with different sizes, effect on verbatim copies.
The 128 × 128 original image is a crop from the 256 × 256 original image. Since our method is
patch-based, it is likely that the synthesized texture have local copies of the original one. This effect
is more obvious when the input image is small, see for instance the same flower copied many times
in the 256× 256 version of the second image.
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Masked Inpainted Masked Inpainted Masked Inpainted

Figure 6: Texture inpainting results on various masked textures of size 128× 128 with s = 4 and
L = 3 using a slightly adapted version of Algorithm 1.

10



4 Generative Network

In this section, we consider the problem of training a network to generate images that have a prescribed
patch distribution at multiple scales.

4.1 The semi-discrete formulation

Let us consider a generator gθ, parameterized by θ ∈ Θ ⊂ Rd that goes from a latent space Z ,
assumed to be compact, to the space of images. Given a random vector Z of distribution ζ in the
latent space Z , the generated random image is gθ(Z), and has distribution gθ]ζ (defined for any
Borel set A by gθ]ζ(A) = ζ(g−1

θ (A))). In the following, we will assume that for dζ-almost all z,
θ 7→ gθ(z) is differentiable and we denote by Jθgθ(z) the corresponding Jacobian matrix. The
patches of the output image are distributed according to

µθ =
1

n

n∑
i=1

Pi]gθ]ζ. (16)

One can assume that µθ is absolutely continuous w.r.t. the Lebesgue measure; this is indeed the generic
case, which happens except for very specific choices of gθ and ζ . Since the target distribution ν is still
discrete, computing Wp(µθ, ν) falls into the semi-discrete case of OT. The semi-dual formulation of
OT then writes

OTc(µθ, ν) = max
ϕ

F (ϕ, θ) where F (ϕ, θ) = EZ∼ζ

 1

n

n∑
i=1

ϕc(Pigθ(Z)) +
1

m

m∑
j=1

ϕj

 (17)

Note that F can be related to the function f we introduced in the previous section, since
F (ϕ, θ) = EZ∼ζ [f(ϕ, gθ(Z))] . (18)

Therefore we can consider the gradients of f w.r.t. u or ϕ as stochastic gradients for F . Indeed, from
Theorem 2 we get that g(ϕ, gθ(Z)) is a stochastic super-gradient w.r.t. ϕ, and from Theorem 3 we
get

∇θf(ϕ, gθ(z)) = Jθ (gθ(z))
T ∇uf(ϕ, u = gθ(z)), (19)

which exists as soon as ϕ, gθ(z) satisfies the hypothesis of Theorem 3. Notice that, except in
degenerate cases, this hypothesis is likely to be true (e.g. for the Euclidean cost, it will be true as
soon as gθ]ζ is absolutely continuous w.r.t. the Lebesgue measure).

In this semi-discrete framework of OT, θ 7→ OTc(µθ, ν) is expected to be smoother than in the
discrete case. We do not provide a precise result here. However, if θ is a point of differentiability, the
envelope theorem ensures that

∇θOTc(µθ, ν) = ∇θE[f(ϕ?, gθ(Z))] (20)
where ϕ? is an optimal dual variable for the OT from µθ to ν, and if we can differentiate under the
expectation, we get

∇θOTc(µθ, ν) = E[∇θf(ϕ?, gθ(Z))]. (21)

4.2 Proposed algorithm

All the previous considerations together with the multiscale formalism we defined in Section 3 lead
us to propose the Algorithm 2 for minimizing the following loss w.r.t. the parameters θ

L(θ) =

L∑
l=1

max
ϕl

Ez∼ζ
[
fvl(ϕl, gθ(z)

l)
]
. (22)

In practice, for each iteration k and at each layer l we first update ϕl as proposed in
[Genevay et al., 2016]. Then we sample an image and perform a stochastic gradient step in θ.
The fully convolutional neural network designed for texture generation in [Ulyanov et al., 2016] is
taken for gθ. The main advantage of convolutional networks is that, once learnt, they can generate
arbitrarily large images. In our PyTorch implementation, we use the Adam optimizer to estimate the
parameters θ. We run the algorithm for 10000 iterations with a learning-rate 0.0005. An averaged
stochastic gradient ascent (ASGA) with 10 inner iterations is used for computing ϕ?. In this setting,
30’ are required to train our generator with a GPU Nvidia K40m.
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Algorithm 2 Multi-scale Convolutional Texture generation with stochastic gradient descent
Input: target image v, initial weight θ0, learning rate ηθ, number of iterations Nu and Nϕ, number
of scales L
Output: generator parameters θ
for k = 1 to Nu do

for l = 1 to L do
compute ϕ?l with ASGA
sample z from ζ
Gl(θ)← ∇θfvl(ϕ?l , gθ(z)l)

end for
θ ← θ − ηθ(k)

∑L
l=1Gl(θ)

end for

4.3 Experimental results and discussions

In Figure 7 , comparisons with two methods are presented for input textures of size 128×128. We first
consider the Texture Networks method [Ulyanov et al., 2016], which consists in training a generative
network using VGG-19 feature maps computed on a texture sample. Note that the very same CNN
architecture has been used for our model. We also compare to SinGAN [Shaham et al., 2019], a
recent GAN technique to generate images from a single example relying on patch sampling.

Figure 8 then presents more detailed comparisons for input textures of size 256 × 256, with two
additional synthesis methods from the literature: PSGAN [Bergmann et al., 2017] which is a previous
approach applying GAN framework to the learning of a CNN, and Texto [Leclaire and Rabin, 2019]
which also constrains patch distributions with OT. In all our experiments, we used the offi-
cial PyTorch implementations of SINGAN (github.com/tamarott/SinGAN), PSGAN (github.
com/zalandoresearch/famos) and Texture Networks (github.com/JorgeGtz/TextureNets_
implementation), with their default parameters. For all the experiments of this section realized with
Algorithm 2, we used the same generative network than the one proposed in [Ulyanov et al., 2016]
with the following parameters

• patch size s = 4

• 10 iterations of stochastic gradient ascent on ϕ with gradient step 0.8√
k

with randomly
generated images of size 256× 256 at each iteration

• 10000 iterations of gradient descent on the parameters of the generator G with Adam
optimizer with learning rate lr = 0.0005

• number of scales L = 5

Figure 7 shows that small sample resolution (128× 128) makes difficult the extraction of relevant
deep features, and impacts negatively the quality of Texture Networks. On the other hand, the two
other methods based on patches are more robust and give satisfying results. It is interesting to notice
that, for all generators, some specific patterns are learnt and repeated across the generated images.
More specifically, when using patches, those patterns are almost local copies of the original image.
For instance, we can observe on the radishes image in Figure 7 that one particular leave seems to
appear many times in our case, and patches on the border of images generated with SinGAN are
copies from the input. This seems natural considering that the optimization is only performed on
sampled patches, but it also shows that there is room for improvement.

As illustrated in Figure 8, the results obtained with our method are visually close to the ones from
Texto [Leclaire and Rabin, 2019] which also minimizes OT distance between patch distribution.
However, the patch-aggregation step from Texto makes the results blurrier than our method since
we overcome the aggregation issue by design. Although Texture networks [Ulyanov et al., 2016]
produce textures that look sharper than our results, they may fail to reconstruct larger structures
as in the fourth image. Observe as well that patch-based networks are less likely to create visual
artifacts (checkerboard patterns, false colors, etc). These experiments show that enforcing the patch
distribution permits to learn convolutional neural network for the purpose of texture generation.
Despite the already nice results we obtained here, we think that more thorough investigation on the
network architecture and the learning parameters could yield qualitatively better results.
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Original Our method Texture Networks SinGAN

(Alg. 2) [Ulyanov et al., 2016] [Shaham et al., 2019]

Figure 7: Texture synthesis from a generative network trained on a single 128 × 128 sample.
Comparison of our multi-scale approach Alg. 2 (with s = 4, L = 5) with [Ulyanov et al., 2016]
(using VGG-19 features) and SinGAN [Shaham et al., 2019].
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Original Our method

(Alg. 1)

Our method (Alg. 2) Text. Net

[Ulyanov et al., 2016]

SinGAN

[Shaham et al., 2019]

PSGAN

[Bergmann et al., 2017]

Texto

[Leclaire and Rabin, 2019]

Figure 8: Texture synthesis from a single 256×256 sample of a high-definition texture. Comparison of
Alg. 1 and Alg. . 2 (with s = 4 and L = 5) with [Ulyanov et al., 2016] (using VGG-19 features), Sin-
GAN [Shaham et al., 2019], PSGAN [Bergmann et al., 2017] and Texto [Leclaire and Rabin, 2019].

4.4 Evaluation of texture synthesis methods

The precise evaluation of texture synthesis methods is a complex and open question. The visual
quality is strongly subjective and there exists no universal perception metric. Some metrics have been
proposed to evaluate generated images, with for instance the SIFID (Single Image FID) introduced in
the SINGAN paper [Shaham et al., 2019] or the metric given by the feature correlations of VGG as
used in [Gatys et al., 2015]. We give in Table 1 the scores for these two metrics corresponding to the
results presented in Figure 8. As expected, these metrics favor the methods that actually optimize
the given features. Therefore, we also propose a new evaluation metric for texture synthesis that
measures the Wasserstein distance between patch distribution at each scale, which should favor our
method. The corresponding results are also given in Table 1. As expected, our methods and the
Texto one, which also minimizes OT distance between patches distribution, perform better for the
proposed OT loss, whereas the Texture Networks [Ulyanov et al., 2016] obtain better results with the
metric based on VGG features and inception network. However, our methods are competitive with
the state-of-the art methods for all these metrics since we obtain the best results for two of the four
proposed textures with Algorithm 1. Moreover, we can notice that existing metrics are not always
relevant. In the last texture of Figure 8, [Ulyanov et al., 2016] presents smaller values for both SIFID
and VGG score, whereas the synthesized texture does not match the input one in term of large-scale
coherence.

5 Conclusion

In this paper, we propose an original image generation framework from a single sample, which
combines three popular topics in image processing and machine learning: patch-based methods,
optimal transport and deep generative models. For both pixel optimization and convolutional network
optimization, we achieve results comparable to the state-of-the-art in texture synthesis. The flexibility
of our method also allowed us to propose a texture inpainting algorithm.
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Table 1: Evaluation of texture synthesis methods for the results of Figure 8. The best result is given
in bold font and the second best is underlined. The last line shows the mean over all images.

SIFID (first max pooling features) proposed in SINGAN [Shaham et al., 2019]

Our (Alg. 1) Our (Alg. 2) Ulyanov SINGAN PSGAN Texto

0.43 1.13 0.11 0.93 0.27 1.22

0.02 0.06 0.08 0.10 0.91 0.07

0.08 0.18 0.18 0.17 1.14 0.18

1.23 1.82 0.17 0.37 0.49 1.67
0.44 0.80 0.14 0.39 0.70 0.79

VGG score (cross-correlation of VGG features as in [Gatys et al., 2015] and Ulyanov )

(×103) Our (Alg. 1) Our (Alg. 2) Ulyanov SINGAN PSGAN Texto

122 233 218 299 224 260

6 19 9 8 512 24

141 151 54 207 753 152

865 922 190 394 1366 1030
283 331 118 227 714 367

Proposed: Multiscale OT distance

Our (Alg. 1) Our (Alg. 2) Ulyanov SINGAN PSGAN Texto

0.45 0.48 0.65 0.54 0.68 0.49

0.15 0.16 0.24 0.24 0.43 0.16

0.09 0.10 0.17 0.26 0.34 0.11

0.74 0.78 1.22 0.79 1.19 0.75
0.36 0.38 0.57 0.46 0.66 0.38

Dealing only with the patch distribution of the synthesized textures through OT costs, the pixel
optimization method relates to a classical patch-based model [Kwatra et al., 2005]. In many patch-
based synthesis methods, the different scales and the aggregation of the patches are treated separately.
The strength of our approach then comes from the integration of the different synthesis steps into a
single gradient descent on the image. Notice that we have restricted conditions regarding the number
of target patches on the existence of the functional gradient. However, this is not a limitation for
considered applications and numerical experiments show a clear convergence.

Still considering the optimal transport framework, we then propose to learn a convolutional neural
network for texture synthesis. Our method produces images of arbitrary size, whose patch distributions
at various scales are close in 2-Wasserstein distance to the ones of the reference image used for
training. This is a significant advantage over several methods in the literature relying on the VGG-19
deep network [Simonyan and Zisserman, 2014], which then require a more complex optimization
and a larger memory capacity.

This work tries to make the best of two worlds: on one hand, it makes use of generative models based
on CNN which yield state-of-the-art performance, but are usually difficult to train (requiring large
dataset, relying on adversarial unstable optimization, prone to mode collapse, etc); on the other hand,
our model explicitly uses a patch based representation combined with an optimal transport distance
which makes it possible to train on a single image and guarantees the quality of the generated images.

Our model can be framed as an exact Wasserstein-GAN model for patch, without the limitation of
parameterizing the discriminator, nor the need for regularization (WGAN-GP). When optimizing
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directly on an image, i.e. without the limitation of the generative network, the generated images are
local copies of the exemplar one. This demonstrates the limitations of high-capacity GANs that can
overfit training datasets, which raises interesting questions about privacy.

Additionally, as already shown with inpainting examples, the proposed approach has many direct
applications in computer graphics and vision, and can be helpful for artists or designers (texture
generation in video games, image restoration).
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