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Abstract

Recently, several methods have been proposed to simulate incompressible fluid
flows using an artificial pressure evolution equation, avoiding the resolution of a Pois-
son equation. These methods can be seen as various levels of approximation of the
compressible Navier–Stokes equation in the low Mach number limit. We study the
simulation of incompressible wall-bounded flows using several artificial pressure equa-
tions in order to determine the most relevant approximations. The simulations are
stable using a finite difference method in a staggered grid system, even without dif-
fusive term, and converge to the incompressible solution, both in direct numerical
simulations and for coarser meshes, to be used in large-eddy simulations. A pressure
equation with a convective and a diffusive term produces a more accurate solution
than a compressible solver or methods involving more approximations. This suggests
that it is near to an optimal level of approximation. The presence of a convective
term in the pressure evolution equation is in particular crucial for the accuracy of the
method. The rate of convergence of the solution in terms of artificial Mach number
is studied numerically and validates the theoretical quadratic convergence rate. We
demonstrate that this property can be used to accelerate the rate of convergence us-
ing an extrapolation in terms of artificial Mach number. Since the approach is based
on an explicit and local system of equations, the numerical procedure is massively
parallelisable and has low memory requirements.

1 Introduction

Compressibility effects in fluids are characterised by the Mach number. When the
Mach number tends towards zero, the velocity of acoustic waves becomes arbitrarily large
compared to the velocity of the fluid, leading to the instantaneous propagation of any
pressure disturbance. If conductive heat transfers and density variations are neglected, the
Navier–Stokes equations converge in the low Mach number regime to the incompressible
Navier–Stokes equations [49, 50, 2, 3], given for a Newtonian fluid by:

∂Ui
∂t

= −∂UjUi
∂xj

− 1

ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

, (1)

∂Uj
∂xj

= 0, (2)
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with ρ the density, ν the kinematic viscosity, t the time, P the pressure, Ui the i-th com-
ponent of velocity and xi the Cartesian coordinate in i-th direction. The pressure in the
incompressible Navier–Stokes equations acts as a Lagragian multiplier of the incompress-
ibility constraint (2). Usually, the pressure is determined from the resolution of a Poisson
equation together with a predictor-corrector projection scheme [13, 58]. This operation
is costly and often represents the most computationally expensive part of the numerical
resolution of the incompressible Navier–Stokes equations.

Numerical methods based on an explicit and local evolution equation for the pressure
have been developed to avoid the resolution of a Poisson equation. However, the use of
the Navier–Stokes equations in their compressible form is inefficient at low Mach number
because of the large disparity between the velocity of the fluid and the speed of sound. In
artificial compressibility approaches, this numerical issue is addressed through the artificial
reduction of the velocity of acoustic waves. First proposed by Chorin [12], the artificial
compressibility (AC) method uses an explicit evolution equation for the pressure to enforce
the incompressibility constraint

∂P

∂t
= −ρc2∂Uj

∂xj
, (3)

with c the artificial speed of sound. This pressure evolution equation drives the velocity
towards a solenoidal field in the limit of steady state, as the time derivative of the pressure
vanishes [11, 35, 44, 45]. To extend the approach to unsteady flows, a dual timestepping
procedure may be used. In that case, the system is for each physical timestep iterated in
pseudo-time until convergence. This approach has been followed by various authors [42,
31, 48, 39, 1, 41, 36]. A review on the error analysis of artificial compressibility methods
is given by Shen [57].

The use of the artificial compressibility method without subiteration has also been sug-
gested in the literature for unsteady flows, as well as various related methods [52]. O’Rourke
and Bracco [54] proposed a scaling called α-transformation to artificially increase the ef-
fective Mach number. In the pressure gradient scaling (PGS) method [55], the pressure
gradient in the momentum equation is modified to decrease the speed of sound. Wang
and Trouvé [63] suggested the acoustic speed reduction (ASR) method, which keeps the
momentum equation intact and instead alters the energy or pressure equation. A variant
of the ASR method, the artificial acoustic stiffness reduction method (AASCM), was de-
veloped by Salinas-Vázquez et al. [56] to improve the stability of the numerical method. In
Guerra and Gustafsson [22], Merkle and Choi [44, 45], a perturbation expansion procedure
is used to obtain a system of equations valid at arbitrarily low Mach numbers, following
mathematic studies of the convergence of the solution of the compressible Navier–Stokes
equations to the solution of the incompressible Navier–Stokes equations [32, 33, 34]. Karlin
et al. [30] recommended the use of the kinetically reduced local Navier–Stokes (KRLNS)
equations [4] for the grand potential and the momentum. The entropically damped artifi-
cial compressibility (EDAC) method of Clausen [15] adds a diffusive term to the pressure
evolution equation, and sometimes a convective term. Toutant [60] derived a general pres-
sure (GP) equation from the compressible Navier–Stokes equation, which is equivalent.
Tessarotto et al. [59] derived an exact pressure evolution equation for incompressible flu-
ids based on the inverse kinetic theory approach proposed by Ellero and Tessarotto [21].
The lattice-Boltzmann (LB) method, which solves the Boltzmann transport equation on a
discretised phase space [6], is also closely related to the AC method [28, 53, 5]. All these
methods are explicit in time and local in space and thus particularly amenable to massively
parallel GPU-based simulations and have low memory requirements [24, 25, 26, 29, 41].
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The KRLNS equations [30, 9, 24, 25, 26], the EDAC method [15, 16, 29] and GP equa-
tion [61] have been applied for different viscous incompressible flows. Kajzer and Pozorski
[29] used the EDAC method to perform direct numerical simulations of a turbulent channel
flow at the friction Reynolds number 180 and 395 on a collocated grid system. Given the
large number of artificial pressure equations suggested in the literature, the relevance of the
various approximations made in each method is not clear. In this paper, some of these ap-
proximations are analysed numerically using successive simplifications of the compressible
Navier–Stokes equations.

We consider the numerical simulation of a three-dimensional turbulent channel flow at
a friction Reynolds number of 180. First, we study the artificial compressibility method,
investigate the effect of the artificial Mach number (Ma) on the accuracy of the simula-
tion and show that the method is stable for all artificial Mach numbers investigated with
the proposed numerical method. Then, we analyse the simulation of the channel with
a variant of the artificial compressibility method which includes a convective term and
a diffusive term in the pressure evolution equation, as in the GP equation [60] or as in
the pressure equation of the EDAC method [15]. Two intermediate numerical methods
are also considered in order to assess separately the effect of the convective term and of
the diffusive term on the accuracy of the simulation. Finally, the method is compared to
the simulation of the compressible Navier–Stokes equations at low Mach number, which
is sometimes referred to as the weakly compressible (WC) method. The simulations are
carried out on two meshes: a coarse mesh and a fine mesh, which is sufficiently resolved
for mesh-converged direct numerical simulations. While previous authors [52, 15, 16, 29]
favoured a collocated grid system, we use a finite difference method in a staggered grid
system with a third-order Runge–Kutta time scheme. The accuracy of the simulations is
examined by comparison of the results to simulations of the channel using a projection
method for the same mesh, domain size and numerical schemes. The convergence in terms
of artificial Mach number of the methods to the reference projection simulation is studied
numerically. The extrapolation of two simulations with the same mesh at two different ar-
tificial Mach numbers, following the expected quadratic O(Ma2) rate of convergence of the
solution [14, 34, 52, 53], can be used to accelerate the convergence and obtain a simulation
with a smaller velocity divergence.

A derivation of the artificial pressure equations used in this paper is given in section 2
in order to clarify the differences between the selected methods. The channel flow configu-
ration and the numerical method are presented in section 3. The results are discussed and
analysed in section 4.

2 Derivation of the artificial pressure equations

Pseudo-compressibility methods are based on simplifications of the Navier–Stokes equa-
tions in the limit of low Mach number. This section briefly presents a derivation of the main
approaches relevant to this study, with the aim to highlight the differences between the
various methods. Two main types of approximation are used to derive the artificial pres-
sure equations investigated in the paper. First, the Mach number is artifically increased to
reduce the number of timesteps required for the numerical resolution of the flow. Second,
the governing equations are simplified in order to ensure a constant density and thermo-
dynamical pressure and to reduce the number of operations per timestep. To perform the
first step, three flows will be defined in the following. The flow F is an arbitrary flow to
numerically resolve. In the flow F ′, the velocity of the fluid is increased compared to the
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flow F in order to increase the Mach number. Using a change of variable, the artificial
flow F ′′ may be defined, with the same typical fluid velocity as the flow F , but instead
an artificially reduced speed of sound. The crucial point is that the flow F ′′ is associated
with the same boundary conditions as the flow F but a modified system of equations. The
simplification of this system of equations leads to the simplified forms investigated in the
paper.

Consider the flow F of an ideal gas, associated with the spatiotemporal fields (U, ρ, P )
and characterised by a length scale xb, a velocity scale U b, a time scale tb = xb/U b, a
temperature scale T b, a density scale ρb and a pressure scale P b = rρbT b. The Mach number
Ma representative of the flow isMa = U b/cb, where cb =

√
γrT b is the representative speed

of sound, with γ = Cp/Cv the adiabatic index and r is the ideal gas specific constant.
Suppose that this flow can be modelled by the compressible Navier–Stokes equations, in
which dissipation has been neglected in the pressure evolution equation:

∂ρ

∂t
+
∂ρUj
∂xj

= 0, (4)

∂ρUi
∂t

+
∂ρUjUi
∂xj

= − ∂P
∂xi

+
∂

∂xj

(
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

))
− 2

3

∂

∂xi

(
µ
∂Uj
∂xj

)
, (5)

∂P

∂t
+
∂UjP

∂xj
= (γ − 1)

∂

∂xj

(
λ
∂T

∂xj

)
+ P (1− γ)

∂Uj
∂xj

, (6)

P = rρT, (7)

with some initial and boundary conditions which are functions of (xb, U b, T b, ρb). Without
loss of generality, we included no body forces and no heat sources. If the Mach number
Ma is small, the numerical resolution of these equations with an explicit time stepping is
inefficient because the speed of sound is large compared to the velocity of the fluid.

Let α > 1 be a constant. Provided that αMa remains small, the flow F can be
approximated by another flow F ′, associated with (U ′, ρ′, P ′), with the same geometry,
temperature scale T b, Prandtl and Reynolds numbers but characterised by the Mach num-
ber Ma ′ = αMa. The flow F ′ is more efficient to resolve than the F because the disparity
between the velocity of the fluid and the velocity of acoustic waves is reduced. This is the
essence of weakly compressible (WC) methods, in which the compressible Navier–Stokes
equations are used to simulate incompressible or almost compressible flows [23, 27, 7].
However, the flow F ′ may only approximate the flow F in the nondimensionalised sense,
since it necessarily has a different time scale t′b = tb/α, velocity scale U ′b = αU b, den-
sity scale ρ′b = ρb/α and pressure scale P ′b = P b/α and thus requires adjusted initial and
boundary conditions. An asymptotic development of each nondimensionalised variable as a
function of the squared Mach number [40, 49, 43] suggests the approximations U/U b ≈ υ0,
ρ/ρb ≈ %0 and P/P b ≈ π0 + Ma2 π1, where υ0, %0, π0 and π1 do not depend on the Mach
number and π0 is constant in space. Thus, U ′ ≈ αU , ρ′ ≈ ρ/α, P ′0 ≈ P0/α and P ′1 ≈ αP1,
with P0 = P bπ0 and P1 = P bMa2π1.

We will use a change of variables to recover the time, velocity, density and pressure
scales of F and instead modify the system of equations. We let t′′ = αt′, U ′′ = U ′/α, ρ′′ =
αρ′, P ′′0 = αP ′0 and P ′′1 = P ′1/α, such that U ′′ ≈ U , ρ′′ ≈ ρ, P ′′0 ≈ P0 and P ′′1 ≈ P1. The
resolution of the flow F ′ with the compressible Navier–Stokes equations (4–7) is equivalent
to the resolution of the artificial flow F ′′, solution of the modified system of equations:

∂ρ′′

∂t′′
+
∂ρ′′U ′′j
∂xj

= 0, (8)
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∂ρ′′U ′′i
∂t′′

+
∂ρ′′U ′′j U

′′
i

∂xj
= −∂P

′′
1

∂xi
+

∂

∂xj

(
µ

(
∂U ′′i
∂xj

+
∂U ′′j
∂xi

))
− 2

3

∂

∂xi

(
µ
∂U ′′j
∂xj

)
, (9)

∂P ′′1
∂t′′

+
∂U ′′j P

′′
1

∂xj
=

(γ − 1)

α2
λ
∂T

∂xj
+

(
P ′′1 (1− γ)− γP ′′0

α2

)
∂U ′′j
∂xj

− 1

α2

∂P ′′0
∂t

, (10)

P ′′0 + α2P ′′1 = rρ′′T, (11)

with the same time, velocity, density and pressure scales (and thus initial and boundary
conditions) as the flow F . The decomposition of pressure in (8–11) is necessary to properly
scale the pressure variations. The naive scaling P ′′ = αP leads to a system of equations akin
to the pressure gradient scaling (PGS) method, in which pressure variations are amplified
by a factor α2 [55]. The artificial flow F ′′ approximates the flow F in both the dimensional
and nondimensionalised sense and is as efficient to resolve as the flow F ′. The flow F ′ has
the same speed of sound as the flow F but a larger fluid velocity. The flow F ′′ has the
same typical fluid velocity as the flow F but an artificially low speed of sound.

Several approximations may be applied on the system (8–11) to reduce the number
of independent variables and the numerical cost of its resolution and with the intent to
bring its solution closer to the incompressible solution. In order to impose a constant
density without adding a constraint on the divergence of velocity, the continuity equation
(8) is removed from the system. In accordance, the time derivative of P ′′0 is neglected in
equation (10) Besides, we can neglect P ′′1 as compared to P ′′0 /α2 in equation (10) as the
thermodynamical pressure P0 is typically very large compared to the mechanical pressure
P1 in low Mach number flows. Finally, the viscous term of the momentum conservation
equation (9) may be simplified by neglecting the contribution of the velocity divergence.
This leads to:

∂ρ′′U ′′i
∂t′′

+
∂ρ′′U ′′j U

′′
i

∂xj
= −∂P

′′
1

∂xi
+

∂

∂xj

(
µ
∂U ′′i
∂xj

)
, (12)

∂P ′′1
∂t′′

+
∂U ′′j P

′′
1

∂xj
=

(γ − 1)

α2

∂

∂xj

(
λ
∂T

∂xj

)
− γP ′′0

α2

∂U ′′j
∂xj

, (13)

P ′′0 + α2P ′′1 = rρ′′T. (14)

Injecting 14 into 13 and neglecting the variations of the fluid properties with pressure, we
obtain

∂P ′′1
∂t′′

+
∂U ′′j P

′′
1

∂xj
=
γν

Pr

∂2P ′′1
∂x2j

− γP ′′0
α2

∂U ′′j
∂xj

, (15)

with Pr = γµr/(λ(γ − 1)) the Prandtl number. Following Clausen [15], we use Pr = γ as
a Prandtl number and define the artificial speed of sound c =

√
γP ′′0 /(ρα

2) ≈ cb/α. This
leads to the artificial compressibility method with a convective and a diffusive term, given
by equations (1) and

∂P

∂t
= −∂UjP

∂xj
− ρc2∂Uj

∂xj
+ ν

∂2P

∂x2j
. (16)

This equation is equivalent to the GP equation [60] and the pressure equation of the
EDAC method [15]. Neglecting the convective term this equation leads to the artificial
compressibility method with a diffusive term, given by equations (1) and

∂P

∂t
= −ρc2∂Uj

∂xj
+ ν

∂2P

∂x2j
, (17)
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while neglecting the diffusive term leads to the artificial compressibility method with a
convective term, given by equations (1) and

∂P

∂t
= −∂UjP

∂xj
− ρc2∂Uj

∂xj
. (18)

Finally, neglecting all but the divergence term in the GP equation leads to the artificial
compressibility equation (3) without subiteration. In the following, we will compare nu-
merical methods based on equations (16), (17), (18) and (3) in order to assess the relevance
of each approximation. A compressible solver based on equations (4–7) will also be used
to study weakly compressible methods.

3 Numerical study configuration

We consider a fully developed three-dimensional turbulent channel flow. We denote x
the streamwise direction, y the wall-normal direction and z the spanwise direction. The
geometry is periodic in the x and z directions. The domain size is 4πh×2h×2πh. The flow
is isothermal and incompressible. The mass flow rate is imposed at value corresponding,
in a direct numerical simulation, to a friction Reynolds number Reτ = 180, where Reτ is
defined as Reτ = Uτh/ν with Uτ =

√
ν(∂y 〈Ux〉)ω the friction velocity, where the subscript

ω denotes wall values.

We carry out coarse simulations of the channel on a coarse mesh, and direct numerical
simulations of the channel on a fine mesh. The two meshes are uniform in the homogeneous
directions and follow in the wall-normal direction a hyperbolic tangent law of the form

yk = h

(
1 +

1

a
tanh

[(
k − 1

Ny − 1
− 1

)
tanh−1(a)

])
, (19)

where a is the mesh dilatation parameter and Ny the number of grid points. The coarse
mesh contains 48×50×48 cells and the cell sizes in wall-units are ∆+

x = 68, ∆+
y,ω = 0.50 at

the wall and ∆+
y,c = 25 at the center and ∆+

z = 34. The fine mesh contains 384×266×384
cells and the cell sizes in wall-units are ∆+

x = 5.8, ∆+
y,ω = 0.0.085 at the wall and ∆y,c = 2.9

at the center and ∆+
z = 2.9. The same mass flow rate is imposed with the coarse and fine

meshes but accordingly a different wall shear stress may be obtained, as seen in Dupuy
et al. [19, 20].

We use a finite difference method written in a divergence form in a staggered grid
system [46, 51]. The setting is illustrated in Figure 1 in the two-dimensional case. A
fourth-order centred scheme is used for momentum convection and a second-order centred
scheme is used for momentum diffusion [17]. We use the following discretisations for the
terms of the pressure evolution equation:

(∇ · U)ijk =
ui+1jk − uijk

∆xi
+
vij+1k − vijk

∆yj
+
wijk+1 − wijk

∆zk
, (20)

(∇ · (UP ))ijk =
ui+1jk(Pi+1jk + Pijk)− uijk(Pijk + Pi−1jk)

2∆xi

+
vij+1k(Pij+1k + Pijk)− vijk(Pijk + Pij−1k)

2∆yj

+
wijk+1(Pijk+1 + Pijk)− wijk(Pijk + Pijk−1)

2∆zk
,

(21)
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(∆P )ijk =
(Pi+1jk − Pijk)/(∆xi+1 + ∆xi)− (Pijk − Pi−1jk)/(∆xi + ∆xi−1)

∆xi/2

+
(Pij+1k − Pijk)/(∆yj+1 + ∆yj)− (Pijk − Pij−1k)/(∆yj + ∆yj−1)

∆yj/2

+
(Pijk+1 − Pijk)/(∆zk+1 + ∆zk)− (Pijk − Pijk−1)/(∆zk + ∆zk−1)

∆zk/2
.

(22)

The time scheme is given by a semi-implicit third-order Runge–Kutta method. For the
system of equations put in the form ∂tP = G(U , P ) and ∂tU = F (U , P ), the algorithm
can be expressed as [64]:

Pn+1/3 = Pn + b1∆t`1, Un+1/3 = Un + b1∆tk1, (23)

Pn+3/4 = Pn + b2∆t`2, Un+3/4 = Un + b2∆tk2, (24)

Pn+1 = Pn + b3∆t`3, Un+1 = Un + b3∆tk3, (25)

using the estimated slopes

`1 = G(Un, Pn), k1 = F (Un, Pn+1/3), (26)

`2 = G(Un+1/3, Pn+1/3) + a2`1, k2 = F (Un+1/3, Pn+3/4) + a2k1, (27)

`3 = G(Un+3/4, Pn+3/4) + a3`2, k3 = F (Un+3/4, Pn+1) + a3k2, (28)

with the constants a2 = −5/9, a3 = −153/128, b1 = 1/3, b2 = 15/16 and b3 = 8/15. We
use the pressure at the next intermediate timestep to compute the increment of velocity in
equations 26, 27 and 28 to improve the stability of the numerical method. Since the numer-
ical schemes are explicit in time and local in space, the numerical method does not require
the resolution of a system of coupled algebraic equations and is well-suited to parallel
implementation. The timestep is set according to the following Courant–Friedrichs–Lewy
condition:

∆+
t =

Maτ
Reτ

∆+
y,ω, (29)

where ∆+
t = ∆tUτ/h is the timestep in wall units and Maτ = Uτ/c is the artificial friction

Mach number. Since the timestep is smaller than in the corresponding simulation with
a projection method, it is generally small compared to the flow physics and there are no
accuracy issues associated with the timestep. With the fine mesh, the simulations are
in addition mesh converged [17] and thus do not depend on the exact numerical method,
provided that it is stable. A no-slip boundary condition is used at the walls. If the pressure
equation does not involve a diffusive term, no wall boundary condition is required for the
pressure. If the pressure equation involves a diffusive term, the pressure gradient at the
wall is imposed to ∂yP = µ∂2yUy using a four-point Lagrange polynomial interpolation
of the velocity to compute the second-order derivative, following [29], and the density
convection is discretised using the third-order QUICK (quadratic upstream interpolation
for convective kinetics) scheme [38]. This is performed using the TrioCFD software [10].

We performed simulations of the channel using artificial pressure equations. The arti-
ficial Mach numbers investigated on the coarse and fine meshes are reported in Table 1.
We used the volumetric flow rate in order to define the Mach number Ma. To analyse
the results, we also performed simulations of the channel using a projection method. The
simulations with a projection method have been carried out using the same mesh, the same
domain size and the same numerical schemes as the simulations using an artificial pressure
equation. The numerical set-up has been validated in previous papers [17, 18] against the
reference data of Moser et al. [47], Bolotnov et al. [8], Vreman and Kuerten [62] and Lee
and Moser [37].
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Figure 1 – Staggered grid system.

Mesh Ma Maτ

Coarse 0.78 0.050
Coarse 0.55 0.035
Coarse 0.39 0.025
Coarse 0.25 0.016
Coarse 0.18 0.011
Coarse 0.12 0.008
Coarse 0.08 0.005

Fine 1.00 0.064
Fine 0.50 0.032
Fine 0.25 0.016
Fine 0.10 0.006

Table 1 – Artificial Mach numbers (associated with the volumetric flow rate) and artificial
friction Mach numbers of the simulations on the coarse and fine meshes.

4 Results and discussion

4.1 Artificial compressibility method

We first study the numerical simulations of the turbulent channel flow with the arti-
ficial compressibility method, given by equations (1) and (3). The simulations are stable
for all artificial Mach number investigated (see Table 1) with our meshes, timestep and
numerical method. The velocity divergence is smooth and exhibits a clear correlation with
the pressure field (Figure 2(a)). The first-order and second-order statistics of turbulence
given by the fine simulations are reported in Figure 3. Our numerical results support the
fact that as the artificial Mach number tends towards zero, the simulations converge to
the incompressible solution, here represented by the corresponding simulation with a pro-
jection method. At Ma = 1.00, the friction velocity is underestimated and the standard
deviation of streamwise velocity overestimated, while the standard deviation of the other
velocity components and of pressure is underestimated. At Ma = 0.10, a very good gen-
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eral agreement is obtained. A slight difference of the results with the reference projection
simulation is visible for the standard deviation of streamwise and wall-normal velocity and
of pressure, while the mean streamwise velocity, the covariance of streamwise and wall-
normal velocity, the standard deviation of streamwise velocity and the mean pressure are
almost identical. On the coarse mesh (Figure 4), the simulations also converge towards the
incompressible solution, which differs from the results of the direct numerical simulation
because of the insufficient mesh resolution. At Ma = 0.08, the results of the artificial
compressibility simulations and the reference projection simulation are indistinguishable.

The rate of convergence of some turbulence statistics is represented in Figure 5. A
quadraticO(Ma2) rate of convergence is expected for the artificial compressibility method [14,
34, 52, 53]. Numerically, the quadratic convergence rate of the second-order turbulence
statistics is very clear for the coarse simulations at high artificial Mach number (Figure 5).
At low artificial Mach number, our results deviate from this expected behaviour. The
quadratic convergence rate can be used to extrapolate the results of two or more simu-
lations to an artificial Mach number of zero, as suggested by Ohwada and Asinari [52].
We consider for the sake of simplicity the statistics of two simulations s1 and s2 at the
respective artificial Mach numbers Ma1 and Ma2. The results are extrapolated to Ma0 = 0
using s0(y) = (s1(y)2/Ma2

1−s2(y)2/Ma2
2)/(1/Ma2

1−1/Ma2
2) for each wall-normal coordi-

nate y. Notice that no interpolation is required since the two simulations are carried out
on the same mesh. The extrapolation of the simulations on the coarse mesh at Ma = 0.25
and Ma = 0.39 is more accurate than the simulation at Ma = 0.12 (Figure 6). However,
it requires 20% less computational time since the timestep of the simulation is inversely
proportional to the artificial Mach number. Similarly, the extrapolation of the simulations
at Ma = 0.39 and Ma = 0.55 more accurate than the simulation at Ma = 0.25 but requires
10% less computational time. This procedure thus accelerates the convergence of the ar-
tificial compressibility method. Given these promising results, it would be interesting to
examine the applicability of the extrapolation method in more complex fluid flows.
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(a) Artificial compressibility method

(b) Artificial compressibility method with a convective term

Figure 2 – Fields of instantaneous pressure (left) and velocity divergence (right) in wall
units at the center of the channel (y = h plane) for simulations on the fine mesh at
Ma = 0.25 using the artificial compressibility method (3) and the artificial compressibility
method with a convective term (18). The velocity divergence is premultiplied by 106.
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Figure 3 – Turbulence statistics for artificial compressibility simulations on the fine mesh
and the corresponding simulation with a projection method: (a) mean streamwise velocity
〈Ux〉, (b) covariance of streamwise and wall-normal velocity 〈u′xu′y〉, (c) standard deviation
of streamwise velocity

√
〈u′2x 〉, (d) standard deviation of wall-normal velocity
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〈u′2y 〉, (e)

standard deviation of spanwise velocity
√
〈u′2z 〉, (f, bottom) mean pressure 〈P 〉, (f, top)

standard deviation of pressure
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〈p′2〉.
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Figure 4 – Turbulence statistics for artificial compressibility simulations on the coarse mesh
and the corresponding simulation with a projection method. See Figure 3 for labels.



Analysis of artificial pressure equations in numerical simulations of a turbulent channel
flow 13

 0.01

 0.1

 1

 10

 100

 0.1  1

R
e
la

ti
v
e
 e

rr
o
r 

(%
)

Ma

u’v’
u’u’
v’v’

w’w’
p’p’

y
2
 slope

(a)

 0.1

 1

 10

 100

 0.1  1

R
e
la

ti
v
e
 e

rr
o
r 

(%
)

Ma

u’v’
u’u’
v’v’

w’w’
p’p’

y
2
 slope

(b)

Figure 5 – Relative error between the artificial compressibility simulations on the fine mesh
(a) or the coarse mesh (b) and the corresponding simulation with a projection method for
the maximum value of the covariance of streamwise and wall-normal velocity 〈u′xu′y〉, the
variance of streamwise velocity

〈
u′2x
〉
, wall-normal velocity

〈
u′2y
〉
, spanwise velocity

〈
u′2z
〉
,

and pressure
〈
p′2
〉
.



14 D. Dupuy, A. Toutant and F. Bataille

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1  1  10  100

U
+

y
+

Projection
From Ma=0.39 and 0.25
From Ma=0.55 and 0.39
Ma=0.08
Ma=0.12
Ma=0.25

(a)

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

 0

 0.002

 0  0.2  0.4  0.6  0.8  1

(u
’v

’)
+

y/h

(b)

−0.03

−0.02

−0.01

 0

 0.01

 0.02

 0.03

 0.1  1  10  100

U
rm

s
+

y
+

(c)

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

 0

 0.1  1  10  100

V
rm

s
+

y
+

(d)

−0.025

−0.02

−0.015

−0.01

−0.005

 0

 0.005

 0.1  1  10  100

W
rm

s
+

y
+

(e)

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

 0

 0  0.2  0.4  0.6  0.8  1

P
rm

s
+

y/h

(f)

Figure 6 – Turbulence statistics for extrapolated artificial compressibility simulations on
the coarse mesh and artificial compressibility simulations without extrapolation, presented
as differences from the reference projection simulation. See Figure 3 for labels.
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4.2 Comparison of artificial pressure equations

As discussed in section 2, several numerical methods can be identified as intermediate
approximations between the compressible Navier–Stokes equations and the artificial com-
pressibility method. We study the artificial compressibility method with a convective and
a diffusive term (16), the artificial compressibility method with a diffusive term (17) and
the artificial compressibility method with a convective term(18). We compare the standard
deviation of velocity divergence obtained with the three methods on the coarse mesh at
Ma = 0.12 in Figure 7. The addition of a diffusive term to the pressure evolution equation
has a negligible impact on the fluctuations of the velocity divergence. On the other hand,
the addition of a convective term reduces the standard deviation of velocity divergence
away from the wall. This has a large impact on the accuracy of the simulation.

Figure 8 shows that with a convective term, simulations on the coarse mesh are in
a good general agreement with the reference projection simulation at Ma = 0.55. In
particular, the profiles of the Reynolds stresses are superimposed below Ma = 0.39 and
remain within a moderate error range at Ma = 0.78. The standard deviation of pressure
is also improved for most artificial Mach number but does not converge exactly to the
reference projection simulation at low artificial Mach numbers. These results are surprising
since the convective term could be expected to be negligible given the disparity between
the convective velocity and the speed of sound [9, 15, 60], but support the analysis of Kreiss
et al. [34], which first considered the artificial compressibility equations with a convective
term. Besides, the convective term is required to ensure the Galilean invariance of the
pressure evolution equation. The main phenomenon affecting pressure is the transport
by the velocity of the fluid, which is captured by the convective term, allowing higher
artificial Mach numbers. We expect this behaviour to only be valid for unsteady flows
as equation (18) does not ensure the divergence-free condition in steady solenoidal flows
while this condition is ensured using the original artificial compressibility equation (3). The
simulation on a fine mesh at Ma = 0.25, given in Figure 9, confirms the powerful influence
of the convective term for direct numerical simulations. The velocity divergence remains
clearly correlated with the pressure field (Figure 2(b)), but its magnitude is reduced by a
factor of 10 at the center of the channel.

The addition of a diffusive term to the pressure evolution equation has a negligible
impact on the prediction of the Reynolds stresses (Figure 10). However, it improves the
convergence of the standard deviation of pressure. Below Ma = 0.25, the artificial com-
pressibility method with a convective and a diffusive term gives identical results to the
reference projection simulation for all first-order and second-order statistics of turbulence.
This represents a three-fold speedup compared to the artificial compressibility method.
Higher-order statistics, such as the skewness and flatness factors of velocity are also well
represented (Figure 11).

The artificial compressibility method with a convective and a diffusive term is compared
to the resolution of the compressible Navier–Stokes equations in Figure 12. For a given
Mach number, the results of the compressible solver deviate more significantly from the
reference projection simulation than the artificial compressibility method. This can be
explained by the fact that the density is imposed in the artificial compressibility method
while the continuity equation is resolved in the compressible solver. This point also makes
the artificial compressibility method simpler and slightly reduces the memory requirements
and the computational time per timestep. Note also that the modification of the Mach
number requires the adjustment of the initial and boundary conditions in the compressible
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solver while it is included in the numerical method in artificial compressibility methods
(see section 2). The computational efficiency of the artificial compressibility method with
a convective term and a diffusive term is investigated in Figure 13. The code has been
executed on twelve Intel Xeon E5-2690V3 (144 CPU cores in total) using MPI parallel
computing. Communication costs are minimal because of the explicit and local nature of
the governing equations. Thus, the method becomes increasingly more time efficient than
the projection method when the number of cores of the simulation is increased.
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Figure 8 – Turbulence statistics for artificial compressibility simulations with a convective
term on the coarse mesh and the corresponding simulation with a projection method. See
Figure 3 for labels.
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Figure 9 – Turbulence statistics for artificial compressibility simulations with a convective
term on the fine mesh and the corresponding simulation with a projection method. See
Figure 3 for labels.
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Figure 10 – Turbulence statistics for artificial compressibility simulations with a convective
and a diffusive term on the coarse mesh and the corresponding simulation with a projection
method. See Figure 3 for labels.
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Figure 11 – Skewness (a) and flatness (b) factors of the longitudinal velocity for artificial
compressibility simulations with a convective and a diffusive term on the coarse mesh and
the corresponding simulation with a projection method.
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Figure 12 – Turbulence statistics for artificial compressibility simulations with a convective
and a diffusive term on the coarse mesh compared to a compressible solver for the Mach
number 0.55. See Figure 3 for labels.
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5 Conclusion

Simulations based on an artificial pressure equation produce velocity and pressure fields
that can be made arbitrarily close to the velocity and pressure fields of the incompressible
Navier–Stokes equations, at the cost of an increasingly large computational time. Several
artificial pressure equations can be used depending on the selected level of approximation
of the compressible Navier–Stokes equation. Amongst the methods examined in this paper,
the artificial compressibility method with a convective and a diffusive term produces the
most accurate results for a turbulent channel flow. The convective term is critical for the
accuracy of the incompressibility constraint and all one-point turbulence statistics while
the diffusive term only improves pressure fluctuations. The method is easily parallelisable
because the system of equations is explicit in time and local in space, and has low memory
requirements. The procedure is stable using a finite difference method in a staggered grid
system and a third-order Runge–Kutta time scheme, even if no diffusive term is included,
and can be used for underresolved simulations, large-eddy simulations or direct numerical
simulations. We may conjecture that the method is near to optimal, in the sense that it
is more effective than a compressible solver using a minimal amount of approximations
on the one hand and simpler methods obtained by neglecting one by one the terms of the
equation on the other hand. The approach can be combined with an extrapolation in terms
of artificial Mach number, following the quadratic rate of convergence of the solution, in
order to accelerate the rate of convergence.
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