

Contribution de l'ESR/U-Th à la datation de sites du Pléistocène supérieur : Exemple de la Grotte des Barasses II (Balazuc, France).

Murielle Richard, C. Falguères, E. Pons-Branchu, H. Valladas, J.-J. Bahain, L. Foliot, M.-H. Moncel, J.-P. Raynal, C. Daujeard

▶ To cite this version:

Murielle Richard, C. Falguères, E. Pons-Branchu, H. Valladas, J.-J. Bahain, et al.. Contribution de l'ESR/U-Th à la datation de sites du Pléistocène supérieur : Exemple de la Grotte des Barasses II (Balazuc, France).. Q11 AFEQ CNF-INQUA, 2018, Orléans, France. hal-02804724

HAL Id: hal-02804724 https://hal.science/hal-02804724

Submitted on 12 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

Colloque AFEQ-CNF INQUA 2018 "Q11 - Au Centre des Enjeux"

Contribution de l'ESR/U-Th à la datation de sites du Pléistocène supérieur: Exemple de la Grotte des Barasses II (Balazuc, France) M. Richard^{1,2}, C. Falguères², E. Pons-Branchu³, H. Valladas³, J.-J. Bahain², L. Foliot³, M.-H. Moncel², J.-P. Raynal⁴ & C. Daujeard²

¹IRAMAT-CRP2A, UMR 5060 CNRS-Université Bordeaux-Montaigne, FR-33607 PESSAC • ²Département « Homme et Environnement », HNHP, UMR 7194 MNHN-CNRS-UPVD, FR-75013 PARIS • ³LSCE, UMR 8212 CEA-CNRS-UVSQ-IPSL, FR-91190 GIF-SUR-YVETTE • ⁴PACEA, UMR 5199 CNRS-Université de Bordeaux, FR-33615 PESSAC.

L'ESR/U-Th repose sur la quantification des électrons piégés dans les défauts du réseau cristallin de l'hydroxyapatite de l'émail. Ces éléctrons s'accumulent en fonction du temps d'exposition à la radioactivité ambiante (α , β , γ) et au rayonnement cosmique . L'âge (T) est calculé en rapportant la dose totale de rayonnements ionisants reçue par l'échantillon (la dose équivalente, D_e) à la dose annuelle (D_a) : D_e (Gy) T (années) = $\frac{1}{D_a (Gy.a^{-1})}$

PROTOCOLE EXPÉRIMENTAL :

✓ Irradiation sur aliquote multiple : 40-1600 Gy (LABRA, CEA, Saclay).

✓ Mesures ESR de l'émail (MNHN, Paris) ; courbe de croissance obtenue par extrapolation à partir d'une une fonction SSE [3].

Analyses U-Th par ICP-QMS (LSCE, Gif-sur-Yvette) [4]. ✓ Mesure in situ de la dose gamma [5]; [6]. Âges calculés à partir des programmes USESR [7] et CAM (Combined Age Model, Shao, com. pers.).

Scroissance du signal ESR de l'hydroxyapatite en fonction de la dose d'irradiation absorbée. L'intensité ESR (en unités arbitraires) est mesurée entre le sommet du pic T1 et la base du second pic assymétrique B2 du signal [2].

Barasses II

LA GROTTE DES **BARASSES II**

Située à 55 m au-dessus de l'Ardèche, elle a été occu-

β sédiment (%)	α+β ém	α+β émail (%) β dentine (%)						
Echantillon	US	D _e (Gy)	Dose annuelle (µGy.a ⁻¹)					Age (ka)	
			Sédiment	Cosmique	Interne	Dentine	Total		
			$(\beta + \gamma)$		$(\alpha + \beta)$	(β)			
① BA F12-A36	2/3	55 ± 3	793 ± 65	139 ± 30	2 ± 2	2 ± 1	936 ± 72	59±6	
② BA F12-A97	3	54 ± 2	744 ± 63	136 ± 30	2 ± 1	3 ± 1	885 ± 70	61 ± 5	
③ BA G12-42	3	43 ± 3	746 ± 76	125 ± 26	21 ± 4	1 ± 1	893 ± 80	48 ± 5	
④ BA 20053	6	87 ± 2	896 ± 84	131 ± 28	29 ± 39	45 ± 60	1101 ± 114	79 ± 8	
(5) BA 20100	6	112 ± 5	877 ± 89	128 ± 25	11 ± 24	31 ± 67	1047 ± 117	107 ± 13	
6 BA 20185	6/7	99 ± 2	899 ± 39	124 ± 27	53 ± 51	36 ± 34	1112 ± 78	89±6	
⑦ BA F13-C51	8	70 ± 1	421 ± 65	106 ± 30	29 ± 6	73 ± 15	629 ± 74	111 ± 13	
	β sédiment (Echantillon ① BA F12-A36 ② BA F12-A97 ③ BA G12-42 ④ BA 20053 ⑤ BA 20153 ⑤ BA 20153 ⑤ BA 20153 ⑦ BA 20153 ⑦ BA 20153 ③ BA 20153	β sédiment (%) EChantillon US I J I BA F12-A36 2/3 I BA F12-A97 3 I BA G12-42 3 I BA 20053 6 I BA 20185 6/7 I BA F13-C51 8	β sédiment (ω) α+β ém. Echantillon US De (Gy) Δ Δ Δ		β sédiment (*) $\alpha + \beta émail (%)$ β dentine (%) Echantillon US De (Gy) Dose annuelle (µGy.a) Sédiment Sédiment Cosmique $(\beta + \gamma)$ 1 2 1 Image: Second Sec	β sédiment (*) $\alpha + \beta \acute{mail}$ (%) β dentine (%) Echantillon US De (Gy) Dose annuel (µGy.a ⁻¹) Sédiment Cosmique Interne (β + γ) Cosmique Interne (β + γ) 139 ± 30 2 ± 2 (1) BA F12-A36 2/3 55 ± 3 793 ± 65 139 ± 30 2 ± 2 (2) BA F12-A97 3 54 ± 2 744 ± 63 136 ± 30 2 ± 1 (3) BA G12-42 3 43 ± 3 746 ± 76 125 ± 26 21 ± 4 (4) BA 20053 6 87 ± 2 896 ± 84 131 ± 28 29 ± 39 (5) BA 20100 6 112 ± 5 877 ± 89 128 ± 25 11 ± 24 (6) BA 20185 6/7 99 ± 2 899 ± 39 124 ± 27 53 ± 51 (7) BA F13-C51 8 70 ± 1 421 ± 65 106 ± 30 29 ± 6	β sédiment (%) $\alpha + \beta émail (%)$ β dentine (%) Echantillon US De (Gy) Dose annuelle (µGy.a ⁻¹) Interne Dentine Marcine Sédiment Cosmique Interne Dentine ($\beta + \gamma$) Sédiment Cosmique Interne Dentine ($\alpha + \beta$) (β) 39±30 2±2 2±1 ($\alpha + \beta$) 55±3 793±65 139±30 2±2 2±1 ($\alpha + \beta$) (β) 3±1 65 136±30 2±1 3±1 ($\alpha + \beta$) (β) 3±1 69 2±1 3±1 3±1 (β) ($\beta + \gamma$) ($\alpha + \beta$) ($\beta + \gamma$) (β) ($\beta + \gamma$) ($\beta + \gamma$) ($\beta + \gamma$) ($\alpha + \beta$) ($\beta + \gamma$) ($\beta + \gamma$) (β) ($\beta + \gamma$) (β) ($\beta + \gamma$) (β) ($\beta + \gamma$) ($\beta + \gamma$ ($\beta + \gamma$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

O Doses équivalentes, débits et répartition de la dose annuelle et âges obtenus pour les échantillons dentaires de la Grotte des Barasses II.

limons sableux

DISCUSSION

✓ Faibles D_e (54-112 Gy).

- √[²³⁸U] : 0,03-0,14 ppm (émail) / 0,58-7,16 ppm (dentine).
- ⇒contribution mineure des tissus dentaires à la Da
- \Rightarrow contribution majeure de la dose gamma à la Da (> 50%)

 \checkmark Cadre chronologique régional des sites du Pléistocène supérieur en rive droite de la Vallée du Rhône : occupations contemporaines des MIS 5 à 3 (Abri du Maras, Grotte du Figuier).

> δ¹⁸0 (‰) 3.5 4.5

pée en tant que bivouac par les Néandertaliens au Pléistocène supérieur [1].

✓ Séquence attribuée au Paléolithique moyen ✓ Présence humaine en alternance avec les carnivores (ours et canidés)

• Localisation du site des Barasses II (fond de carte : NASA)

\rightarrow Etude des comportements techniques et de subsistance

O Trace de découpe sur un humérus de cerf

-> Approvisionnement en matière première

BPointe retouchée en silex

→ Modes d'occupation et d'exploitation du territoire

• Vue intérieure de la cavité

• Colonne stratigraphique et position des échantillons datés.

^OSynthèse des données ESR/U-Th obtenues pour les sites de la fin du Paléolithique moyen d'Ardèche (voir détails dans [4]). Données δ^{18} O extraites de [8].

 \checkmark Occupations néandertaliennes récurrentes entre les MIS 5 et 3 (~111-48 ka) ✓ Données numériques en accord avec les données biochronologiques : ensemble inférieur 🔿 phase froide du MIS 5 ou début du MIS 4 ensemble supérieur 🖙 phase de réchauffement climatique (MIS 3 ?)

limons et cailloutis

limons argileux et cailloutis

limons sableux et cailloutis

limons et cailloutis

[1] Daujeard, C. (dir.), et al., (accepté). Editions DARA, Lyon. [2] Grün, R., et al., 2008. Quat. Geochronol., 3, 150-172. [3] Yokoyama, et al., 1985. Nucl. Tracks Radiat. Meas. (1982) 10, 921-928. [4] Richard, M., *et al.*, 2015. Quat. Geochronol., 30, 529-534. [5] Mercier, N., Falguères, C., 2007. Ancient TL 25, 1-4. [6] Valladas, 1982. PACT 6, 77-85. [7] Shao, Q., et al., 2014. Quat. Geochronol., 22, 99-106. [8] Lisiecki, L.E., Raymo, M.E., 2005. Paleoceanography 20, PA1003.