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Shape optimization of fixed-bed reactors in

process engineering

A. Courtais∗ A. M. Latifi† F. Lesage‡ Y. Privat§

Abstract

This paper deals with geometric shape optimization of a parallelepipedic fixed-bed reactor
with single phase liquid flow where a chemical reaction takes place. The packing is a sort of
static mixer made up of solid cylindrical obstacles uniformly distributed in the reactor. The
reactive flow is described by means of momentum and mass transport equations in laminar
flow regime. The objective is to determine the shape of the packing which maximizes the reac-
tion conversion rate subjected to some specified manufacturing constraints. The optimization
approach developed is based on the adjoint system method and the results show that the opti-
mal shape obtained allows to significantly improve the reaction conversion rate. Furthermore,
the optimal shape is printed by means of an additive manufacturing technique and several
manufacturing constraints mainly related to the thickness of packing are considered.

Keywords: shape optimization, CFD, fixed-bed reactor, additive manufacturing.

AMS classification: 49M05, 65K10, 35Q30.

1 Introduction

Continuous improvement of the competitiveness of the chemical industry requires not only con-
stant innovation, but also an inevitable evolution towards more intensive, efficient, compact and
sustainable processes. The shape of the units (reactors, stirrers, packings, exchangers, pipes etc.)
that make up the process is one of the key parameters to improve competitiveness and represents
a fundamental scientific and technological challenge.
Shape optimization was originally developed in fluid mechanics area, particularly in the design of
aircraft wings in aerospace and aeronautics industries. More recently, it has been used in process
engineering to determine the optimal shape of a pipe/structure [HP10, DFOP18] or a microchannel
[TKH10].
In chemical engineering however where the shape of unit operations is an important design param-
eter, shape optimization approaches have not been extensively investigated. This important issue
deserves therefore to be addressed and will probably result in a paradigm shift in optimal design
and operation of processes. Basically, there are three types of shape optimization: parametric, ge-
ometric and topologic. In this paper, only geometric optimization is considered, meaning that all
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admissible designs have the same topology (roughly speaking, the same number of holes). The op-
timization approach developed is based on the so-called shape derivative in the sense of Hadamard,
using the adjoint system method. The case study is a 2D fixed-bed reactor with a laminar single
phase liquid flow where a homogenous first order chemical reaction takes place. The packing is
a kind of static mixer made up of solid cylindrical obstacles uniformly distributed in the reactor.
The objective is to determine the shape of the packing which maximizes the reactor conversion
rate. Furthermore, when dealing with realistic shapes involved in industrial processes, the obtained
optimal shapes must in general meet some manufacturing constraints, which will much depend on
the intended application context. Sometimes this is done by post-processing the designed objects.
In this paper, a 3D printing technology (i.e. additive manufacturing) is used to manufacture the
optimal shape obtained taking into account the specified manufacturing constraints.

The paper is organized as follows: in Section 2, first principles model equations describing the
liquid flow in the reactor are introduced. We first investigate an ideal version of the problem where
the only manufacturing constraint considered is a volume constraint. We gather the needed mate-
rial to compute optimal shapes, and introduce in Section 3 an algorithm based on the Hadamard
shape derivative combined with an extension-regularization approach of the shape gradient to deal
with mesh-displacement. This algorithm is then numerically tested on 2D examples in Section 4.
We also propose a more intricate, but also more realistic version of the shape optimization problem,
by introducing a constraint on the manufacturing of the optimal shape which will be achieved by
means of an additive manufacturing technique. Additive manufacturing (or 3D printing) is opposed
to subtractive manufacturing where material is removed to achieve the desired shape. In additive
manufacturing, 3D parts are built by adding successive layers of material under computer control.
Stratoconception, an additive conception method developed by the CIRTES1, is particularly well
adapted to this use.

2 Modeling and analysis of the shape optimization problem

2.1 Fixed-bed reactor modelling

The fixed-bed reactor considered is a 2D packed bed with a single phase liquid flow where a
homogenous first order chemical reaction takes place. The packing is made up of solid cylindrical
obstacles (i.e. a kind of static mixer) uniformly distributed in the reactor. Figure 1 shows the
schematic representation of the fixed-bed considered.

Figure 1: Schematic view of the fixed-bed reactor geometry (that we will use as initialization of
the shape optimization algorithm).

1namely, the European Center for Rapid Product Development,located in the heart of the Saint-Dié-des-Vosges
industrial basin in France.
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The optimization method developed in this work is based on the process model equations
describing the flow through the fixed-bed reactor. A two-dimensional model is therefore developed
in laminar flow regime and involves mass and momentum balance equations. The reactor geometry
is modeled by an open bounded domain Ω ⊂ IR2, whose boundaries are the union of the inlet Γin,
the outlet Γout, the lateral wall Γlat and Γ = ∂Ω\(Γin ∪ Γout ∪ Γlat), the free boundary. Roughly
speaking, Γ denotes the boundary of the pores inside the fixed-bed (the regular structure on Fig. 1).

The momentum transport is described by the following Navier-Stokes equations along with the
associated boundary conditions:

−ν∆U +U · ∇U +∇p = 0 in Ω (1a)

∇ ·U = 0 in Ω (1b)

U = Uin on Γin (1c)

U = 0 on Γlat ∪ Γ (1d)

σ(U , p)n = 0 on Γout (1e)

where ν > 0 denotes the kinematic viscosity of the fluid,

σ(U , p) = 2νε(U)− pI with ε(U) =
1

2
(∇U + (∇U)>) (2)

is the viscous stress tensor divided by the fluid density, p the fluid kinematic pressure (i.e. the
absolute pressure divided by the fluid density), I the identity matrix and ε(U) the strain tensor.
The mass balance equations and their associated boundary conditions are given by Eqs. (3) below.
It is important to point out that the reaction takes place only in the bulk of the reactor, i.e. in Ω
and not on the walls Γ and Γlat.

−D∆C +U · ∇C + kC = 0 in Ω (3a)

C = Cin on Γin (3b)

∂C

∂n
= 0 on Γlat ∪ Γout ∪ Γ (3c)

where C denotes the reactant concentration in Ω, k > 0 the reaction rate constant and D > 0 the
constant diffusion coefficient of the reactant.

2.2 Shape optimization problem formulation

Formulating of the shape optimization problem requires the definition of a performance index,
decisions variables and constraints, which are introduced below.

Performance index. The objective here is to determine the shape of the fixed-bed reactor (i.e.
the position and shape of the free boundary Γ) which maximizes the reaction conversion rate or
minimizes the average outlet concentration of the reactant. The performance index is therefore
defined by

J(Ω) =

∫
Γout

C dσ (4)

where C denotes the solution of (3).

Decision variable. The decision variable is defined by the free boundary Γ that will evolve with
the iterations of the optimization algorithm. The other boundaries are fixed.
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Admissible set of constraints. The optimization problem is subjected to different constraints,
among which the process model equations (1)-(3). Let Ω0 be a reference structure for the fixed-
bed reactor (typically, the one actually designed in the industry we aim at optimizing). The other
constraints consist of :

• an iso-volume constraint introduced in order to guarantee that residence times of admissible
shapes have the same order of magnitude. This constraint reads

H(Ω) = 0 where H(Ω) = |Ω| − |Ω0|, (5)

where |Ω| denotes as usually the Lebesgue measure of Ω (its surface in 2D).

• an inequality constraint on the energy dissipation by the fluid due to viscous friction and is
given by

G(Ω) 6 0 where G(Ω) = 2ν

∫
Ω

|ε(U)|2 dx− 2ν

∫
Ω0

|ε(U)|2 dx︸ ︷︷ ︸
E0

6 0. (6)

where (U , p) denotes the solution of (1). Recall that the energy dissipation and the pressure
drops are directly correlated. Therefore, such a constraint is necessary since it reflects the
fact that the fluid must flow easily through the optimal geometry.

As a conclusion, the first version of the optimal design problem is formulated below.
Considering only a geometrical constraint on the volume, and one on the energy dissipated by the
fluid leads to the problem:

inf
Ω∈C

J(Ω) (P1)

where
C := {Ω ⊂ IR2 | Ω has a Lipschitz boundary, H(Ω) = 0 and G(Ω) 6 0}. (7)

The numerical results for this problem will reveal that pieces of the optimized geometry cannot
be easily manufactured by means of the additive manufacturing techniques considered in this
work. For this reason, we will propose in Section 4 another version of this optimal design problem
where 3D printing constraints are taken into account in order to enable the manufacturing of the
computed optimal shape of the reactor.

Remark 1. An important question in the study of such problems is that of the existence of
optimal shape(s). Investigating existences issues for general shape optimization problems involving
fluid mechanics models is, up to our knowledge, open. Nevertheless, it is likely that imposing
additional strong geometrical constraints such as an uniform cone property, will enforce existence
(see e.g. [BP13, BOP18, HP10]). Notice also that a similar constraint, unfortunately rather difficult
to handle but nevertheless very interesting from the applicative point of view, will also be considered
in Section 4.2.

3 Optimization algorithm and numerical results

3.1 Computation of the shape derivative

The numerical resolution of a shape optimization problem of the form (P1) is based on the knowl-
edge of the derivative of the optimized functional with respect to the variable domain. This notion
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can be understood within a variety of frameworks, one of them being the Hadamard boundary vari-
ation method which we presently sketch briefly (see e.g. [All07, HP18, MS76, SZ92] for additional
explanations).

In the setting of the Hadamard method, variations of a domain Ω with Lipschitz boundary are
considered under the form

Ωθ = (Id + θ)(Ω), (8)

where θ ∈W 1,∞(IR2, IR2) is a ‘small’ vector field and Id : IR2 → IR2 is the identity mapping.
A shape functional Ω 7→ J(Ω) is said to be shape differentiable at Ω (in the sense of Hadamard)

whenever the underlying mapping

W 1,∞(IR2, IR2) 3 θ 7→ J(Ωθ) ∈ IR

is Fréchet differentiable at θ = 0. The corresponding derivative J ′(Ω)(θ) is the so-called shape
derivative of J at Ω and the following expansion holds:

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), where
o(θ)

‖θ‖W 1,∞(IR2,IR2)

−−−→
θ→0

0. (9)

Figure 2: Example of admissible deformation. The domain Ω is plotted with a solid line and Ωθ
is plotted with a dotted line.

Before computing the shape derivative of J at Ω, let us recall that (1) and (3) have to be
understood through their variational form. Let Ω denote a given element of C. We introduce the
functional spaces

U = {(U , p) ∈ H1(Ω, IR2)× L2(Ω, IR) | divU = 0 in Ω and U = U0 on Γin}
V = {(w, q) ∈ H1(Ω, IR2)× L2(Ω, IR) | divw = 0 in Ω and w = 0 on Γin}
W = {C ∈ H1(Ω, IR) | C = C0 on Γin}
X = {u ∈ H1(Ω, IR) | u = 0 on Γin}

The variational formulation associated to (1) reads: find (U , p) ∈ U such that

∀(w, q) ∈ V,

∫
Ω

ε(U) : ε(w) + (U · ∇U)w − q divU = 0
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and the variational formulation associated to (3) reads: find C ∈W such that

∀u ∈ X,

∫
Ω

(D∇C · ∇u+ (U · ∇C)u+ kCu) = 0

The following well-posed results for the solutions of the PDEs (1) and (3) is rather standard. We
refer for instance to [BF13, Tem84] for the fluid system and to [Boy05] for the convection-diffiusion
equation. A very close system is also investigated in [FAB+19]. The following theorem sums-up
the well-posed character of the coupled system (1)-(3).

Theorem 1. Let U0 ∈ H1/2(Γin, IR
2) and C0 ∈ H1/2(Γin, IR). If the viscosity ν is assumed to be

large enough, then System (1)-(3) has a unique solution (U , p) in U. Similarly, the problem (3)
has a unique solution C in W.

Let us now compute the shape derivative of J . The shape differentiability of J is a standard
issue, which is well referenced in the dedicated literature and has been much studied. Regarding
the case we investigate, we claim that a standard approach, as described in [HP18, Chap. 5] would
allow us to answer positively to this issue. The key point is to start from the variational formulation
associated to the PDE problem on the deformed domain Ωθ, to use a change of variable to rewrite
all the involved integrals on a fixed domain, and finally to use adequately the implicit function
theorem to get the shape differentiability of the solutions of the PDEs under consideration. Very
close differentiability studies have been led in [FAB+19, BOP18]. Let us first formally introduce
the tools for computing the shape derivatives.

Let Ω ∈ C and θ ∈ W 1,∞(IR2, IR2) be a vector field whose support does not intersect Γin, Γlat
and Γout. Let us compute J ′(Ω)(θ) defined by (9). By following [All07, HP18, DFOP18]), one gets

J ′(Ω)(θ) =
d

dt

∫
Γout

Ct dσ

∣∣∣∣
t=0

=

∫
Γout

C ′ dσ (10)

where Ct denotes the solution of (3) on the domain (Id +tθ)(Ω), U ′, p′ and C ′ denote respectively
the so-called Eulerian derivatives of U , p and C. From a qualitative point of view, U ′ (resp. p′

and C ′) stands for the sensitivity of U (resp. p and C) with respect to shape variations. Standard
differentiation formula (see [MP10, dLSMP11, HP10]) enable us to show that (U ′, p′) ∈ V solves
(in a variational sense) the system

−ν∆U ′ + (U ′ · ∇)U + (U · ∇)U ′ +∇p′ = 0 in Ω (11a)

∇ ·U ′ = 0 in Ω (11b)

U ′ = 0 on Γin ∪ Γlat (11c)

U ′ = −∂U
∂n

(θ · n) on Γ (11d)

σ(U ′, p′)n = 0 on Γout (11e)

Similarly, C ′ stands for the sensitivity of C with respect to shape variations of Ω and C ′ solves
in a variational sense the system.

−D∆C ′ +U · ∇C ′ +U ′ · ∇C + kC ′ = 0 in Ω (12a)

C ′ = 0 on Γin (12b)

∂C ′

∂n
= −∂

2C

∂n2
(θ · n) +∇C · (∇(θ · n)− (∇(θ · n) · n)n) on Γ (12c)

∂C ′

∂n
= 0 on Γout ∪ Γlat (12d)
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Unfortunately, the formula (10) of the shape derivative is not very exploitable as it is. To
overcome this problem, it is relevant to rewrite it as an integral on the free boundary. For this
purpose, let us introduce the adjoint variables Ca as the solution of the diffusion system

−D∆Ca −U · ∇Ca + kCa = 0 in Ω (13a)

Ca = 0 on Γin (13b)

∂Ca
∂n

= 0 on Γlat ∪ Γ (13c)

Ca(U · n) +D
∂Ca
∂n

= 1 on Γout (13d)

and the variables (Ua, pa) as the solution of the linearized Navier-Stokes system

−ν∆Ua + (∇U)>Ua −∇UaU +∇pa = −Ca∇C in Ω (14a)

∇ ·Ua = 0 in Ω (14b)

Ua = 0 on Γin ∪ Γlat ∪ Γ (14c)

σ(Ua, pa)n+ (U · n)Ua = 0 on Γout (14d)

where (U , p, C) denotes the solution of the coupled system (1)-(3)
A workable writing of the shape derivative J ′(Ω)(θ) is thus derived in the following result.

Theorem 2. Let U0 ∈ H1/2(Γin, IR
2) and C0 ∈ H1/2(Γin, IR). If the viscosity ν is assumed to be

large enough, System (13)-(14) has a unique solution (Ca,Ua, pa) in X× V.
Furthermore, let θ ∈W 1,∞(IR2, IR2) be a vector field whose support does not intersect Γin, Γlat

and Γout. If one assumes that the state and adjoint variables U , Ua, C and Ca have H2 regularity
in their domain of definition, then there holds

J ′(Ω)(θ) =

∫
Γ

(2νε(U) : ε(Ua)−DCa∆C) (θ · n) dσ.

A proof of this result is provided in Appendix A.

3.2 A Lagrangian approach

The shape optimization approach developed hereafter is a gradient-based method which uses the
so-called Hadamard boundary variation method [HP18] described in Section 3.1. To take the
constraints into account in Problem (P1), it is convenient to introduce the Lagrangian functional
associated to the optimization problem, namely the functional L given by

L(Ω, λV, λE) = KcritJ(Ω) + λVH(Ω) + λEG(Ω), (15)

where Kcrit > 0 denotes a constant allowing to homogenize the Lagrangian functional. λV ∈ IR and
λE ∈ IR+ stand for the Lagrange multipliers respectively associated to the constraints H(Ω) = 0
and G(Ω) 6 0.

Before providing the main idea of the algorithm, we need to compute the shape derivative of L.
Let θ ∈ W 1,∞(IR2, IR2) be a vector field whose support does not intersect Γin, Γlat and Γout. We
denote by L′(Ω, λV, λE)(θ) the shape derivative of L (with respect to its first variable), in other
words

L′(Ω, λV, λE)(θ) = lim
t↘0

L(Ωt)− L(Ω)

t
, with Ωt = (Id +tθ)(Ω).
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Let us introduce the adjoint state (Ua, pa) as the solution of the system

L(Ua,∇pa) = −λE2ν∆U −KcritCa∇C in Ω (16a)

∇ ·Ua = 0 in Ω (16b)

Ua = 0 on Γin ∪ Γlat ∪ Γ (16c)

σ(Ua, pa)n+ (U · n)Ua = 4νλEε(U)n on Γout (16d)

where L(Ua,∇pa) = −ν∆Ua + (∇U)>Ua −∇UaU +∇pa and Ca as the solution of the system

−D∆Ca −U · ∇Ca + kCa = 0 in Ω (17a)

Ca = 0 on Γin (17b)

∂Ca
∂n

= 0 on Γlat ∪ Γ (17c)

Ca(U · n) +D∂Ca
∂n

= 1 on Γout (17d)

Proposition 1. Under the same assumptions as in Theorem 2, the coupled system (17)-(16) has
a unique solution (Ca,Ua, pa) in X× V and there holds

L′(Ω, λV, λE)(θ) = ∫
Ω

(2ν(ε(U) : ε(Ua)− λEε(U) : ε(U))−KcritDCa∆C + λV) (θ · n) dσ.

It is notable that the shape gradient g(Ω), defined on the free boundary Γ, is therefore given
by

g(Ω) = 2ν(ε(U) : ε(Ua)− λEε(U) : ε(U))−KcritDCa∆C + λV. (18)

Its computation needs the knowledge of all the state and adjoint variables (U , p and C) and (Ua,
pa and Ca). From the numerical point of view, we will use the gradient to build an iterative
optimization algorithm. In a nutshell, at each iteration, we will infer a displacement vector field
θ (a descent direction of the Lagrangian) from the knowledge of g(Ω) and modify adequately each
node of the mesh.

Let us explain how to compute the vector field θi At the iteration i (i ∈ IN∗). Consider the
domain Ωi obtained after i iterations of the algorithm. The vector field θi is determined in such
a way that

L′(Ω, λV, λE)(θi) = −γ‖∇θi‖2L2(Ωi)
− ‖θi‖2L2(Ωi)

.

Observe that γ‖∇ · ‖2L2(Ωi)
+ ‖ · ‖2L2(Ωi)

defines a norm equivalent to the standard H1 norm. The
introduction of the parameter γ will allow us to adjust the diffusivity strength on the mesh.

The choice of this modified H1 norm is motivated by the willing of getting a smooth enough
vector field. Such an issue has been much discussed in [DMNV07] and yields to defining θi as the
unique solution (in a weak variational sense) of the PDE

−γ∆θ + θ = 0 in Ω (19a)

θ = 0 on Γin ∪ Γout ∪ ΓLat (19b)

γ∇θn = −gn on Γ (19c)

Once the vector field θ computed, we then move all mesh-nodes according to

Ωi+1 = (Id +tiθi)(Ωi)

where ti > 0 is the method step which must be chosen adequately (for instance with the help of a
1D optimization method), Id is the identity operator.
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3.3 Optimization algorithm

The numerical optimization problem presented in this work is implemented within OpenFOAM
environment which is a free and open source software [WTJF98]. This CFD software solves nu-
merically a large range of PDEs using the Finite Volume Method. In our case, OpenFOAM solves
the system of Navier-Stokes equations (1) combined with the mass balance equations (3), the
adjoint system equations (13)-(14)) and computes the mesh diffusion displacement through (19).
The Python library named ’’pyFoam ’’ is used in order to connect optimization iterations to each
other using its utility ’’pyFoamMeshUtilityRunner.py ’’. The developed algorithm consists of the
folowing steps:

1. Meshing of the initial shape using cfMesh and snappyHexMesh, two mesh utilities supplied
by OpenFOAM.
According to (18), the shape gradient functional is defined on the free boundary and depends
on the first and second order derivatives of the state and adjoint variables. Therefore, all
these quantities need to be computed with accuracy near wall zones, and we therefore add 2
layers of mesh near the boundary Γ.

2. Resolution of the process model equations (1)-(3) and the adjoint system equations (13)-
(14). The SIMPLE algorithm is used in order to deal with the velocity-pressure coupling of
Eqs. (1)-(14).

3. The shape gradient g(Ω) and the mesh diffusion θ are computed. The obstacle and channel
constraints are taken into account during this step (see § 4.2).

4. Update of the Lagrange multipliers at the k-th iteration according to the following relations:

λk+1
V = λkV + βVH(Ω) (20)

λk+1
E = max

(
0, λkE + βEG(Ω)

)
(21)

In these equations, βV and βE denote small positive parameters.

5. At the end of iterations, a mesh quality test using three criteria is performed and a test on
the convergence is carried out. Fig. 3 illustrates the mesh quality criteria. According to
[Hol15], the criteria are:

• the mesh aspect ratio defined as the ratio of the longest side over the shortest one
among all cells of the mesh, namely r = l/s on Fig. 3.

• the mesh non-orthogonality which corresponds to the angle between the line linking
two adjacent cell centers and the normal to their common face, namely the angle α =
arccos( Ai·Ci

|Ai||Ci| ) on Fig. 3.

• the face skewness which is the ratio of the distance |di| over the distance |Ci|, where
|di| denotes the distance between the intersection of the line linking two adjacent cell
centers with their common face and their common face center, and |Ci| denotes the
distance between the two considered cell centers.

The remeshing process takes place whenever the aforementioned criteria are greater than
10, 65 and 3.8 respectively. The convergence criterion of the algorithm is the ratio of the
standard deviation of the 50 last Lagrangian values over the average of these 50 values. If
the ratio is less than 10−4, the algorithm stops.
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Figure 3: Illustration of the mesh quality criteria.

4 Numerical results and discussion

This section is devoted to the presentation of the numerical results obtained by implementing the
algorithm described in Section 3.3. We also enrich our model by introducing a modified version of
the shape optimization problem (P1), taking into account several manufacturing constraints. In the
following sections, we introduce the new criteria we will deal with, as well as a simple optimization
algorithm. We obtain promising results, and we are working at this time on improvements of the
manufacturing constraints treatment.

4.1 Numerical solution of Problem (P1)

Figure 4 illustrates the concentration profiles of the reactant for : (a) the initial design of the
reactor, (b) optimal shapes for Problem (P1), by following to the algorithm described in Section 3.3.

(a)

(b)

O y

x

Figure 4: Initial configuration of the fixed-bed reactor (a), optimized shape without manufacturing
constraint (b).

As we can see, a dead zone arises at the reactor inlet of the initial configuration. This dead
zone is a region where the reactant concentration is low which produces a low reaction rate (recall
that the conversion rate is proportional to the reactant concentration r = kC). As a result, this
reactor dead volume is almost useless.

As an illustration of the method efficiency, we provide on Fig. 5 the convergence curves related
to this shape optimization problem, namely the evolution of the Lagrangian functional, the per-
formance index and the two constraints H and G with respect to the iteration number. According
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to Fig. 5, the performance index has decreased by almost 10 % which will improve the conversion
rate accordingly. The volume and energy dissipation constraints are satisfied and it is interesting
to point out that the energy inequality constraint is active.

(a) (b)

(c) (d)

(e) (f )

Figure 5: Convergence curves of the optimization process, (a) is the ratio L
L0

, (b) the ratio J
J0

, (c)
the volume constraint, (d) the energy disspation constraint, (e) the Lagrange multiplier associated
to the volume constraint and (f) the Lagrange multiplier associated to the energy constraint over
iterations.
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However, these first results are unfortunately not directly usable for practical purposes if fixed-
bed reactors are to be built by means of an additive manufacturing technique. Indeed, the stra-
toconception process used to build the reactor requires minimal width on channels and obstacles
making the process and the designed object robust. In the following sections, we slightly modify
our approach to take into account the manufacturing constraints.

4.2 New version of the optimization problem: introduction of manufac-
turing constraints

Since the resulting optimal shape will be manufactured by means of a 3D printing technique,
additional constraints should be accounted for in the optimization problem. The new optimization
problem is obtained by adding these new constraints on the formulation (P1).

They are of inequality type and impose minimum values on the pores width (domain Ω) and
on the packing “thickness”. There are several ways of modeling such a constraint. Let us describe
hereafter the chosen approach.

It is not straightforward to define and use minimum thickness constraints inside a Lagrangian
functional. The manufacturing constraints taken into account during the mesh diffusion step
modify the vector field θ after computation. This approach corresponds to a projected gradient
type method. The obstacle and channel constraints are not considered using the same algorithm.
Let us provide hereafter some explanations about these facts.

The method considered in the present paper aims to improve an existing design to include the
manufacturing constraints. Since the objective of this work is not centered on manufacturability
issues, we propose in the following a rather naive approach to take into account manufacturing
constraints in order to quickly obtain first results. We are currently working on improving the
consideration of such constraints, by drawing inspiration from the much more advanced works
[AJM16, ADFM17, ADE+17a, ADE+17b] on the subject, which cleverly includes these constraints
within an algorithm using a dual version of the optimization problem.

4.2.1 Obstacle minimum thickness constraint

The approach we chose is based on the notion of reach of a set [Fed59]. Let h > 0. A closed
set A is said to have a reach larger than h provided that every point x belonging to {x ∈ IR2 |
dist(x,A) < h} has a unique projection point on A. The supremum of such h is called the reach
of A, and denoted as reach(A). We will impose a thickness constraint by imposing the constraint

T (Ω) > 0 where T (Ω) = reach(cΩ)− dobstacle
min ,

where dobstacle
min > 0 denotes the minimal obstacle width constraint and cΩ the complement set of

Ω in the domain delimited by Γin, Γout and Γlat (i.e. the full domain without pores).
This obstacle constraint is taken into account in 2 main steps: the first one involves the con-

struction of the skeleton of each obstacle defined as follows: for each obstacle, the skeleton is the
set of points such that their distance to the boundary of the obstacle is achieved for at least two
distinct points of the boundary.

The algorithm allowing us to construct the skeleton reads as follows:

1. The Voronoi diagram of the boundary points is computed. This diagram of a set of points E
is constructed from the Voronoi regions. In two-dimension, the Voronoi region of a point x
is defined as the area where points belonging to the area is closest to point x than all other
points of E [Att95] (see Fig 6 for an illusatration). The mathematical definition is given in
Definition 1 below.
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Definition 1. Let X a subset of IRd and P = {P1, P2, ..., Pn} ⊂ X a set of points. The
Voronoi region Rk of the point Pk is defined as

Rk = {x ∈ X | d(x, Pk) < d(x, Pj), ∀j 6= k}

where d(x, Pk) denotes the distance between x and Pk.

Each edge of the Voronoi diagram is the boundary of 2 Voronoi regions and the intersections
of edges, called vertices of the diagram, are the boundary of 3 (or more) Voronoi regions.
Each edge is bounded by 2 vertices. The skeleton is constructed from the edges of the Voronoi
diagram.

Figure 6: Voronoi diagram of a 10-point set.

2. The Voronoi diagram (Fig. 7(a)) is then simplified into two steps in order to compute the
skeleton Sk.

• Only edges completely included in the skeleton are kept (Fig. 7(b)).

• A second simplification is carried our by means of 2 criteria. (i) For all Voronoi vertices
s, the first criterion is the function r(s) that associates the maximum disc radius centered
in s. (ii) Each point s has three (or more) projections on the skeleton, called p1, p2 and
p3, the second criterion is given by α(s) = max(p̂1sp2, p̂1sp3, p̂2sp3). The lower bound
of those criteria is respectively 2. 10−4 m and π

4 (Fig. 7(c)).
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(a) Obstacle Voronoi diagram (b) First simplification (c) Second simplification: skeleton

Figure 7: Simplification of the Voronoi diagram into the skeleton, green points denote obstacle
points and red line denotes Voronoi diagram (a) and the simplified skeleton (b) and (c).

Once the skeleton constructed, a test on the minimum distance between the obstacle and the
skeleton named d(x) is performed. If this distance d(x) is lower than dobstacle

min /2 and d(x) >
d
(
x+ tθ(x)

)
then the vector θ(x) is projected to the corresponding skeleton tangent vector.

θ(x)

θ(x)mod

d(x) <
dobstaclemin

2

x

obstacle

fluid zone
(channel)

Skeleton

Figure 8: Illustration of the obstacle constraint consideration.

4.2.2 Channel minimum width constraint

The channel constraints are taken into account as follows (see the illustration on Fig. 9):

1. For each boundary point x of a given obstacle, determine the nearest boundary point xnear

belonging to another obstacle boundary.

2. We compute the inner product xxnear · θ(x). If xxnear · θ(x) > 0 and ‖xxnear‖ < dchannel
min

then the vector θ(x) is projected on the orthogonal line to the vector xxnear.
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xnear

d(x) < dchannelmin

x
θ(x)

θ(x)mod

obstacle

obstaclefluid zone
(channel)

Figure 9: Illustration of the channel constraint treatment.

4.3 Fixed-bed reactor optimization under energy, volume and manufac-
turing constraints

We investigate hereafter how is the optimal design modified whenever manufacturing constraints
are added to the optimization algorithm in order to design the optimal reactor. The lower bounds of
the obstacle thickness and the channel width imposed by the manufacturing process are respectively
2 10−3 m and 2.1 10−3 m. On Figure 10, we provide a comparison of the concentration profiles of the
reactant for : (a) the optimal shape obtained for Problem (P1) (without manufacturing constraints)
and (b) optimal shapes when width constraints are integrated to the algorithm. Similarly to what
was observed in the case (a), no dead zone arises when taking into account the manufacturing
constraints, even if stratoconception process used to build the reactor requires minimal width on
channels and obstacles. Figure 11 presents a virtual image of the optimal reactor (b) manufactured
by stratoconception process. On both configurations, we can see that the dead zone vanished which
will improve the performances of the reactor.

The residence time distributions (RTD) of the initial and optimized designs under manufac-
turing constraints are presented on Fig. 12. In chemical engineering, the RTD is defined as the
statistical time distribution that a set of particles stays in the reactor. It allows to characterize
the reactor hydrodynamics. The RTD curves show a better homogeneity of the fluid flow in the
optimized configuration (Fig. 10(b)) where the standard deviation is 3.5 times lower than in the
initial configuration (21 vs 73s). This better homogeneity can also be observed on Fig. 12 where
the concentration gradient in the horizontal direction is much larger in the initial shape than in the
optimized one. Finally, the disappearance of the dead region along with the better homogeneity
of the flow improve the performance index by 10%.

5 Conclusion and perspectives

In this paper, we have developed a geometric shape optimization approach for the design and
sizing of processes. We are more specifically interested in the shape of the packing of a fixed-
bed reactor with a single-phase liquid flow involving a chemical reaction in laminar flow regime.
Furthermore, the packing configuration which minimizes the average concentration of the reagent
at the outlet of the reactor while satisfying the process model equations and the volume, the
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(a)

(b)

O y

x

Figure 10: Optimized shape without manufacturing constraints (a), optimized shape with manu-
facturing constraints (b).

Figure 11: Virtual image of the optimal reactor (Fig 10(c)) manufactured by stratoconception.

energy dissipation and the manufacturing constraints, was determined. However, the optimization
algorithm developed exhibits some limitations which should be further investigated. Among these
limitations, the treatment of the manufacturing constraints which is not robust. It suffers from too
much rigidity since it does not allow constraints to be violated during the optimization process.
Another limitation concerns the computation time which takes more than 2 days to converge
(simulations performed on a 3.7GHz Xeon Dell Computer 5810). Parallel computing would not
improve computational time because the method developped is an iterative method and the number
of cells in the mesh is around 50000-70000. On the other hand, it is worth noticing that the use of
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Figure 12: Residence time distribution of initial and optimized shapes.

a geometric algorithm does not allow us to modify the domain topology. Therefore, an interesting
issue to be addressed is to allow topology changes within the optimization procedure.

As a close perspective, we are also currently working on generalizing our approach to other
types of reactors, which requires to consider 3D geometries.

A Proof of Theorem 2

The well-posed character of System (13)-(14) is standard. Regarding (13), the proof is exactly
similar to the one for System (3). We thus refer to [Boy05, FAB+19]. Regarding now System (14),
we claim that the proof is a direct adaptation of [HP10, Prop. 1]. This point being clarified, it
remains to express J ′(Ω)(θ) under the form

∫
∂Ω
G(θ · n), where G denotes the so-called shape

gradient of J . We start from the expression (10) of J ′(Ω)(θ).
Let us multiply the first equation of (14) by U ′ and then integrate by parts. We get

− ν
∫

Ω

∆Ua ·U ′ dx+

∫
Ω

(∇U)>Ua ·U ′ dx−
∫

Ω

∇UaU ·U ′ dx

+

∫
Ω

∇pa ·U ′ dx = −
∫

Ω

Ca∇C ·U ′ dx.
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Integrating each term by parts yields successively

−ν
∫

Ω

∆Ua ·U ′ dx =
(11c)

2ν

∫
Ω

ε(Ua) : ε(U ′) dx− 2ν

∫
Γout∪Γ

ε(Ua)n ·U ′ dσ∫
Ω

(∇U)>Ua ·U ′ dx =
(1d) and (11c)

−
∫

Ω

(∇Ua)U ′ ·U dx+

∫
Γout

(U ·Ua)(U ′ · n) dσ

−
∫

Ω

(∇Ua)U ·U ′ dx =
(1d) and (11c)

∫
Ω

(∇U ′)U ·Ua dx−
∫

Γout

(U · n)(U ′ ·Ua) dσ∫
Ω

∇pa ·U ′ dx =
(11b) and (11c)

∫
Γout∪Γ

pa(U ′ · n) dσ.

It follows that∫
Ω

(2νε(Ua) : ε(U ′)− (∇Ua)U ′ ·U + (∇U ′)U ·Ua) dx

−
∫

Γout

((U ·Ua)(U ′ · n)− (U · n)(U ′ ·Ua)σ(Ua, pa)n ·U ′) dσ

−
∫

Γ

σ(Ua, pa)n ·U ′ dσ = −
∫

Ω

Ca∇C ·U ′ dx. (22)

Let us multiply the first equation of (11) by Ua and then integrate by parts on Ω. One gets

− ν
∫

Ω

∆U ′ ·Ua dx+

∫
Ω

(∇U)U ′ ·Ua dx+

∫
Ω

(∇U ′)U ·Ua dx+

∫
Ω

∇p′ ·Ua dx = 0 (23)

Integrating each term by parts yields successively

−ν
∫

Ω

∆U ′ ·Ua dx =
(14c)

2ν

∫
Ω

ε(Ua) : ε(U ′) dx− 2ν

∫
Γout

ε(U ′)n ·Ua dσ∫
Ω

(∇U)U ′ ·Ua dx =
(1d) and (11c)

−
∫

Ω

(∇Ua)U ′ ·U dx+

∫
Γout

(U ·U ′)(Ua · n) dσ∫
Ω

∇p′ ·Ua dx =
(14b) and (14c)

∫
Γout

p′(Ua · n) dσ

By taking into account the computations above and the boundary conditions (11e) on U ′, we
rewrite(23) as∫

Ω

(2νε(Ua) : ε(U ′)− (∇Ua)U ′ ·U + (∇U ′)U ·Ua) dx

+

∫
Γout

(U ·Ua)(U ′ · n) dσ = 0 (24)

Combining (22) and (24) yields∫
Ω

Ca∇C ·U ′ dx =

∫
Γ∪Γout

σ(Ua, pa)n ·U ′ dσ

∫
Γout

(U · n)(U ′ ·Ua) dσ (25)

Let us now use the same approach to deal with (12) and (13). We multiply the first equation
of (13) by C ′ and then integrate by parts. We get

−D
∫

Ω

∆CaC
′ dx−

∫
Ω

(U · ∇Ca)C ′ dx+ k

∫
Ω

CaC
′ dx = 0 (26)
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Integrating each term by parts yields

−D
∫

Ω

∆CaC
′ dx = D

∫
Ω

(∇Ca · ∇C ′) dx−D
∫
∂Ω

∂Ca
∂n

C ′ dσ∫
Ω

(U · ∇Ca)C ′ dx = −
∫

Ω

(U · ∇C ′)Ca dx+

∫
∂Ω

(U · n)(CaC
′) dσ

Thus, (26) rewrites

D

∫
Ω

(∇Ca · ∇C ′) dx−D
∫
∂Ω

∂Ca
∂n

C ′ dσ +

∫
Ω

(U · ∇C ′)Ca dx

−
∫
∂Ω

(U · n)(CaC
′) dσ + k

∫
Ω

CaC
′ dx = 0 (27)

Similarly, let us multiply the first equation of (12) by Ca and then integrate by parts. We
obtain

−D
∫

Ω

∆C ′Ca dx+

∫
Ω

(U · ∇C ′)Ca dx+

∫
Ω

(U ′ · ∇C)Ca dx+ k

∫
Ω

CaC
′ dx = 0 (28)

which also rewrites

D

∫
Ω

(∇Ca · ∇C ′) dx−D
∫
∂Ω

∂C ′

∂n
Ca dσ +

∫
Ω

(U · ∇C ′)Ca dx

+

∫
Ω

(U ′ · ∇C)Ca dx+ k

∫
Ω

CaC
′ dx = 0 (29)

Combining (27) and (29) leads to∫
Ω

(U ′ · ∇C)Ca dx+

∫
∂Ω

(U · n)(CaC
′) dσ +D

∫
∂Ω

∂Ca
∂n

C ′ dσ −D
∫
∂Ω

∂C ′

∂n
Ca dσ︸ ︷︷ ︸

I

= 0. (30)

Observe that I has no contribution on Γin and Γlat. Furthermore, one has

I −
∫

Γout

C ′ dσ = −D
∫

Γ

Ca

(
−∂C

2

∂n2
(θ · n) +∇C · (∇(θ · n)− (∇(θ · n) · n)n)

)
dσ

= −D
∫

Γ

Ca

(
− ∂C2

∂n2
(θ · n) +∇C · ∇(θ · n)−∇C · (∇(θ · n) · n)n

)
dσ

= −D
∫

Γ

Ca

(
− ∂C2

∂n2
(θ · n) +∇C · ∇(θ · n)− (∇(θ · n) · n)(∇C · n)

)
dσ

= −D
∫

Γ

Ca

(
− ∂C2

∂n2
(θ · n) +∇C · ∇(θ · n)− ∂(θ · n)

∂n

∂C

∂n

)
dσ

according to (12). Since Γ is the only part of the boundary of Ω met by the support of θ, it is
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legitimate to use an integration by parts formula2 on ∂Ω. It yields

I −
∫

Γout

C ′ dσ = D

∫
Γ

Ca

(
∆C(θ · n)−H∂C

∂n
(θ · n)

)
=

(3c)
D

∫
Γ

Ca∆C(θ · n) (32)

Hence, (30) reads ∫
Ω

(U ′ · ∇C)Ca dx+ J ′(Ω)(θ) +D
∫

Γ

Ca∆C(θ · n) = 0 (33)

By combining (25) and (33), we obtain

J ′(Ω)(θ) = −
∫

Γ∪Γout

σ(Ua, pa).n ·U ′ dσ −D
∫

Γ

Ca∆C(θ · n)

−
∫

Γout

(U · n)(U ′ ·Ua) dσ. (34)

Finally, using the boundary conditions (11c), (11d) and (44d) leads to

J ′(Ω)(θ) =

∫
Γ

(
(2νε(Ua)n− pan) · ∂U

∂n
−DCa∆C

)
(θ · n) dσ (35)

To conclude, it remains to rewrite the expression above in a more symmetrical way. To this
aim, we will use the following lemma whose proof is postponed at the en d of this section for the
sake of clarity.

Lemma 1. Assume that ∂Ω is smooth enough so that U and Ua belong to H2(Ω). Thus, one has
on Γ

n · ∂U
∂n

= 0 (36)

ε(U)n · ∂U
∂n

= |ε(U)|2 (37)

(ε(Ua)n) · ∂U
∂n

= ε(U) : ε(Ua) (38)

Roughly speaking, this follows from the fact that (U and Ua) are divergence-free in Ω and
vanish on Γ. Finally, this leads to the desired expression of the shape derivative:

J ′(Ω)(θ) =

∫
Ω

(2ν(ε(U) : ε(Ua)−DCa∆C) (θ · n) dσ (39)

Proof of Lemma 1. Let us first show (36). Since U vanishes on Γ, one has ∇U = (∇Un)n. It
follows that ∂Ui/∂xi = ni∂Ui/∂n and therefore

n · ∂U
∂n

=
∑
i

ni
∂Ui
∂n

=
∑
i

∂Ui
∂xi

= div(U) = 0 on Γ.

2Recall that if f ∈ H2(Ω) and g ∈ H3(Ω), then one has∫
∂Ω
∇f · ∇g dσ = −

∫
∂Ω

f∆g dσ +

∫
∂Ω

(
∂f

∂n

∂g

∂n
+ f

∂2g

∂n2
+Hf

∂g

∂n

)
dσ (31)

where H denotes the mean curvature on ∂Ω (see [HP18, Chapter 5]).
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Let us now prove (38). Using the same tricks as above enable us to write

∂Ui
∂xj

=
∂Ui
∂n

nj and divU =
∑
i

∂Ui
∂xi

=
∑
i

∂Ui
∂n

ni = 0

from which we infer that

ε(U)n =
1

2

∑
j

(
∂Ui
∂xj

+
∂Uj
∂xi

)
nj


i

=
1

2

∑
j

∂Ui
∂n

n2
j +

∂Uj
∂n

ninj


i

=
1

2

∂Ui
∂n

∑
j

n2
j


i

=
1

2

(
∂Ui
∂n

)
i

=
1

2

∂U

∂n

on Γ. It follows that (ε(Ua)n) · ∂U∂n = 2(ε(Ua)n) · (ε(U)n) on Γ and then

(ε(Ua)n) · ∂U
∂n

=
1

2

∑
i

∑
j

(
∂Uai
xj

+
∂Uaj
xi

)
nj
∑
l

(
∂Ui
xl

+
∂Ul
xi

)
nl

=
1

2

∑
i,j,l

(
∂Uai
∂n

n2
j +

∂Uaj
∂n

ninj

)(
∂Ui
∂n

n2
l +

∂Ul
∂n

ninl

)

=
1

2

∑
i,j,l

∂Uai∂n

∂Ui
∂n

n2
jn

2
l +

∂Uaj
∂n

nj︸ ︷︷ ︸
divUa=0

∂Ui
∂n

ni︸ ︷︷ ︸
divU=0

n2
l +

∂Uai
∂n

ni
∂Ul
∂n

nln
2
j +

∂Uaj
∂n

nj
∂Ul
∂n

nln
2
i

 .

The three last terms of the sum vanish (since divU = divUa = 0 on Γ) and then,

2(ε(Ua)n) · (ε(U)n) =
1

2

∑
i

∂Uai
∂n

∂Ui
∂n

(40)

On the other hand, one has

ε(U) : ε(Ua) =
1

4

∑
i,j

(
∂Ui
∂xj

+
∂Uj
∂xi

)(
∂Uai
∂xj

+
∂Uaj
∂xi

)

=
1

4

∑
i,j

(
∂Ui
∂xj

∂Uai
∂xj

+
∂Uj
∂xi

∂Uai
∂xj

+
∂Ui
∂xj

∂Uaj
∂xi

+
∂Uj
∂xi

∂Uaj
∂xi

)

=
1

2

∑
i,j

(
∂Ui
∂xj

∂Uai
∂xj

+
∂Uj
∂xi

∂Uai
∂xj

)
=

1

2

∑
i,j

(
∂Ui
∂n

∂Uai
∂n

n2
j +

∂Uj
∂n

∂Uai
∂n

ninj

)
=

1

2

∑
i

∂Ui
∂n

∂Uai
∂n

∑
j

n2
j︸ ︷︷ ︸

=1

+
1

2

∑
j

∂Uj
∂n

nj︸ ︷︷ ︸
divU=0

+
1

2

∑
i

∂Uai
∂n

ni︸ ︷︷ ︸
divUa=0

=
1

2

∑
i

∂Ui
∂n

∂Uai
∂n

,

whence (38). The proof of (37) is exactly similar.

B Proof of Proposition 1

Let us first recall (see for instance [All07, HP18, DFOP18]) that
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C ′1(Ω)(θ) =
d

dt

(∫
Ωt

1 dx

∣∣∣∣∣
t=0

− V(Ω0)

)
=

∫
∂Ω

(θ · n)dσ (41)

C ′2(Ω)(θ) =
d

dt

(
2ν

∫
Ωt

|ε(U)|2 dx
∣∣∣∣∣
t=0

− E(Ω0)

)
(42)

= 2ν

∫
∂Ω

|ε(U)|2(θ · n) dσ + 4ν

∫
Ω

ε(U) : ε(U ′) dx (43)

It is standard to rewrite C ′2(Ω)(θ) in a more workable form, by introducing a well-chosen
adjoint method. In accordance with [DFOP18], let us introduce the adjoint state (Ua, pa) solving
the linearized Navier-Stokes system

−ν∆Ua + (∇U)>Ua −∇UaU +∇pa = −λE2ν∆U in Ω (44a)

∇ ·Ua = 0 in Ω (44b)

Ua = 0 on Γin ∪ Γlat ∪ Γ (44c)

σ(Ua, pa)n+ (U · n)Ua = 4νλEε(U)n on Γout (44d)

Hence, one shows with the help of well-adapted integrations by parts that the quantity C ′2(Ω)(θ)
rewrites

C ′2(Ω)(θ) =

∫
Ω

(2ν(ε(U) : ε(Ua)− λEε(U) : ε(U))) (θ · n) dσ

The expected conclusion hence follows by combining these formula with the result of Proposition 2.
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