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ERROR ESTIMATES OF ENERGY REGULARIZATION FOR

THE LOGARITHMIC SCHRÖDINGER EQUATION

WEIZHU BAO, RÉMI CARLES, CHUNMEI SU, AND QINGLIN TANG

Abstract. The logarithmic nonlinearity has been used in many partial differ-

ential equations (PDEs) for modeling problems in different applications. Due

to the singularity of the logarithmic function, it introduces tremendous diffi-
culties in establishing mathematical theories and in designing and analyzing

numerical methods for PDEs with logarithmic nonlinearity. Here we take the

logarithmic Schrödinger equation (LogSE) as a prototype model. Instead of
regularizing f(ρ) = ln ρ in the LogSE directly as being done in the litera-

ture, we propose an energy regularization for the LogSE by first regularizing

F (ρ) = ρ ln ρ− ρ near ρ = 0+ with a polynomial approximation in the energy
functional of the LogSE and then obtaining an energy regularized logarithmic

Schrödinger equation (ERLogSE) via energy variation. Linear convergence is
established between the solutions of ERLogSE and LogSE in terms of a small

regularization parameter 0 < ε � 1. Moreover, the conserved energy of the

ERLogSE converges to that of LogSE quadratically. Error estimates are also
established for solving the ERLogSE by using Lie-Trotter splitting integrators.

Numerical results are reported to confirm our error estimates of the energy reg-

ularization and of the time-splitting integrators for the ERLogSE. Finally our
results suggest that energy regularization performs better than regularizing

the logarithmic nonlinearity in the LogSE directly.

1. Introduction

Nowadays, the logarithmic nonlinearity has been adopted frequently in many
fields. For example, it admits applications to quantum mechanics and quantum op-
tics (logarithmic Schrödinger equation (LogSE) [13–15,42]), oceanography and fluid
dynamics (logarithmic Korteweg-de Vries (KdV) equation or logarithmic Kadomtsev-
Petviashvili (KP) equation [37, 48, 49]), quantum field theory and inflation cos-
mology (logarithmic Klein-Gordon equation [11, 33, 47]), material sciences (Cahn-
Hilliard (CH) equation with logarithmic potentials [22, 26, 31]). Recently, the
heat equation with a logarithmic nonlinearity has been investigated mathemati-
cally [1, 20].

The logarithmic nonlinearity was selected by assuming the separability of non-
interacting subsystems property (cf. [13]), which means that a solution of the non-
linear equation for the whole system can be constructed, as in the linear theory,
by taking the product of two arbitrary solutions of the nonlinear equations for the
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subsystems. In other words, no correlations are introduced for noninteracting sub-
systems. As for the physical reality, robust physical grounds have been found for
the application of the equations with logarithmic nonlinearity. For instance, it was
found in the stochastic formulation of quantum mechanics [43, 46] that the loga-
rithmic nonlinear term originates naturally from an internal stochastic force due to
quantum fluctuations. Such kind of nonlinearity also appears naturally in inflation
cosmology and in supersymmetric field theories [10,28].

There are some special analytic solutions for the logarithmic mechanics (cf. [41]).
For example, the logarithmic KdV equation, the logarithmic KP equation, the
logarithmic Klein-Gordon equation give Gaussons: solitary wave solutions with
Gaussian shapes [48,49]. Particularly, the solution of the LogSE remains Gaussian
for all time if the initial data is Gaussian and solving the LogSE is equivalent to
solving ordinary differential equations [16]; this property remains in the case of the
logarithmic heat equation ( [1]), but not in the case of, e.g., the logarithmic KdV
equation, the logarithmic KP equation, or the logarithmic Klein-Gordon equation
(as can be seen directly by trying to plug time dependent Gaussian function into
these equations).

The well-posedness of the Cauchy problem for the logarithmic equations is not
trivial since the logarithmic nonlinearity is not locally Lipschitz continuous due to
the singularity of the logarithm. The regularized free energy has been widely used
for proving the existence of the CH equation with a logarithmic potential [27] and
the LogSE [17] by a compactness argument.

It is also very challenging to design and analyze numerical schemes for the log-
arithmic equations due to the singularity of the logarithmic nonlinearity. There
have been extensive numerical works for the CH equation with a logarithmic Flory
Huggins energy potential [21, 23, 32, 38, 39, 50] and recently several works for the
LogSE [4, 5, 44] where some kinds of regularization were proposed for either the
PDEs or the energy functional. Specifically, the regularized energy functional was
adopted for the CH equation with a logarithmic free energy [23,50], and a regular-
ized logarithmic Schrödinger equation was introduced and analyzed for solving for
the LogSE [4,5].

In this paper, we aim to design and analyze numerical methods for the logarith-
mic equations via an energy regularization. We take the LogSE as an example and
the regularization can be extended to other logarithmic equations. Consider the
LogSE which arises in a model of nonlinear wave mechanics (cf. [13]),

(1.1)

{
i∂tu(x, t) = −∆u(x, t) + λu(x, t) f(|u(x, t)|2), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where t and x ∈ Rd (d = 1, 2, 3) represent the temporal and spatial coordi-
nates, respectively, λ ∈ R\{0} measures the force of the nonlinear interaction,
u := u(x, t) ∈ C is the dimensionless wave function, Ω = Rd or Ω ⊂ Rd is a
bounded domain with homogeneous Dirichlet or periodic boundary condition fixed
on a Lipschitz continuous boundary, and

(1.2) f(ρ) = ln ρ, ρ > 0, with ρ = |u|2.

This model has been widely applied in quantum mechanics, nuclear physics, geo-
physics, open quantum systems and Bose-Einstein condensation [3, 24, 35, 36, 51].
There have been extensive literatures concerning the LogSE. It is easy to see that
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the LogSE (1.1) conserves the mass defined as

(1.3) N(t) := N(u(·, t)) = ‖u‖2 =

∫
Ω

|u(x, t)|2dx ≡ N(u0), t ≥ 0,

and the energy defined as

E(t) : = E(u(·, t)) =

∫
Ω

[
|∇u(x, t)|2dx + λF (|u(x, t)|2)

]
dx

≡
∫

Ω

[
|∇u0(x)|2 + λF (|u0(x)|2)

]
dx = E(u0), t ≥ 0,

(1.4)

where

(1.5) F (ρ) =

∫ ρ

0

f(s)ds =

∫ ρ

0

ln s ds = ρ ln ρ− ρ, ρ ≥ 0.

For the Cauchy problem (1.1) in a suitable functional framework, we refer to [16,
18,34]. For the stability properties of standing waves for (1.1), we refer to [2,17,19].
For the analysis of breathers and the existence of multisolitons, see [29,30].

In order to avoid numerical blow-up of the logarithmic nonlinearity at the origin
by directly regularizing the logarithmic function f(ρ) in (1.2) (and thus in (1.1))
with a small regularized parameter 0 < ε� 1, two models of regularized logarithmic
Schrödinger equation (RLogSE) were proposed in [5]:

(1.6)

{
i∂tu

ε(x, t) = −∆uε(x, t) + λuε(x, t) f̃ε(|uε(x, t)|)2), x ∈ Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω,

and

(1.7)

{
i∂tu

ε(x, t) = −∆uε(x, t) + λuε(x, t) f̂ε(|uε(x, t)|2)), x ∈ Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω,

where f̃ε(ρ) and f̂ε(ρ) are two different types of regularization for f(ρ) and they
are given as

(1.8) f̃ε(ρ) = ln(ε+
√
ρ)2, f̂ε(ρ) = ln(ε2 + ρ), ρ ≥ 0, with ρ = |uε|2.

Again, the RLogSEs (1.6) and (1.7) conserve the mass (1.3) with u = uε, and
conserve the energies

(1.9) Ẽε(t) := Ẽε(uε(·, t)) =

∫
Ω

[
|∇uε(x, t)|2dx + λF̃ ε(|uε(x, t)|2)

]
dx ≡ Ẽε(u0),

and
(1.10)

Êε(t) := Êε(uε(·, t)) =

∫
Ω

[
|∇uε(x, t)|2dx + λF̂ ε(|uε(x, t)|2)

]
dx ≡ Êε(u0),

respectively, with

F̃ ε(ρ) =

∫ ρ

0

f̃ε(s)ds = ρ ln(ε+
√
ρ)2 + 2ε

√
ρ− ρ− ε2 ln(1 +

√
ρ/ε)2,

F̂ ε(ρ) =

∫ ρ

0

f̂ε(s)ds = (ε2 + ρ) ln(ε2 + ρ)− ρ− 2ε2 ln ε,

ρ ≥ 0.(1.11)

The idea of this regularization is that the function ρ 7→ ln ρ causes no (analytical or
numerical) problem for large values of ρ, but is singular at ρ = 0. A linear conver-
gence was established between the solutions of the LogSE (1.1) and the regularized
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model (1.6) or (1.7) for bounded Ω in terms of the small regularization parameter
0 < ε� 1, i.e.,

sup
t∈[0,T ]

‖uε(t)− u(t)‖L2(Ω) = O(ε), ∀ T > 0.

Applying this regularized model, a semi-implicit FDM or a time-splitting method
was proposed and analyzed for the LogSE (1.6) [4, 5]. The above regularization
saturates the nonlinearity in the region {ρ < ε2} (where ρ = |uε|2), but of course
also has some (smaller) effect in the other region {ρ > ε2}.

Energy regularization has been widely adapted in different areas for dealing with
singularity and/or roughness, such as in materials science for establishing the well-
posedness of the Cauchy problem for the CH equation with a logarithmic potential
[27] and for treating strongly anisotropic surface energy [7, 40], in mathematical
physics for the well-posedness of the LogSE [17], and in scientific computing on
designing regularized numerical methods for treating singularities [9, 23, 50]. The
main aim of this paper is to present an energy regularization for the LogSE (1.1)
with three key features as: (i) to first regularize F (ρ) ∈ C0([0,+∞)) in (1.5) (and
thus in the energy functional (1.4)), (ii) to regularize the nonlinearity F (ρ) only
in the region {ρ < ε2} by a sequence of polynomials and keep it unchanged in
{ρ > ε2} such that the regularized function has given regularity; and (iii) to obtain
a sequence of energy regularized logarithmic Schrödinger equations (ERLogSEs)
from the regularized energy functional via energy variation. Unlike in [23,50] where
the energy is approximated by a second order polynomial near the origin, here
we present a systematic way to regularize the energy density near the origin by a
sequence of polynomials such that the overall regularized energy has up to arbitrary
order of smoothness. We will establish convergence rates between the solutions
of ERLogSEs and LogSE in terms of the small regularized parameter 0 < ε �
1. In addition, we will also prove error estimates of numerical approximations of
ERLogSEs by using time-splitting integrators.

The rest of this paper is organized as follows. In Section 2, we introduce a
sequence of regularization for the logarithmic potential. A regularized model is
derived and analyzed in Section 3 via the energy regularization of the LogSE. Some
numerical methods are proposed and analyzed in Section 4. Section 5 is devoted
to displaying some numerical experiments. Throughout the paper, we adopt the
standard L2-based Sobolev spaces as well as the corresponding norms and denote
C to represent a generic constant independent of ε, time step τ and the function
u, and C(c) is a generic constant depending on c.

2. Regularization for F (ρ) = ρ ln ρ− ρ

We consider a regularization starting from an approximation to the energy den-
sity F (ρ) in (1.5) (and thus in (1.4)).

2.1. A sequence of regularization. In order to make a comparison with the
former regularization (1.6) sensible, we again distinguish the regions {ρ > ε2}
and {ρ < ε2}, but instead of saturating the nonlinearity in the second region, we
regularize it as follows. Let n ≥ 2 be an integer, we approximate F (ρ) by a piecewise
smooth function with a polynomial near the origin, i.e.,

(2.1) F εn(ρ) = F (ρ)χ{ρ≥ε2} + P εn+1(ρ)χ{ρ<ε2}, n ≥ 2,
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where ε is a small parameter, χ
A

is the characteristic function of the set A and
P εn+1 is a polynomial of degree n+1, which satisfies F εn ∈ Cn([0,+∞)) and F εn(0) =
F (0) = 0 (this allows the regularized energy to be well-defined on the whole space).
Next we derive the explicit expressions of P εn+1(ρ). In view of P εn+1(0) = 0, write

(2.2) P εn+1(ρ) = ρQεn(ρ),

with Qεn being a polynomial of degree of n. Correspondingly, denote F (ρ) = ρQ(ρ)
with Q(ρ) = ln ρ− 1. By the continuity conditions, we get

P εn+1(ε2) = F (ε2), (P εn+1)′(ε2) = F ′(ε2), . . . , (P εn+1)(n)(ε2) = F (n)(ε2),

which implies that

Qεn(ε2) = Q(ε2), (Qεn)′(ε2) = Q′(ε2), . . . , (Qεn)(n)(ε2) = Q(n)(ε2).

Thus Qεn is nothing else but the n-th degree Taylor polynomial of Q at ρ = ε2, i.e.,

(2.3) Qεn(ρ) = Q(ε2) +

n∑
k=1

Q(k)(ε2)

k!
(ρ− ε2)k = ln ε2 − 1−

n∑
k=1

1

k

(
1− ρ

ε2

)k
.

In particular, Taylor’s formula yields

(2.4) Q(ρ)−Qεn(ρ) =

∫ ρ

ε

Q(n+1)(s)
(ρ− s)n

n!
ds =

∫ ρ

ε

(s− ρ)n

sn+1
ds.

Plugging (2.3) into (2.2), one gets the explicit formula of P εn+1(ρ). We emphasize
a formula which will be convenient for convergence results:

(2.5) (Qεn)
′
(ρ) =

1

ε2

n∑
k=1

(
1− ρ

ε2

)k−1

=
1

ρ

(
1−

(
1− ρ

ε2

)n)
, 0 ≤ ρ ≤ ε2.

2.2. Properties of the regularization functions. Differentiating (2.1) with re-
spect to ρ and noting (2.2), (2.3) and (2.5), we get

(2.6) fεn(ρ) = (F εn)′(ρ) = ln ρχ{ρ≥ε2} + qεn(ρ)χ{ρ<ε2}, ρ ≥ 0,

where

qεn(ρ) = (P εn+1)′(ρ) = Qεn(ρ) + ρ (Qεn)′(ρ)

= ln(ε2)− n+ 1

n

(
1− ρ

ε2

)n
−
n−1∑
k=1

1

k

(
1− ρ

ε2

)k
.

Noticing that qεn is increasing in [0, ε2], f̃ε and f̂ε are obviously increasing in [0,∞),
thus all the three types of regularization (2.1) and (1.11) preserve the convexity of
F . Moreover, as a sequence of regularization (or approximation) for the semi-
smooth function F (ρ) ∈ C0([0,∞)) ∩ C∞((0,∞)), we have F εn ∈ Cn([0,+∞)) for

n ≥ 2, while F̃ ε ∈ C1([0,∞)) ∩ C∞((0,∞)) and F̂ ε ∈ C∞([0,∞)). Similarly,
as a sequence of regularization (or approximation) for the logarithmic function
f(ρ) = ln ρ ∈ C∞((0,∞)), we observe that fεn ∈ Cn−1([0,∞)) for n ≥ 2, while

f̂ε ∈ C∞([0,∞)) and f̃ε ∈ C0([0,∞)) ∩ C∞((0,∞)).
Next we highlight some properties of fεn. Before this, we present the following

lemma established initially in [18, Lemma 1.1.1].
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Lemma 2.1. For z1, z2 ∈ C, we have∣∣Im ((z1 ln(|z1|2)− z2 ln(|z2|2)
)

(z1 − z2)
)∣∣ ≤ 2|z1 − z2|2,

where Im(z) and (z) denote the imaginary part and complex conjugate of z, respec-
tively.

Lemma 2.2. Let n ≥ 2 and ε > 0. For z1, z2 ∈ C, we have

|fεn(|z1|2)− fεn(|z2|2)| ≤ C(n)|z1 − z2|
max{ε,min{|z1|, |z2|}}

,(2.7) ∣∣Im [(z1f
ε
n(|z1|2)− z2f

ε
n(|z2|2)

)
(z1 − z2)

]∣∣ ≤ C(n)|z1 − z2|2,(2.8)

|ρ(fεn)′(ρ)| ≤ n+ 1, |√ρ(fεn)′(ρ)| ≤ 2n

ε
, |ρ3/2(fεn)′′(ρ)| ≤ C(n)

ε
, ρ ≥ 0,(2.9)

where C(n) > 0 is a general constant depending on n, but independent of ε ∈
(0, 1].

Proof. When |z1|, |z2| ≥ ε, we have∣∣fεn(|z1|2)− fεn(|z2|2)
∣∣ = 2 ln

(
1 +

max{|z1|, |z2|} −min{|z1|, |z2|}
min{|z1|, |z2|}

)
≤ 2|z1 − z2|

min{|z1|, |z2|}
.

When |z1|, |z2| ≤ ε, direct calculation gives∣∣fεn(|z1|2)− fεn(|z2|2)
∣∣

≤
∣∣∣∣(1− |z1|2

ε2

)n
−
(

1− |z2|2

ε2

)n∣∣∣∣+

n∑
k=1

1

k

∣∣∣∣∣
(

1− |z1|2

ε2

)k
−
(

1− |z2|2

ε2

)k∣∣∣∣∣
≤

n∑
j=1

(
n

j

) (
1− |z2|2

ε2

)n−j ∣∣∣∣ |z1|2 − |z2|2

ε2

∣∣∣∣j

+

n∑
k=1

1

k

k∑
j=1

(
k

j

) (
1− |z2|2

ε2

)k−j ∣∣∣∣ |z1|2 − |z2|2

ε2

∣∣∣∣j

≤ |z1 − z2|
2ε

n∑
j=1

(
n

j

)
4j +

|z1 − z2|
2ε

n∑
k=1

1

k

k∑
j=1

(
k

j

)
4j

≤ C(n)

ε
|z1 − z2|.

Supposing, for example, |z2| < ε < |z1|, denote z3 by the intersection point of the
circle {z ∈ C : |z| = ε} and the line segment connecting z1 and z2. Combining the
inequalities above, we have∣∣fεn(|z1|2)− fεn(|z2|2)

∣∣ ≤ |fεn(|z2|2)− fεn(|z3|2)|+ | ln(|z1|2)− ln(|z3|2)|

≤ C(n)

ε
|z2 − z3|+

2

ε
|z1 − z3|

≤ 2 + C(n)

ε
|z1 − z2|,

which completes the proof for (2.7). Noticing that

Im
[(
z1f

ε
n(|z1|2)− z2f

ε
n(|z2|2)

)
(z1 − z2)

]
=

1

2

[
fεn(|z1|2)− fεn(|z2|2)

]
Im(z1z2−z1z2),



ENERGY REGULARIZATION FOR LOGNLS 7

and

|Im(z1z2 − z1z2)| = |z2(z1 − z2) + z2(z2 − z1)| ≤ 2|z2| |z1 − z2|,
|Im(z1z2 − z1z2)| = |z1(z2 − z1) + z1(z1 − z2)| ≤ 2|z1| |z1 − z2|,

which, together with (2.7), yields (2.8). Direct computation gives

(fεn)′(ρ) =
1

ρ
χ{ρ≥ε2} +

(
n

ε2

(
1− ρ

ε2

)n−1
+

1

ε2

n−1∑
k=0

(
1− ρ

ε2

)k)
χ{ρ<ε2}

=
1

ρ
χ{ρ≥ε2} +

(
n

ε2

(
1− ρ

ε2

)n−1
+

1

ρ

[
1−

(
1− ρ

ε2

)n])
χ{ρ<ε2},

(fεn)′′(ρ) = − 1

ρ2
χ{ρ≥ε2} −

(
n2 − 1

ε4

(
1− ρ

ε2

)n−2
+

1

ε4

n−3∑
k=0

(k + 1)
(
1− ρ

ε2

)k)
χ{ρ<ε2},

which leads to (2.9) immediately. �

2.3. Comparison between different regularization. To compare different reg-
ularization for F (ρ) (and thus for f(ρ)), Fig. 1 shows different regularization F εn
(n = 2, 4, 100, 500), F̃ ε and F̂ ε for different ε, from which we can see that the newly
proposed regularization F εn approximates F more accurately.

Fig. 2 shows different regularization fεn (n = 2, 4, 100, 500), f̃ε and f̂ε for differ-
ent ε, while Figs. 3 & 4 show their first- and second-order derivatives. From these
figures, we can see that the newly proposed regularization fεn (and its derivatives
with larger n) approximates the nonlinearity f (and its derivatives) more accurately.

3. Energy regularization for the logarithmic Schrödinger equation

In this section, we consider the regularized energy

(3.1) Eεn(u) :=

∫
Ω

[
|∇u|2 + λF εn(|u|2)

]
dx,

where F εn is defined as (2.1). Then the Hamiltonian flow of the regularized en-

ergy i∂tu =
δEεn(u)
δu yields the following energy regularized logarithmic Schrödinger

equation (ERLogSE) with a small regularized parameter 0 < ε� 1 as

(3.2)

{
i∂tu

ε(x, t) = −∆uε(x, t) + λuε(x, t) fεn(|uε(x, t)|2), x ∈ Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω,

where fεn is defined by (2.6).

3.1. The Cauchy problem. To investigate the well-posedness of the problem
(3.2), we first introduce some appropriate space. For α > 0 and Ω = Rd, denote by
L2
α the weighted L2 space

L2
α := {v ∈ L2(Rd), x 7−→ 〈x〉αv(x) ∈ L2(Rd)},

where 〈x〉 :=
√

1 + |x|2, with norm ‖v‖L2
α

:= ‖〈x〉αv(x)‖L2(Rd). Regarding the
Cauchy problem (3.2), we have similar results as the regularization (1.6) in [5]. For
the convenience of the readers, we present the result as follows.
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Figure 1. Comparison of different regularization for F (ρ) = ρ ln ρ− ρ.

Theorem 3.1. Let λ ∈ R and 0 < ε ≤ 1.
(1). For (3.2) posed on a bounded domain Ω with homogeneous Dirichlet or periodic
boundary condition and initial data u0 ∈ H1(Ω),

• There exists a unique, global weak solution uε ∈ L∞loc(R;H1(Ω)) to (3.2).
• If in addition u0 ∈ H2(Ω), then uε ∈ L∞loc(R;H2(Ω)).

(2). For (3.2) on Ω = H1(Rd) with an initial data u0 ∈ H1(Rd) ∩ L2
α (0 < α ≤ 1),

• There exists a unique, global weak solution uε ∈ L∞loc(R;H1(Rd) ∩ L2
α) to

(3.2).
• If in addition u0 ∈ H2(Rd), then uε ∈ L∞loc(R;H2(Rd)).
• If u0 ∈ H2(Rd) ∩ L2

2, then uε ∈ L∞loc(R;H2(Rd) ∩ L2
2).
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Figure 2. Comparison of different regularization for the nonlin-
earity f(ρ) = ln ρ.

Proof. The theorem can be established by using similar arguments invoked in [5].
We refer to [5] for details. �

3.2. Convergence of the regularized model. In this subsection, we show the
approximation property of the regularized model (3.2) to (1.1).

Lemma 3.2. Suppose the equation is set on Ω, where Ω = Rd, or Ω ⊂ Rd is a
bounded domain with homogeneous Dirichlet or periodic boundary condition, then
we have the general estimate:

(3.3)
d

dt
‖uε(t)− u(t)‖2L2 ≤ |λ|

(
4‖uε(t)− u(t)‖2L2 + 6ε‖uε(t)− u(t)‖L1

)
.
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Figure 3. Comparison of different regularization for f ′(ρ) = 1/ρ.

Proof. Subtracting (1.1) from (3.2), we see that the error function eε := uε − u
satisfies

i∂te
ε + ∆eε = λ

[
uε ln(|uε|2)− u ln(|u|2)

]
+ λuε

[
fεn(|uε|2)− ln(|uε|2)

]
χ{|uε|<ε}.

Multiplying the above error equation by eε(t), integrating in space and taking the
imaginary parts, we can get by using Lemma 2.1, (2.4) and (2.5) that

1

2

d

dt
‖eε(t)‖2L2 = 2λ Im

∫
Ω

[uε ln(|uε|)− u ln(|u|)] eε(x, t)dx

+ λ Im

∫
|uε|<ε

uε
[
fεn(|uε|2)− ln(|uε|2)

]
eε(x, t)dx
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Figure 4. Comparison of different regularization for f ′′(ρ) = −1/ρ2.

≤ 2|λ|‖eε(t)‖2L2 + |λ|
∣∣∣ ∫
|uε|<ε

uεeε
[
Qεn(|uε|2)− ln(|uε|2) + |uε|2(Qεn)′(|uε|2)

]
dx
∣∣∣

≤ 2|λ|‖eε(t)‖2L2 + |λ|
∣∣∣ ∫
|uε|<ε

eεuε
[ ∫ ε2

|uε|2

(s− |uε|2)n

sn+1
ds− 1 + |uε|2(Qεn)′(|uε|2)

]
dx
∣∣∣

= 2|λ| ‖eε(t)‖2L2 + |λ|
∣∣∣ ∫
|uε|<ε

eεuε
[ ∫ ε2

|uε|2

(s− |uε|2)n

sn+1
ds−

(
1− |u

ε|2

ε2

)n ]
dx
∣∣∣

≤ 2|λ| ‖eε(t)‖2L2 + ε|λ|‖eε‖L1 + |λ|
∣∣∣ ∫ ε2

0

s−n−1

∫
|uε|2<s

eεuε(s− |uε|2)ndxds
∣∣∣

≤ 2|λ| ‖eε(t)‖2L2 + 3ε|λ|‖eε‖L1 ,
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which gives the result. �

Then applying the same arguments as in [5], based on the previous error estimate,
and interpolation between L2 and H2, we get the convergence behavior as follows.

Proposition 3.3. If Ω has finite measure and u0 ∈ H2(Ω), then for any T > 0,
we have

‖uε − u‖L∞(0,T ;L2(Ω)) ≤ C1ε, ‖uε − u‖L∞(0,T ;H1(Ω)) ≤ C2ε
1/2,

where C1 depends on |λ|, T , |Ω|, and C2 depends on additional ‖u0‖H2(Ω); If Ω =

Rd, 1 ≤ d ≤ 3 and u0 ∈ H2(Rd) ∩ L2
2, then for any T > 0, we have

‖uε − u‖L∞(0,T ;L2(Rd)) ≤ D1ε
4

4+d , ‖uε − u‖L∞(0,T ;H1(Rd))) ≤ D2ε
2

4+d ,

where D1 and D2 depend on d, |λ|, T , ‖u0‖L2
2

and ‖u0‖H2(Rd).

3.3. Convergence of the energy. By construction, the energy is conserved, i.e.,

Eεn(uε) =

∫
Ω

[
|∇uε(x, t)|2 + λF εn(|uε(x, t)|2)

]
dx = Eεn(u0).

For the convergence of the energy, we have the following estimate.

Proposition 3.4. For u0 ∈ H1(Ω) ∩ Lα(Ω) with α ∈ (0, 2), the energy Eεn(u0)
converges to E(u0) with

|Eεn(u0)− E(u0)| ≤ |λ|‖u0‖αLα
ε2−α

1− α/2
.

In addition, for bounded Ω, we have

|Eεn(u0)− E(u0)| ≤ |λ| |Ω| ε2.

Proof. It can be deduced from the definition and (2.4) that

|Eεn(u0)− E(u0)| = |λ|
∣∣∣∣∫

Ω

[F (|u0(x)|2)− F εn(|u0(x)|2)]dx

∣∣∣∣
= |λ|

∣∣∣∣∣
∫
|u0(x)|<ε

|u0(x)|2[Q(|u0(x)|2)−Qεn(|u0(x)|2)]dx

∣∣∣∣∣
= |λ|

∫
|u0(x)|<ε

|u0(x)|2
∫ ε2

|u0(x)|2
s−n−1(s− |u0(x)|2)ndsdx

= |λ|
∫ ε2

0

s−n−1

∫
|u0(x)|2<s

|u0(x)|2(s− |u0(x)|2)ndxds.

If Ω is bounded, we immediately get

|Eεn(u0)− E(u0)| ≤ |λ| |Ω| ε2.

For unbounded Ω, one gets

|Eεn(u0)− E(u0)| ≤ |λ|
∫ ε2

0

s−n−1sn+1−α/2‖u0‖αLαds = |λ| ‖u0‖αLα
ε2−α

1− α/2
,

which completes the proof. �
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Remark 3.5. Recall that it was shown in [5] that for the regularized model (1.6)
with energy density (1.11), the energy

(3.4) Ẽε(u0) = ‖∇u0‖2L2 + λ

∫
Ω

F̃ ε(|u0|2)dx

converges to E(u0) at first order. While for the regularization (1.7) with energy
density (1.11) and regularized energy as

(3.5) Êε(u0) = ‖∇u0‖2L2 + λ

∫
Ω

F̂ ε(|u0|2)dx,

we have∣∣∣Êε(u0)− E(u0)
∣∣∣ = |λ|

∣∣∣∣∫
Ω

[F (|u0(x)|2)− F̂ ε(|u0(x)|2)]dx

∣∣∣∣
= |λ|

∣∣∣∣∫
Ω

[
(ε2 + |u0|2) ln(ε2 + |u0|2)− ε2 ln(ε2)− |u0|2 ln(|u0|2)

]
dx

∣∣∣∣
≤ |λ| ε2

∫
Ω

ln

(
1 +
|u0|2

ε2

)
dx + |λ|

∫
Ω

|u0|2 ln

(
1 +

ε2

|u0|2

)
dx

≤ |λ| ε2−αC(α)

∫
Ω

|u0|αdx

= |λ| ε2−αC(α)‖u0‖αLα ,

where we have used the inequality ln(1 + x) ≤ C(β)xβ for β ∈ (0, 1] and x ≥ 0.
Hence for u0 ∈ H1(Ω) ∩ Lα(Ω) with α ∈ (0, 2), we derive∣∣∣Êε(u0)− E(u0)

∣∣∣ ≤ |λ| ε2−αC(α)‖u0‖αLα ,

which shows the same convergence rate as Eεn. Thus the newly proposed regular-

ization F εn is more accurate than F̃ ε, and than F̂ ε in the case of bounded domains,
from the viewpoint of energy.

4. Regularized Lie-Trotter splitting methods

In this section, we investigate the approximation property of Lie-Trotter splitting
methods [12, 25, 45] for solving the regularized model (3.2) in 1D. Extensions to
higher dimensions are straightforward. For simplicity of notation, we set λ = 1.

4.1. A time-splitting for (3.2). The operator splitting methods are based on a
decomposition of the flow of (3.2):

∂tu
ε = A(uε) +B(uε),

where

A(v) = i∆v, B(v) = −ivfεn(|v|2),

and the solution of the sub-equations

(4.1)

{
∂tv(x, t) = A(v(x, t)), x ∈ Ω, t > 0,

v(x, 0) = v0(x),

(4.2)

{
∂tω(x, t) = B(ω(x, t)), x ∈ Ω, t > 0,

ω(x, 0) = ω0(x),
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where Ω = R or Ω ⊂ R is a bounded domain with homogeneous Dirichlet or periodic
boundary condition on the boundary. Denote the flow of (4.1) and (4.2) as

(4.3) v(·, t) = ΦtA(v0) = eit∆v0, ω(·, t) = ΦtB(ω0) = ω0e
−itfεn(|ω0|2), t ≥ 0.

As is well-known, the flow ΦtA satisfies the isometry relation, i.e.,

(4.4) ‖ΦtA(v0)‖Hs = ‖v0‖Hs , s ∈ N, t ≥ 0.

Regarding the exact flow ΦtB , we have the following properties.

Lemma 4.1. Assume τ > 0 and ω0 ∈ H1(Ω), then

(4.5) ‖ΦτB(ω0)‖L2 = ‖ω0‖L2 , ‖ΦτB(ω0)‖H1 ≤ [1 + 2(n+ 1)τ ] ‖ω0‖H1 .

For v, w ∈ L2(Ω),

(4.6) ‖ΦτB(v)− ΦτB(w)‖L2 ≤ [1 + C(n)τ ] ‖v − w‖L2 .

Proof. By direct calculation, we get

∂xΦτB(ω0) = e−iτf
ε
n(|ω0|)2

[
∂xω0 − iτ(fεn)′(|ω0|2)(ω2

0∂xω0 + |ω0|2∂xω0)
]
,

which gives (4.5) immediately by recalling (2.9). We claim that for any x ∈ Ω,

|ΦτB(v)(x)− ΦτB(w)(x)| ≤ [1 + C(n)τ ] |v(x)− w(x)|.

Assuming, for example, |v(x)| ≤ |w(x)|, then by inserting a term v(x)e−iτf
ε
n(|w(x)|)2 ,

we can get that

|ΦτB(v)(x)− ΦτB(w)(x)| =
∣∣∣v(x)e−iτf

ε
n(|v(x)|)2 − w(x)e−iτf

ε
n(|w(x)|)2

∣∣∣
=
∣∣∣v(x)− w(x) + v(x)

(
eiτ [fεn(|w(x)|2)−fεn(|v(x)|2)] − 1

)∣∣∣
≤ |v(x)− w(x)|+ 2|v(x)|

∣∣∣ sin(τ
2

[
fεn(|w(x)|2)− fεn(|v(x)|2)

] )∣∣∣
≤ |v(x)− w(x)|+ τ |v(x)| |fεn(|w(x)|2)− fεn(|v(x)|2)|
≤ [1 + C(n)τ ] |v(x)− w(x)|,

where we used the estimate (2.7). When |v(x)| ≥ |w(x)|, the same inequality can
be obtained by exchanging v and w in the above computation. Thus the proof for
(4.6) is completed. �

4.2. Error estimates for Φτ = ΦτAΦτB. We consider the Lie-Trotter splitting

(4.7) uε,k+1 = Φτ (uε,k) = ΦτA(ΦτB(uε,k)), k ≥ 0; uε,0 = u0, τ > 0.

For u0 ∈ H1(Ω), it follows from (4.4) and (4.5) that

‖uε,k‖L2 = ‖uε,k−1‖L2 ≡ ‖uε,0‖L2 = ‖u0‖L2 ,

‖uε,k‖H1 ≤ [1 + 2(n+ 1)τ ] ‖uε,k−1‖H1 ≤ e2(n+1)kτ‖u0‖H1 , k ≥ 0.
(4.8)

Theorem 4.2. Let T > 0. Assume that the solution of (3.2) satisfies uε ∈
L∞(0, T ;H1(Ω)). Then there exists 0 < ε0 < 1 depending on n and ‖uε‖L∞(0,T ;H1(Ω))

such that when ε ≤ ε0 and kτ ≤ T , we have

(4.9) ‖uε,k − uε(tk)‖L2 ≤ C
(
n, T, ‖uε‖L∞([0,T ];H1(Ω))

)
ln(ε−1)τ1/2,

where C(·, ·, ·) is independent of 0 < ε ≤ ε0.
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Proof. Denote the exact flow of (3.2) by uε(t) = Ψt(u0). Firstly we give the local
error for v ∈ H1(Ω):

(4.10) ‖Ψτ (v)− Φτ (v)‖L2 ≤ C‖v‖H1 ln(ε−1)τ3/2, τ ≤ 1, ε ≤ ε0,

where ε0 depends on n and ‖v‖H1 . It can be obtained from the definition that

i∂tΨ
t(v) + ∆Ψt(v) = Ψt(v)fεn(|Ψt(v)|2),

i∂tΦ
t(v) + ∆Φt(v) = ΦtA

(
ΦtB(v)fεn(|ΦtB(v)|2)

)
.

Denote Et(v) = Ψt(v)− Φt(v), we have

(4.11) i∂tEt(v) + ∆Et(v) = Ψt(v)fεn(|Ψt(v)|2)− ΦtA
(
ΦtB(v)fεn(|ΦtB(v)|2)

)
.

Multiplying (4.11) by Et(v), integrating in space and taking the imaginary part, we
get

1

2

d

dt
‖Et(v)‖2L2 = Im

(
Ψt(v)fεn(|Ψt(v)|2)− ΦtA

(
ΦtB(v)fεn(|ΦtB(v)|2)

)
, Et(v)

)
= Im

(
Ψt(v)fεn(|Ψt(v)|2)− Φt(v)fεn(|Φt(v)|2), Et(v)

)
+ Im

(
Φt(v)fεn(|Φt(v)|2)− ΦtA

(
ΦtB(v)fεn(|ΦtB(v)|2)

)
, Et(v)

)
≤ C(n)‖Et(v)‖2L2

+
∥∥Φt(v)fεn(|Φt(v)|2)− ΦtA

(
ΦtB(v)fεn(|ΦtB(v)|2)

)∥∥
L2 ‖Et(v)‖L2 ,

where we have used (2.8). This implies

(4.12)
d

dt
‖Et(v)‖L2 ≤ C(n)‖Et(v)‖L2 + J1 + J2,

where

J1 = ‖Φt(v)fεn(|Φt(v)|2)− ΦtB(v)fεn(|ΦtB(v)|2)‖L2 ,

J2 = ‖ΦtB(v)fεn(|ΦtB(v)|2)− ΦtA
(
ΦtB(v)fεn(|ΦtB(v)|2)

)
‖L2 .

To estimate J1 in (4.12), firstly we prove that ‖Φt(v)‖L∞ , ‖ΦtB(v)‖L∞ ≤ C(n).
It follows from (4.4) and (4.5) that

‖Φt(v)‖H1 = ‖ΦtB(v)‖H1 ≤ (1 + 2(n+ 1)t)‖v‖H1 .

Hence by Sobolev imbedding, when t ≤ 1, we have ‖Φt(v)‖L∞ , ‖ΦtB(v)‖L∞ ≤
C(n)‖v‖H1 . Next we claim that for y, z satisfying |y|, |z| ≤ D, it can be established
that

|yfεn(|y|2)− zfεn(|z|2)| ≤ C(C(n) + ln(ε−1))|y − z|,
when ε is sufficiently small. Assuming, for example, 0 ≤ |z| ≤ |y|, then by applying
(2.7) and |fεn(|y|2)| ≤ 2 ln(ε−1) + n+ 1, when ε ≤ ε1 := min{1, 1/D}, we get

|yfεn(|y|2)− zfεn(|z|2)| = |(y − z)fεn(|y|2)|+ |z||fεn(|y|2)− fεn(|z|2)|

≤ C(C(n) + ln(ε−1))|y − z|+ |z|C(n)|y − z|
|z|

≤ C(C(n) + ln(ε−1))|y − z|.(4.13)

Thus, we obtain when ε ≤ ε2 := min{1, 1/(C(n)‖v‖H1)},

J1 ≤ C(C(n) + ln(ε−1))‖Φt(v)− ΦtB(v)‖L2

≤ C(C(n) + ln(ε−1))
√

2t‖ΦtB(v)‖H1
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≤ C(C(n) + ln(ε−1))
√

2t(1 + 2(n+ 1)t)‖v‖H1 ,(4.14)

where we used the estimate

(4.15)
∥∥ω − ΦtA(ω)

∥∥
L2 ≤

√
2t ‖ω‖H1 ,

which was adopted in [4], instead of the estimate in [12]∥∥ω − ΦtA(ω)
∥∥
L2 ≤ 2t‖ω‖H2 ,

which yields an extra 1/ε factor in the error estimate.
To estimate J2, we first claim that

(4.16) ‖ΦtB(v)fεn(|ΦtB(v)|2)‖H1 ≤ C(C(n) + ln(ε−1))(1 + t)‖v‖H1 ,

when ε ≤ ε3 := min{1, 1/‖v‖L∞}. Recalling that

ΦtB(v)fεn(|ΦtB(v)|2) = vfεn(|v|2)e−itf
ε
n(|v|2),

and |fεn(|v|2)| ≤ 2 ln(ε−1) + n+ 1, when ε ≤ ε3, this implies

‖(ΦtB(v))fεn(|ΦtB(v)|2)‖L2 ≤ 2(C(n) + ln(ε−1))‖v||L2 .

Noticing that

∂x[ΦtB(v)fεn(|ΦtB(v)|2)] = e−itf
ε
n(|v|2)

[
vxf

ε
n(|v|2)

+(1− itfεn(|v|2))(fεn)′(|v|2)(v2vx + |v|2vx)
]
,

which together with (2.9) yields

|∂x[ΦtB(v)fεn(|ΦtB(v)|2)]| ≤ C(C(n) + ln(ε−1))(1 + t)|vx|,

which immediately gives (4.16). Applying (4.15) again yields that

(4.17)
J2 ≤

√
2t ‖(ΦtB(v))fεn(|ΦtB(v)|2)‖H1

≤ C(C(n) + ln(ε−1))
√
t(1 + t)‖v‖H1 ,

for ε ≤ ε3. Combining (4.12), (4.14) and (4.17), we get

d

dt
‖Et(v)‖L2 ≤ C(n)‖Et(v)‖L2 + C(C(n) + ln(ε−1))

√
t(1 + t)‖v‖H1 .

Applying the Gronwall’s inequality, when τ ≤ 1, we have

‖Eτ (v)‖L2 ≤ C(C(n) + ln(ε−1))
√
τ(1 + τ)(eτC(n) − 1)‖v‖H1

≤ C(n)(C(n) + ln(ε−1))τ3/2‖v‖H1 ≤ C(n) ln(ε−1)τ3/2‖v‖H1 ,

when ε ≤ ε0 = min{ε2, ε3, e
−C(n)} depending on n and ‖v‖H1 , which completes the

proof for (4.10).
Next we give the stability analysis for the operator Φt:

(4.18) ‖Φτ (v)− Φτ (w)‖L2 ≤ (1 + C(n)τ)‖v − w‖L2 , for v, w ∈ L2(Ω).

Noticing that ΦτA is a linear isometry on Hs(Ω), (4.6) gives (4.18) directly. Thus
the error (4.9) can be established by combining the local error (4.10), the stability
property (4.18) and a standard argument (cf. [4, 12]). �
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Remark 4.3. As established in Theorem 3.1, for an arbitrarily large fixed T > 0,
the above assumptions are satisfied as soon as u0 ∈ H1(Ω) when Ω is bounded.
More specifically,

sup
t∈[0,T ]

‖uε(t)‖Hj ≤ C (‖u0‖Hj ) , j = 1, 2,

for a constant C depending only on ‖u0‖Hj . When Ω = Rd, we require in addition
u0 ∈ L2

α for some 0 < α ≤ 1.

Remark 4.4. For d = 2, 3, the error estimate (4.9) can be established under the
more restrictive condition uε ∈ L∞(0, T ;H2(Ω)), and then ε0 depends on n and
‖uε‖L∞(0,T ;H2(Ω)) by applying similar arguments as in [4], where ‖ΦtB(v)‖H2 has to

be further investigated due to the Sobolev inequality H2(Ω) ↪→ L∞(Ω) for d = 2, 3.
For the details, we refer to [4].

4.3. Error estimates for Φτ = ΦτBΦτA. We consider another Lie-Trotter splitting

(4.19) uε,k+1 = Φτ (uε,k) = ΦτB(ΦτA(uε,k)), k ≥ 0; uε,0 = u0, τ > 0.

Similar as before, we have

(4.20) ‖uε,k‖L2 = ‖u0‖L2 , ‖uε,k‖H1 ≤ e2(n+1)kτ‖u0‖H1 , k ≥ 0.

Theorem 4.5. Let T > 0. Assume that the solution of (3.2) satisfies uε ∈
L∞(0, T ;H2(Ω)). Then there exists ε0 > 0 depending on n and ‖uε‖L∞(0,T ;H1(Ω))

such that when ε ≤ ε0 and kτ ≤ T , we have

(4.21) ‖uε,k − uε(tk)‖L2 ≤ C
(
n, T, ‖uε‖L∞([0,T ];H2(Ω))

) τ
ε
,

where C(·, ·, ·) is independent of ε > 0.

Proof. Firstly we give the local error for v0 ∈ H1(Ω):

(4.22) ‖Ψτ (v0)− Φτ (v0)‖L2 ≤ C(n, ‖v0‖H2)
τ2

ε
, τ ≤ 1, ε ≤ ε0,

where ε0 depends on n and ‖v0‖H1 . We start from the Duhamel’s formula for
v(t) = Ψt(v0):

(4.23) Ψt(v0) = eit∆v0 +

∫ t

0

ei(t−s)∆B(v(s))ds.

Recalling

(4.24) B(v(s)) = B(eis∆v0) +

∫ s

0

dB(ei(s−y)∆v(y))[ei(s−y)∆B(v(y))]dy,

which is the variation-of-constants formulaB(g(s))−B(g(0)) =
∫ s

0
dB(g(y))[g′(y)]dy

for g(y) = ei(s−y)∆v(y). Here dB is defined by

dB(w1)[w2] = −iw2f
ε
n(|w1|2)− 2iw1(fεn)′(|w1|2)[w1w2 + w1w2].

Plugging (4.24) into (4.23) with t = τ , we get

Ψτ (v0) = eiτ∆v0 +

∫ τ

0

ei(τ−s)∆B(eis∆v0)ds+ e1,

where

e1 =

∫ τ

0

∫ s

0

ei(τ−s)∆dB(ei(s−y)∆v(y))[ei(s−y)∆B(v(y))]dyds.



18 W. BAO, R. CARLES, C. SU, AND Q. TANG

On the other hand, for the Lie splitting Φτ (v0) = ΦτBΦτA(v0), applying the first-
order Taylor expansion

ΦτB(w) = w + τB(w) + τ2

∫ 1

0

(1− s)dB(ΦsτB (w))[B(ΦsτB (w))]ds,

for w = ΦτA(v0) = eiτ∆v0, we get

Φτ (v0) = ΦτBΦτA(v0) = eiτ∆v0 + τB(eiτ∆v0) + e2,

with

e2 = τ2

∫ 1

0

(1− s)dB(ΦsτB (eiτ∆v0))[B(ΦsτB (eiτ∆v0))]ds.

Thus

Ψτ (v0)− Φτ (v0) = e1 − e2 + e3,

where

e3 =

∫ τ

0

ei(τ−s)∆B(eis∆v0)ds− τB(eiτ∆v0).

Noticing that e3 is the quadrature error of the rectangle rule approximating the
integral on [0, τ ] of the function g(s) = ei(τ−s)∆B(eis∆v0), this implies

e3 = −τ2

∫ 1

0

θg′(θτ)dθ,

where g′(s) = −ei(τ−s)∆[A,B](eis∆v0), with

[A,B](w) = dA(w)[Bw]− dB(w)[Aw] = i∆(Bw)− dB(w)[Aw]

= (fεn)′(|w|2)(2w2
xw + 4w|wx|2 + 3w2wxx − |w|2wxx)

+ w(fεn)′′(|w|2)(wxw + wwx)2.

Applying (2.9), we get

|[A,B](w)| ≤ C(n)

ε
|wx|2 + C(n)|wxx|,

which implies

‖[A,B](w)‖L2 ≤ C(n)

ε
‖wx‖2L4 + C(n)‖wxx‖L2

≤ C(n)

ε
‖wx‖L∞‖wx‖L2 + C(n)‖wxx‖L2

≤ C(n)‖w‖H2(1 + ‖w‖H2/ε),

where we have used the Sobolev imbedding H2(Ω) ↪→ W 1,∞(Ω) for d = 1. This
yields that for any s ∈ [0, 1],

‖g′(s)‖L2 = ‖[A,B](eis∆v0)‖L2 ≤ C(n)‖v0‖H2(1 + ‖v0‖H2/ε),

which immediately gives

(4.25) ‖e3‖L2 ≤ τ2

∫ 1

0

‖g′(θτ)‖L2dθ ≤ C(n)τ2‖v0‖H2(1 + ‖v0‖H2/ε).

Next we estimate e1 and e2. In view of (2.9), we have

‖dB(w1)[w2]‖L2 ≤ C(ln(ε−1) + C(n))‖w2‖L2 ,
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when ε ≤ ε1 := min{1, 1/‖w1‖L∞}. By Sobolev’s imbedding,

‖ei(s−y)∆v(y)‖L∞ ≤ C‖ei(s−y)∆v(y)‖H1 = C‖Ψy(v0)‖H1 ,

thus when ε ≤ ε2 := min{1, 1/C
max
y∈[0,τ]

‖Ψy(v0)‖H1
}, we have

‖e1‖L2 ≤ C(ln(ε−1) + C(n))

∫ τ

0

∫ s

0

‖ei(s−y)∆B(v(y))‖L2dyds

≤ C(ln(ε−1) + C(n))

∫ τ

0

∫ s

0

‖B(v(y))‖L2dyds

≤ C(ln(ε−1) + C(n))2τ2 max
0≤y≤τ

‖Ψy(v0)‖L2

≤ C(ln(ε−1) + C(n))2C(‖v0‖H1)τ2.(4.26)

Similarly, by recalling

‖ΦsτB (eiτ∆v0)‖L∞ = ‖eiτ∆v0‖L∞ ≤ C‖v0‖H1 ,

when ε ≤ ε3 := min{1, 1/(C‖v0‖H1)},

‖e2‖L2 ≤ C(ln(ε−1) + C(n))τ2

∫ 1

0

‖B(ΦsτB (eiτ∆v0))‖L2ds

≤ C(ln(ε−1) + C(n))2τ2

∫ 1

0

‖ΦsτB (eiτ∆v0)‖L2ds

= C(ln(ε−1) + C(n))2τ2‖v0‖L2 .(4.27)

Combining (4.25), (4.26) and (4.27), we obtain

‖Ψτ (v0)− Φτ (v0)‖L2 ≤ C(n, ‖v0‖H2)
τ2

ε
,

when ε ≤ ε0 := min{ε2, ε3} which depends on n and ‖v0‖H1 by Remark 4.3.
Similarly the stability can be established by (4.6):

(4.28) ‖Φτ (v)−Φτ (w)‖L2 ≤ (1 +C(n)τ)‖ΦτA(v−w)‖L2 = (1 +C(n)τ)‖v−w‖L2 ,

for v, w ∈ L2(Ω). Thus the error (4.21) can be similarly established by combining
the local error (4.22), the stability property (4.28) and a standard argument (cf.
[4, 12]). �

Remark 4.6. For d = 2, 3, the error estimate (4.21) can be established with ε0

depending on n and ‖uε‖L∞(0,T ;H2(Ω)) by noticing that H2(Ω) ↪→ L∞(Ω) and

H2(Ω) ↪→W 1,4(Ω) for d = 2, 3.

Remark 4.7 (Strang splitting). When considering a Strang splitting,
(4.29)

uε,k+1 = Φ
τ/2
B

(
ΦτA

(
Φ
τ/2
B (uε,k)

))
, or uε,k+1 = Φ

τ/2
A

(
ΦτB

(
Φ
τ/2
A (uε,k)

))
,

by applying similar but more intricate arguments as above, one can get the error
bound as

‖uε,k − uε(tk)‖L2 ≤ C
(
n, T, ‖uε‖L∞([0,T ];H4(Ω))

) τ2

ε3
,

under the assumption that uε ∈ L∞(0, T ;H4(Ω)).
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Remark 4.8. In view of Theorem 3.1, Theorems 4.2 and 4.5 rely on a regularity
that we know is available. On the other hand, the regularity assumed in the above
remark on Strang splitting is unclear in general, in the sense that we don’t know
how to bound uε in L∞(0, T ;H4(Ω)).

5. Numerical results

In this section, we first test the convergence rate of the energy regularized model
(3.2) and compare it with the other two (1.6) & (1.7). We then test the order of
accuracy of the regularized Lie-Trotter splitting (LTSP) scheme (4.7) & (4.19) and
Strang splitting (STSP) scheme (4.29). To simplify the presentation, we unify the
regularized models (1.6), (1.7) and (3.2) as follows:

(5.1)

{
i∂tu

ε(x, t) + ∆uε(x, t) = λuε(x, t)fεreg(|uε(x, t)|2), x ∈ Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω.

With the regularized nonlinearity fεreg(ρ) being chosen as f̃ε, f̂ε and fεn, model
(5.1) recovers the regularized model (1.6), (1.7) and (3.2), respectively. In practical
computation, we impose the periodic boundary condition on Ω and employ the
standard Fourier pseudo-spectral method [4, 6, 8] for spatial discretization. The
details are omitted here for brevity.

Hereafter, unless specified, we take d = 1, Ω = [−16, 16], λ = −1 and consider
the following Gaussian initial data, i.e., u0(x) is chosen as

(5.2) u0(x) = b0e
ivx+λ

2 (x−x0)2 , x ∈ R.

In this case, the LogSE (1.1) admits the moving Gausson solution

(5.3) u(x, t) = b0e
i(vx−(a0+v2)t)+λ

2 (x−x0−2vt)2 , x ∈ R, t ≥ 0,

with b0 = 1/ 4
√
−λπ and a0 = −λ(1 − ln(λ2/

√
π)). In this paper, we fix v = 1 and

x0 = 0. The mesh size is chosen as h = 1/64 for all examples. To quantify the
numerical errors, we define the following error functions:

ĕε(tk) := u(·, tk)− uε(·, tk), ĕερ(tk) := ρ(·, tk)− ρε(·, tk),

˘̆eε(tk) := u(·, tk)− uε,k, eε(tk) := uε(·, tk)− uε,k,
eεE := |E(u0)− Eεreg(u0)|.

(5.4)

Here, u and uε are the exact solutions of the LogSE (1.1) and RLogSE (5.1),
respectively, while uε,k is the numerical solution of the RLogSE (5.1) obtained
by LTSP ((4.7) or (4.19)) or STSP (4.29). The “exact” solution uε is obtained
numerically by STSP (4.29) with a very small time step, e.g., τ = 10−5 and a very
fine mesh size, e.g., h = 1/64. The energy is obtained by the trapezoidal rule for
approximating the integrals in the energy (1.4), (3.1), (3.4) and (3.5).

5.1. Convergence rate of the regularized model. Here, we consider the error
between the solutions of the RLogSE (5.1) and the LogSE (1.1). For different
regularized models (i.e., different choices of regularized nonlinearity fεreg in equation
(5.1)), Fig. 5 shows ‖ĕε(3)‖H1 , ‖ĕε(3)‖, ‖ĕε(3)‖∞ and ‖ĕερ(3)‖1, while Fig. 6 depicts
eεE versus ε. From these figures and additional similar numerical results not shown
here for brevity, we could clearly see: (i) In all norms, the solution of the RLogSE
(5.1) converges linearly to that of the LogSE (1.1) in terms of ε. Moreover, the

regularized energy Ẽε converges linearly to the original energy E in terms of ε,
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while Êε & Eεn (for any n ≥ 2) converges quadratically. These results confirm
the theoretical results in Section 3.2 & 3.3. (ii) In L1-norm, the density ρε of the

solution of the RLogSE with regularized nonlinearity f̃ε converges linearly to that
of the LogSE (1.1) in terms of ε, while the convergence rate is not clear for those of
RLogSE with other regularized nonlinearities. Generally, for fixed ε, the errors of
the densities that measured in L1-norms are smaller than those of wave functions
(measured in L2, H1 or L∞-norm). (iii) For any fixed ε > 0, the proposed energy

regularization (i.e., fεreg = fεn) outperforms the other two (i.e., fεreg = f̂ε and

fεreg = f̃ε) in the sense that its corresponding errors in wave function and total
energy are smaller. The larger the order (i.e., n) of the energy-regularization is
chosen, the smaller the difference between the solutions of the ERLogSE (3.2) and
LogSE is obtained.

Figure 5. Convergence of the RLogSE (5.1) with different reg-
ularized nonlinearity fεreg to the LogSE (1.1), i.e., the error ĕ(3)
in different norms as well as ‖ĕρ(3)‖1 versus the regularization pa-
rameter ε.

5.2. Convergence rate of the time-splitting spectral method. Here, we in-
vestigate the model RLogSE (5.1) with fεreg = fεn, i.e., the ERLogSE (3.2). We
will test the convergence rate of type-1 LTSP (4.7) & type-2 LTSP (4.19) and the
STSP (4.29) to the ERLogSE (3.2) or the LogSE (1.1) in terms of the time step τ
for fixed ε ∈ (0, 1). Fig. 7 shows the errors ‖eε(3)‖H1 versus time step τ for fε2 &

fε4 . In addition, Table 1 displays ‖˘̆eε(3)‖ versus ε & τ for fε2 .
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Figure 6. Convergence of the RLogSE (5.1) with different regu-
larized nonlinearity fεreg to the LogSE (1.1): the energy error eεE
(5.4).

From Fig. 7, Table 1 and additional similar results not shown here for brevity,
we can observe that: (i) In H1 norm, for any fixed ε ∈ (0, 1) and n ≥ 2, the
LTSP scheme converges linearly while the STSP scheme converges quadratically
when ε < ε0 for some ε0 > 0. (ii) For any fεn with n ≥ 2, the STSP converges
quadratically to the LogSE (1.1) only when ε is sufficiently small, i.e., ε . τ2 (cf.
each row in the lower triangle below the diagonal in bold letter in Table 1). (iii)
When τ is sufficiently small, i.e., τ2 . ε, the ERLogSE (3.2) converge linearly at
O(ε) to the LogSE (1.1) (cf. each column in the upper triangle above the diagonal
in bold letter in Table 1). (iv) The numerical results are similar for other fεn with
n ≥ 4 and when the errors are measured in l∞- and l2-norm, which confirm the
theoretical conclusion in Theorem 4.5 and Remark 4.7.

6. Conclusion

We proposed a new systematic energy regularization approach to overcome the
singularity of the logarithmic nonlinearity in the logarithmic Schrödinger equation
(LogSE). With a small regularized parameter 0 < ε � 1, other than the existing
ones that directly regularize the logarithmic nonlinearity, we regularize the corre-
sponding nonlinear part in the energy density. The Hamiltonian flow of the new
regularized energy then yields an energy regularized logarithmic Schrödinger equa-
tion (ERLogSE). Linear and quadratical convergence were established between the
solutions and conserved total energy of ERLogSE and LogSE in terms of ε, re-
spectively. Then we presented and analyzed time-splitting schemes to solve the
ERLogSE. The classical first and second order of convergence were obtained both
theoretically and numerically for Lie-Trotter and Strang splitting schemes, respec-
tively. Numerical results suggest that the error bounds of splitting-schemes to the
LogSE clearly depend on the time step τ and mesh size h as well as the regularized
parameter ε. Our numerical results confirm the error bounds and indicate that the
ERLogSE model outperforms the other existing ones in accuracy.
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Figure 7. Convergence of the type-1 LTSP (4.7) & type-2 LTSP
(4.19) as well as the STSP (4.29) to the ERLogSE (3.2) with reg-
ularized nonlinearity fε2 (left) and fε4 (right), i.e., errors ‖eε(3)‖H1

versus τ for different ε.

Table 1. Convergence of the STSP (4.29) (via solving the ER-

LogSE (3.2) with fε2 ) to the LogSE (1.1), i.e., ‖˘̆eε(3)‖ for different
ε and τ .

τ = 0.1 τ/2 τ/22 τ/23 τ/24 τ/25 τ/26 τ/27 τ/28 τ/29

ε=0.025 7.98E-32.13E-3 8.86E-4 7.28E-4 7.14E-4 7.12E-4 7.12E-4 7.12E-4 7.12E-4 7.12E-4

rate – 1.91 1.27 0.28 0.03 0.00 0.00 0.00 0.00 0.00

ε/4 7.77E-3 1.96E-3 5.02E-4 1.67E-4 1.12E-4 1.08E-4 1.08E-4 1.08E-4 1.08E-4 1.08E-4

rate – 1.99 1.97 1.59 0.57 0.06 0.01 0.00 0.00 0.00

ε/42 7.76E-3 1.95E-3 4.88E-4 1.25E-4 3.81E-5 2.40E-5 2.28E-5 2.27E-5 2.27E-5 2.27E-5

rate – 2.00 2.00 1.97 1.71 0.67 0.07 0.01 0.00 0.00

ε/43 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.08E-5 8.95E-6 5.09E-6 4.74E-6 4.72E-6 4.71E-6

rate – 2.00 2.00 2.00 1.98 1.78 0.82 0.10 0.01 0.00

ε/44 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.66E-62.092E-6 9.93E-7 8.80E-7 8.72E-7

rate – 2.00 2.00 2.00 2.00 1.99 1.87 1.08 0.18 0.01

ε/45 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.61E-6 1.92E-6 5.26E-7 2.54E-7 2.27E-7

rate – 2.00 2.00 2.00 2.00 2.00 1.99 1.87 1.05 0.16

ε/46 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.61E-6 1.90E-6 4.78E-7 1.27E-7 5.36E-8

rate – 2.00 2.00 2.00 2.00 2.00 2.00 1.99 1.91 1.25

ε/47 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.61E-6 1.90E-6 4.76E-7 1.19E-7 3.13E-8

rate – 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.93

ε/48 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.61E-6 1.90E-6 4.76E-7 1.19E-7 2.98E-8

rate – 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
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[12] C. Besse, B. Bidégaray, and S. Descombes, Order estimates in time of splitting methods
for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 40 (2002), pp. 26–40.

[13] I. Bia lynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Physics, 100

(1976), pp. 62–93.
[14] , Gaussons: Solitons of the logarithmic Schrödinger equation, Special issue on solitons

in physics, Phys. Scripta, 20 (1979), pp. 539–544.
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