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Abstract: In this work we investigate the properties of elastic waves propagating in gyroid lattices.1

First, we rigorously characterize the lattice from the point of view of crystallography. Second, we use2

Bloch-Floquet analysis to compute the dispersion relations for elastic waves. The results for very long3

wavelengths are then compared to those given by classic elasticity for a cubic material. A discrepancy4

is found in terms of the polarization of waves and it is related to the noncentrosymmetry of the5

gyroid. The gyroid lattice results to be acoustically active, meaning that transverse waves exhibit a6

circular polarization when they propagate along an axis of rotational symmetry. This phenomenon is7

present even for very long wavelengths and it is not captured by classic elasticity.8

Keywords: elastic waves, noncentrosymmetry, gyroid, crystallography, chirality9

1. Introduction10

Architectured materials are those that possess an inner geometry [1]. This multi-scale spatial11

arrangement of the constitutive materials allows for achieving mechanical properties that are not12

present in the bulk material itself [2]. Although this appears to be an engineering-based approach to13

materials design, it should be noted that this strategy is, in fact, central in nature where biomaterials14

must perform many functions from a small and limited set of elementary chemical elements [3,4].15

Therefore, to enhance some target properties, regular patterns often emerge. The best-known example16

is the honeycomb, where bees need to maximise the volume of the cells while minimizing the quantity17

of matter (wax) used [5]. Another example is the iridescent color of the wings of some butterflies. This18

phenomenon is due to the non-centrosymmetric mesostructure of the material constituting the wings19

which acts a photonic crystal [6,7].20

The study of elastic waves propagating in architectured materials is of particular interest since21

unconventional effects due to the local organisation of the matter can emerge at the macroscale. In22

order to study these phenomena adequately, two points of view can be adopted. Either to describe23

all the details of the architecture, or to consider an effective continuum as replacement. The first24

option is very general since no particular modeling assumptions are involved. However, since the25

inner geometry of the material has to be explicitly described and meshed, the numerical cost is often26

prohibitive for actual applications. Moreover, the computed solution often contains many unnecessary27

details for practical use. The second option, which is based on elastodynamic homogenization [8–10]28

amounts to substitute the initial heterogeneous material by an equivalent homogeneous continuum.29

This equivalence is only valid under specific assumptions on the range of variation of some intrinsic30

parameters, and hence more restrictive than the first approach. However, within the validity domain of31
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the method, the physics, up to a certain order1, is correctly described. This results in a fairly important32

reduction in the computational cost, which is very interesting for optimizing an architectured material,33

since in that case the numerical model has to be computed many times along the process.34

For infinite Periodic Architectured Materials (PAM), which are the subject of this paper, the35

condition under which the complete wave problem can be substituted by an effective one relies on the36

ratio (η) between the size of the periodic unit cell (L) and the wavelength (λ) of the mechanical field.37

When this ratio approaches zero the classical Long-Wavelength (LW) approximation is obtained and,38

provided that the frequency ω is also low (Low-Frequency (LF) approximation), the heterogeneous39

material can be replaced by a classical effective continuum. This situation, which has been well40

investigated, is completely contained in what is called LF-LW elastodynamics homogenization [8–10].41

When the equivalent medium is a classical continuum (Cauchy continuum), the effective behavior42

is non-sensitive to certain features of the inner geometry such as noncentrosymmetry, chirality or43

n > 4-fold axis of rotational anisotropy [11–13].44

Now, when the scale separation ratio η is small, but not vanishingly small, elastic waves45

propagating through the matter interact with the inner architecture. In this situation, several46

propagation quantities, such as the phase and group velocities, become frequency dependent and the47

wave propagation is dispersive [14]. Non standard dependencies on the architecture, that were left over48

in LF-LW approximation, may thus appear. These situations, which are outside the frame of standard49

elastodynamic homogenization, can nevertheless be modeled if the Cauchy equivalent continuum is50

replaced by a generalized continuum [15–17]. In this work we focus on bulk propagation, however it51

is important to notice that effects near boundaries, such as surface waves [18,19], are also of particular52

interest.53

Wave propagation in non-centrosymmetric or chiral materials, the two concepts being distinct2,54

has been a subject of interest among physicists for centuries, mainly in the field of optics and55

electromagnetism. The first experiments showing the interaction of light with chiral molecules56

like sugar goes back to the beginning of the 19th century [20]. The effect which is associated to57

electromagnetic waves propagating in non-centrosymmetric crystals is the rotation of the plane of58

polarization when the wave propagates along an optical axis, i.e. an axis of rotational symmetry. The59

rotation is due to the decomposition of the linearly polarised transverse wave into two circularly60

polarised waves with opposite handedness and different phase velocities [21]. This phenomenon is61

known under the name of "optical activity". The analogue of this effect can be observed for elastic62

waves, and it is known as "acoustical activity" [21]. It is interesting to remark that optically active63

crystals are also found to be acoustically active and that, as it will be shown in this paper, this effect64

can occur also in the LF-LW regime.65

Recently, the interest in investigating the properties of materials based on chiral and66

non-centrosymmetric architectures has grown. To this end it is important to point out that chirality67

and noncentrosymmetry are not equivalent, and that their impact on the physics of the problem can be68

different.69

The set of transformations that let the unit cell of an architectured material invariant constitutes70

its symmetry group. The material is said chiral if its symmetry group contains only rotations, and it is71

said to be centrosymmetric when it contains the inversion [22]. It is important to observe that in a 2D72

space the inversion is a rotation (preserving the material orientation) while, in 3D, it is a transformation73

reversing the material orientation. Since the nature of the inversion depends on the dimension of the74

space, the implication between chirality and centrosymmetry are not the same in 2D and 3D. In 2D,75

1 An effective theory is a reduced model obtained by filtering the actual physics so as to retain, in the continuum formulation,
only the most prominent effects. Depending on the targeted applications, the effective model can be of different degrees of
richness.

2 see Appendix A for a dictionary of point groups and their associated properties
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the chirality and centrosymmetry are independent [15], while in 3D chiral materials are necessarily76

non-centrosymmetric [23].77

Several works can be found in the literature that investigate 2D chiral elasticity, and focus on their78

unusual mechanical properties such as negative Poisson ratio [24,25]. Concerning wave propagation,79

these architectures have been extensively studied [26–28] and the need for a generalized continuum80

theory in order to capture the onset of dispersion and anisotropy at higher frequencies has been81

pointed out [15,16]. In all these cases, the unit cells under investigation are chiral and centrosymmetric.82

It is worth noting that such a combination is possible uniquely in 2D. When moving to 3D, the picture83

becomes more complex, and due to habits coming from the 2D situation, an ambiguity between the two84

definitions can be usually found in the literature. For instance, the well-known and studied in-plane85

hexachiral and tetrachiral patterns [29,30], are no more chiral once extruded in 3D.86

Concerning wave propagation in non-centrosymmetric materials, if the phenomenon can be87

studied in 2D [15], the effects become even more interesting in 3D as polarization of waves are then88

richer. As a consequence, interest in 3D non-centrosymmetric metamaterials have recently emerged for89

their strech-twist coupling [31] or their acoustical activity [32]. The effects related to size dependent90

properties and characteristic lengths are also exploited and investigated in [33] and a micropolar91

generalized model is used to investigate acoustical activity in [34].92

In the present work, the features of elastic wave propagation in non-centrosymmetric architectured93

materials are investigated. Among them, gyroid materials are probably the most commonly used.94

In electromagnetics they are widely studied as metamaterials [6], in acoustics as phononic crystals95

[35], and in biomechanics as bone substitutes [36,37]. In this paper, we will highlight a particular96

situation for which the solution predicted by classic continuum mechanics is wrong even for very97

long wavelengths. It is important to note that the sensitivity of the mechanical behavior to the lack of98

centrosymmetry can also manifest in statics [38–40].99

The paper is organized as follows: in section 2 the gyroid lattice is described. In section 3 the100

Bloch-Floquet analysis is introduced along with some necessary definitions for polarization studies.101

Dispersion analysis is performed and discussed in section 4. Section 5 compares the results from102

section 4 to those obtained in the LW-LF approximation. Finally, some conclusions are drawn in103

section 6.104

Notations105

Throughout this paper, the Euclidean space E3 is equipped with a rectangular Cartesian coordinate
system with origin O and an orthonormal basis B = {e1, e2, e3}. Upon the choice of a reference point
O in E3, the Euclidean space and its underlying vector space E3 can be considered as coincident. As
a consequence, points will be designated by their vector positions with respect to O. For the sake of
simplicity, E3 will, from now on, simply be denoted E . In the following, r will designate the position
vector of a point P, and, with respect to B,

r = xe1 + ye2 + ze3.

When needed, Einstein summation convention is used, i.e., when an index appears twice in an106

expression, it implies summation of that term over all the values of the index. The dot operator (·)107

stands for the scalar product, the ∧ for the cross product and δij is the Kronecker delta.108

Moreover, the following convention is retained:109

• Blackboard fonts will denote tensor spaces: T;110

• Tensors of order > 1 will be denoted using uppercase Roman Bold fonts: T;111

• Vectors will be denoted by lowercase Roman Bold fonts: t.112

The orthogonal group in R3 is defined as O(3) = {Q ∈ GL(3)|QT = Q−1}, in which GL(3) denotes113

the set of invertible transformations acting on R3.114
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2. The gyroid lattice115

The gyroid is a triply periodic minimal surface introduced for the first time in [41,42]. Since it is a116

minimal surface, it has a zero mean curvature, meaning that every point on the surface is a saddle117

point with equal and opposite principal curvatures [43]. It is periodic with respect to three orthogonal118

space vectors and is chiral, meaning that the surface only possesses rotation symmetry elements or,119

equivalently, that it does not possess any symmetry plane nor symmetry center [44].120

2.1. Parametrization of the gyroid lattice121

The gyroid’s morphology is usually described using a level surface given by the following
equation:

φ(x, y, z; a, b) = 0 (1)

with a and b real parameters and x, y, z coordinates of the position vector r.
In this paper, we will focus on a particular gyroid defined by :

φ(x, y, z; a, b) := sin 2πax cos 2πay + sin 2πay cos 2πaz + sin 2πaz cos 2πax− b, (2)

that exists only in the range |b| <
√

2 [44]. Indeed, beyond this peculiar value of b, it is possible to
show that the surface described by φ presents discontinuities located at the borders of the fundamental
(or asymmetrical) unit cell. A proof of this geometric constraint is provided in Appendix C. Due to its
chiral nature, the gyroid surface exists in two enantiomorphic forms : dextrogyre and levogyre. The
surface described by the implicit equation Equation 1 will be, arbitrarily, chosen to be the dextrogyre
form. The levogyre form of the implicit equation is easily obtained by applying, for instance, the
transformation x → −x in the Equation 1 . From the definition of the surface, one can then obtain a
volume by defining the presence of matter for points satisfying the following inequality:

φ(x, y, z; a, b) > 0. (3)

The parameter a controls the spatial period while the parameter b controls the porosity p, defined as122

the ratio between the volume of the gyroid lattice and that of the unit cell. Examples of unit cells of123

such solids obtained with different values of b are plotted in Figure 1.124

(a) b=0 (b) b=1 (c) b=1.3

Figure 1. The unit cells of gyroid lattices obtained for different values of the parameter b and a=1 mm.
Despite what the angle of view may suggest, all these structures are simply connected.
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The relationship between the porosity p and the parameter b is not analytical but can be estimated
numerically. As can be observed in Figure 2 this relationship is almost linear and for porosities between
0.2 and 0.8, the following linearized formula can be used to estimate the porosity:

p = −0.325b + 0.5.

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

b [1]

P
or
os
ity

[1
]

Figure 2. The relationship between the parameter b and the porosity, dashed line represents a linear
approximation of real porosity plotted in plain line. The evaluation of the porosity is obtained
numerically.

125

2.2. Symmetry properties126

Thanks to its triply periodic nature, the gyroid structure can be considered as a crystal [35] with127

Body Centred Cubic (BCC) Bravais lattice and point group O, using group theoretic notation [45], or128

432 using Hermann-Maugin notation. It should be noted that this cubic group only contains rotations3,129

the geometry of the gyroid is hence chiral. The symmetry of the spatial structure is described by130

the space group, which details how transformations from the Bravais lattice and the point group are131

combined in the actual crystal. The space group (SG) of the gyroid crystal is, using Hermann-Maugin132

notation, I4132 (space group #214 in the International Tables of Crystallography [46]), where the I133

stands for body-centered (BC), meaning that the conventional unit cell defined in crystallography is134

not primitive, but body-centered (more details provided in subsection 2.3). This space group contains135

screw axes and, as such, is not symmorphic4.136

If C stands for the "crystal" structure, and ? for the group action as defined in Appendix section B

∀r ∈ C, ∀g ∈ SG, r′ = g ? r ∈ C.

From the generating transformations defined in Appendix B and using the equation of the gyroid
surface (c.f. Equation 1) it is straightforward to verify that

∀g ∈ SG, φ(g ? r) = φ(r).

3 To be more specific there are 3 different cubic point groups: O, O− and O ⊕ Zc
2. The first one just contains rotations, the

group is hence chiral and non-centrosymetric. The second, O−, possesses symmetry planes but not the inversion, the group
is achiral and non-centrosymetric. The last group O⊕ Zc

2 is centrosymmetric hence achiral. Some details are provided in the
Appendix A, and more information can be found in [23].

4 A space group is called symmorphic if, apart from the lattice translations, all generating symmetry operations leave one
common point fixed. Permitted as generators are thus only the point-group operations: rotations, reflections, inversions and
rotoinversions. The symmorphic space groups may be easily identified because their Hermann-Mauguin symbol does not
indicate a glide or screw operation.
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Figure 3. The conventional unit cell. The lattice vectors are indicated in blue.

2.3. Unit cell137

Due to the periodicity of the geometry, the study of the gyroid structure can be restricted to a unit
cell

∀r ∈ E, ∃(r0, t) ∈ (T ,R) , r = r0 + t (4)

where T designates a unit cell and R a periodicity lattice. Note that for a given lattice R, the
choice of T is not unique. It can be convenient to chose a reference unit cell from which other
unit cells will be defined using lattice vectors ai and a triplet (n1, n2, n3) combined as follow: t =

n1a1 + n2a2 + n3a3, ni ∈ Z. The triplet (0, 0, 0) is then associated to the reference unit cell. Once a
lattice basis chosen, the considered unit cell is defined as follows,

TC = {r0 ∈ E|r0 = ra1 + sa2 + ta3, (r, s, t) ∈ [0, 1[3}

and the associated periodicity lattice is given by:

RC = {t ∈ E|t = n1a1 + n2a2 + n3a3, ni ∈ Z}
These geometrical sets can have been described using lattice vectors ai, gathered into a basis as138

B′ = {a1, a2, a3}. Note that they can as well be described with respect to the basis B = {e1, e2, e3} of E.139

140

Among all the possible unit cells, some are special and have been given a standard name in the141

crystallography community: the conventional unit cell (CUC) and primitive unit cell (PUC).142

The conventional unit cell (CUC) of the a BCC lattice is depicted in Figure 3. It is defined as the143

smallest cell having its edges along the symmetry directions of the Bravais lattice. Notice that, for144

body centered (BC) lattice, this unit cell is not minimal and a so-called primitive unit cell (PUC) can be145

considered instead. For a continuous structure tilling of the space, the primitive unit cell is defined as146

the smallest tile that generates the whole tiling using only translations. As such the primitive unit cell147

is a fundamental domain with respect to translational symmetries only.148

2.3.1. BCC Conventional Unit Cell149

For a BCC lattice, the conventional unit cell is defined as depicted in Figure 3. As its faces are150

perpendicular to Bravais lattice directions, despite its non minimality, this unit cell is easy to use151

for numerical computations. In this case, the conventional lattice vectors ai, are chosen such that152

ai ∧ ei = 0.153

2.3.2. BCC Primitive Unit Cell154

For a BCC lattice, two possible primitive unit cells (PUC) are represented in Figure 4. The primitive
lattice vectors ai are not unique and the ones for the PUC depicted in Figure 4a) are defined as:

b1 =
a
2
(e1 + e2 − e3), b2 =

a
2
(−e1 + e2 + e3), b3 =

a
2
(e1 + e2 + e3),



Version June 23, 2020 submitted to Symmetry 7 of 24

a) b)

Figure 4. Two examples of primitive unit cells. The lattice vectors are indicated in red

while the ones presented in Figure 4b) are defined as:

b′1 = ae1, b′2 = ae2, b′3 =
a
2
(e1 + e2 + e3).

They form P = {bi}1≤i≤3 and P ′ = {b′i}1≤i≤3 two other bases of E3, which metric tensors are
given by:

g(P) = (bi · bj) =
a2

4

 3 −1 −1
−1 3 −1
−1 −1 3

 , g(P ′) = (b′i · b′j) =
a2

4

4 0 2
0 4 2
2 2 3

 .

Being defined by a more symmetrical set of vectors P , only the first primitive unit cell will be155

considered here after.156

2.4. Reciprocal basis and Brillouin Zone157

The vector space dual to E is symbolized by E?, and is formally defined as the space of linear
forms on E,

∀l ∈ E?, ∀u ∈ E, l(u) = α ∈ R.

Upon the choice of a scalar product the two spaces can be identified

(∀l ∈ E?, ∃v ∈ E), ∀u ∈ E, l(u) = v · u = α ∈ R

and from a basis of E a basis of E? can be constructed. In the field of physics, E? corresponds to
the space of wavevectors, and a generic element of E? is denoted by k. For our applications, it is
fundamental to introduce the reciprocal latticeR?ofR:

R? = {ξ ∈ E?|ξ = ξ1a?1 + ξ2a?2 + ξ3a?3, ξi ∈ Z}.

The vectors (a?1, a?2, a?3) constitute the lattice basis B? ofR? and verify

a?i · aj = δij, where δij =

{
1 if i = j,

0 if i 6= j.
(5)

B? can be computed from any lattice basis (a1, a2, a3) ofR according to

a?1 =
a2 ∧ a3

a1 · (a2 ∧ a3)
, a?2 =

a3 ∧ a1

a2 · (a3 ∧ a1)
, a?3 =

a1 ∧ a2

a3 · (a1 ∧ a2)
. (6)

Due to the following property,
∀(t, ξ) ∈ R×R?, e2πiξ·t = 1 (7)
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vectors of the reciprocal lattice are the supports ofR-periodic functions on E since,

∀(r0, t) ∈ T ×R, f (r0 + t) = ∑
ξ∈R?

λξe2πiξ·(r0+t) = ∑
ξ∈R?

λξe2πiξ·r0e2πiξ·t = f (r0).

In addition, use will be made of the First Brillouin Zone (FBZ) T ? of the reciprocal lattice R?

defined as:
T ? := {k ∈ E?|∀ξ ∈ R? − 0, ‖k‖ < ‖k− ξ‖} (8)

Using the reciprocal latticeR? and the FBZ T ?, any wavevector k can be expressed as

∀k ∈ E?, ∃(k0, ξ) ∈ (T ?,R?) , k = k0 + ξ.

We can geometrically interpret T ? as the set of wavevectors k which are closer to the null158

wavevector than to any other wavevector ξ of the reciprocal latticeR?. It is the Wigner-Seitz cell of the159

reciprocal lattice, this cell is uniquely defined and independent of the choice of T . Similarly to the160

primitive unit cell in the direct space, the FBZ is a fundamental domain with respect to translations.161

Physically, the wavelength λ is defined as the inverse of the wavenumber, which is the norm of the162

wavevector : λ = 1/‖k‖. Then, wavevectors belonging to T ? have wavelengths that are greater163

than the wavelength of the periodicity lattice. When ‖k‖ → 0 the wavelength becomes infinite,164

sollicitations varying with almost null wavenumber are said to be scale separated with respect to the165

periodicity lattice. This is usually the regime in which the LW approximation of elastodynamics166

homogenization holds.167

The FBZ can be further reduced if we consider also the symmetry operations of the point group. The168

result is an Irreducible Brillouin Zone (IBZ), that is delimited by points of high symmetry, summarized169

for the considered gyroid lattice in Table 1. In this table, the high symmetry points are given in170

the non-orthogonal reciprocal lattice basis P?, dual to the primitive lattice basis P as well as in the171

orthonormal lattice basis B which coincides with its dual in the reciprocal space. The path obtained172

connecting these high symmetry points along the edges of the IBZ is often used to characterize the173

photonic and phononic properties of the lattice [6,26]. However, it has been pointed out that this174

choice is not always reliable as some relevant information, e.g. about band gaps, could be missing [47].175

176

In this paper we consider the basis P , that corresponds to the one depicted in Figure 4a). The
reciprocal lattice is itself a Bravais lattice, and in the case of BCC lattice, it is a Face Centered Cubic
(FCC) lattice. Using Equation 6, the reciprocal basis P? is equal to

a?1 =
1
a
(e1 + e2), a?2 =

1
a
(e2 + e3), a?3 =

1
a
(e1 + e3).

The metric tensor of P? is the inverse of the one of P

g(P?) = g(P)−1 =
1
a2

2 1 1
1 2 1
1 1 2



3. Analysis tools177

In the previous section we characterized the lattice from the point of view of crystallography. In178

this next section we will use these results to compute the elastodynamic response of the lattice. The179

objective of the present section is to provide the analysis tools to be used to perform the computation180

and to interpret the results.181



Version June 23, 2020 submitted to Symmetry 9 of 24

Table 1. The high symmetry points of the gyroid lattice. The group notations are detailed in Appendix
section A.

Symmetry Coordinates Coordinates Point Group Point Group Illustration of the
point w.r.t. P? w.r.t. B (Math.) (H-M) first Brillouin zone

(k1, k2, k3) (x1, x2, x3)

Γ (0, 0, 0) (0, 0, 0) O 432
H (− 1

2 , 1
2 , 1

2 ) (0, 0, 1
a ) O 432

P ( 1
4 , 1

4 , 1
4 ) ( 1

2a , 1
2a , 1

2a ) D3 32
N (0, 1

2 , 0) (0, 1
2a , 1

2a ) D2 222

3.1. Bloch-Floquet analysis182

Since the material is periodic, the dispersion diagram will be computed using Bloch-Floquet
analysis [48]. The elastodynamics equation for the periodic continuum reads

div [C(r) : (u(r)⊗∇)] = ρ(r)ü(r) (9)

where ρ(r) is theR-periodic mass density and C(r) is theR-periodic fourth-order elasticity tensor. As
we saw in subsection 2.3, each cell of the assembly can be identified by the triplet (n1, n2, n3), where
the triplet (0, 0, 0) is conventionally assigned to the reference unit cell. The position of a point r of the
(n1, n2, n3)-cell is obtained from the position of a point in the reference unit cell r0 by Equation 4 where
t = npap. BeingR-periodic, ρ(r)and C(r) verify:

∀(r0, t) ∈ T ×R, ρ(r0 + t) = ρ(r0), C(r0 + t) = C(r0)

Thanks to the Floquet-Bloch theorem [48], elementary solutions to the Equation 9 over C can be
searched for in the form of Bloch-waves :

uk(r0) = Uk(r0)e2πi( f t−k·r0), Uk ∈ C3, (10)

where Uk is the complex polarisation vector which isR-periodic in space and constant in time, f is183

the frequency of the Bloch-wave and k its wavevector5. Uk describes the movement of matter as the184

wave propagates. In the case of an homogeneous material the polarization vector becomes constant in185

space and the classical plane wave solution is retrieved. Since the displacement field in Equation 10 is186

complex valued, its real part should be computed in order to retrieve the physical solution.187

From its definition as a Bloch-wave, the displacement at a point r image of the r0 ∈ T by a
translation t ∈ R has the following expression

uk(r) = uk(r0 + t) = Uk(r0 + t)e2πi( f t−k·(r0+t)) = uk(r0)e−2πik·t (11)

The physical meaning is that the displacement vector at two homologous points6 only differs by a188

phase factor.189

5 It is important to remark that wavevectors k follow the so-called "crystallographer’s definition" which consists in dropping
the often seen 2π coefficient. This implies, for instance, that the norm ‖k‖, i.e. the wavenumber, is directly the inverse of the
wavelength λ, which is more convenient for physical interpretation of results.

6 Two points r1, r2 and are said homologous if r1 − r2 ∈ R.
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Additionally, the Bloch-wave expression in Equation 10 has the interesting property to be also
R?-periodic. Indeed, due to itsR-periodicity, Uk(r0) can be decomposed as a Fourier series, leading
to the equivalent expression for uk(r0) :

uk(r0) = ∑
ξ∈R?

Ũk+ξe2πi( f t−(k+ξ)·r0)

where Ũk+ξ stands for the Fourier coefficients of the series expansion. Using this particular form, the190

R?-periodicity of the Bloch-waves is easily proven using the change of variable ξ̃ = ξ + ξ? :191

uk+ξ?(r0) = ∑
ξ∈R?

Ũk+ξ?+ξe2πi( f t−(k+ξ?+ξ)·r0) = ∑
ξ̃∈R?

Ũk+ξ̃e2πi( f t−(k+ξ̃)·r0) = uk(r0)

The main consequence of this property is that the characterization of the elastodynamics behavior of a192

periodic material does not require to investigate the mechanical response to all the k ∈ E? but can be193

restricted to the study of k ∈ T ? viaR?-periodicity of the wavevector, where T ? corresponds to the194

First Brillouin Zone (FBZ), as introduced in 2.3.195

3.2. Polarization of waves in homogeneous materials196

Before presenting the results, it is useful to recall some definitions concerning the polarization of
elastic waves in homogeneous materials. Let’s take us back to the Bloch-wave ansatz introduced in
Equation 10, since the material is now considered homogeneous, the polarization vector Uk is constant
both in space and time. In the most general case, the complex polarization vector Uk, that will be
denoted U from now on for the sake of simplicity, can be decomposed in its real and imaginary parts
as follows:

U = UR + iUC.

An interpretation of this decomposition, and of its consequences on wave propagation, can be obtained
by considering the real part of Equation 10 :

û = Re(u) = UR cos (2π( f t− k · r))−UC sin (2π( f t− k · r)) .

Since the vectors UR and UC are independent, the polarization of the displacement can be very197

rich. Its precise nature is directly related to conditions on UR and UC, as summarized in Table 2.198

It is important to remark that different conventions are used to define the handedness of circularly199

polarized waves. In this paper, we will consider that a wave is right handed if it follows the curl of the200

fingers of a right hand whose thumb is directed towards the wave propagation, away from the source.201

In the table, the unit normal vector defining the direction of propagation is defined by n = k
‖k‖ .202

Table 2. The polarizations of plane waves and conditions on the complex amplitude.

Polarization Condition

Longitudinal polarization U · n = α, with α ∈ C
Transverse polarization UR and UC belong to the plane orthogonal to n

Linear polarization U∧U∗ = 0, with U∗ complex conjugate of U
Circular polarization U ·U = 0�

Right handedness n · (UR ∧UC) < 0�

Left handedness n · (UR ∧UC) > 0
Elliptic polarization U∧U∗ 6= 0 and U ·U 6= 0
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a) b) c)

Figure 5. Some examples of polarizations: a) linear, b) Circular right handed, c) Circular left handed.

Thus, a complex polarization vector can lead to a phase shift between the components of the203

displacement vector û, and thus to a polarization that is other than linear, see Figure 5 for illustration204

of a linear and two circular polarizations with opposite handedness.205

4. Dispersion analysis using Finite Elements Analysis (FEA)206

In order to investigate the ultrasonic properties of the gyroid lattice, and given the periodicity of207

the architecture as described in the previous sections, an approach based on Bloch-Floquet analysis208

will be followed. For the sake of simplicity, the conventional unit cell depicted in Figure 6 is used209

to define the numerical model. For the investigation of the elastodynamic properties of the gyroid210

crystal, the wavevector will be restricted to the boundaries of the Irreducible Brillouin Zone (IBZ),211

as depicted in red in Figure 7a. The high symmetry points of this IBZ are defined in Table 1. The212

model has been implemented using the commercial software Comsol Multiphysics and considering213

titanium as constitutive material, the parameters of which are displayed in Table 3. The mesh of the214

unit cell is presented in Figure 6, and it consists of 66,232 tetrahedral elements. Lagrange quadratic215

elements are used, for a total of 329,277 degrees of freedom. Periodic Bloch-Floquet conditions are216

implemented by imposing them as displacement conditions at the boundaries, following Equation 11.217

Then, the wavenumber in k is imposed and the corresponding frequencies are retrieved by solving the218

corresponding eigenvalue problem. The computation of each wavenumber took an average of 109219

seconds on a workstation equipped with an Intel(R) Xeon(R) CPU E5-1650 v2 at 3.50 GHz using six220

cores.221

Figure 6. The meshed unit cell used in simulations

Table 3. The parameters used in the numerical simulations, corresponding to bulk titanium.

Mass Density [kg/m2] Young Modulus [GPa] Poisson Ratio [1] Porosity [1] Unit cell size [mm]
ρb Eb νb p a

4506 115.7 0.321 0.7 1
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The results of the dispersion analysis are depicted in Figure 7(a). It can be observed, qualitatively,222

that these results are similar to those obtained for electromagnetic waves in [6] (see Figure 8). In223

particular, the behavior of the acoustic branches, i.e. those branches starting from the origin Γ,224

corresponding to transverse waves (gray lines in Figure 7(a)) is remarkably similar.225
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wavenumber along the boundaries of the IBZ
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Figure 7. The dispersion diagram of the Gyroid lattice computed along the boundaries of the Irreducible
Brillouin Zone (IBZ) and directions of propagation with respect to the unit cell. (a) The dispersion
relation of the Gyroid lattice computed along the boundaries of the Irreducible Brillouin Zone (IBZ). (b)
The direction of propagation with respect to the unit cell.”

Figure 8. The photonic band diagram of a single gyroid photonic crystal. Reproduced with permission
from [6].

Since the objective of the paper is to investigate the behavior of the lattice within the LW-LF226

approximation given by classic continuum mechanics, the phase velocities and polarization of waves227

have been computed for large but finite values of the wavelength with respect to the size of the unit228

cell – in this case ‖k‖ = 16.7 m−1, that corresponds to a wavelength close to 60 times the size of the229

unit cell. For each mode, the polarization vector has been estimated by computing the average of the230

complex displacement of the eigen-mode over the unit cell, and the results are listed in Table 4. We231

will now analyze the results along the following directions of propagation, also depicted in Figure 7(b):232

• [001] : this direction is going from the center of the fundamental cell to the middle of a face. It233

corresponds to an axis of rotation of order 4 (rotations of π/2 rad);234
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Figure 9. The phase velocity of the circularly polarized waves in function of the wavenumber or of the
ratio between the wavelength λ and the size of the unit cell a for propagation direction a) [001] and b)
[111]. Right handed waves are in black, left handed waves are in gray. The dashed horizontal lines
correspond to the phase velocity to which they converge to for infinite wavelength.

• [011] : this direction is going from the center of the fundamental cell to the middle of an edge. It235

corresponds to an axis of rotation of order 2 (rotations of π rad);236

• [111] : this direction is going from the center of the fundamental cell to a vertex. It corresponds237

to an axis of rotation of order 3 (rotations of 2π/3 rad).238

Using the conditions listed in Table 2, we have characterized the polarization for each of the above239

propagation directions. The results are summarized in Table 4.240

Along the direction [001] a longitudinal wave propagating at 3018.5 m/s can be observed. The two241

transverse waves have eigenmodes with complex amplitude and propagate with close phase velocity242

that tends to a common value of of 1932.1 m/s for infinite wavelengths, as it can be also observed in243

Figure 9. These complex amplitudes correspond to two circularly polarized transverse waves, with244

opposite handedness. In the direction [011], a longitudinal wave propagating at 3249.8 m/s can be245

observed. One transverse wave is linearly polarized in direction [100], and propagates with a phase246

velocity of 1931.7 m/s. The last solution corresponds again to a transverse wave, linearly polarized247

along (0, 1, −1), with velocity 1510.9 m/s. Finally, direction [111] has a linearly polarized longitudinal248

wave at 3322.8 m/s, and two circularly polarized waves with opposite handedness and propagating249

with close velocity, converging to 1663.1 m/s.250

In summary, circularly polarized waves exist only if the direction of propagation is along a251

rotation axis of symmetry of order greater than 2. Moreover, as can be seen in Figure 9, for both [001]252

and [111] directions, the circularly polarized waves with opposite handedness propagate with the same253

phase velocity only in the infinite wavelength limit, and they start to diverge as wavenumber increase.254

In particular, for direction [001] the left handed wave becomes slower than the right handed one, while255

the opposite phenomenon can be observed for direction [111]. This is due to the chirality of the unit256

cell. As one can notice, phase velocities are different even for very large wavelength compared to the257

size of the unit cell, i.e. λ/a ∼ 10. Since only the phase velocity is affected, and not the amplitude, this258

effect can be interpreted as the elastic equivalent of circular birefringence in optics. This means that if a259

linearly polarized wave passes through a gyroid lattice, the polarization plane of the incident wave260

will be rotated. This is due to the phase difference (retardance) between the two circular components,261

which produces a rotation of the polarization plane. The concept is illustrated in Figure 10. Moreover,262

since phase velocity is involved in reflection of waves at boundaries via the Snell-Descartes law, and in263

particular in the definition of the Brewster angle of total reflection, gyroid lattices show the potential264

for being used as elastic circular polarizing filters.265

Furthermore, the overall dispersion is normal for direction [001], i.e. phase velocity decreases266

when increasing the frequency, and anomalous for direction [001] (see [49] for the definition). The267

anisotropy of the material and the dispersive properties could also have consequences on surface and268

guided waves propagating in presence of boundaries [50,51], as well as in reflection/transmission269

problems [52]. These effects will be investigated in further works.270
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Incident wave

Transmitted wave

Gyroid lattice

20 𝜆
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Figure 10. An illustration of circular birefringence observed along direction [100] at fc = 200 kHz,
corresponding to a wavelength around 10 times the size of the unit cell. A linearly polarized wave
entering the material is subjected to a rotation of 1.3 degrees/wavelength, then after 20 wavelengths
the rotation is θt = 26.0 deg. This illustration does not account for the changes in amplitude due to the
reflections at boundaries.

Table 4. The phase velocity and polarization in the very long wavelength approximation.

Direction Phase velocity Polarization Type of wave
[m/s] (x1, x2, x3)

3018.5 (0, 0, 1) Longitudinal
[001] 1933.4 (i, 1, 0) Circular R 	

1931.0 (1,−i, 0) Circular L �

3249.8 (0, 1, 1) Longitudinal
[011] 1931.7 (1, 0, 0) Transverse

1510.9 (0, 1,−1) Transverse

3322.8 (1, 1, 1) Longitudinal
[111] 1662.3 (−1 + i0.58, 1 + i0.55,−i1.13) Circular R 	

1664.6 (−1− i1.68,−1 + i1.72, 2− i0.03) Circular L �

5. Long-Wavelength and Low-Frequency approximation and classic elasticity271

In this last section we will introduce and identify the equivalent homogenized model in the
framework of classic linear elasticity. This equivalent homogenized model is characterized by a couple
of effective tensors ρH and CH in such a way that the displacement field v is solution of the following
problem:

div
[
CH : (v(r)⊗∇)

]
= ρHv̈(r) (12)

where v verifies < u >= v, < . > denotes the spatial average operator over T and u is the displacement272

field solution to the heterogeneous problem Equation 9, as done for instance in [10].273

Since the effective continuum is homogeneous, we consider a plane wave solution with k = f /c n
where c is the phase velocity of the wave and n a unitary vector. The substitution of this wave solution
and of a linear elastic constitutive law into Equation 12 leads to following equation

Γ ·U = ρc2U (13)
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where Γ = n ·CH · n is the Christoffel, or acoustic, tensor. The solution of the eigenvalue problem274

stated in Equation 13 for a given direction n gives the phase velocities and polarizations of waves in275

the effective continuum.276

In classical elasticity, a material with cubic symmetry is defined by three independent material
constants. Using Mandel notation [53], the corresponding elastic tensor for a material having its
symmetry axis parallel to is B reads:

[C̃H ] =



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44


B

.

It is worth noting that classical elasticity is insensitive to the lack of centrosymmetry [54]. The symmetry277

class of the elasticity tensor in the cubic system is O ⊕ Zc
2 meaning that even if the material symmetry278

group of the unit cell does not contain the inversion, the symmetry group of elasticity tensor will279

inherit it.280

In the case of cubic materials, the solutions of Equation 13 listed in Table 5 are directly obtained.281

Using the phase velocities computed from the Floquet-Bloch analysis, parameters c11, c12, c44 and ρs

Table 5. The phase velocity and polarization in classic elasticity.

Direction Phase velocities [m/s] Polarization Type of wave√
c11
ρ ≈ 3019 (0, 0, 1) Longitudinal

[001]
√

c44
2ρ ≈ 1932 (0, 1, 0) Transverse√
c44
2ρ ≈ 1932 (1, 0, 0) Transverse√

c11+c12+2c44
2ρ ≈ 3250 (0, 1, 1) Longitudinal

[011]
√

c44
2ρ ≈ 1932 (1, 0, 0) Transverse√

c11−c12
2ρ ≈ 1511 (0,−1, 1) Transverse√

c11+2c12+2c44
3ρ ≈ 3323 (1, 1, 1) Longitudinal

[111]
√

2c11−2c12+c44
6ρ ≈ 1663 (−1, 1, 0) Transverse√

2c11−2c12+c44
6ρ ≈ 1663 (−1,−1, 2) Transverse

282

can be identified and the homogeneous equivalent properties listed in Table 6 are then deduced. It283

can be noticed that, as presented in Table 5, since we considered the propagation along the rotational284

axes of symmetry, for each direction we observe a purely longitudinal wave and two purely transverse285

waves.286

We now move on to comparing phase velocities and polarizations obtained from the Floquet-Bloch287

analysis with the ones forecast by the Long-Wavelength and Low-Frequency approximation using288

classical elasticity. We start with direction [001]. As already mentioned, this direction corresponds289

to a rotational axis of symmetry of order 4. In this case, as the elasticity tensor is non sensitive to290

chirality, the symmetry group of the physical phenomenon7 is conjugate to D4 ⊕ Zc
2. Indeed, as the291

acoustic tensor defined in Equation 13 is a second-order tensor, the Hermann theorem of Crystal292

7 The symmetry group of the physical phenomenon is the intersection of the symmetry group of the constitutive equations
and the symmetry group of the mechanical solicitation.
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Table 6. The material properties in the very long wavelength approximation.

Elastic coefficients Mass density
c11 [GPa] c12 [GPa] c44 = 2c1212 [GPa] ρ [kg/m3]

12.32 6.145 10.092 1351.8

physics [11] predicts its behavior as transversely isotropic, i.e. O(2)⊕ Zc
2. As a consequence Γ must293

have an eigenspace of dimension 2. All the directions of wave propagation for which this is verified are294

called acoustic axis of the material. Moving to the results presented in Table 5, we can see that the classic295

theory indeed predicts one faster longitudinal wave and two slower transverse waves propagating296

with the same phase velocity.297

In the previous section we saw that Bloch-Floquet analysis identifies these waves as circularly298

polarized with opposite handedness, which is of course equivalent. Indeed, even for very large299

wavelengths, the numeric evaluation of the polarization provided by Table 4 corresponds to the300

eigensystem (eigenvalues plus eigenvectors) of a Hermitian acoustic tensor. In such case, the space301

corresponding to the double eigenvalue (which is real due to Hermitian nature of the matrix) is302

two dimensional over the complex field C. However, in the case of a classic Cauchy continuum the303

acoustic tensor is symmetric real, and the eigen-space corresponding to the double eigenvalue is304

two dimensional over the real field R. Since the 2D vector space over C can be considered as a four305

dimensional vector space over R the span is not equivalent. Moreover, as presented in section 4, when306

the ratio between the wavelength and the size of the unit cell becomes finite, this 2D eigenspace splits307

into two 1D eigenspaces with different phase velocities. It is important to notice again that this effect308

occurs in the LF-LW regime, where the classical elastodynamic homogenization is supposed to hold,309

or give at least approximated results while preserving the physics of the problem. Similar results are310

obtained for propagation along [111], which corresponds to rotational axis of symmetry of order 3. In311

this case the symmetry group of the physical phenomenon is conjugate to D3 ⊕ Zc
2, and thus again312

transverse isotropy is imposed to the acoustic tensor. Finally, the direction of propagation [011] is313

along to a rotation axis of symmetry of order 2, the physical point group is thus conjugate to D2 ⊕ Zc
2.314

Here, the symmetry class of the acoustic tensor is D2 ⊕ Zc
2, and all the eigenspaces are unidimensional.315

In this last case, as this kind of symmetry can be seen by second order tensors, the results from FEA on316

the heterogeneous material and classic elasticity are in agreement in the LF-LW regime.317

In this section we have shown that some discrepancies can be observed when using an overall318

homogeneous continuum of Cauchy type. Classical elasticity (as opposed to generalized elasticity)319

is not rich enough to capture certain specific physical phenomena related to the symmetries of the320

material. In particular, if phase velocities are correctly estimated the polarizations are incorrectly321

predicted. Moreover, as it is well known, the onset of dispersion when frequency or wavenumber322

increase cannot be described in the classic Cauchy model.323

6. Conclusions324

In this work we have shown that a classical continuum model cannot capture the correct behavior325

of elastic waves propagating in gyroid lattices. This is due to the fact that the classic continuum326

mechanics is insensitive to the lack of centrosymmetry of the architectured material. However, it is327

a well established belief that the effects of noncentrosymmetry are only related to waves having a328

wavelength which compares to the size of the microstructure. Here we demonstrate that the solution329

given by the classical theory fails to predict the correct response, even in the Long Wavelength - Low330

Frequency domain.331

In order to capture the onset of this unconventional behavior, called acoustical activity, the elastic332

continuum model needs to be enriched. Different strategies of enrichment are possible. In particular,333

the use of strain-gradient elasticity will be investigate in a forthcoming study.334
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The main practical consequence of the results presented in this work is in the evidence that335

circularly polarized waves can be observed in gyroid lattices, and that classic models fail to describe336

such effect. This could have a practical interest, since devices based on manipulation of circular337

polarization are frequently used in optics and electromagnetism. However, if one wants to exploit the338

same effects in mechanics, it appears important not to rely on classical theories of elasticity. Finally,339

it should be noted that, in this work, we address bulk wave propagation in an infinite medium. The340

interaction of these waves with boundaries, in the case of reflection/transmission problems or in the341

case of guided propagation also deserves to be investigated.342
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Abbreviations348

The following abbreviations are used in this manuscript:349

350

BCC Body Centered Cubic
BZ Brillouin Zone
IBZ Irreducible Brillouin Zone
FEA Finite Elements Analysis
FCC Face Centered Cubic
LF Low Frequency
LW Long Wavelength

351

Appendix A Dictionary352

To obtain the normal forms for the different classes the generators provided in the following table353

have been used :354

Group Generators
Z−2 Pe3

Zn R
(

e3; 2π
n

)
Dn R

(
e3; 2π

n

)
, R(e1; π)

Z−2n, n ≥ 2 −R
(

e3;
π

n

)
Dh

2n n ≥ 2 −R
(

e3;
π

n

)
, R(e1, π)

Dv
n R

(
e3;

2π

n

)
, Pe1

T R(e3; π), R(e1; π), R(e1 + e2 + e3;
2π

3
)

O R(e3;
π

2
), R(e1; π), R(e1 + e2 + e3;

2π

3
)

O− −R(e3;
π

2
), Pe2−e3

Table A1. The set of group generators used to construct matrix representation for each symmetry class.

Where the following elements of O(3) will be used in this study:355

• R(v; θ) ∈ SO(3) the rotation about v ∈ R3 through an angle θ ∈ [0; 2π[;356

• Pn ∈ O(3)\SO(3) the reflection through the plane normal to n (Pn = 1− 2n⊗ n).357
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Type I subgroups358

System Hermann-Maugin Schonflies Group Nature
Triclinic 1 Z1 1 ICP

Monoclinic 2 C2 Z2 ICP
Orthotropic 222 D2 D2 ICP

Trigonal 3 C3 Z3 ICP
Trigonal 32 D3 D3 ICP

Tetragonal 4 C4 Z4 ICP
Tetragonal 422 D4 D4 ICP
Hexagonal 6 C6 Z6 ICP
Hexagonal 622 D6 D6 ICP

∞ C∞ SO(2) ICP
∞2 D∞ O(2) ICP

Cubic 23 T T ICP
Cubic 432 O O ICP

532 I I ICP
∞∞ SO(3) ICP

Table A2. Dictionary between different group notations for Type I subgroups. The last column indicates
the nature of the group: C = Chiral, P=Polar, I = Centrosymetric, and overline indicates that the property
is missing.

Type II subgroups359

System Hermann-Maugin Schonflies Group Nature
Triclinic 1̄ Ci Zc

2 ICP
Monoclinic 2/m C2h Z2 ⊕ Zc

2 ICP
Orthotropic mmm D2h D2 ⊕ Zc

2 ICP
Trigona 3̄ S6, Z3i Z3 ⊕ Zc

2 ICP
Trigonal 3̄m D3d D3 ⊕ Zc

2 ICP
Tetragonal 4/m C4h Z4 ⊕ Zc

2 ICP
Tetragonal 4/mmm D4h D4 ⊕ Zc

2 ICP
Hexagonal 6/m C6h Z6 ⊕ Zc

2 ICP
Hexagonal 6/mmm D6h D6 ⊕ Zc

2 ICP
∞/m C∞h SO(2)⊕ Zc

2 ICP
∞/mm D∞h O(2)⊕ Zc

2 ICP
Cubic m3̄ Th T ⊕ Zc

2 ICP
Cubic m3̄m Oh O ⊕ Zc

2 ICP
5̄3̄m Ih I ⊕ Zc

2 ICP
∞/m∞/m O(3)

Table A3. Dictionary between different group notations for Type II subgroups. The last column
indicates the nature of the group: C = Chiral, P=Polar, I = Centrosymetric, and overline indicates that
the property is missing.
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Type III subgroups360

System Hermann-Maugin Schonflies Group Nature
Monocinic m Cs Z−2 ICP

Orthotropic 2mm C2v Dv
2 ICP

Trigonal 3m C3v Dv
3 ICP

Tetragonal 4̄ S4 Z−4 ICP
Tetragonal 4mm C4v Dv

4 ICP
Tetragonal 4̄2m D2d Dh

4 ICP
Hexagonal 6̄ C3h Z−6 ICP
Hexagonal 6mm C6v Dv

6 ICP
Hexagonal 6̄2m D3h Dh

6 ICP
Cubic 4̄3m Td O− ICP

∞m C∞v O(2)− ICP

Table A4. Dictionary between different group notations for Type III subgroups. The last column
indicates the nature of the group: C = Chiral, P=Polar, I = Centrosymetric, and overline indicates that
the property is missing.

Appendix B Generators of space group #214361

Consider the affine space E3, the vector space R3 acts on E3 by translations. The affine group
Aff(E3) of E3, which is the set of all affine invertible transformations is constructed as the semidirect
product of R3 by GL(3), the general linear group of R3

Aff(E3) = GL(R3)oR3

as such, an affine transformation is given by a pair (Q, v) ∈ GL(R3) × R3. Composition of
transformations follows from the construction of Aff(E3) as a semi-direct product, to be explicit:

(Q2, v2)� (Q1, v1) = (Q2Q1, Q2v1 + v2)

Elements of Aff(E3) can be nicely represented by(4x4) block matrices:(
Q v
0 1

)

the internal law in Aff(E3) following the matrix product in M4,4.362

For our needs, we are interested not in the full affine group but in the group of isometries of E3,
this group Euc(E3) is a subgroup of Aff(E3) and defined as the semi direct product of the orthogonal
group and the spatial translation of R3

Euc(E3) = O(R3)oR3

Space groups can be considered as discrete subgroups of Euc(E3).363

The generators of the space group I4132 (No. 214) are given in the following table in various364

notations [55]:365
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Seitz Math Matrices in conventional basis B

{2001|1/2 0 1/2}
(

R(π, e3); 1
2 (e1 + e3)

) 
−1 0 0 1/2

0 −1 0 0
0 0 1 1/2

0 0 0 1


B

{2010|0 1/2 1/2}
(

R(π, e2); 1
2 (e2 + e3)

) 
−1 0 0 0
0 1 0 1/2

0 0 −1 1/2

0 0 0 1


B

{3+111|0}
(
R( 2π

3 ; e1 + e2 + e3), 0
) 

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


B

{2110|3/4 1/4 1/4}
(

R(π, e1 + e2); 1
4 (3e1 + e2 + e3)

) 
0 1 0 3/4

1 0 0 1/4

0 0 −1 1/4

0 0 0 1


B

{1|1/2 1/2 1/2}
(

Id; 1
2 (e1 + e2 + e3)

) 
1 0 0 1/2

0 1 0 1/2

0 0 1 1/2

0 0 0 1


B

Table A5. Generators of the Group I4132 (No. 214)

Appendix C Proof366

The gyroid lattice is defined from an implicit equation (Equation 1) that creates a periodic surface.367

For a given value of parameter b (=
√

2), this surface is found to become singular, thus creating an368

unrealistic discontinuous solid. This section presents an explanation for the admissible variation range369

of gyroid parameter :|b| <
√

2.370

371

Let us first restrict the variation range of variables x, y, z in Equation 2 to [0, 1/2] in order to work372

in the fundamental domain of function φ. The gyroid lattice restricted to this domain is presented in373

Figure A1 a).374

The fundamental domain of the gyroid is invariant with respect to the following symmetry operations:375

- Rotation of angle 2π/3 along the axis defined by equations y = z = x, plotted in plain line in376

Figure A1 and corresponding to the transformation (x, y, z)→ (y, z, x). The directing vector of377

this axis is (1, 1, 1) in orthonormal basis B and it passes through point (0, 0, 0).378

- Three rotations of angle π about the three axes defined by equations {y = 1/4− x, z = 1/8},379

{z = 1/4− x, y = 1/8} and {z = 1/4− y, x = 1/8} and plotted in dashed lines in380

Figure A1. These axes correspond to transformations (x, y, z)→ (1/4− y, 1/4− x, 1/4− z),381

(x, y, z)→ (1/4− z, 1/4− y, 1/4− x), (x, y, z)→ (1/4− x, 1/4− z, 1/4− y), respectively. The382
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a) b)
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Figure A1. (a) The gyroid restricted to its fundamental domain along with symmetry axes C3 (plain)
and C2 (dashed) ; (b) Evolution of parameter b as a function of x position along e1 axis, dashed line
corresponds to b =

√
2

directing vector of these axes are, in orthonormal basis B, (1,−1, 0), (1, 0,−1) and (0, 1,−1) and383

they pass through points (0, 1/4, 1/8), (0, 1/8, 1/4) and (1/8, 0, 1/4), respectively.384

It is trivial to see that these transformations leave Equation 2 unchanged thus defining symmetry385

operations. As a consequence, the point symmetry group of the fundamental domain of the gyroid386

is conjugated to D3. For the sake of simplicity, we will only consider generating operations of 2π/3387

rotation about (x, x, x) axis and π rotation about (x, 1/4− x, 1/8) axis, denoted C3 and C2 in the388

following, respectively ; the two other π rotations being generated by combination of these two389

generators.390

391

If the gyroid surface intersects one of the rotation axes non-orthogonally, then the surface392

automatically becomes degenerate. The expression of the normal director to the gyroid surface393

at its intersection point with generating symmetry axes and the equation defining this intersection394

point are summarized in the following Table A6:395

Sym. axis & directing vector normal to the gyroid surface intersection point

C3 (1, 1, 1)B
(
cos2 2πx− sin2 2πx

)
(1, 1, 1)B (x, x, x) with 3 cos 2πx sin 2πx = b

C2 (1,−1, 0)B sin 2πx
(√

2/2− cos 2πx
)
(1,−1, 0)B (x,−x, 0) with

√
2 cos 2πx + sin2 2πx = b

Table A6. The expression of the normal director to the gyroid surface at the intersection point with its
symmetry axes and expression of this intersection point.

396

Note that the normal director to the gyroid surface depends on variable x which, itself, is397

determined by parameter b through the non-linear equation defining the intersection point at which398

the normal director is computed.399

One can easily check that the normal directors are generically colinear with directing vectors of C3 and400

C2 operations. However, for given values of variable x (or equivalently of parameter b), the normal to401

the gyroid surface is null, thus leading to singularity of the gyroid surface. These values are x = 0 –402

and thus b =
√

2 – leading to singularity of the gyroid surface at its intersection with axis C2 and403

x = 1/8 – and thus b = 3/2 – leading to singularity of the gyroid surface at its intersection with both axes.404

405
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Finally, the equation defining the intersection point between the gyroid surface and the C2 axis406

(see Figure A1 b) depends on x and parameter b :
√

2 cos x + sin x2 − b = 0. By plotting this equation407

considering b as a function of x, we can see that there are two intersection points between the gyroid408

surface and the C2 axis for values of b over
√

2 thus showing that the gyroid surface forms a closed409

domain in these directions leading to an unrealistic discontinuous solid.410
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