

Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone

Jérémy Gauthier, Donna Lisa De-silva, Zachariah Gompert, Annabel Whibley, Céline Houssin, Yann Le Poul, Melanie Mcclure, Claire Lemaitre, Fabrice Legeai, James Mallet, et al.

▶ To cite this version:

Jérémy Gauthier, Donna Lisa De-silva, Zachariah Gompert, Annabel Whibley, Céline Houssin, et al.. Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone. Molecular Ecology, 2020, 29 (7), pp.1328-1343. 10.1111/mec.15403. hal-02800429

HAL Id: hal-02800429 https://hal.science/hal-02800429v1

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Manuscript published in Molecular Ecology as:

Gauthier J, de Silva DL, Gompert Z, Whibley, A, Houssin C, Le Poul Y, McClure M, Lemaitre C, Legeai F, Mallet J, Elias M. 2020 Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone. Molecular Ecology. 29: 1328-1343. https://doi.org/10.1111/mec.15403

1 2 3 4	Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone
5	Iárámy Gauthier ^{1,2} Donna Lisa de Silva ³ Zachariah Gompert ⁴ Annabel Whibley ⁵ Céline
5	$\frac{1}{2}$ $\frac{1}$
6	Houssin ³ , Yann Le Poul ^{3,6} , Melanie McClure ³ , Claire Lemaitre ⁴ , Fabrice Legeal ⁴ , James
7	Mallet' and Marianne Elias ³
8	
9	¹ Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
10	² Geneva Natural History Museum, 1208 Geneva, Switzerland
11	³ Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne
12	Université, Université des Antilles, Paris, France
13	⁴ Department of Biology, Utah State University, Logan, UT 84322-5305, USA
14	⁵ School of Biological Sciences, University of Auckland, Auckland, New Zealand
15	⁶ Ludwig-Maximilians Universität München, Fakultat für Biologie, Biozentrum,
16	Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
17	⁷ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
18	02138, USA
19	
20	Corresponding Author:
21	Jérémy Gauthier
22	Geneva Natural History Museum, 1208 Geneva, Switzerland
23	mr.gauthier.jeremy@gmail.com
24	
25	
26	

27 Abstract.

28 Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can 29 provide insights on the mechanisms involved in population differentiation and reproductive 30 isolation, and ultimately speciation. Suture zones offer the opportunity to compare these 31 processes across multiple species. In this paper we use reduced-complexity genomic data to 32 compare the genetic and phenotypic structure and hybridization patterns of two mimetic 33 butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each 34 consisting of a pair of lineages differentiated for their wing colour pattern and that come into 35 contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight 36 major differences, both at the genomic and phenotypic level, between the two species. These 37 differences include the presence of hybrids, variations in wing phenotype, and genomic 38 patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize 39 only rarely, whereas in O. onega the hybrids are not only more common, but also genetically 40 and phenotypically more variable. We also detected loci statistically associated with wing 41 colour pattern variation, but in both species these loci were not over-represented among the 42 candidate barrier loci, suggesting that traits other than wing colour pattern may be important 43 for reproductive isolation. Our results contrast with the genomic patterns observed between 44 hybridizing lineages in the mimetic *Heliconius* butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini - the largest radiation of mimetic butterflies. 45

46

47 Keywords. Hybridization, Ithomiini, introgression, differentiation, admixture mapping,
48 mimicry

49

50 Introduction

51 Speciation is the ultimate process responsible for the considerable biological diversity 52 observed on Earth. Hybrid zones, whereby divergent lineages come into contact and 53 potentially hybridize, can provide insights into the mechanisms involved in population 54 differentiation and reproductive isolation, and ultimately speciation (Barton & Hewitt, 1989; 55 Ravinet et al., 2017; Safran & Nosil, 2012). When hybrid zones span an environmental 56 transition, populations across the hybrid zone diverge not only because of genetic drift but 57 also due to local adaptation to different environments. Over time, drift and selection can lead 58 to the emergence of barriers to gene flow that increase reproductive isolation, resulting in 59 heterogeneous patterns of differentiation and introgression across the genome (Barton & 60 Bengtsson, 1986; Ravinet et al., 2017; Safran & Nosil, 2012). Genomic regions with low rates 61 of introgression are more likely to be associated with divergent selection and reproductive 62 isolation (Gompert & Buerkle, 2009; Heliconius Genome Consortium, 2012; Mallet, 2005; 63 Mallet & Barton, 1989; Jay et al., 2018). Assessing the genetic structure of hybrid zones can 64 therefore shed light on the evolutionary processes at play during the early stages of speciation 65 by revealing the number and distribution of loci presenting deviant patterns of differentiation 66 and introgression compared to the genome-wide average (Bierne, Welch, Loire, Bonhomme, 67 & David, 2011). Additionally, while genetic mapping of adaptive traits has classically relied 68 on controlled crosses, which cannot be performed in many organisms, hybrid zones enable the 69 application of admixture mapping approaches that take advantage of natural mixing and 70 recombination to investigate the genetic basis underlying adaptive phenotypic variation 71 (Buerkle & Lexer, 2008; Gompert & Buerkle, 2013; Pallares, Harr, Turner, & Tautz, 2014). 72

Many studies have focused on hybrid zones to unravel the processes generating local
adaptation (e.g. Jones et al., 2012; Larson, Andrés, Bogdanowicz, & Harrison, 2013; SoriaCarrasco et al., 2014) and reproductive isolation (e.g. Christe et al., 2016; Teeter et al., 2008)

and have revealed different patterns (Barton & Hewitt, 1985, 1989; Gompert & Buerkle, 76 77 2009; Kronforst et al., 2013; Rieseberg, Whitton, & Gardner, 1999; Teeter et al., 2010; Via & Hawthorne, 2002). These differences may stem from differences in the organisms studied, but 78 79 may also stem from differences in the environmental conditions faced by populations of these 80 organisms, such that comparative interpretations are rather limited. To investigate the 81 repeatability of genetic and phenotypic differentiation, reproductive isolation and 82 introgression patterns across incipient species diverging under similar environmental 83 conditions are needed. Suture zones are areas where multiple recently diverged pairs of taxa 84 come into contact and hybridize (Remington, 1968), and typically span a sharp environmental 85 gradient or a dispersal barrier (Dasmahapatra, Lamas, Simpson, & Mallet, 2010; Endler, 86 1977; Moritz et al., 2009). With replicated pairs of divergent and hybridizing lineages, suture 87 zones offer an exceptional opportunity to compare levels and patterns of hybridization and 88 reproductive isolation in relation to genomic and phenotypic divergence in a common 89 environmental setting (Moritz et al., 2009; Nosil, Funk, & Ortiz-Barrientos, 2009; Rissler & 90 Smith, 2010).

91 Müllerian mimicry in butterflies, in which multiple defended species locally converge 92 on warning wing colour patterns and form mimicry 'rings' (Bates, 1862; Muller, 1879), 93 provides an excellent system to unravel the mechanisms underlying adaptation and speciation. 94 Two large neotropical mimetic butterfly tribes, Heliconiini and Ithomiini (Nymphalidae, 77 95 and 393 species, respectively) are particularly well suited. Heliconiine and ithomiine species 96 typically comprise multiple geographical subspecies that differ in colour patterns (Brown, 97 Sheppard, & Turner, 1974). Because warning colour patterns in mimetic butterflies are under 98 strong positive frequency-dependent selection locally (Kapan, 2001; Mallet & Barton, 1989), 99 divergent mimetic subspecies are often separated by narrow hybrid zones maintained by 100 migration-selection balance (Mallet & Barton, 1989). Mimicry generates postzygotic

101 reproductive isolation via higher predation on intermediate-patterned, non-mimetic hybrids 102 (Merrill et al., 2012) and prezygotic reproductive isolation if there is also assortative mating 103 for colour pattern among subspecies (Jiggins, Naisbit, Coe, & Mallet, 2001; McClure et al., 104 2019; Merrill et al., 2011; 2012). Mimicry is therefore a strong ecological driver of speciation, 105 and is believed to have triggered the diversification of large radiations of heliconiine and 106 ithomiine butterflies (Jiggins et al., 2001; Kozak et al., 2015). Studies of genetic 107 differentiation and the basis of colour pattern variation in mimetic butterflies have almost 108 exclusively focused on heliconiine butterflies (particularly the genus *Heliconius*), where a few 109 major-effect genes (dubbed the mimicry 'toolkit', (Joron et al., 2006)) have been found to 110 control wing pattern variation (Martin et al., 2012; Mazo-Vargas et al., 2017; Nadeau et al., 111 2016; Reed et al., 2011; Westerman et al., 2018) and to be highly differentiated across hybrid 112 zones, while the rest of the genome seems highly permeable (Nadeau et al., 2014). By 113 contrast, because of practical limitations (difficulties in maintaining captive populations and 114 making controlled crosses), much less is known about population genetics of Ithomiini 115 species (but see Dasmahapatra, Lamas, Simpson, & Mallet, 2010; McClure & Elias, 2016; 116 McClure et al., 2019), let alone of the genetics of wing pattern variation. Yet, Ithomiini 117 numerically dominate forest communities of day-flying Lepidoptera and are believed to be 118 some of the main drivers of both Müllerian and Batesian mimicry (whereby palatable species 119 mimic unpalatable aposematic species) among Lepidoptera in the Neotropics (Bates, 1862; 120 Beccaloni, 1997; Muller, 1879). Because of the ecological importance of Ithomiini, shedding 121 light on how populations are structured across hybrid zones and elucidating the genetic basis 122 of wing pattern variation would significantly advance our understanding of adaptation and 123 speciation in mimetic butterflies.

125 The foothills of the Andes in the region of Tarapoto are transitional between lowland 126 rainforest and mid-elevation mountain forest. This area is a major suture zone for a range of 127 organisms (Roberts et al., 2006; Smith et al., 2014; Weir, 2006) including heliconiine and 128 ithomiine mimetic butterflies (Dasmahapatra, Lamas, Simpson, & Mallet, 2010; Nadeau et 129 al., 2014; Whinnett et al., 2005) that harbour divergent wing colour patterns across the suture 130 zone. Here we take advantage of the Tarapoto suture zone to assess the patterns of genomic 131 and phenotypic divergence and infer the extent of reproductive isolation across the hybrid 132 zone for two widespread ithomiine species, Ithomia salapia and Oleria onega, that each 133 harbour divergent wing colour patterns across the Tarapoto suture zone. The two species have 134 broadly similar life histories (e.g., forest habitats, mimicry, Solanaceae hostplants) and 135 although they are somewhat differently distributed throughout the Neotropics, in the area of 136 Tarapoto their populations have similar distributions. In this area, I. salapia comprises two 137 subspecies: I. salapia aquinia, on the Amazonian side, which has a transparent yellow colour 138 pattern surrounded by an orange and black line with small white dots; and *I. salapia derasa*, 139 on the Andean side above about 500m alt., has a similar yellow pattern but surrounded by a 140 thick black line with large white dots (Figure 1). In addition to being found on the Amazonian 141 side of the Escalera mountains, I. salapia aquinia is also found on the other side of the 142 mountains, in the lowlands of the Río Mayo valley near Tarapoto.

143 On the Andean side (including in the lowlands of the Río Mayo) *O. onega* ssp. nov. 2 144 has translucent white wings with black patterning that splits the apical part of the forewing 145 into two white 'windows', while in the Amazonian subspecies *O. onega janarilla* the 146 forewing black patterning nearly splits the apical part of the forewing into four windows 147 (Figure 1).

Thus, whereas *I. salapia* has a strictly altitude-based distribution of populations, *O. onega* has populations that differ geographically East-West, independently of altitude. For

each species, the two subspecies belong to distinct mimicry rings, which they numerically dominate. Therefore, *I. salapia* and *O. onega* likely play a major role in divergence and maintenance of their respective mimicry rings. Individuals with intermediate patterns are sometimes found in the contact zone, suggesting that occasional interlineage hybrids are produced.

155

156 In this paper we carry out population genomic analyses and quantify wing colour 157 pattern variation in samples from Andean, Amazonian and intermediate populations of I. 158 salapia and O. onega to address the following questions: (1) what are the overall patterns of 159 differentiation, admixture and introgression between subspecies for each taxon pair? (2) To 160 what extent does introgression vary across the genome, and are genetic regions associated 161 with colour pattern among those that exhibit higher differentiation and reduced introgression? 162 (3) How repeatable are the patterns of differentiation, introgression and genotype-phenotype 163 association across the two taxon pairs?

164

165 Material and Methods

166 Sampling

Sampling was performed in five study sites in the region of Tarapoto in Peru (Figure 1a;
details in Supplementary Table 1: gives each site, GPS coordinates and the number of each
sex of *I. salapia* and *O. onega* sampled, before and after filtering). One hundred and twelve
(112) *I. salapia* specimens were sampled from five localities, and 149 *O. onega* specimens
were sampled in five localities.

172

173 Genotyping by sequencing (GBS)

174 DNA was extracted from ¹/₄ of thorax of each individual using the Qiagen DNeasy blood and 175 tissue kit, following the manufacturer protocol. We generated reduced genomic complexity 176 libraries for each specimen using a GBS (genotyping by sequencing) approach (Gompert et 177 al., 2012; Parchman et al., 2012). Briefly, genomic DNA was digested with the restriction 178 endonucleases EcoRI and MseI and resulting fragments were ligated to double-stranded 179 adaptor oligonucleotides. These adaptors consisted of the Illumina sequencing priming sites 180 followed barcodes that allow for the identification of sequences for each individual. These 181 barcodes allowed us to multiplex all individuals into one library. Sequencing of the library 182 was completed by the National Center for Genome Research (Santa Fe, NM, USA) on an 183 Illumina HiSeq platform; 100 base single-end sequencing reads were generated.

184

185 SNP calling

186 First, sequencing primers were removed, sequences were demultiplexed and associated with 187 each individual based on internal barcode sequences. SNP-calling was performed on samples 188 from each species separately using DiscoSnp-RAD, a *de novo* reference-free and assembly-189 free method (Gauthier et al., 2017; Uricaru et al., 2015). SNPs are identified from particular 190 arrangements in the De Bruijn graph built using a k-mer size of 31 and a minimal coverage of 191 2 for each allele (Gauthier et al., 2017; Uricaru et al., 2015). Individuals with more than 90% 192 missing genotypes were excluded (Supplementary Table 1) resulting in a final dataset 193 consisting of 105 samples for I. salapia and 142 for O. onega. SNPs scored in at least 80% of the samples (i.e. sites with < 20% missing data) and with a minor allele frequency above 0.01 194 195 were retained using vcftools (Danecek et al., 2011) resulting in a dataset of 17,779 SNPs 196 for I. salapia and 15,894 SNPs for O. onega.

198 Population structure analyses

199 Population genetic structure was investigated using a subset of SNPs, where only one SNP 200 per GBS locus was considered so as to minimize the effects of linkage disequilibrium that 201 would occur within loci, as often recommended (Falush, Stephens, & Pritchard, 2003). A total 202 of 8,219 SNP for *I. salapia* and 5,133 SNP for *O. onega* were retained. To investigate genetic 203 structure, we used principal component analysis implemented for genetic data in the 204 adegenet R package (Jombart & Ahmed, 2011). We used Bayesian admixture analysis 205 implemented in Structure (Pritchard, Stephens, & Donnelly, 2000) to estimate admixture 206 proportions, that is, the proportion of each individual's genome inherited from each of K 207 hypothetical source populations. We ran analyses with K from 1 to 6 with 3 independent 208 Markov chains each, using 200,000 steps and including 10,000 burn-in steps. We checked the 209 results obtained in each run to verify convergence of the chains to a stable posterior 210 distribution. The most likely number of clusters was identified using Evanno's method 211 (Evanno, Regnaut, & Goudet, 2005) implemented in Structure Harvester (Earl & 212 vonHoldt, 2012).

213

214 Genome-wide introgression and estimates of differentiation

To investigate introgression among each population pair and to search for loci potentially associated with reproductive isolation, we used a genomic cline approach using bgc (Gompert & Buerkle, 2012). Loci acting as barriers to gene flow and linked regions should exhibit reduced introgression into the foreign genomic background. Locus-specific introgression is characterized by the probability ϕ of being inherited from a given parental population (here, the Amazonian lineage; the probability of being inherited from the Andean lineage is therefore $1 - \phi$). These probabilities are compared to the genome-wide average 222 probability, which corresponds to the hybrid index. Introgression patterns can be summarized 223 by two locus-specific genomic cline parameters: α , the genomic center parameter, and β , the 224 genomic cline rate parameter. The genomic cline center parameter α specifies an increase 225 (positive values of α) or decrease (negative values of α) in the probability of ancestry of the 226 focal population (here, the Amazonian lineage). Positive or negative α values denote an 227 asymmetry in the direction of introgression with hybrids having increased or decreased 228 ancestry from one or the other ancestral lineage, respectively. The genomic cline rate 229 parameter β specifies the cline steepness, with an increase (positive values of β) or decrease 230 (negative values of β) in the rate of transition from low to high probability of ancestry 231 (Gompert & Buerkle, 2011). Positive or negative β values are associated with a high or low 232 level of gene flow, respectively. We estimated the posterior probability distribution of hybrid 233 indices and cline parameters with bgc. MCMC of 50,000 steps including 10,000 burn-in 234 steps for I. salapia samples and 100,000 with 30,000 burn-in steps for O. onega samples were 235 used to reach mixing, and convergence was verified graphically by plotting log-likelihood distributions. For a given SNP, outlier introgression from the genome-wide average was 236 237 identified as credible when the 95% credible intervals of the cline parameters α and β 238 excluded zero. These SNPs deviating from global pattern should reflect unusual patterns of 239 evolution acting on these loci. We used the admixture model implemented in entropy 240 (version 1.2) to estimate admixture proportions and intertaxon ancestry (Gompert et al. 2014). 241 This model explicitly estimates the proportion of each individuals' genome where the two 242 allele copies are derived from different source populations (i.e., the proportion of the genome 243 with intertaxon ancestry). entropy also incorporates uncertainty in genotypes due to limited 244 sequence coverage and sequencing errors. We fit the model using Markov chain Monte Carlo 245 (MCMC). We ran the MCMC algorithm three times with 15,000 iterations following a 5,000

iteration burnin, and with a thinning interval of 5. We assumed the number of sourcepopulations (*K*) was two.

248

249	Genome-wide weighted and per-SNP genetic differentiation FST were estimated using
250	Weir and Cockerham's method (Weir & Cockerham, 1984) implemented in vcftools
251	(Danecek et al., 2011). To do so, only samples from parental lineages, that is, samples from
252	the initial localities distant from the hybrid zone, were kept. To identify outlier SNPs with
253	elevated genetic differentiation, the threshold was fixed to the 95th percentile of FST
254	distribution obtained by random sampling with replacement of 100,000 values.

255

256 Wing pattern analyses

257 Photographs of dorsal and ventral sides of detached wings of 90 and 94 of the 258 genotyped specimens of *I. salapia* and *O. onega*, respectively, were taken with a Nikon D90 259 digital camera and a 105 mm lens on a white background with a piece of millimeter paper for 260 scale. For each specimen, dorsal and ventral patterns of fore- and hindwings were quantified 261 using Colour Pattern Modeling (CPM, (Le Poul et al., 2014) as follows: wings were first 262 extracted from their background, resulting in eight images per specimen (2 wings [forewing] 263 and hindwing] x 2 lateral sides [left/right] x 2 vertical sides [ventral/dorsal]); for each image, 264 wing pattern was described by semi-automatically categorizing wings into a finite number of 265 colours (yellow, black, orange and white for *I. salapia*; white, black and orange for *O. onega*). 266 Damaged wings were discarded, and when left and right wings were available only one 267 randomly chosen side was used in subsequent analyses. Homologous wings were then aligned 268 according to both shape and pattern (Le Poul et al., 2014), and a binary principal components 269 analysis based on one-hot encoding of colours (i. e., where each colour is encoded by a string

of bits among which only one takes the value 1) was performed on the colour of homologous
pixels shared by all wings. Principal component (PC) scores were used as a quantitative
measure of colour pattern in subsequent analyses.

273

274 Admixture association mapping

275 To identify SNPs associated with variation in wing patterns, we performed association 276 mapping using the Genome-wide Efficient Mixed Model Association tool (GEMMA) (Zhou & 277 Stephens, 2012, 2014). We used the multivariate linear mixed model (mvLMM) to test 278 marker associations with multiple phenotypes and to estimate genetic correlations among 279 complex phenotypes. To do so, we retained all wing pattern PCs that explained more than 1% 280 of the variation in each species as variables. This included 14 variables accounting for 57.1% 281 of the variation in wing pattern for *I. salapia* and 18 variables explaining 54.9% of the 282 variation for O. onega. Both the variation linked to sex and the confounding effect of 283 population structure (Freedman et al., 2004; Price et al., 2006) were integrated into the models 284 by implementing a relatedness matrix between individuals generated using GEMMA (Zhou & 285 Stephens, 2012) and the first population structure PC (obtained using adegenet R package 286 (Jombart & Ahmed, 2011)) as a covariate. Analyses were carried out using the option -lmm 1 287 to perform a Wald test evaluating the probability of the null hypothesis that the marker effect 288 sizes for all phenotypes were zero. For the identification of SNPs significantly associated with 289 wing pattern, the threshold was fixed to a p-value adjusted using (i) a classical Bonferroni 290 correction, which divides the significance threshold by the number of multiple comparisons, that is, the number of molecular markers multiplied by the number of variables, and (ii) using 291 292 the false discovery rate (FDR) method (Benjamini & Hochberg 1995). We considered SNPs 293 identified by both of these correction methods as significantly associated with wing pattern.

To test whether outlier SNPs by the three approaches, i.e. differentiation genome-scan, introgression pattern and admixture mapping, are distributed randomly or if there is enrichment in shared outlier SNPs, we used two methods: a Pearson's Chi-squared test to compare shared outlier to a random distribution and a bootstrap of 1,000 random samplings among SNPs to estimate confidence interval of such shared SNPs.

299

300 Similarities with other Lepidoptera genomes

Loci containing SNPs identified as outliers in the genetic differentiation or the
differential introgression approaches were screened by BLAST against all annotated butterfly
reference genomes in LepBase v4 (Challis, Kumar, Dasmahapatra, Jiggins, & Blaxter, 2016)
to investigate the gene content of homologous genomic regions. This was performed using the
BLASTn tool available on the LepBase platform (Priyam et al., 2019). Best hits, their location
in reference genomes and genes were then investigated manually.

307

308 Results

309 Our reduced complexity genotype by sequencing approach coupled with Illumina sequencing

310 produced 77.8 million reads distributed relatively evenly between samples with a mean of

311 340,940 reads per individual (sd: 157,991) for *I. salapia* samples and a mean of 270,602 reads

312 per individual (sd: 103,734) for O. onega. From this sequencing data, SNP calling and

313 filtering steps resulted in final datasets of 17,779 SNPs from 6,972 loci for *I. salapia* samples

and 15,894 SNPs from 4,524 loci for *O. onega* samples.

315

316 Population genetic structure

317 For *I. salapia* we considered two parental lineages, an Amazonian lineage corresponding to 318 subspecies aquinia sampled from two sites, Km-26 Yurimaguas-Tarapoto (1) and San Miguel 319 de Achinamiza (2), and an Andean lineage corresponding to subspecies derasa and sampled 320 from one site Puente Aguas Verdes (5). Between these sites a zone that is geographically and 321 altitudinally intermediate and where those lineages are in contact was sampled at two sites 322 (sites Km-42 Tarapoto-Yurimaguas (i3) and La Florida (i4), hybrid zone) (Figure 1a). The 323 genetic structure, identified by multivariate analyses on genetic data (Figure 2a) as well as 324 Structure (Figure 2b), highlight that the samples likely segregate in 3, best clustering, or 2 325 groups (Evanno's method: higher ΔK of 5037.42 for K=3 and 718.12 for K=2). These results 326 shows that the two parental lineages are distinct and show a low level of admixture. They 327 have a weighted genome-wide differentiation F_{ST} of 0.177 between the two. In the 328 intermediate populations, we did not find putative F1 hybrids (i.e. individuals with hybrid 329 index close to 0.5 and high intertaxon ancestry). Rather, four individuals (subpopulation 3.1, 330 Figure 2b) were genetically similar to individuals from the parental Amazonian aquinia 331 lineage, and the 28 other samples had equal levels of admixture with the majority of their 332 genetic content associated with the Andean *derasa* population (Figure 2b). Hybrid indices 333 estimated for these individuals is also indicative of this (Figure 2c). 334 The distribution of O. onega hybrids in the study area is somewhat similar to that observed in 335 *I. salapia*. The genetic structure, identified by multivariate analyses on genetic data (Figure

2a) as well as Structure (Figure 2b), highlight the samples likely segregate in 2, best

337 clustering, or 3 groups (Evanno's method: highest ΔK of 9887.07 for K=2 and 7.76 for K=3).

338 This species also consists of two parental lineages corresponding to an Amazonian

339 subspecies, *O. onega janarilla*, collected from two sites, Km-26 Yurimaguas-Tarapoto (1)

and San Miguel de Achinamiza (2) and an Andean subspecies, O. onega ssp. nov. 2

341 (Gallusser, 2002; Dasmahapatra, Lamas, Simpson, & Mallet, 2010), sampled at Puente

342 Serranoyacu (5). In addition to these sites, a geographically and altitudinally intermediate 343 zone was also sampled (sites Shapaja-Chazuta (o3) and a site spanning Quebrada Yanayacu to 344 Laguna del Mundo Perdido (04), hybrid zone) (Figure 1b). The two parental lineages are 345 genetically divergent with a weighted genome-wide differentiation F_{ST} of 0.372, more than 346 twice as high as between *I. salapia* parental lineages. The samples from the hybrid zone 347 comprise a mix of individuals with low and intermediate levels of admixture. Most 348 individuals have a low level of admixture (39 out of 46 had q < 0.2), and are genetically 349 closest to the Amazonian parental lineage. The stronger link with the Amazonian lineage 350 suggests a directionality in hybridization different from that of the *I. salapia* hybrid zone. 351 Three individuals show hybrid indices that suggest almost equal contributions from each 352 parental lineage (Figure 2a,b,c). One of these has a high level of intertaxon ancestry, which 353 suggests it is an F1 hybrid. The two other individuals have lower heterozygosity, which is 354 consistent with recent backcrossing. In conclusion, both species show some evidence of gene 355 flow and introgression, but both also exhibit strongly bimodal phenotypes (sensu Jiggins & 356 Mallet, 2000) in the region of the hybrid zone, suggesting strong reproductive isolation in 357 both species. However, O. onega displays somewhat more evidence of ongoing hybridization 358 and gene flow than *I. salapia*.

359

360 Genomic patterns of introgression and differentiation

Introgression varied across the genome for each taxon pair, with distinct patterns of introgression for the two studied species, *I. salapia* and *O. onega*, as demonstrated by the distributions of the genomic cline center (α) and rate parameters (β) (Figure 3). In each species the center parameter (α) is highly variable, with point estimates (posterior median) ranging from -3.067 to 2.864 for *I. salapia* and from -5.785 to 5.907 for *O. onega*. With respect to α , many loci show introgression patterns that differ credibly from the genome-wide

367 average. Loci with positive center parameter α are more likely to be inherited from the 368 Amazonian parental lineage than the rest of the genome. Conversely, loci with negative α are 369 more likely to be inherited from the Andean lineage. For I. salapia, 2125 SNPs (11.95 % of 370 all SNPs) have a center parameter α that differ from the genome-wide average, consistent 371 with different levels of introgression than the average of the rest of the genome. Among the 372 SNPs with credible evidence of differential introgression, most of them (1637 out of 2125, i. 373 e., 77%) have excess ancestry from the Amazonian populations whereas the genome-wide 374 average is more closely associated with the Andean population (Figure 2b,c). In O. onega, 375 where intermediate populations are genetically closer to the Amazonian lineage, 2146 SNPs 376 (13.50 % of all SNPs) have a center parameter α that significantly deviates from the genome-377 wide average. The distribution is reversed compared to I. salapia, however, with most of 378 those SNPs (1406 out of 2146, i. e., 66%) having a lower probability of being inherited from 379 the Amazonian parental lineage. This is expected, as there is more statistical power to detect 380 differential introgression of alleles of the less common (i.e., minor) ancestry type. 381 Regarding the genomic cline rate parameter (β), the profiles for the two species are markedly 382 different. In *I. salapia* species, β hardly shows any variation, ranging from -0.681 to 0.738, 383 whereas the variation observed in *O. onega* is higher by tenfold, ranging from -7.710 to 8.440. 384 Such a large variation in *O. onega* is probably due to the heterogeneity of the hybridization 385 profiles observed in the hybrid zone (Figure 2b). While in *I. salapia* no SNPs are different 386 from the genome-wide expectation, in *O. onega*, 1274 SNPs have a genomic cline rate (β) 387 credibly different from the genome-wide pattern, with 447 and 827 SNPs having higher and 388 lower values, respectively. These 447 SNPs with steeper introgression patterns than the 389 genome-wide average are characteristic of SNPs putatively associated with barrier loci (i.e., 390 in LD with barrier loci).

This difference observed between *I. salapia* and *O. onega* can be explained, at least in part, by the fact that there is hardly any variation among hybrids in *I. salapia* in our sampling. Perhaps an even larger sample than at present would show additional variation. In any case, the absence of variation in the *I. salapia* hybrids is a result in itself but limits the capacity to detect variation in patterns of introgression.

Genetic differentiation (Fsr) between parental lineages was heterogeneous across the genome,
ranging from ~0 to 1.000 with a weighted mean value of 0.177 for *I. salapia* and from ~0 to
1.000 with a weighted mean value of 0.372 for *O. onega*. The genome scan also identifies
outlier SNPs that deviate from the genome-wide distribution and have unusually high levels
of differentiation. In *I. salapia*, the 95th percentile threshold corresponds to an Fsr value of
0.415, and was exceeded by 890 SNPs. In *O. onega*, the 95th percentile threshold corresponds
to an Fsr value of 0.686, and was exceeded by 795 SNPs.

403

404 Phenotypic variation

405 For both species, the first principal component on colour pattern separates Andean from 406 Amazonian lineages (Fig. 4). However, the two species differ in where along this axis 407 specimens from intermediate populations fall. For *I. salapia*, most specimens in the hybrid 408 zone cluster with the Andean I. salapia derasa, while only four (with a predominantly 409 Amazonian genetic background) cluster with Amazonian I. salapia aquinia (Figure 4). No 410 individual in this sample has a markedly intermediate color pattern along this first principal 411 component. By contrast, most *O. onega* from the hybrid zone have an intermediate position 412 along the first principal component. For both species, the second axis highlights variation 413 associated with sex and as a result males and females are segregated along this axis. While 414 sexual dimorphism is moderate and of the same magnitude in both lineages of O. onega, it is 415 more pronounced in the Andean lineage *I. salapia derasa* and virtually absent in the

416 Amazonian lineage *I. salapia aquinia*. Sex was therefore included as a factor in our
417 phenotype-genotype analyses, along with genetic structure.

418

419 *Phenotype-genotype relationship and association mapping*

420 Despite the low variability among hybrid individuals from the hybrid zone, especially for *I*. 421 salapia, we attempted to associate genetic variation in specific SNPs to wing pattern 422 variation. All principal components (PCs) explaining at least 1% of total phenotypic variation 423 were included in association mapping (i.e. 14 variables for *I. salapia*, jointly explaining 424 57.1% of the variance, and 18 for O. onega, jointly explaining 54.9% of the variance). 425 Association mapping using GEMMA revealed several PCs for which a large phenotypic 426 variation is explained, specifically more than 80% phenotypic variation explained (pve) for 427 7/14 PCs for *I. salapia* and for 4/18 PCs for *O. onega*. When combining all PCs that were 428 retained (i.e., all those that explained at least 1% of the phenotypic variation), 59.3% of the 429 phenotypic variation is explained for *I. salapia* and 26.3% for *O. onega* (Supplementary 430 Figure 2). The PCs explaining most genetic variation are also those harbouring the largest 431 proportions of wing pattern variation. Specifically, 84.3% of the wing pattern variation is 432 explained for I. salapia and 65.3% for O. onega. The multivariate linear mixed model of 433 GEMMA performs tests to evaluate the probability that SNPs are associated with phenotypic 434 variation and outputs the corresponding p-value resulting from a Wald test. Retaining 435 significant SNPs concurrently in Bonferroni p-value correction and FDR approach, 88 SNPs 436 (0.49% of all SNPs) were significantly associated with wing patterns in *I. salapia* and 109 437 SNPs (0.69% of all SNPs) in O. onega (Figure 5).

438 We then focused on the differentiation and introgression patterns of SNPs associated with 439 wing pattern. A very small number of SNPs, 17 for *I. salapia* and 4 for *O. onega*, combine

strong association with wing pattern and high levels of differentiation, but in *I. salapia* the
SNP with the strongest association with wing pattern is also an outlier in genome scan for
differentiation (Figure 5).

443 With all of these approaches combined, we observe both differences and similarities between 444 I. salapia and O. onega in the number of SNPs similarly identified as outliers by multiple 445 approaches. The proportion of SNPs combining both high differentiation levels (Fsr) and 446 differential introgression (α), and which are characteristic of loci potentially involved in 447 adaptation in hybrid samples, are of the same order in *I. salapia* and in *O. onega* (1.81%, 448 321/17,779, for I. salapia, and 1.59%, 253/15,894, for O. onega, Figure 6), and higher than 449 expected at random (Pearson's Chi-squared test, p-value = 1.32e-114 and 95% CI = [103, 135] 450 for *I. salapia* and Pearson's Chi-squared test, p-value = 2.99e-54 and 95% CI = [92, 123] for 451 O. onega). SNPs previously identified as potentially involved in adaptation and adaptive 452 introgression, combining high differentiation levels (Fst) and differential introgression (α), do 453 not have a specific enrichment in SNPs significantly associated with wing pattern. In I. 454 salapia and O. onega the numbers of SNPs that fit this description are low, respectively only 455 two and one SNPs, and do not differ from a random distribution (Pearson's Chi-squared test, 456 p-value = 0.74 and 95% CI = [0, 4] for *I. salapia* and Pearson's Chi-squared test, p-value = 457 0.57 and 95% CI = [0, 4] for O. onega). The main difference between the two species consists 458 in the SNPs with differential positive genomic cline rate values (β) and potentially involved in 459 reproductive isolation. None of the SNPs in *I. salapia* have positive β while a non-trivial 460 proportion do in O. onega, i.e. 447 SNPs or 2.81%. Among these SNPs only a small fraction 461 is also significantly associated with wing pattern variation (5) and not enriched compared to a 462 random distribution (Pearson's Chi-squared test, p-value = 0.26 and 95% CI = [1, 6]). 463 Moreover, among the SNPs involved in both, high differentiation level and positive β (71)

and potentially involved in reproductive isolation, none of them is associated with wingpattern variations (Figure 6).

466

467 Similarities with other Lepidoptera genomes

468	We used BLASTn to	investigate the	potential fu	unctional roles	s of the loci	carrying the SNPs
		.)				~ • •

469 highlighted by the approaches listed above. We identified homologous regions in the *D*.

470 *plexippus* genome for loci containing SNPs significantly associated with wing patterns (12/67

471 loci for *I. salapia* and 21/99 for *O. onega*; Supplementary Table 3). None of the genes known

472 to control colour pattern variation in Lepidoptera and identified in the *D. plexippus* genome,

473 i.e. *optix*, *cortex*, *WntA*, *ebony* and *aristaless*, were identified.

474 On the other side the BLASTn of loci with SNPs potentially involved in adaptation and

475 adaptive introgression or reproductive isolation highlighted candidate genomic region and

476 gene in the genome of *D. plexippus* (37/277 loci for *I. salapia* and 66/218 for *O. onega*

477 potentially involved in adaptation and adaptive introgression and 73/389 loci potentially

478 involved in reproductive isolation for O. onega; Supplementary Table 2). We here report the

479 list of scaffold containing these loci of interest which are potential candidates for genes

480 involved in local adaptation and reproductive isolation, and on which further functional

481 analyses could be performed to investigate underlying biological functions (Supplementary

482 Table 2).

483

484 **Discussion**

485 The comparison of genome-wide patterns of genetic differentiation, introgression and

486 genotype-phenotype associations in two species, *I. salapia* and *O. onega*, that face similar

487 environmental transitions revealed some surprisingly large phenotypic and genomic

differences. Below, we discuss potential reasons for the differences observed in light ofbiological and ecological information.

490

491 Genomic and phenotypic differentiation patterns across the Tarapoto suture zone: similarities
492 and differences

Both *I. salapia* and *O. onega* are distributed across an important environmental gradient in the
region of Tarapoto in Peru, and both species consist of an Andean and Amazonian lineage.
Our analysis of wing pattern variation confirms that Amazonian and Andean lineages of both
species are phenotypically different (as is seen by the human eye) and also reveals a subtle
sexual dimorphism not readily discernible.

498 Phenotypic differentiation between populations of each species is associated with strong 499 overall genomic differentiation, especially in *O. onega*. These findings are consistent with 500 those obtained by Dasmahapatra, Lamas, Simpson, & Mallet (2010) using four loci, which 501 also revealed inter-lineage differentiation for these taxa, with the strongest genetic

502 differentiation occurring in O. onega.

503 However, the genomic and phenotypic population structure of hybrid populations differ

504 between *I. salapia* and *O. onega*. Firstly, while all but four of the *I. salapia* individuals

sampled in the hybrid zone are genetically closer to the Andean population, most individuals

506 in the *O. onega* hybrid populations we sampled are genetically closer to Amazonian

507 populations. Secondly, one individual in *O. onega* is likely a F1, and two other individuals are

508 recent backcrosses, while no such genetically intermediate individuals were found in our

509 samples of *I. salapia*. Thirdly, the phenotypic structure of hybrid populations mirrors the

510 genomic patterns. Along the first PC individuals in intermediate populations of *I. salapia* are

511 phenotypically closest to the Andean parental lineage (derasa), to which they are also closest

512 genetically. In our sample, intermediate color patterns are not observed in these populations, 513 nor in parental populations. By contrast, individuals in intermediate populations of *O. onega* 514 have intermediate phenotypes between the two lineages, with a tendency to be closer to the 515 Amazonian lineage (*janarilla*), to which they are also closest genetically.

516 Overall, the patterns detected suggest past gene flow in both species (most individuals have a 517 similar, low hybrid index), with potentially more recent (but rare) gene flow in O. onega -518 although we cannot rule out the fact that we may have missed recent hybrids in *I. salapia*. 519 Genomic differentiation across hybrid zones in Müllerian mimetic butterflies have mostly 520 been documented in the genus Heliconius. While Heliconius sub-specific lineages sometimes 521 exhibit high genome-wide differentiation across hybrid zones (Martin, Davey, Salazar, & 522 Jiggins, 2019; Van Belleghem et al., 2018), this appears not to be the case in the Tarapoto 523 suture zone. In this region, Nadeau et al. (2014) found that in phenotypically differentiated 524 lineages of *H. erato* and *H. melpomene* only loci around pattern gene loci showed genetic 525 differentiation, while the rest of the genome was highly permeable to gene flow, with Fst 526 values ranging from 0.0112 to 0.0280 (see also Martin et al., 2013). This stands in stark 527 contrast to the strong overall differentiation we revealed in ithomiine butterflies from the 528 Tarapoto suture zone (Fst = 0.177 for *I. salapia* and Fst = 0.372 for *O. onega*).

While intermediate populations of *O. onega* show a high extent of genetic heterogeneity, in *I. salapia* all but four individuals from intermediate populations are remarkably similar in their genetic composition. This suggests that intermediate populations of *I. salapia* are hardly exchanging genes with Andean and Amazonian populations, and may be in the process of forming a distinct taxon.

534

535 Genomic patterns of introgression

Variation in introgression patterns across the genome can help pinpoint loci involved in
adaptation and reproductive isolation (Gompert & Buerkle, 2011; Gompert et al., 2012;
Gompert, Mandeville, & Buerkle, 2017). In particular, highly divergent SNPs with deviant
genomic cline center parameters (α) or positive genomic cline rate parameter (β) (i. e.,
exhibiting a steep cline) should be more common in regions of the genome involved in local
adaptation or reproductive isolation.

542 Here, intermediate populations of both I. salapia and O. onega present SNPs with outlier 543 values in their genomic cline center parameters (α), meaning that these SNPs have an ancestry 544 different from that of the average of the genome. The SNPs exhibiting deviant α should be 545 enriched for genomic regions involved in adaptation or reproductive isolation. Such SNPs 546 (77.0%) are shifted towards Amazonian ancestry in *I. salapia*, whereas the majority of SNPs 547 with deviant α (65.5%) are shifted towards Andean ancestry in *O. onega*. While this may 548 indicate introgression from the parental lineage that is least represented in the genomic 549 background of intermediate populations, in our case such asymmetry may also result from a 550 lower power to detect introgression from the dominant parental background. . Whether some 551 of those SNPs result from adaptive introgression, as has been revealed in Heliconius 552 butterflies (Heliconius Genome Consortium, 2012; Jay et al., 2018), warrants further study. 553 Patterns of the parameter cline rate β markedly differ between *I. salapia* and *O. onega*. While 554 in I. salapia no SNPs show outlier cline steepness, in O. onega many SNPs show narrower or 555 wider clines compared to the genome average. Overall, in O. onega, the distribution of 556 genomic cline parameters is wider and more heterogeneous than in *I. salapia*, suggesting less 557 constraints in the hybridization process. Such heterogeneity in O. onega allows the 558 identification of loci with specific introgression levels. Highly divergent genomic regions that 559 have low levels of introgression are likely associated with reproductive isolation (Gompert & 560 Buerkle, 2011; Gompert et al., 2012). Low levels of introgression can be the result of several

evolutionary processes involving both extrinsic mechanisms, such as divergent selection and
environment-dependent selection against hybrids, and intrinsic mechanisms such as an
environment-independent reduced hybrid fitness caused by Bateson-Dobzhansky-Muller
incompatibilities (Gompert & Buerkle, 2011; Gompert et al., 2012). Correlation of genetic
patterns with other evidence (e. g., candidate traits) may shed light on the mechanisms of
speciation and reproductive isolation (Ravinet et al., 2017).

567

568 Genetic bases of colour pattern variation

569 Our admixture mapping analysis revealed SNPs associated with color pattern in *I. salapia* (88

570 SNPs, representing 0.49% of all SNPs) and *O. onega* (109 SNPs, representing less than

571 0.69% of all SNPs).

572 In nymphalid butterflies, wing pattern variation can be explained by combinations of 573 conserved pattern elements (Martin & Reed, 2014) and tends to be controlled by small 574 numbers of loci (Van Belleghem et al., 2017; Zhang et al., 2017). Previous studies, including 575 studies on mimetic Heliconius (Joron et al., 2006; Martin et al., 2012; Nadeau, 2016; Reed et 576 al. 2011; Westerman et al., 2018) and Papilio (Timmermans et al., 2014) identified a list of 577 candidate genes such as WntA, optix, cortex, ebony and aristaless. Some of these have been 578 functionally characterized (Martin & Reed, 2014; Nadeau, 2016; Nadeau et al., 2016). A 579 recent study on D. plexippus, the most closely related species to Ithomiini for which a 580 reference genome is available, highlighted the role of WntA in vein shape (Mazo-Vargas et 581 al., 2017).

582 None of our candidate loci correspond to genes known to be involved in wing colour pattern
583 in other butterflies. This is likely due to the relatively low-resolution genotype-by-sequencing

approach adopted here, such that we may have missed gene regions that were not covered byour loci.

Moreover, only a small fraction of loci with SNPs associated with wing pattern (23.9% for *I. salapia* and 21.2% for *O. onega*) map to an orthologous region in the *D. plexippus* genome. This deficit is related to the relatively large divergence time between our focal species and *D. plexippus* (ca. 42 million years ago, Chazot et al., 2019), which limits our ability to find orthologous regions and more specifically to find regions involved in non-coding regulatory loci. We may therefore have missed loci that contain known genes involved in wing pattern development.

Finally, the extremely low level of hybridization observed in *I. salapia* reduces the statistical power of admixture mapping and hampers detection of genomic regions associated with wing pattern variation. The function of most regions identified in our analyses are unknown and represent a starting point for further analyses of these regions, as those regions may contain novel genes in these pathways.

598

599 Colour pattern and reproductive isolation

Wing colour pattern is known to cause pre- and post-zygotic reproductive isolation in
Müllerian mimetic butterflies (e. g., Chamberlain, Hill, Kapan, Gilbert, & Kronforst, 2009;
Jiggins, Naisbit, Coe, & Mallet, 2001; Mallet & Barton, 1989; Merrill et al., 2012; Merrill et al., 2011; Naisbit, Jiggins, Linares, Salazar, & Mallet, 2002), including Ithomiini (McClure et al., 2019).

605 In our admixture mapping analysis, we found that only two and one of the significantly

606 differentiated introgression outliers were also associated with wing pattern variation in *I*.

607 *salapia* and *O. onega*, respectively. These figures do not differ from random expectations.

These results suggest that wing colour pattern may be moderately involved in reproductive isolation in both species, but since our genomic data do not cover the entire genome, we cannot rule out the fact that we may have missed some important loci involved in wing pattern coloration and with deviant genomic clines.

612 In mimetic butterflies, hybrid individuals with intermediate colour pattern may suffer more 613 predation because they are not recognized as unpalatable (e. g., Merrill et al., 2012), which 614 may in turn select for assortative mating for wing colour pattern through reinforcement (e.g., 615 Kronforst, Young, & Gilbert, 2007), resulting in reproductive isolation between 616 phenotypically differentiated lineages. Whether individuals with intermediate phenotype 617 suffer increased predation has never been tested in I. salapia and O. onega, but predation 618 experiments on *Heliconius* species carried out in the same region demonstrated the ability of 619 predators to discriminate fine phenotypic differences (Arias et al., 2016; Chouteau, Arias, & 620 Joron, 2016). Assortative mating seems likely in *I. salapia* and *O. onega* (MM and ME, pers. obs.), and has been documented by genetic and phenotypic characterization of the reared 621 622 offspring of females collected in hybrid populations of O. onega (De Silva, 2010: chapter 5). 623 There are fewer phenotypically intermediate individuals in *I. salapia* than in *O. onega*. This 624 difference might be explained by the mimicry rings to which the two species belong. While 625 the mimicry rings of *I. salapia* lineages are readily discriminated and show little variation 626 within each mimicry ring, the forms *O. onega* belongs to are more variable with overlapping 627 phenotypes (ME pers. obs.; Supplementary Figure 1). Because of the greater variation and 628 overlap of the two O. onega mimicry rings in Tarapoto, selection against hybrids with 629 intermediate phenotypes may be reduced compared with that in *I. salapia*, thereby allowing 630 the persistence of greater levels of gene flow between lineages. Whether the absence of 631 intermediate phenotypes in *I. salapia* is due to high mortality of hybrids through predation,

632 strong assortative mating, hybrid incompatibilities or all of these is currently unknown and633 deserves further examination.

634

635 Other putative adaptive traits

636 In both species, only a small number of SNPs potentially involved in adaptation or 637 reproductive isolation (i. e., highly differentiated SNPs that show deviant α or significantly 638 positive β) are also associated with wing pattern. This suggests that other traits may play a 639 role in reproductive isolation. Because interactions with local host plants at the larval stage 640 and the ability to fully exploit them often impact fitness in phytophagous insects (Simon et 641 al., 2015), larval hostplant shifts are believed to be an important driver of reproductive 642 isolation. However, in O. onega the two lineages utilize the same larval hostplants, Solanum 643 mite and related Solanum sect. Pteroidea species (de-Silva, Vásquez, & Mallet, 2011; 644 Gallusser, 2002). Similarly, I. salapia derasa larvae commonly feed on Witheringia 645 solanacea (Beccaloni, 1997), a plant also used by *I. salapia aquinia* (JM, MM and ME, 646 unpublished observations). Shifts in hostplant are therefore unlikely to explain divergence 647 between lineages in either of these species, as is the case in another ithomiine genus, 648 Melinaea, present in the same region (McClure & Elias, 2016). 649 The two lineages of O. onega have divergent egg-laying behavior: females of the Amazonian 650 population (janarilla) lay eggs on the hostplants, while females of the Andean population 651 (ssp. nov. 2) tend to lay eggs off the host plant (Gallusser, 2002). Eggs are typically laid up to 652 0.5 m away from the nearest host plant individual, on twigs, leaf litter or live non-host plant, 653 which reduces egg predation (de-Silva, Vásquez, & Mallet, 2011). Differences in egg-laying 654 behavior have been shown to cause reduced hybrid fitness in butterflies (McBride & Singer, 655 2010). This could be the case here, too, if hybrid females lay eggs off the plant, and if first 656 instar larvae are incapable of locating their host plant.

Other putative adaptive traits include adaptations to distinct habitats (higher elevations and
cooler temperatures for Andean lineages) and potentially microhabitats where co-mimics are
most abundant (e. g., Elias, Gompert, Jiggins, & Willmott, 2008).

660 Finally, as many butterfly species, Ithomiini probably rely on sexual pheromones during mate

661 choice (Schulz et al., 2004), and differences in sexual pheromones may incur discrimination

between lineages. Notably, putative male pheromones have been shown to differ between the

two lineages of *O. onega* (Stamm, Mann, McClure, Elias, & Schulz, 2019).

664 The role of these traits in reproductive isolation remains to be further explored using both 665 experimental and genomic approaches.

666

667 Acknowledgements. We thank the Peruvian authorities and Dr Gerardo Lamas (Museo de

668 Historia Natural, Universidad Mayor de San Marcos) for research permits (096-2004-

669 INRENA-IFFS-DCB, 021C/C-2005-INRENA-IANP and 236-2012-AG-DGFFS-DGEFFS).

670 We also thank Armando Silva-Vásquez and Fraser Simpson for their precious help in the

671 field. Molecular work was carried out at the Service de Systématique Moléculaire du Muséum

672 National d'Histoire Naturelle (UMS 2700 - OMSI). The support and resources from the

673 Center for High Performance Computing at the University of Utah are gratefully

acknowledged. We thank three anonymous reviewers for their useful comments that led us toimprove our manuscript.

676

677 **Data accessibility.** Sequence reads are archived at the NCBI SRA in the BioProject

678 PRJNA575968. Scripts describing the whole analytic process have been uploaded to GitHub

679 (https://github.com/JeremyLGauthier/Scripts_Gauthier_et.al_2019_ME).

681	Author contributions : ME and ZG designed the study. LdS, JM, MM and ME performed
682	sampling. LdS, AW, ZG and ME performed labwork. JG analysed the molecular data, with
683	contributions from ZG, AW, CL and FL. ME, JG, CH and YLP analysed phenotypic data. All
684	authors took part in discussions concerning the analyses and result interpretations. JG wrote
685	the paper, with contributions from all authors.

- **Funding.** This research was funded by a CNRS ATIP grant, two ANR grants (SPECREP

688 ANR-14-CE02-0011 and CLEARWING ANR-16-CE02-0012) and a Human Frontier Science

689 Program (RGP0014/2016) grant awarded to ME. LdS was a postdoc on the ATIP grant and

- 690 JG and MM were postdocs on the ANR SPECREP grant.

694 **References:**

- 695
- Arias, M., le Poul, Y., Chouteau, M., Boisseau, R., Rosser, N., Théry, M., & Llaurens, V.
 (2016). Crossing fitness valleys: empirical estimation of a fitness landscape associated
 with polymorphic mimicry. *Proceedings. Biological Sciences / The Royal Society*,
 283(1829).
- Barton, N. H., & Bengtsson, B. O. (1986). The barrier to genetic exchange between
 hybridising populations. *Heredity*, 57(3), 357.
- Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. *Annual Review of Ecology and Systematics*, 16(1), 113–148.
- Barton, N. H., & Hewitt, G. M. (1989). Adaptation, speciation and hybrid zones. *Nature*,
 341(6242), 497–503.
- 706 Bates, H. W. (1862). XXXII. Contributions to an insect fauna of the Amazon valley.
- Lepidoptera: Heliconidae. *Transactions of the Linnean Society of London*, 23(3), 495–
 566.
- Beccaloni, G. W. (1997). Ecology, natural history and behaviour of Ithomiine butterflies and
 their mimics in Ecuador (Lepidoptera: Nymphalidae: Ithomiinae). *Tropical Lepidoptera Research*, 8(2), 103–124.
- Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and
 powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B*,
 57, 289–300.
- Bierne, N., Welch, J., Loire, E., Bonhomme, F., & David, P. (2011). The coupling hypothesis:
 why genome scans may fail to map local adaptation genes. *Molecular Ecology*, 20(10),
 2044–2072.
- Brown K. S., Sheppard Philip Macdonald, & Turner John Richard George. (1974).
 Quaternary refugia in tropical America: evidence from race formation in *Heliconius* butterflies. *Proceedings of the Royal Society B: Biological Sciences*, 187(1088), 369–
- 721 378.
- Buerkle, C. A., & Lexer, C. (2008). Admixture as the basis for genetic mapping. *Trends in Ecology & Evolution*, 23(12), 686–694.
- Challis, R. J., Kumar, S., Dasmahapatra, K. K., Jiggins, C. D., & Blaxter, M. (2016). Lepbase:
 the Lepidopteran genome database (p. 056994). doi: 10.1101/056994
- Chamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009).
 Polymorphic butterfly reveals the missing link in ecological speciation. *Science*,
 326(5954), 847–850.
- Chazot, N., Wahlberg, N., Freitas, A. V. L., Mitter, C., Labandeira, C., Sohn, J.-C., ...
 Heikkilä, M. (2019). Priors and Posteriors in Bayesian Timing of Divergence Analyses:
 The Age of Butterflies Revisited. *Systematic Biology*, 68(5), 797–813.
- Chouteau, M., Arias, M., & Joron, M. (2016). Warning signals are under positive
 frequency-dependent selection in nature. *Proceedings of the National Academy of Sciences of the United States of America*, 113(8), 2164–2169.
- Christe, C., Stölting, K. N., Bresadola, L., Fussi, B., Heinze, B., Wegmann, D., & Lexer, C.
 (2016). Selection against recombinant hybrids maintains reproductive isolation in

- hybridizing Populus species despite F1 fertility and recurrent gene flow. *Molecular Ecology*, 25(11), 2482–2498.
- Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., ... 1000
 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. *Bioinformatics*, 27(15), 2156–2158.
- Dasmahapatra, K. K., Lamas, G., Simpson, F., & Mallet, J. (2010). The anatomy of a "suture
 zone" in Amazonian butterflies: a coalescent-based test for vicariant geographic
 divergence and speciation. *Molecular Ecology*, *19*(19), 4283–4301.
- de-Silva, D. L. (2010). Ecology and Evolution in Neotropical Butterflies of the Subtribe
 Olerina (Lepidoptera: Nymphalidae: Danainae: Ithomiini). PhD thesis, University of
 London, 275pp.
- de-Silva, D. L., Vásquez, A. S., & Mallet, J. (2011). Selection for enemy-free space: eggs
 placed away from the host plant increase survival of a neotropical ithomiine butterfly. *Ecological Entomology*, *36*(6), 667–672.
- Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program
 for visualizing STRUCTURE output and implementing the Evanno method.
 Conservation Genetics Resources, 4(2), 359–361.
- Elias, M., Gompert, Z., Jiggins, C., & Willmott, K. (2008). Mutualistic interactions drive
 ecological niche convergence in a diverse butterfly community. *PLoS Biology*, 6(12),
 2642–2649.
- Endler, J. A. (1977). Geographic variation, speciation, and clines. *Monographs in Population Biology*, 10, 1–246.
- Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals
 using the software STRUCTURE: a simulation study. *Molecular Ecology*, *14*(8), 2611–
 2620.
- Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using
 multilocus genotype data: linked loci and correlated allele frequencies. *Genetics*, 164(4),
 1567–1587.
- Freedman, M. L., Reich, D., Penney, K. L., McDonald, G. J., Mignault, A. A., Patterson, N.,
 ... Altshuler, D. (2004). Assessing the impact of population stratification on genetic
 association studies. *Nature Genetics*, *36*(4), 388–393.
- Gallusser, S. A. (2002). Biology, behaviour and taxonomy of two *Oleria onega* subspecies
 (Ithomiinae, Nymphalidae, Lepidoptera) in north-eastern, Peru (Université de
 Neuchâtel). Retrieved from http://doc.rero.ch/record/2627
- Gauthier, J., Mouden, C., Suchan, T., Alvarez, N., Arrigo, N., Riou, C., ... Peterlongo, P.
 (2017). DiscoSnp-RAD: de novo detection of small variants for population genomics (p. 216747). doi: 10.1101/216747
- Gompert, Z., & Buerkle, C. A. (2009). A powerful regression-based method for admixture
 mapping of isolation across the genome of hybrids. *Molecular Ecology*, *18*(6), 1207–
 1224.
- Gompert, Z., & Buerkle, C. A. (2011). Bayesian estimation of genomic clines. *Molecular Ecology*, 20(10), 2111–2127.
- Gompert, Z., & Buerkle, C. A. (2012). bgc: Software for Bayesian estimation of genomic
 clines. *Molecular Ecology Resources*, *12*(6), 1168–1176.

- Gompert, Z., & Buerkle, C. A. (2013). Analyses of genetic ancestry enable key insights for
 molecular ecology. *Molecular Ecology*, 22(21), 5278–5294.
- Gompert, Z., Lucas, L. K., Nice, C. C., Fordyce, J. A., Forister, M. L., & Buerkle, C. A.
 (2012). Genomic regions with a history of divergent selection affect fitness of hybrids
 between two butterfly species. *Evolution*, 66(7), 2167–2181.
- Gompert Z., Lucas L. K., Buerkle C. A., Forister M. L., Fordyce J. A., Nice C. C. (2014).
 Admixture and the organization of genetic diversity in a butterfly species complex
 revealed through common and rare genetic variants. *Molecular Ecolology*; 23(18):4555–
 4573.
- Gompert, Z., Mandeville, E. G., & Buerkle, C. A. (2017). Analysis of Population Genomic
 Data from Hybrid Zones. *Annual Review of Ecology, Evolution, and Systematics*, 48(1),
 207–229.
- *Heliconius* Genome Consortium. (2012). Butterfly genome reveals promiscuous exchange of
 minicry adaptations among species. *Nature*, 487(7405), 94–98.
- Jay, P., Whibley, A., Frézal, L., Rodríguez de Cara, M. Á., Nowell, R. W., Mallet, J., ...
 Joron, M. (2018). Supergene Evolution Triggered by the Introgression of a
 Chromosomal Inversion. *Current Biology: CB*, 28(11), 1839–1845.e3.
- Jiggins, C. D., Naisbit, R. E., Coe, R. L., & Mallet, J. (2001). Reproductive isolation caused
 by colour pattern mimicry. *Nature*, 411(6835), 302–305.
- Jiggins, C.D., & Mallet, J. (2000). Bimodal hybrid zones and speciation. *Trends in Ecology and Evolution* 15:250-255.
- Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide
 SNP data. *Bioinformatics*, 27(21), 3070–3071.
- Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., ... Kingsley,
 D. M. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. *Nature*, 484(7392), 55–61.
- Joron, M., Papa, R., Beltrán, M., Chamberlain, N., Mavárez, J., Baxter, S., ... Jiggins, C. D.
 (2006). A conserved supergene locus controls colour pattern diversity in *Heliconius*butterflies. *PLoS Biology*, 4(10), e303.
- Kapan, D. D. (2001). Three-butterfly system provides a field test of müllerian mimicry. *Nature*, 409(6818), 338–340.
- Kozak, K. M., Wahlberg, N., Neild, A. F. E., Dasmahapatra, K. K., Mallet, J., & Jiggins, C.
 D. (2015). Multilocus species trees show the recent adaptive radiation of the mimetic
 Heliconius butterflies. Systematic Biology, 64(3), 505–524.
- Kronforst, M. R., Hansen, M. E. B., Crawford, N. G., Gallant, J. R., Zhang, W., Kulathinal, R.
 J., ... Mullen, S. P. (2013). Hybridization reveals the evolving genomic architecture of
 speciation. *Cell Reports*, 5(3), 666–677.
- Kronforst, M. R., Young, L. G., & Gilbert, L. E. (2007). Reinforcement of mate preference
 among hybridizing *Heliconius* butterflies. *Journal of Evolutionary Biology*, 20(1), 278–
 285.
- Larson, E. L., Andrés, J. A., Bogdanowicz, S. M., & Harrison, R. G. (2013). Differential
 introgression in a mosaic hybrid zone reveals candidate barrier genes. *Evolution*, 67(12),
 3653–3661.

- Le Poul, Y., Whibley, A., Chouteau, M., Prunier, F., Llaurens, V., & Joron, M. (2014).
 Evolution of dominance mechanisms at a butterfly mimicry supergene. *Nature Communications*, 5, 5644.
- Mallet, J. (2005). Hybridization as an invasion of the genome. *Trends in Ecology & Evolution*, 20(5), 229–237.
- Mallet, J., & Barton, N. H. (1989). Strong Natural Selection in a Warning-Color Hybrid Zone.
 Evolution, 43(2), 421–431.
- Martin, S. H., Dasmahapatra, K. K., Nadeau, N. J., Salazar, C., Walters, J. R., Simpson, F., ...
 Jiggins, C. D. (2013). Genome-wide evidence for speciation with gene flow in *Heliconius* butterflies. *Genome Research* 23:1817-1828.
- Martin, S. H., Davey, J. W., Salazar, C., & Jiggins, C. D. (2019). Recombination rate
 variation shapes barriers to introgression across butterfly genomes. *PLoS Biology*, *17*(2),
 e2006288.
- Martin, A., Papa, R., Nadeau, N. J., Hill, R. I., Counterman, B. A., Halder, G., ... Reed, R. D.
 (2012). Diversification of complex butterfly wing patterns by repeated regulatory
 evolution of a Wnt ligand. *Proceedings of the National Academy of Sciences of the United States of America*, 109(31), 12632–12637.
- Martin, A., & Reed, R. D. (2014). Wnt signaling underlies evolution and development of the
 butterfly wing pattern symmetry systems. *Developmental Biology*, 395(2), 367–378.
- Mazo-Vargas, A., Concha, C., Livraghi, L., Massardo, D., Wallbank, R. W. R., Zhang, L., ...
 Martin, A. (2017). Macroevolutionary shifts of WntA function potentiate butterfly wingpattern diversity. *Proceedings of the National Academy of Sciences of the United States*of America, 114(40), 10701–10706.
- McBride, C. S., & Singer, M. C. (2010). Field studies reveal strong postmating isolation
 between ecologically divergent butterfly populations. *PLoS Biology*, 8(10), e1000529.
- McClure, M., & Elias, M. (2016). Unravelling the role of host plant expansion in the
 diversification of a Neotropical butterfly genus. *BMC Evolutionary Biology*, *16*(1), 128.
- McClure, M., Mahrouche, L., Houssin, C., Monllor, M., Le Poul, Y., Frérot, B., ... Elias, M.
 (2019). Does divergent selection predict the evolution of mate preference and
 reproductive isolation in the tropical butterfly genus *Melinaea* (Nymphalidae:
 Ithomiini)? *The Journal of Animal Ecology*. doi: 10.1111/1365-2656.12975
- Merrill R. M., Wallbank R. W. R., Bull V., Salazar P. C. A., Mallet J., Stevens M., & Jiggins
 C. D. (2012). Disruptive ecological selection on a mating cue. *Proceedings of the Royal Society B: Biological Sciences*, 279(1749), 4907–4913.
- Merrill, R. M., Gompert, Z., Dembeck, L. M., Kronforst, M. R., McMillan, W. O., & Jiggins,
 C. D. (2011). Mate preference across the speciation continuum in a clade of mimetic
 butterflies. *Evolution; International Journal of Organic Evolution*, 65(5), 1489–1500.
- Moritz, C., Hoskin, C. J., MacKenzie, J. B., Phillips, B. L., Tonione, M., Silva, N., ...
 Graham, C. H. (2009). Identification and dynamics of a cryptic suture zone in tropical rainforest. *Proceedings of the Royal Society B: Biological Sciences*, 276(1660), 1235– 1244.
- Muller, F. (1879). *Ituna* and *Thyridia*; a remarkable case of mimicry in butterflies. *Proceedings of the Entomological Society of London.*
- 867 Nadeau, N. J. (2016). Genes controlling mimetic colour pattern variation in butterflies.

- 868 *Current Opinion in Insect Science*, 17, 24–31.
- Nadeau, N. J., Pardo-Diaz, C., Whibley, A., Supple, M. A., Saenko, S. V., Wallbank, R. W.
 R., ... Jiggins, C. D. (2016). The gene *cortex* controls mimicry and crypsis in butterflies and moths. *Nature*, *534*(7605), 106–110.
- Nadeau, N. J., Ruiz, M., Salazar, P., Counterman, B., Medina, J. A., Ortiz-Zuazaga, H., ...
 Papa, R. (2014). Population genomics of parallel hybrid zones in the mimetic butterflies, *H. melpomene* and *H. erato. Genome Research*, 24(8), 1316–1333.
- Naisbit, R. E., Jiggins, C. D., Linares, M., Salazar, C., & Mallet, J. (2002). Hybrid sterility,
 Haldane's rule and speciation in *Heliconius cydno* and *H. melpomene. Genetics*, 161(4),
 1517–1526.
- Nosil, P., Funk, D. J., & Ortiz-Barrientos, D. (2009). Divergent selection and heterogeneous
 genomic divergence. *Molecular Ecology*, *18*(3), 375–402.
- Pallares, L. F., Harr, B., Turner, L. M., & Tautz, D. (2014). Use of a natural hybrid zone for
 genomewide association mapping of craniofacial traits in the house mouse. *Molecular Ecology*, 23(23), 5756–5770.
- Parchman, T. L., Gompert, Z., Mudge, J., Schilkey, F. D., Benkman, C. W., & Buerkle, C. A.
 (2012). Genome-wide association genetics of an adaptive trait in lodgepole pine. *Molecular Ecology*, 21(12), 2991–3005.
- Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D.
 (2006). Principal components analysis corrects for stratification in genome-wide
 association studies. *Nature Genetics*, *38*(8), 904–909.
- Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using
 multilocus genotype data. *Genetics*, 155(2), 945–959.
- Priyam, A., Woodcroft, B. J., Rai, V., Munagala, A., Moghul, I., Ter, F., ... Wurm, Y. (2019).
 Sequenceserver: a modern graphical user interface for custom BLAST databases, *Molecular Biology and Evolution*, msz185.
- Ravinet, M., Faria, R., Butlin, R. K., Galindo, J., Bierne, N., Rafajlović, M., ... Westram, A.
 M. (2017). Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. *Journal of Evolutionary Biology*, *30*(8), 1450–1477.
- Reed, R. D., Papa, R., Martin, A., Hines, H. M., Counterman, B. A., Pardo-Diaz, C., ...
 McMillan, W. O. (2011). *optix* drives the repeated convergent evolution of butterfly
 wing pattern mimicry. *Science*, *333*(6046), 1137–1141.
- Remington, C. L. (1968). Suture-zones of hybrid interaction between recently joined biotas.
 Evolutionary Biology (pp. 321–428).
- Rieseberg, L. H., Whitton, J., & Gardner, K. (1999). Hybrid zones and the genetic
 architecture of a barrier to gene flow between two sunflower species. *Genetics*, 152(2),
 713–727.
- Rissler, L. J., & Smith, W. H. (2010). Mapping amphibian contact zones and
 phylogeographical break hotspots across the United States. *Molecular Ecology*, 19(24),
 5404–5416.
- Roberts, J. L., Brown, J. L., May, R. von, Arizabal, W., Schulte, R., & Summers, K. (2006).
 Genetic divergence and speciation in lowland and montane peruvian poison frogs.
- 910 *Molecular Phylogenetics and Evolution*, 41(1), 149–164.

- Safran, R. J., & Nosil, P. (2012). Speciation: The origin of new species. *Nature Education Knowledge*, 3(10), 17.
- Schulz, S., Beccaloni, G., Brown, K. S., Jr., Boppre, M., Freitas, A. V. L., Ockenfels, P., &
 Trigo, J. R. (2004). Semiochemicals derived from pyrrolizidine alkaloids in male
 ithomiine butterflies (Lepidoptera: Nymphalidae: Ithomiinae). *Biochemical Systematics and Ecology*, 32.
- 917 Simon, J.-C., d'Alençon, E., Guy, E., Jacquin-Joly, E., Jaquiéry, J., Nouhaud, P., ... Streiff,
- R. (2015). Genomics of adaptation to host-plants in herbivorous insects. *Briefings in Functional Genomics*, 14(6), 413–423.
- Smith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D.,
 Brumfield, R. T. (2014). The drivers of tropical speciation. *Nature*, *515*(7527), 406–
 409.
- Soria-Carrasco, V., Gompert, Z., Comeault, A. A., Farkas, T. E., Parchman, T. L., Johnston, J.
 S., ... Nosil, P. (2014). Stick insect genomes reveal natural selection's role in parallel
 speciation. *Science*, *344*(6185), 738–742.
- Stamm, P., Mann, F., McClure, M., Elias, M., & Schulz, S. (2019). Chemistry of the
 Androconial Secretion of the Ithomiine Butterfly *Oleria onega. Journal of Chemical Ecology*, 45(9), 768–778.
- Teeter, K. C., Payseur, B. A., Harris, L. W., Bakewell, M. A., Thibodeau, L. M., O'Brien, J.
 E., ... Tucker, P. K. (2008). Genome-wide patterns of gene flow across a house mouse
 hybrid zone. *Genome Research*, 18(1), 67–76.
- 932 Teeter, K. C., Thibodeau, L. M., Gompert, Z., Buerkle, C. A., Nachman, M. W., & Tucker, P.
 933 K. (2010). The variable genomic architecture of isolation between hybridizing species of
 934 house mice. *Evolution; International Journal of Organic Evolution*, 64(2), 472–485.
- Timmermans Martijn J. T. N., Baxter Simon W., Clark Rebecca, Heckel David G., Vogel
 Heiko, Collins Steve, ... Vogler Alfried P. (2014). Comparative genomics of the
 mimicry switch in *Papilio dardanus*. *Proceedings of the Royal Society B: Biological Sciences*, 281(1787), 20140465.
- Uricaru, R., Rizk, G., Lacroix, V., Quillery, E., Plantard, O., Chikhi, R., ... Peterlongo, P.
 (2015). Reference-free detection of isolated SNPs. *Nucleic Acids Research*, 43(2), e11.
- Van Belleghem, S. M., Baquero, M., Papa, R., Salazar, C., McMillan, W. O., Counterman, B.
 A., ... Martin, S. H. (2018). Patterns of Z chromosome divergence among *Heliconius*species highlight the importance of historical demography. *Molecular Ecology*, 27(19),
 3852–3872.
- Van Belleghem, S. M., Rastas, P., Papanicolaou, A., Martin, S. H., Arias, C. F., Supple, M.
 A., ... Papa, R. (2017). Complex modular architecture around a simple toolkit of wing
 pattern genes. *Nature Ecology & Evolution*, 1(3), 52.
- Via, S., & Hawthorne, D. J. (2002). The genetic architecture of ecological specialization:
 correlated gene effects on host use and habitat choice in pea aphids. *The American Naturalist*, *159 Suppl 3*, S76–S88.
- Weir, B. S., & Cockerham, C. C. (1984). Estimating *F*-Statistics for the analysis of population
 structure. *Evolution*, *38*(6), 1358–1370.
- Weir, J. T. (2006). Divergent timing and patterns of species accumulation in lowland and
 highland neotropical birds. *Evolution*, 60(4), 842–855.

- Westerman, E. L., VanKuren, N. W., Massardo, D., Tenger-Trolander, A., Zhang, W., Hill, R.
 I., ... Kronforst, M. R. (2018). Aristaless controls butterfly wing color variation used in mimicry and mate choice. *Current Biology: CB*, 28(21), 3469–3474.e4.
- Whinnett, A., Zimmermann, M., Willmott, K. R., Herrera, N., Mallarino, R., Simpson, F., ...
 Mallet, J. (2005). Strikingly variable divergence times inferred across an Amazonian
 butterfly "suture zone." *Proceedings of the Royal Society B: Biological Sciences*,
- 961 272(1580), 2525–2533.
- Zhang, L., Martin, A., Perry, M. W., van der Burg, K. R. L., Matsuoka, Y., Monteiro, A., &
 Reed, R. D. (2017). Genetic basis of melanin pigmentation in butterfly wings. *Genetics*,
 205(4), 1537–1550.
- 265 Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for
 association studies. *Nature Genetics*, 44(7), 821–824.
- 267 Zhou, X., & Stephens, M. (2014). Efficient multivariate linear mixed model algorithms for
 268 genome-wide association studies. *Nature Methods*, 11(4), 407–409.

970 Figure captions :

971

972 Figure 1. The study organisms and sites studied in N.E. Peru. a. Photos of representative 973 specimens from each population of the two studied species (dorsal side shown against a dark 974 background to highlight transparency and ventral side shown against a white background to 975 highlight colour pattern). b. Sampling sites for *I. salapia* populations (top) with Amazonian 976 sites in red (1)Km-26 Yurimaguas-Tarapoto and (2) San Miguel de Achinamiza, the Andean 977 sites in blue (5) Puente Aguas Verdes and sites within the hybrid zone in purple (i3) Km-42 978 Tarapoto-Yurimaguas and (i4) La Florida. For O. onega populations (bottom), Amazonian 979 sites are in green (1)Km-26 Yurimaguas-Tarapoto and (2) San Miguel de Achinamiza, 980 Andean sites are in yellow (5) Puente Serranoyacu and the sites in the hybrid zone are in 981 apple green (o3) Shapaja-Chazuta (o4) from Quebrada Yanayacu to Laguna del Mundo 982 Perdido. Color codes are conserved for all other figures. c. Photos of putative hybrid 983 specimens with intermediate color patterns (ventral side). Photo credits: Céline Houssin

984

985 Figure 2. Population structure of pure and hybrid populations of *Ithomia salapia* (top) and 986 Oleria onega (bottom). a. Principal component Analysis (PC1: horizontal axis, PC2: vertical 987 axis), the percentage of total inertia explained by each axis is indicated in parentheses and the 988 histograms in the top corners represent the inertia percentages of the first principal 989 components. b. Structure plot for K = 2 and K = 3. The number of individuals that were used 990 is indicated for each site. c. Plot of the hybrid index of each sample from the hybrid 991 populations. The points represent the mean hybrid index value estimated from the posterior 992 distribution and black lines indicate 95% credible intervals. d. Plot of intertaxon ancestry and 993 hybrid index. Population color codes are the same as those in Figure 1b.

994

995 Figure 3. Scatterplots representing the relationships between the genomic cline center 996 parameter (α), representing SNP ancestry; the genomic cline rate parameter (β), representing 997 the steepness of the cline; and the differentiation level, F_{ST}, estimated for each SNP. Plots for 998 I. salapia and O. onega are on theft and right, respectively. Each data point is colored in grey, 999 and darkness increases with point density (i. e., darker areas contain more points). Blue lines frame sets of SNPs for which the genomic cline center parameters (α) significantly deviates 1000 1001 from the genome-wide pattern. Green lines frame sets of SNPs for which the genomic cline 1002 rate parameters (β) significantly deviates from the genome-wide pattern. Note that for *I*. 1003 salapia, no SNPs have genomic cline rate parameters (β) that deviate from the genome-wide 1004 pattern. SNPs on the right hand side of the orange lines harbour a significantly higher

- $1005 \qquad \text{differentiation (high F_{ST}) than the genome average.}$
- 1006

Figure 4. Phenotypic position of 90 *I. salapia* (top) and 94 *O. onega* (bottom) in the wing
color space consisting of the two main principal components from the colour pattern
modeling approach. Color indicates sample populations as in Figure 1b. Females and males
are depicted by circles and triangles, respectively. Representative images of the average
phenotypes for population and sex are shown on each side of the figure.

- 1012
- 1013 **Figure 5.** The relationship between the significance of association with color pattern
- 1014 (represented as -log₁₀(p-Wald)) and FsT for *I. salapia* (left) and *O. onega* (right). Yellow
- 1015 points indicate SNPs significantly associated with wing patterns (after both Bonferroni and

1016 1017	FDR corrections). Orange points highlight SNPs with high FST values and red points highlight SNPs with significant association both to wing pattern and to high FST.
1018	
1019 1020 1021 1022	Figure 6. Venn diagram combining number of SNPs identified as supported by each approach (differentiation, introgression and admixture mapping) and shared between them. Note that for introgression patterns, no SNP showed deviant genomic cline rate parameters (β) in <i>I. salapia</i> . This parameter is therefore not represented in the diagram.
1023	
1024	
1025	Supplementary material :
1026	
1027 1028	Supplementary Figure 1. Mimicry ring example for each studied species and lineages, in black frameworks, including various other butterfly species.
1029	
1030 1031 1032	Supplementary Figure 2. Barplots with error bars of the Phenotypic Variation Explained (PVE) by genetic for each variable (PC) explaining more than 1% of the wing pattern variation.
1033	
1034 1035 1036	Supplementary Table 1. Sampling information including species, population, sex, location, region, GPS positions, sampling date. For each sample, the number of reads sequenced and SNPs called has been given.
1037	
1038 1039 1040 1041	Supplementary Table 2. BLAST results of locus with outlier SNPs identified as potentially involved in local adaptation, adaptive introgression and reproductive isolation, i.e. differential genomic cline center (α), high differentiation level (FST) and differential positive genomic cline rate (β).
1042	
1043 1044	Supplementary Table 3. BLAST results of loci with SNPs significantly associated with wing pattern variation.
1045	
1046	

Ithomia salapia aquinia (Amazon)

Ithomia salapia derasa (Andes)

C.

Ithomia salapia hybrid

Oleria onega janarilla (Amazon)

Oleria onega ssp nov 2 (Andes)

Oleria onega hybrid

C.

Ithomia salapia

Oleria onega

Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone

SUPPLEMENTARY MATERIAL

Supplementary Figure 1. Mimicry ring example for each studied species and lineages, in black frameworks, including various other butterfly species.

Supplementary Figure 2. Barplots with error bars of the Phenotypic Variation Explained (PVE) by genetic for each variable (PC) explaining more than 1% of the wing pattern variation.

Supplementary Table 1. Sampling information including species, population, sex, location, region, GPS positions, sampling date. For each sample, the number of reads sequenced and SNPs called has been given.

Supplementary Table 2. BLAST results of locus with outlier SNPs identified as potentially involved in local adaptation, adaptive introgression and reproductive isolation, i.e. differential genomic cline center (α), high differentiation level (FST) and differential positive genomic cline rate (β).

Supplementary Table 3. BLAST results of loci with SNPs significantly associated with wing pattern variation.

		Sample	description				Sampling info	ormation							Sequencing statisti	cs SNP calling statistics
Sample	Genus	Species	Phenotype	Sex	Population	n Population Code	Location	Region	Country	Latitude	Longitude	Altitude (m)	ID by	Date	#_reads	#_SNP
Isa_Az_02_992	Ithomia	salapia	aquinia	F	Amazon	1	Km-26, Yurimaguas-Tarapoto (now Km-24)	San Martín	Peru	5° 58' 489" S	76° 13' 856" W	1066	Alaine Whinnet	9/3/2002	454952	116822
Isa_Az_02_991	Ithomia	salapia	aquinia	Μ	Amazon	1	Km-26, Yurimaguas-Tarapoto (now Km-24)	San Martín	Peru	5° 58' 489" S	76° 13' 856" W	1066	Alaine Whinnet	9/3/2002	230236	116707
Isa_Az_02_015	Ithomia	salapia	aquinia	F	Amazon	1	Km-26, Yurimaguas-Tarapoto (now Km-24)	San Martín	Peru	5° 58' 489" S	76° 13' 856" W	1066	Alaine Whinnet	10/1/2002	274811	99365
Isa_Az_02_014	Ithomia	salapia	aquinia	F	Amazon	1	Km-26, Yurimaguas-Tarapoto (now Km-24)	San Martín	Peru	5° 58' 489" S	76° 13' 856" W	1066	Alaine Whinnet	10/1/2002	181385	77018
Isa_Az_05_1605	Ithomia	salapia	aquinia	Μ	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva	3/2/2006	381230	146396
Isa_Az_05_1551	Ithomia	salapia	aquinia	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva	3/1/2006	377803	145858
Isa_Az_05_1560	Ithomia	salapia	aquinia	Μ	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva	3/1/2006	336857	138789
lsa_Az_05_1557	Ithomia	salapia	aquinia	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva	3/1/2006	284147	131087
Isa_Az_05_1545	Ithomia	salapia	aquinia	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	1066	Lisa de Silva	3/1/2006	563602	118981
lsa_Az_05_1604	Ithomia	salapia	aquinia	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva	3/2/2006	412881	111760
lsa_Az_05_1558	Ithomia	salapia	aquinia	F	Middle1	2	San Miguel de Achinamiza	San Martin	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva	3/1/2006	381997	110760
Isa_Az_05_1603	Ithomia	salapia	aquinia	F	Middle1	2	San Miguel de Achinamiza	San Martin	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva	3/2/2006	351247	106268
Isa_Az_05_1549	Ithomia	salapia	aquinia	F	Middle1	2	San Miguel de Achinamiza	San Martin	Peru	6° 18' 540" S	76° 09' 843" W	1066	Lisa de Silva	3/1/2006	306833	105299
Isa_Az_05_1554	itnomia	salapia	aquinia	F	Middle1	2	San Miguel de Achinamiza	San Martin	Peru	6° 18' 540'' S	76° 09' 843" W	197	Lisa de Silva	3/1/2006	337562	104342
Isa_Az_05_1553	itnomia	saiapia	aquinia	+	Middle1	2	San Miguel de Achinamiza	San Martin	Peru	6° 18' 540'' S	76° 09' 843" W	197	Lisa de Silva	3/1/2006	259997	94223
Isa_Az_05_1547	itnomia	salapia	aquinia	IVI	Middle1	2	San Miguel de Achinamiza	San Martin	Peru	6° 18' 540'' S	76° 09' 843" W	1066	Lisa de Silva	3/1/2006	2/2/00	94141
Isa_Az_05_1546	Itnomia	salapia	aquinia	-	Middle1	2	San Miguel de Achinamiza	San Martin	Peru	6° 18' 540'' S	76° 09' 843" W	1066	Lisa de Silva	3/1/2006	248524	93416
ISA_AZ_05_1555	Ithomia	salapia	aquinia	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6 18 540 5	76 09 843 W	197	Lisa de Silva	3/1/2006	234330	90613
ISA_AZ_05_1550	itheresia	sulupiu	aquinia		NA: dalla 1	2	San Miguel de Achinamiza	Sali Iviai tili	Peru	0 10 540 5	70 09 845 W	1000	Lisa de Silva	3/1/2000	241120	03907
ISA_A2_05_1546	Ithomia	salania	aquinia		Middlo1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540' 5	76 09 843 W	107	Lisa de Silva	2/1/2006	209916	0/405
ISA_A2_05_1505	Ithomia	salania	aquinia		Middle1	2	San Miguel de Achinamiza	San Martín	Peru	0 18 540 5	70 03 843 W	107	Lisa de Silva	3/1/2000	141902	60244
ISA_A2_05_1001	Ithomia	salania	aquinia	M	Middlo1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540' 5	76 09 843 W	197	Lisa de Silva	2/1/2006	141095	51065
Isa_A2_05_1352	Ithomia	salania	aquinia	F	Middle2	3.1	Km_42 Taranoto_Vurimaguas	San Martín	Poru	6° 25' 29 4" S	76° 15' 1 6" W	172	Alaine Whinnet	9/9/2000	348506	128985
Isa_Mi_02_1371	Ithomia	salania	aquinia	M	Middle2	3.1	Km-42, Tarapoto Turimaguas	San Martín	Poru	6° 25' 29.4" S	76° 15' 1.6" W	172	Alaine Whinnet	9/9/2002	591079	120505
Isa_Mi_02_1372	Ithomia	salania	aquinia	F	Middle2	3.1	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	197	Alaine Whinnet	9/9/2002	558863	117084
Isa_Mi_02_1370	Ithomia	salania	aquinia	F	Middle2	3.1	Km-42 Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29 4" S	76° 15' 1.6" W	346	Alaine Whinnet	9/9/2002	114518	55353
Isd_Mi_02_1381	Ithomia	salania	derasa	F	Middle2	3.2	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	1066	Alaine Whinnet	9/9/2002	370237	140489
Isd Mi 02 1376	Ithomia	salapia	derasa	M	Middle2	3.2	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	197	Alaine Whinnet	9/9/2002	211612	112016
Isd Mi 02 1380	Ithomia	salapia	derasa	м	Middle2	3.2	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	197	Alaine Whinnet	9/9/2002	187985	107720
Isd Mi 02 1374	Ithomia	salapia	derasa	M	Middle2	3.2	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	197	Alaine Whinnet	9/9/2002	209060	82902
Isd Mi 02 1375	Ithomia	salapia	derasa	м	Middle2	3.2	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	197	Alaine Whinnet	9/9/2002	183092	75095
lsd_Mi_02_1970	Ithomia	salapia	derasa	М	Middle2	3.2	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	1066	Alaine Whinnet	10/1/2002	193070	73885
lsd_Mi_02_1378	Ithomia	salapia	derasa	М	Middle2	3.2	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	197	Alaine Whinnet	9/9/2002	156393	72524
Isd_Mi_02_1379	Ithomia	salapia	derasa	М	Middle2	3.2	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	197	Alaine Whinnet	9/9/2002	170783	72014
Isd_Mi_02_1971	Ithomia	salapia	derasa	М	Middle2	3.2	Km-42, Tarapoto-Yurimaguas	San Martín	Peru	6° 25' 29.4" S	76° 15' 1.6" W	1066	Alaine Whinnet	10/1/2002	225970	70000
lsd_Mi_06_952	Ithomia	salapia	derasa	М	Andes_F	4	La Florida	San Martín	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/16/2006	490526	144122
lsd_Mi_06_931	Ithomia	salapia	derasa	Μ	Andes_F	4	La Florida	San Martín	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/14/2006	507490	141484
Isd_Mi_06_925	Ithomia	salapia	derasa	F	Andes_F	4	La Florida	San Martín	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/14/2006	367821	129525
Isd_Mi_06_930	Ithomia	salapia	derasa	F	Andes_F	4	La Florida	San Martín	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/14/2006	368515	125334
Isd_Mi_06_960	Ithomia	salapia	derasa	Μ	Andes_F	4	La Florida	San Martín	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/16/2006	331577	124740
Isd_Mi_06_961	Ithomia	salapia	derasa	F	Andes_F	4	La Florida	San Martín	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/16/2006	330313	123957
lsd_Mi_06_953	Ithomia	salapia	derasa	М	Andes_F	4	La Florida	San Martín	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/16/2006	657199	121184
lsd_Mi_06_954	Ithomia	salapia	derasa	F	Andes_F	4	La Florida	San Martín	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/16/2006	507080	111595
Isd_Mi_06_932	Ithomia	salapia	derasa	M	Andes_F	4	La Florida	San Martín	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/14/2006	568199	111517
lsd_Mi_06_959	Ithomia	salapia	derasa	M	Andes_F	4	La Florida	San Martin	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/16/2006	503967	110317
lsd_Mi_06_962	Ithomia	salapia	derasa	F	Andes_F	4	La Florida	San Martin	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/16/2006	501325	110309
Isd_Mi_06_958	Ithomia	salapia	derasa	M	Andes_F	4	La Florida	San Martin	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/16/2006	455/18	108748
Isd_Mi_06_928	Ithomia	salapia	derasa	M	Andes_F	4	La Florida	San Martin	Peru	5° 56' 57.33" S	77° 20' 20.19" W	1014	Fraser Simpson	12/14/2006	448953	104193
ISd_IVII_06_924	Itnomia	salapia	derasa	+	Andes_F	4	La Florida	San Martin	Peru	5' 56' 57.33" 5	77° 20° 20.19° W	1014	Fraser Simpson	12/14/2006	403484	101895
ISU_IVII_06_956	Ithomia	salapia	derasa	IVI	Andes_F	4	La Florida	San Martin	Peru	5 50 57.33 5	77 20 20.19 W	1014	Fraser Simpson	12/16/2006	350353	94/11
Isd_IVII_06_926	Ithomia	salapia	derasa	IVI NA	Andes_F	4	La Florida	San Martín	Peru	5 50 57.33° 5	77° 20' 20.19" W	1014	Fraser Simpson	12/14/2006	354030	93484
Isd_IVII_00_927	Ithomia	salapia	doraça	IVI NA	Andos F	4	La Florida	San Martín	Peru	5 56' 57 22" 5	77° 20' 20.19' W	1014	Fracer Simpson	12/14/2000	100255	01040
Isd_IVII_00_929	Ithomic	salania	derasa	IVI M	Andes F	4	La Florida	San Martín	Peru	5° 56' 57 33" 9	77° 20' 20.19' W	1014	Fraser Simpson	12/16/2006	135224	56150
Isd An 06 853	Ithomia	salania	derasa	M	Andes	÷ 5	Aguas Claras	San Martín	Peru	5° 41' 50 9" S	77° 36' 30 7'' W	12014	Fraser Simpson	12/12/2006	606382	150944
Isd An 06 852	Ithomia	salania	derasa	F	Andes	5	Aguas Claras	San Martín	Peru	5° 41' 50 9" S	77° 36' 30 7'' W	1201	Fraser Simpson	12/12/2006	569526	110756
Isd An 06 855	Ithomic	salania	derasa	F	Andes	5	Aguas Claras	San Martín	Peru	5° 41' 50 9" S	77° 36' 30 7'' W	1201	Fraser Simpson	12/12/2000	597492	110614
Isd An 06 854	Ithomic	salania	derasa	M	Andes	5	Aguas Claras	San Martín	Peru	5° 41' 50 9" S	77° 36' 30 7'' W	1201	Fraser Simpson	12/12/2000	456598	105811
Isd An 06 849	Ithomia	salapia	derasa	F	Andes	5	Aguas Claras	San Martín	Peru	5° 41' 50.9" S	77° 36' 30.7'' W	1201	Fraser Simpson	12/12/2006	418672	103556
Isd_An_06_848	Ithomia	salapia	derasa	м	Andes	5	Aguas Claras	San Martín	Peru	5° 41' 50.9" S	77° 36' 30.7'' W	1201	Fraser Simpson	12/12/2006	211662	101375

Isd An 06 8	51 Ithomic	salapia	derasa	F	Andes	5	Aguas Claras	San Martín	Peru	5° 41' 50.9" S	77° 36' 30.7'' W	1201	Fraser Simpson 12	2/12/2006	214917	98884
Isd An 06 8	50 Ithomic	salapia	derasa	F	Andes	5	Aguas Claras	San Martín	Peru	5° 41' 50.9" S	77° 36' 30.7'' W	1201	Fraser Simpson 12	2/12/2006	266876	81990
Isd_An_06_8	36 Ithomic	salapia	derasa	F	Andes	5	Puente Aguas Verdes	San Martín	Peru	5° 41' 3.3" S	77° 39' 30.5'' W	1201	Fraser Simpson 12	2/11/2006	704542	162179
Isd_An_05_10	52 Ithomic	salapia	derasa	F	Andes	5	Puente Aguas Verdes	San Martín	Peru	5° 41' 77" S	77° 39' 487" W	976	Mathieu Joron 11	/24/2005	342677	132539
Isd_An_05_10	98 Ithomic	salapia	derasa	М	Andes	5	Puente Aguas Verdes	San Martín	Peru	5° 41' 77" S	77° 39' 487" W	976	Mathieu Joron 11	/24/2005	347770	129502
Isd_An_05_1	.01 Ithomic	salapia	derasa	М	Andes	5	Puente Aguas Verdes	San Martín	Peru	5° 41' 77" S	77° 39' 487" W	1201	Mathieu Joron 11	/24/2005	650088	119736
Isd_An_05_1	.00 Ithomic	salapia	derasa	М	Andes	5	Puente Aguas Verdes	San Martín	Peru	5° 41' 77" S	77° 39' 487" W	976	Mathieu Joron 11	/24/2005	567976	118704
Isd_An_05_10	94 Ithomic	salapia	derasa	М	Andes	5	Puente Aguas Verdes	San Martín	Peru	5° 41' 77" S	77° 39' 487" W	976	Mathieu Joron 11	/24/2005	441325	107140
Isd_An_06_8	40 Ithomic	salapia	derasa	М	Andes	5	Puente Aguas Verdes	San Martín	Peru	5° 41' 3.3" S	77° 39' 30.5'' W	1201	Fraser Simpson 12	2/11/2006	379681	99587
Isd_An_02_9	01 Ithomi	n salapia	derasa	М	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39' 50" S	77° 38' 58" W	1066	Alaine Whinnet 8/	/29/2002	565740	160319
Isd_An_02_8	96 Ithomi	a salapia	derasa	М	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39' 50" S	77° 38' 58" W	1066	Alaine Whinnet 8/	/29/2002	470065	151613
Isd_An_02_1	21 Ithomic	a salapia	derasa	М	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39' 50" S	77° 38' 58" W	1090	Alaine Whinnet 9/	/19/2002	459893	151363
Isd_An_02_8	98 Ithomi	a salapia	derasa	М	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39' 50" S	77° 38' 58" W	1201	Alaine Whinnet 8/	/29/2002	413394	142849
Isd_An_02_8	99 Ithomi	n salapia	derasa	М	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39' 50" S	77° 38' 58" W	1201	Alaine Whinnet 8/	/29/2002	690905	124531
Isd_An_02_17	22 Ithomic	a salapia	derasa	м	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39' 50" S	77° 38' 58" W	1090	Alaine Whinnet 9/	/19/2002	271322	122205
Isd_An_02_9	02 Ithomi	a salapia	derasa	м	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39' 50" S	77° 38' 58" W	1066	Alaine Whinnet 8/	/29/2002	257394	121014
Isd_An_02_9	06 Ithomi	a salapia	derasa	м	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39' 50" S	77° 38' 58" W	1066	Alaine Whinnet 8/	/29/2002	400639	108240
Isd_An_02_8	97 Ithomi	a salapia	derasa	F	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39' 50" S	77° 38' 58" W	1201	Alaine Whinnet 8/	/29/2002	422771	105606
Isd_An_02_9	08 Ithomi	a salapia	derasa	м	Andes	5	Puente Aguas Verdes trail	San Martin	Peru	5° 39' 50" S	77° 38' 58" W	1100	Alaine Whinnet 8/	/29/2002	371034	103783
Isd_An_02_9	05 Ithomi	a salapia	derasa	F	Andes	5	Puente Aguas Verdes trail	San Martin	Peru	5° 39' 50" S	77° 38' 58" W	1066	Alaine Whinnet 8/	/29/2002	180808	101321
Isd_An_02_1	24 Ithomic	a salapia	derasa	M	Andes	5	Puente Aguas Verdes trail	San Martin	Peru	5° 39' 50" S	77° 38' 58'' W	976	Alaine Whinnet 9/	/19/2002	364472	100935
Isd_An_02_1	29 Ithomic	a salapia	derasa	+	Andes	5	Puente Aguas Verdes trail	San Martin	Peru	5° 39' 50" S	77° 38' 58'' W	976	Alaine Whinnet 9/	/19/2002	257248	8/4/2
Isd_An_02_1	23 Ithomic	i salapia	derasa	IVI NA	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5° 39° 50° S	77° 38° 58° W	1090	Alaine Whinnet 9/	/19/2002	231591	79106
Isd_An_02_9		i salapia	derasa		Andes	5	Puente Aguas Verdes trail	San Martin	Peru	5 39 50 5	77 38 58 W	1201	Alaine Whinnet 8/	/29/2002	577042	77838
Isd_An_02_9	04 Ithomi	i salapia	derasa		Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5 39 50 5	77 38 58 VV	1100	Alaine Whinnet 8/	/29/2002	307487	7/225
ISU_AII_02_9	26 Ithomi	i sulupiu	derasa	IVI NA	Andes	5	Puente Aguas Verdes trail	San Martín	Peru	5 59 50 5	77 30 30 VV	076	Alaine Whinnet 0/	/29/2002	220100	74194
Isu_AII_02_1	20 Ithomi	i sulupiu	derasa	N	Andes	5	Puente Aguas Verdes train	San Martín	Peru	5 39 30 3	77 56 56 W	1201	Alaine Whinnet 9/	/19/2002	524492	1590/9
Isd An 02 1	11 Ithomi	i sulupiu salania	derasa	F	Andes	5	Puente Serranovacu	San Martín	Poru	5° 40' 31.6" S	77° 40' 28.7' W	1100	Alaine Whinnet 9/	/19/2002	403720	1/13738
Isd An 02 1	13 Ithomi	salania	derasa	F	Andes	5	Puente Serranovacu	San Martín	Poru	5° 40' 31.6" S	77° 40' 28 7" W	1100	Alaine Whinnet 9/	/19/2002	6599720	122440
Isd An 02 9	19 Ithomi	salania	derasa	M	Andes	5	Puente Serranovacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/30/2002	481296	115849
Isd_An_02_7	39 Ithomi	salania	derasa	M	Andes	5	Puente Serranovacu	San Martín	Peru	5° 40' 31 6" S	77° 40' 28 7" W	1100	Alaine Whinnet 8/	/28/2002	192516	112003
Isd_An_02_9	48 Ithomi	salania	derasa	M	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/30/2002	255224	110614
Isd An 02 7	41 Ithomi	salapia	derasa	M	Andes	5	Puente Serranovacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/28/2002	211526	110333
Isd An 02 10	20 Ithomi	salapia	derasa	м	Andes	5	Puente Serranovacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 9/	/17/2002	463807	109222
Isd_An_02_9	45 Ithomi	, salapia	derasa	м	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/30/2002	215777	109173
Isd An 02 1	12 Ithomi	, salapia	derasa	F	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 9/	/19/2002	370949	103796
Isd_An_02_7	36 Ithomi	, salapia	derasa	м	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/28/2002	265938	96506
Isd_An_02_9	46 Ithomi	a salapia	derasa	F	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/30/2002	251901	89526
Isd_An_02_9	47 Ithomi	a salapia	derasa	F	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/30/2002	257666	87816
Isd_An_02_7	43 Ithomi	n salapia	derasa	F	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/28/2002	213690	82570
Isd_An_02_7	40 Ithomia	n salapia	derasa	F	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/28/2002	193002	77998
Isd_An_02_7	37 Ithomi	a salapia	derasa	F	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/28/2002	191013	77741
Isd_An_02_7	42 Ithomi	a salapia	derasa	F	Andes	5	Puente Serranoyacu	San Martín	Peru	5° 40' 31.6" S	77° 40' 28.7" W	1100	Alaine Whinnet 8/	/28/2002	147837	67703
					ι.									I		
Uoj_Az_02_2	021 Oleria	onega	janarilla	M	Amazon	1	Km-26, Yurimaguas-Tarapoto (now Km-24)	San Martín	Peru	5° 58' 489" S	76° 13' 856" W		Keith Willmott 10	0/1/2002	199801	170257
Uoj_Az_02_2	0192 Uleria	onega	janarilla	F	Amazon	1	Km-26, Yurimaguas-Tarapoto (now Km-24)	San Martin	Peru	5° 58' 489" S	76° 13' 856" W	107	Keith Willmott 10	0/1/2002	313305	1/5701
Ooj_Az_05_1	ine Dieria	onega	janarilla	F	Nidd -1	2	San Wiguel de Achinamiza	San Martin	Peru	0 18 540 S	76 U9 843 W	107	Lisa de Silva 3	0/1/2006	2410/1	150741
Ooj_Az_05_1	OT Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	0" 18" 540" S	76° 00' 843" W	197	LISA de SIIVA 3	s/1/2006	1/2694	12/069
Ooi Az 05 1	08 Oleric	onega	jananila	F	Middle1	2	San Miguel de Achinamiza	San Martín	Poru	6° 18' 540" S	76° 09' 843'' W	197	Lisa de Silva 3	2/1/2006	195976	139/00
Ooi A7 05 1	10 Oleria	onegu	janarilla	м	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" 9	76° 09' 843'' W	197	lisa de Silva 3	3/1/2006	210021	1/2/12/
Ooi Az 05 1	11 Olerin	onega	ianarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	8/1/2006	190543	130808
Ooj_A2_05_1	12 Oleric	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Poru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	2/1/2006	179/12	155490
Ooi Az 05 1	13 Olerio	onean	ianarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	317877	180661
Ooj Az 05 1	514 Olerin	oneaa	janarilla	M	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	382887	191352
Ooj Az 05 1	15 Olerin	oneaa	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	154363	142230
Ooj_Az_05_1	16 Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	274775	165335
Ooj_Az_05_1	17 Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	458906	206777
Ooj_Az_05_1	18 Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	153756	116095
Ooj_Az_05_1	19 Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	154909	112635
Ooj_Az_05_1	20 Oleria	onega	janarilla	м	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	303033	171790
Ooj_Az_05_1	21 Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	171865	120698
Ooj_Az_05_1	22 Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	292691	171716
Ooj_Az_05_1	23 Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S	76° 09' 843" W	197	Lisa de Silva 3	3/1/2006	201178	133155

Ooj Az 05 1524	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	295560	206342
Ooj Az 05 1527	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	192823	164123
Ooj Az 05 1528	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	169102	122461
Ooj_Az_05_1529	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	289337	165440
Ooj Az 05 1530	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	232265	153226
Ooj_Az_05_1531	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	388445	186992
Ooj Az 05 1532	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	121406	96990
Ooj_Az_05_1533	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	321705	172391
Ooj_Az_05_1534	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	193003	135341
Ooj Az 05 1535	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	277285	162771
Ooj_Az_05_1536	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/1/2006	232091	184205
Ooj Az 05 1564	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	147037	112252
Ooj Az 05 1565	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	392422	137005
Ooj_Az_05_1566	Oleria	onega	janarilla	F	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	141350	107904
Ooj Az 05 1567	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	381558	186296
Ooj_Az_05_1568	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	462862	247693
Ooj Az 05 1569	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	216592	146638
Ooj_Az_05_1570	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	200001	135074
Ooj_Az_05_1571	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	173924	122910
Ooj_Az_05_1572	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	369526	192198
Ooj_Az_05_1573	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	237176	149081
Ooj Az 05 1574	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	123924	99098
Ooj_Az_05_1575	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	203682	138558
Ooj_Az_05_1576	Oleria	onega	janarilla	М	Middle1	2	San Miguel de Achinamiza	San Martín	Peru	6° 18' 540" S 76° 09	9' 843" W	197	Lisa de Silva	3/2/2006	340248	181641
Oos Mi 02 1482	Oleria	onega	janarilla - hybrid	М	Middle3	3	Chumia, Km-14, Shapaja-Chazuta	San Martín	Peru	6° 36' 57" S 76° 1	11' 10" W	262	Alaine Whinnet	9/9/2002	378329	191328
Ooj_Mi_02_1479	Oleria	onega	janarilla - hybrid	М	Middle3	3	Chumia, Km-14, Shapaja-Chazuta	San Martín	Peru	6° 36' 57" S 76° 1	11' 10" W	262	Keith Willmott	9/9/2002	268063	167629
Ooj Mi 02 1480	Oleria	onega	janarilla - hybrid	М	Middle3	3	Chumia, Km-14, Shapaja-Chazuta	San Martín	Peru	6° 36' 57" S 76° 1	11' 10" W	262	Keith Willmott	9/9/2002	273438	158741
Oos Mi 02 1481	Oleria	onega	janarilla - hybrid	М	Middle3	3	Chumia, Km-14, Shapaja-Chazuta	San Martín	Peru	6° 36' 57" S 76° 1	11' 10" W	262	Keith Willmott	9/9/2002	225757	148679
Oos_Mi_06_330	Oleria	onega	ssp. nov. 2	М	Middle3	3	Km-11, Shapaja-Chazuta	San Martín	Peru	6° 36' 979" S 76° 12	2' 136" W	180	Lisa de Silva	10/19/2006	187840	136185
Oos Mi 06 332	Oleria	onega	ssp. nov. 2	F	Middle3	3	Km-11, Shapaja-Chazuta	San Martín	Peru	6° 36' 979" S 76° 12	2' 136" W	180	Lisa de Silva	10/19/2006	72091	63426
Oos_Mi_06_333	Oleria	onega	ssp. nov. 2	М	Middle3	3	Km-11, Shapaja-Chazuta	San Martín	Peru	6° 36' 979" S 76° 12	2' 136" W	180	Lisa de Silva	10/19/2006	336381	184874
Ooj Mi 06 347	Oleria	onega	janarilla	М	Middle3	3	Km-19, Shapaja-Chazuta	San Martín	Peru	6° 36' 554" S 76° 09	9' 612" W	195	Lisa de Silva	11/17/2006	181897	132834
Oos Mi 06 345	Oleria	onega	ssp. nov. 2	М	Middle3	3	Km-19, Shapaja-Chazuta	San Martín	Peru	6° 36' 554" S 76° 09	9' 612" W	195	Lisa de Silva	11/17/2006	183887	132973
Oos_Mi_06_346	Oleria	onega	ssp. nov. 2	М	Middle3	3	Km-19, Shapaja-Chazuta	San Martín	Peru	6° 36' 554" S 76° 09	9' 612" W	195	Lisa de Silva	11/17/2006	130376	99334
Ooj Mi 02 1166	Oleria	onega	janarilla	М	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/4/2002	346096	228682
Ooj_Mi_02_1172	Oleria	onega	janarilla	М	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/4/2002	230260	148931
Ooj_Mi_02_1175	Oleria	onega	janarilla	М	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/4/2002	196596	134495
Ooj_Mi_02_1176	Oleria	onega	janarilla	F	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/4/2002	151164	106813
Ooj_Mi_02_1583	Oleria	onega	janarilla	F	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/14/2002	510317	207543
Ooj_Mi_02_1584	Oleria	onega	janarilla	М	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/14/2002	390247	239099
Ooj_Mi_02_1587	Oleria	onega	janarilla	F	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/14/2002	362310	190647
Ooj_Mi_02_1588	Oleria	onega	janarilla	F	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/14/2002	225911	140931
Ooj_Mi_02_1959	Oleria	onega	janarilla	Μ	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	10/7/2002	297137	169368
Ooj_Mi_02_1961	Oleria	onega	janarilla	Μ	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	10/7/2002	375111	188144
Ooj_Mi_02_1962	Oleria	onega	janarilla	F	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	10/7/2002	183451	126185
Ooj_Mi_07_151	Oleria	onega	hybrid	Μ	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 424" S 76° 1	13' 394" W	1201		7/31/2007	398209	232534
Ooj_Mi_07_153	Oleria	onega	hybrid	Μ	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 424" S 76° 1	13' 394" W	1201		7/31/2007	261216	127959
Ooj_Mi_07_155	Oleria	onega	hybrid	Μ	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 424" S 76° 1	13' 394" W	1201		7/31/2007	367726	186259
Ooj_Mi_07_158	Oleria	onega	hybrid	М	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 424" S 76° 1	13' 394" W	1201		7/31/2007	456383	197003
Ooj_Mi_07_159	Oleria	onega	hybrid	Μ	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 424" S 76° 1	13' 394" W	1201		7/31/2007	239122	182966
Ooj_Mi_07_160	Oleria	onega	ssp. nov. 2	Μ	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 424" S 76° 1	13' 394" W	1201		7/31/2007	339588	192395
Oos_Mi_02_1585	Oleria	onega	ssp. nov. 2	F	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/14/2002	148046	121259
Oos_Mi_02_1589	Oleria	onega	ssp. nov. 2	F	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390	Keith Willmott	9/14/2002	201653	145045
Oos_Mi_02_1958	Oleria	onega	janarilla	F	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 56.33" S 76° 13	3' 10.86" W	390		10/7/2002	318151	178419
Oos_Mi_07_157	Oleria	onega	ssp. nov. 2	М	Middle3	3	Km5 Shapaja-Chazuta	San Martín	Peru	6° 35' 424" S 76° 1	13' 394" W	1201		7/31/2007	300656	174133
Ooj_Mi_05_829	Oleria	onega	janarilla - hybrid	М	Middle4	4	Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido , PNCAZ	San Martín	Peru	6° 46' 42.06" S 75° 53	3' 49.44" W	517		9/10/2005	406986	188518
Ooj_Mi_05_830	Oleria	onega	janarilla - hybrid	М	Middle4	4	Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido , PNCAZ	San Martín	Peru	6° 46' 42.06" S 75° 53	3' 49.44" W	517		9/10/2005	389112	229671
Ooj_Mi_05_831	Oleria	onega	janarilla - hybrid	F	Middle4	4	Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido , PNCAZ	San Martín	Peru	6° 46' 42.06" S 75° 53	3' 49.44" W	517		9/10/2005	169286	120139
Ooj_Mi_05_832	Oleria	onega	janarilla	М	Middle4	4	Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido , PNCAZ	San Martín	Peru	6° 46' 42.06" S 75° 53	3' 49.44" W	517		9/10/2005	406041	184406
Ooj_Mi_05_833	Oleria	onega	janarilla - hybrid	F	Middle4	4	Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido , PNCAZ	San Martín	Peru	6° 46' 42.06" S 75° 53	3' 49.44" W	517		9/10/2005	286051	89215
Ooj_Mi_05_834	Oleria	onega	janarilla - hybrid	М	Middle4	4	Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido , PNCAZ	San Martín	Peru	6° 46' 42.06" S 75° 53	3' 49.44" W	517		9/10/2005	390592	174811
Ooj_Mi_05_835	Oleria	onega	janarilla	М	Middle4	4	Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido , PNCAZ	San Martín	Peru	6° 46' 42.06" S 75° 53	3' 49.44" W	517		9/10/2005	303849	171845
Ooj_Mi_05_836	Oleria	onega	janarilla	F	Middle4	4	Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido , PNCAZ	San Martín	Peru	6° 46' 42.06" S 75° 53	3' 49.44" W	517		9/10/2005	385890	224777
Ooj_Mi_05_837	Oleria	onega	janarilla	F	Middle4	4	Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido , PNCAZ	San Martín	Peru	6° 46' 42.06" S 75° 53	3' 49.44" W	517		9/10/2005	275970	157117
Ooj_Mi_05_863	Oleria	onega	janarilla - hybrid	F	Middle4	4	Laguna del Mundo Perdido, PNCAZ	San Martín	Peru	6° 45' 4.54" S 75° 52	2' 8.29" W	498		9/11/2005	402310	184638

Ooj_Mi_05_864	Oleria	onega	janarilla - hybrid	м	Middle4	4	Laguna del Mundo Perdido, PNCAZ San Martín	Peru	6° 45' 4.54" S 75° 52'	8.29" W	498	9/11/20	357668	224635
Ooj_Mi_05_865	Oleria	onega	janarilla - hybrid	F	Middle4	4	Laguna del Mundo Perdido, PNCAZ San Martín	Peru	6° 45' 4.54" S 75° 52'	8.29" W	498	9/11/20	05 412047	189457
Ooj_Mi_05_866	Oleria	onega	janarilla - hybrid	М	Middle4	4	Laguna del Mundo Perdido, PNCAZ San Martín	Peru	6° 45' 4.54" S 75° 52'	8.29" W	498	9/11/20	347567	174853
Ooj_Mi_05_810	Oleria	onega	janarilla - hybrid	М	Middle4	4	Quebrada Yanayacu (Camp 1) to Camp 2 on trail to Laguna del Mundo Perdido, PNCAZ San Martín	Peru	6° 44' 55.55" S 75° 56'	23.44" W 6	640	9/10/20	386582	231181
Ooj_Mi_05_811	Oleria	onega	janarilla - hybrid	м	Middle4	4	Quebrada Yanayacu (Camp 1) to Camp 2 on trail to Laguna del Mundo Perdido, PNCAZ San Martín	Peru	6° 44' 55.55" S 75° 56'	23.44" W 6	640	9/10/20	425980	200211
Ooj_Mi_05_812	Oleria	onega	janarilla - hybrid	F	Middle4	4	Quebrada Yanayacu (Camp 1) to Camp 2 on trail to Laguna del Mundo Perdido, PNCAZ San Martín	Peru	6° 44' 55.55" S 75° 56'	23.44" W 6	640	9/10/20	330543	165178
Ooi Mi 05 813	Oleria	oneaa	ianarilla - hybrid	м	Middle4	4	Quebrada Yanavacu (Camp 1) to Camp 2 on trail to Laguna del Mundo Perdido, PNCAZ San Martín	Peru	6° 44' 55.55" S 75° 56'	23.44" W 6	640	9/10/20	192508	160657
Ooi Mi 05 815	Oleria	oneaa	ianarilla	F	Middle4	4	Quebrada Yanavacu (Camp 1) to Camp 2 on trail to Laguna del Mundo Perdido, PNCAZ San Martín	Peru	6° 44' 55.55" S 75° 56'	23.44" W 6	640	9/10/20	307948	168829
Ooi Mi 05 816	Oleria	oneaa	ianarilla - hybrid	м	Middle4	4	Quebrada Yanavacu (Camp 1) to Camp 2 on trail to Laguna del Mundo Perdido, PNCAZ San Martín	Peru	6° 44' 55.55" S 75° 56'	23.44" W 6	640	9/10/20	304297	130274
Ooi Mi 05 730	Oleria	oneaa	ianarilla - hybrid	м	Middle4	4	Robashca to Ouebrada Yanavacu, Camp 1, PNCAZ San Martín	Peru	6° 44' 26.62" S 75° 58'	54.31" W 6	616	9/9/200	5 301524	166249
Oos An 02 1718	Oleria	oneaa	ssp. nov. 2	F	Andes	5	Puente Aguas Verdes trail San Martín	Peru	5° 39' 50" S 77° 38	58" W 1	066	Keith Willmott 9/19/20	286321	169554
Oos An 02 1719	Oleria	oneaa	ssp. nov. 2	м	Andes	5	Puente Aguas Verdes trail San Martín	Peru	5° 39' 50" S 77° 38	58" W 1	066	Keith Willmott 9/19/20	462742	190396
Oos An 02 918	Oleria	oneaa	ssp. nov. 2	м	Andes	5	Puente Aguas Verdes trail San Martín	Peru	5° 39' 50" S 77° 38	58" W 1	.066	Keith Willmott 8/29/20	392028	184165
Oos An 02 919	Oleria	oneaa	ssp. nov. 2	м	Andes	5	Puente Aguas Verdes trail San Martín	Peru	5° 39' 50" S 77° 38	58" W 1	.066	Keith Willmott 8/29/20	342214	170008
Oos An 02 920	Oleria	oneaa	ssp. nov. 2	м	Andes	5	Puente Aguas Verdes trail San Martín	Peru	5° 39' 50" S 77° 38	58" W 1	066	Keith Willmott 8/29/20	349081	225905
Oos An 02 921	Oleria	oneaa	ssp. nov. 2	м	Andes	5	Puente Aguas Verdes trail San Martín	Peru	5° 39' 50" S 77° 38	'58" W 1	066	Keith Willmott 8/29/20	350903	179186
Oos An 02 922	Oleria	oneaa	ssp. nov. 2	м	Andes	5	Puente Aguas Verdes trail San Martín	Peru	5° 39' 50" S 77° 38	58" W 1	066	Keith Willmott 8/29/20	348830	182579
Oos An 02 923	Oleria	oneaa	ssp. nov. 2	м	Andes	5	Puente Aguas Verdes trail San Martín	Peru	5° 39' 50" S 77° 38	'58" W 1	066	Keith Willmott 8/29/20	254360	151347
Oos An 02 924	Oleria	oneaa	ssp. nov. 2	м	Andes	5	Puente Aguas Verdes trail San Martín	Peru	5° 39' 50" S 77° 38	'58" W 1	066	Keith Willmott 8/29/20	142643	140786
Oos An 02 1672	Oleria	oneaa	ssn nov 2	м	Andes	5	Puente Serranovacu San Martín	Peru	5°40' 31 6" S 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	344175	181222
Oos An 02 1673	Oleria	onega	ssp. nov. 2	м	Andes	5	Puente Serranoyacu San Martín	Peru	5°40' 31.6" S 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	215651	187862
Oos An 02 1675	Oleria	onega	ssp. nov. 2	м	Andes	5	Puente Serranoyacu San Martín	Peru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	215663	147556
Oos An 02 1676	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranoyacu San Martín	Peru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	326070	219112
Oos An 02 1677	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranoyacu San Martín	Peru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	333937	175629
Oos An 02 1678	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranoyacu San Martín	Peru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	12 199812	140256
Oos An 02 1679	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranoyacu San Martín	Peru	5°40' 31.6" S 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	2 263049	202843
Oos An 02 1680	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranoyacu San Martín	Poru	5°40' 31 6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	205875	141804
Oos An 02 1682	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	2220075	142853
Oos An 02 1683	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranoyacu San Martín	Peru	5°40' 31.6" S 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	371159	229211
Oos An 02 1684	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranoyacu San Martín	Poru	5°40' 31 6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	319998	173505
Oos An 02 1685	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranoyacu San Martín	Peru	5°40' 31.6" S 77° 40'	28.7" W 1	201	Keith Willmott 9/17/20	2 280730	161994
Oos An 02 1708	Oleria	onega	ssp. nov. 2		Andes	5	Puente Serranoyacu San Martín	Poru	5°40' 31 6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 9/19/20	12 113182	93/55
Oos An 02 1710	Oleria	onega	ssp. nov. 2	м	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 9/19/20	347791	225594
Oos An 02 825	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 8/28/20	300325	167718
Oos An 02 826	Oleria	onega	ssp. nov. 2		Andes	5	Puente Serranoyacu San Martín	Poru	5°40' 31 6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 8/28/20	296678	172454
Oos An 02 827	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 8/28/20	210928	185109
Oos An 02 828	Oleria	onega	ssp. nov. 2	м	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 8/28/20	279793	167466
Oos An 02 830	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 8/28/20	12 432194	238041
Oos An 02 831	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 8/28/20	366723	179649
Oos_An_02_822	Oloria	onega	ssp. nov. 2	-	Andes	5	Ruente Serranovacu San Martín	Poru	5°40' 21 6" \$ 77° 40'	20.7 1	201	Keith Willmott 8/28/20	2 220049	179569
Oos An 02 833	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7 W 1	201	Keith Willmott 8/28/20	2 273206	158486
Oos An 02 924	Oleric	onega	ssp. nov. 2	м	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31 6" \$ 77° 40	28.7" W 1	201	Keith Willmott 8/20/20	2,3200	202717
Oos An 02 835	Oleria	onega	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 8/28/20	321872	178120
Oos An 02 836	Oleric	onean	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Peru	5°40' 31 6" \$ 77° 40'	28.7''W 1	201	Keith Willmott 8/28/20	12 451875	187767
Oos_An_02_827	Oloria	onega	ssp. nov. 2	-	Andes	5	Ruente Serranovacu San Martín	Poru	5°40' 21 6" \$ 77° 40'	20.7 1	201	Keith Willmott 8/28/20	2 210424	219299
Oos An 02 838	Oleria	onega	ssp. nov. 2		Andes	5	Puente Serranovacu San Martín	Poru	5°40' 31.6" \$ 77° 40'	28.7" W 1	201	Keith Willmott 8/28/20	2 205329	140802
Oos_An_02_820	Oloria	onega	ssp. nov. 2	M	Andes	5	Ruente Serranovacu San Martín	Poru	5°40' 21 6" \$ 77° 40'	20.7 1	201	Keith Willmott 8/28/20	200320	212250
Oos_An_02_839	Oleria	onega	ssp. nov. 2		Andes	5	Puente Serranovacu San Martín	Poru	5°40'216" \$ 77°40	20.7 W 1	201	Keith Willmott 9/28/20	2 300783	146524
Oos An 02 941	Olaric	onega	55p. 110v. 2	2	Andos	5	Puente Serranovacu Sall Maltili	Port	5°40'21 6" 5 77°40	20.7 VV 1	201	Koith Willmott 9/20/20	212004	19///0
Oos An 02 942	Oleric	onear	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Poru	5°40'31.6" \$ 77° 40	28.7" W 1	201	Keith Willmott 8/20/20	358020	226621
Oos An 02 944	Oleric	onear	ssp. nov. 2	F	Andes	5	Puente Serranovacu San Martín	Poru	5°40'31.6" \$ 77° 40	28.7" W 1	201	Keith Willmott 8/20/20	192002	118307
Oos An 02 945	Olaric	onega	55p. 110v. 2		Andos	5	Puente Serranovacu Sall Maltili	Port	5°40'21 6" 5 77°40	20.7 VV 1	201	Koith Willmott 9/20/20	192905	165225
Oos An 02 947	Oleric	onega	55p. 110V. 2	M	Andos	5	Puente Serranovacu San Martín	Poru	5°40'216"5 77 40	20.7 VV 1 29.7'' \\/ 1	201	Keith Willmott 9/28/20	23/013	170614
Oos An 02 04/	Oleric	onega	ssp. 110V. 2	E .	Andos	5	ruenie senandyduu Sdfi Mafuli Duente Serranovacu San Martín	Peru	5°40'216"5 77 40	20.7 VV 1	201	Koith Willmott 9/20/20	2 529074	127074
Oos An 02 848	Oleria	onega	ssp. 110v. 2	м	Andes	5	Puente Serranovacu Sali Martín	Por	5°40'316" \$ 77°40	20.7 VV 1 28.7''\\\/ 1	201	Keith Willmott 9/20/20	213038	13/0/4
Oos An 02 950	Oleric	onega	ssp. 110v. 2	M	Andes	5	ruente Serranovacu San Martín	Poru	5°40'31.6" \$ 77°40	20.7 VV 1 28.7'' W/ 1	201	Keith Willmott 8/28/20	328020	224083
Oos_An_02_850	Oleric	onega	ssp. 110v. 2	M	Andos	5	Puento Serranovacu Sali Maltin	Peru	5°40'216"5 77 40	20.7 VV 1 29.7''\\/ 1	201	Keith Willmott 9/20/20	220030	107120
005_AII_02_851	Jiena	onega	55p. 110v. 2	141	Antues	2	ruente serranoyacu Sah Martin	reru	5 40 51.0 5 77 40	20.7 VV 1	201	Keitii Wiiiiiiott 6/28/20	230040	19/139

		В	LASTn Bes	t-Hit					
Locus_ID	Danaus plexippus scaffold	start	stop	%_id	alignment length	e-value	Score	Danaus plexippus cds	Protein homology
Ithomia salapia									
Adaptive introgression	loci (diverging genomic clin	e center (o	α) + high d	ifferent	iation level (FsT))				
locus_20794	DPSCF300001	2255382	2255463	85.37	82	4,00E-19	95.1	DPOGS207061-TA	
locus_49453	DPSCF300003	1757941	1758023	80.72	83	3,00E-14	78.8	DPOGS203415-TA	
locus_19916	DPSCF300006	780102	780018	83.53	85	4,00E-18	91.5		
locus_20816	DPSCF300008	93324	93266	87.30	63	9,00E-14	77.0		
locus_14403	DPSCF300008	1238880	1238796	96.47	85	1,00E-32	140		
locus_28434	DPSCF300009	1937088	1937006	79.52	83	1,00E-12	73.4	DPOGS208993-TA	
locus_28611	DPSCF300010	1978358	1978428	81.69	71	1,00E-11	69.8		
locus_32677	DPSCF300012	1198547	1198467	81.71	82	1,00E-11	69.8		
locus_91	DPSCF300014	846573	846515	89.83	59	8,00E-15	80.6		
locus_17576	DPSCF300015	681524	681610	86.36	88	3,00E-20	98.7		
locus_24148	DPSCF300017	331577	331503	85.33	75	2,00E-16	86.0		
locus_1838	DPSCF300017	764025	763943	89.16	83	2,00E-23	109		
locus_13643	DPSCF300028	1192556	1192640	77.65	85	5,00E-11	68.0	DPOGS206136-TA	
locus_7322	DPSCF300064	159016	158934	83.13	83	5,00E-17	87.8	DPOGS208522-TA	
locus_22050	DPSCF300073	640050	639972	86.08	79	1,00E-18	93.3		
locus_15377	DPSCF300081	548500	548415	84.88	86	1,00E-19	96.9	DPOGS205859-TA	Down syndrome critical region protein 3 homolog
locus_18829	DPSCF300091	307474	307391	85.71	84	3,00E-20	98.7		
locus_16344	DPSCF300114	46930	46851	81.25	80	1,00E-13	77.0	DPOGS213191-TA	
locus_15693	DPSCF300121	264102	264039	84.38	64	4,00E-12	71.6		
locus_12790	DPSCF300127	454398	454316	83.13	83	5,00E-17	87.8	DPOGS209486-TA	
locus_11228	DPSCF300127	454413	454480	83.82	68	1,00E-12	73.4	DPOGS209486-TA	
locus_11261	DPSCF300131	603666	603750	80.00	85	1,00E-13	77.0	DPOGS202495-TA	
locus_15366	DPSCF300153	187359	187435	81.82	77	1,00E-13	77.0	DPOGS214916-TA	
locus_14723	DPSCF300154	292667	292598	85.71	70	3,00E-14	78.8		
locus_874	DPSCF300176	896628	896547	84.15	82	2,00E-17	89.7		
locus_11740	DPSCF300177	83862	83792	85.92	71	6,00E-16	84.2	DPOGS207516-TA	
locus 21620	DPSCF300200	112178	112250	82.19	73	1,00E-12	73.4	DPOGS204071-TA	Lactase-phlorizin hydrolase
locus 5119	DPSCF300211	597	508	76.67	90	3,00E-13	75.2		
locus 11544	DPSCF300211	279599	279549	90.20	51	1,00E-11	69.8		
locus 21834	DPSCF300219	461394	461479	88.37	86	5,00E-24	111	DPOGS213665-TA	
locus 2581	DPSCF300232	508892	508818	82.67	75	1,00E-13	77.0		
locus 21052	DPSCF300268	80273	80342	84.29	70	1,00E-13	77.0		
locus 36372	DPSCF300307	138643	138561	86.75	83	3,00E-20	98.7		
locus 24886	DPSCF300324	76126	76041	86.05	86	2,00E-21	102	DPOGS202701-TA	
locus 63	DPSCF300338	140335	140254	89.02	82	6,00E-23	107	DPOGS207656-TA	
locus 29426	DPSCF300391	9101	9025	87.01	77	4.00E-19	95.1	DPOGS201653-TA	
locus_47081	DPSCF300391	179887	179804	80.95	84	8,00E-15	80.6	DPOGS203107-TA	

Oleria onega

Adaptive introgression loci (diverging genomic cline center (α) + high differentiation level (FsT))

locus_39916	DPSCF300001	1760764 1760847	83.33	84	2,00E-17 89.7	DPOGS206900-TA	
locus_6600	DPSCF300001	2445655 2445571	77.65	85	5,00E-11 68.0	DPOGS207070-TA	Bleomycin hydrolase
locus_18737	DPSCF300001	2898435 2898352	84.52	84	1,00E-18 93.3	DPOGS206854-TA	
locus_291	DPSCF300001	4348908 4348825	79.07	86	1,00E-11 69.8		
locus_24405	DPSCF300004	1289625 1289544	84.15	82	2,00E-17 89.7	DPOGS211019-TA	
locus 18889	DPSCF300004	1527412 1527329	88.10	84	6,00E-23 107		
locus 11213	DPSCF300006	94744 94826	81.93	83	2,00E-15 82.4	DPOGS201471-TA	
locus 30280	DPSCF300006	804531 804587	87.72	57	4,00E-12 71.6	DPOGS201447-TA	
locus 6020	DPSCF300009	179886 179969	90.48	84	1,00E-25 116	DPOGS208940-TA	Contactin
 locus 63224	DPSCF300009	765102 765185	89.29	84	5,00E-24 111	DPOGS208957-TA	
 locus 41437	DPSCF300009	1494818 1494900	95.18	83	1.00E-30 132		
locus 5544	DPSCF300014	973146 973230	87.06	85	7,00E-22 104		
 locus 53694	DPSCF300019	1083985 1084069	78.82	85	1,00E-12 73.4	DPOGS212316-TA	
locus 6837	DPSCF300024	24576 24661	83.72	86	4.00E-18 91.5		
locus 939	DPSCF300027	157690 157608	89.16	83	2,00E-23 109		
 locus 36129	DPSCF300038	1105994 1106051	91.38	58	2.00E-15 82.4		
locus 28726	DPSCF300041	1563919 1563853	92.54	67	3.00E-20 98.7		
locus 7639	DPSCF300042	1148866 1148782	85.88	85	8.00E-21 100	DPOGS207841-TA	
locus 20657	DPSCF300048	132467 132383	96.47	85	1.00E-31 136		
locus 5259	DPSCF300049	818458 818521	87.50	64	3.00E-14 78.8		
locus 39337	DPSCF300050	197880 197799	87.80	82	7.00E-22 104	DPOGS214621-TA	
locus 5676	DPSCF300051	459989 460071	85.54	83	1.00E-19 96.9	DPOGS207483-TA	
locus 40167	DPSCF300051	482393 482477	88.24	85	2.00E-23 109	DPOGS207445-TA	
locus 51320	DPSCE300052	511744 511813	90.00	70	4.00F-18 91.5		
locus 9796	DPSCF300053	1109584 1109645	83.87	62	5.00E-11 68.0		
locus 30776	DPSCE300056	274712 274639	81.08	74	4.00F-12 71.6	DPOGS205507-TA	
locus 4041	DPSCE300057	52461 52377	77.65	85	5.00E-11 68.0	51000200007 111	
locus 11635	DPSCF300058	44474 44542	86.96	69	5.00E-16 84.2	DPOGS208156-TA	
locus 16883	DPSCF300064	259762 259678	84.71	85	4.00E-19 95.1	DPOGS208524-TA	
locus 14881	DPSCF300064	1707322 1707239	89.29	84	5.00E-24 111	DPOGS208460-TA	Cadherin-related tumor suppressor
locus 40108	DPSCE300066	454834 454751	84.52	84	4.00F-18 91.5		
locus 14418	DPSCF300073	565519 565435	92.94	85	6.00E-29 127		
locus 16119	DPSCF300082	1222334 1222416	86.75	83	8.00E-21 100	DPOGS206300-TA	
locus 36677	DPSCF300089	376974 376890	84.71	85	4.00E-19 95.1	DPOGS205916-TA	Serine/threonine-protein kinase N3
locus 35425	DPSCF300094	144496 144424	82.89	76	1.00E-13 77.0		
 locus 25295	DPSCF300095	151289 151371	91.76	85	9.00E-27 120		
locus 17924	DPSCF300095	220263 220183	81.48	81	3,00E-14 78.8		
 locus 19646	DPSCF300098	588403 588320	94.05	84	2,00E-29 129		
 locus_31990	DPSCF300122	617164 617245	82.93	82	2.00E-16 86.0	DPOGS214469-TA	Potassium voltage-gated channel subfamily D member 2
locus 30027	DPSCF300125	447801 447882	84.34	83	5,00E-17 87.8		
 locus_23486	DPSCF300128	685283 685351	82.61	69	4.00E-12 71.6	DPOGS200181-TA	Chromodomain-helicase-DNA-binding protein 4
locus 8696	DPSCF300131	292633 292709	79.22	77	5,00E-11 68.0	DPOGS202524-TA	Dynein heavy chain, cytoplasmic
 locus 17973	DPSCF300133	205697 205773	80.52	77	4.00E-12 71.6		
locus 9927	DPSCF300145	423602 423519	90.48	84	1,00E-25 116	DPOGS206960-TA	
locus 17455	DPSCF300154	359812 359895	78.57	84	4,00E-12 71.6	DPOGS208109-TA	
locus 38972	DPSCF300162	224765 224849	84.71	85	4,00E-19 95.1	DPOGS202151-TA	
locus 40071	DPSCF300168	21644 21726	81.93	83	2,00E-15 82.4	DPOGS210608-TA	
locus 3709	DPSCF300168	103826 103878	88.68	53	1,00E-11 69.8		
locus 21454	DPSCF300170	429546 429467	86.25	80	4.00E-19 95.1		
· · · -					,		

locus_14350	DPSCF300171	455112 455200	88.76	89	4,00E-25	114		
locus_38803	DPSCF300182	11272 11350	87.34	79	3,00E-20	98.7	DPOGS216113-TA	
locus_13278	DPSCF300184	311089 310999	81.32	91	2,00E-17	89.7	DPOGS204141-TA	
locus_21125	DPSCF300188	254025 253943	80.72	83	3,00E-14	78.8	DPOGS207347-TA	
locus_27398	DPSCF300206	88373 88457	88.24	85	2,00E-23	109		
locus 14969	DPSCF300210	32672 32755	83.33	84	2,00E-17	89.7	DPOGS203241-TA	E3 ubiquitin-protein ligase Smurf1
locus_12981	DPSCF300212	876257 876175	84.34	83	4,00E-18	91.5	DPOGS213742-TA	
locus_38548	DPSCF300219	579537 579452	84.88	86	1,00E-19	96.9	DPOGS213705-TA	
locus_23097	DPSCF300231	390393 390313	92.59	81	9,00E-27	120	DPOGS204749-TA	
locus_38495	DPSCF300242	161615 161690	82.89	76	3,00E-14	78.8	DPOGS203439-TA	
locus_16210	DPSCF300258	210889 210825	83.08	65	5,00E-11	68.0		
locus_20793	DPSCF300270	226701 226777	81.82	77	1,00E-13	77.0	DPOGS208007-TA	
locus_6434	DPSCF300271	119860 119810	94.12	51	3,00E-14	78.8		
locus_42203	DPSCF300296	235411 235349	87.30	63	3,00E-13	75.2		
locus_3798	DPSCF300325	4824 4749	84.21	76	6,00E-16	84.2	DPOGS211639-TA	
locus_52767	DPSCF300382	158605 158685	90.12	81	5,00E-24	111	DPOGS206254-TA	
locus_21333	DPSCF300547	1509 1588	92.50	80	4,00E-25	114		
						•		
Oleria onega								
Reproductive isolation lo	oci (high diverging positiv	e genomic cline rate (3))					
locus_56496	DPSCF300002	448758 448841	83.33	84	2,00E-17	89.7	DPOGS204463-TA	
locus_23233	DPSCF300002	1313553 1313619	85.07	67	1,00E-13	77.0		
locus_14217	DPSCF300009	1484490 1484408	97.59	83	3,00E-32	138		
locus_41437	DPSCF300009	1494818 1494900	95.18	83	1,00E-30	132		
locus_6715	DPSCF300010	503894 503822	83.56	73	3,00E-14	78.8		
locus_13325	DPSCF300010	1174123 1174177	96.36	55	3,00E-18	91.5		
locus_7285	DPSCF300010	2856044 2856110	97.01	67	1,00E-24	113		
locus_16456	DPSCF300011	910922 910840	81.93	83	2,00E-15	82.4	DPOGS211875-TA	
locus_2045	DPSCF300012	17595 17663	88.57	70	6,00E-16	84.2		
locus_5796	DPSCF300013	724317 724236	85.37	82	4,00E-19	95.1	DPOGS210690-TA	
locus_5544	DPSCF300014	973146 973230	88.24	85	2,00E-23	109		
locus_13402	DPSCF300014	2159403 2159488	95.35	86	3,00E-32	138		
locus_5347	DPSCF300018	791599 791676	83.33	78	2,00E-15	82.4	DPOGS202792-TA	
locus_635	DPSCF300019	386290 386224	91.04	67	4,00E-19	95.1		
locus_6133	DPSCF300021	679108 679192	94.12	85	5,00E-30	131		
locus_17850	DPSCF300021	1255675 1255754	82.50	80	2,00E-15	82.4		
locus_3400	DPSCF300022	1406128 1406086	100.00	43	3,00E-14	78.8		
locus_2334	DPSCF300025	217171 217087	89.41	85	1,00E-24	113	DPOGS210344-TA	Low-density lipoprotein receptor-related protein 2
locus_53	DPSCF300028	1715782 1715719	87.50	64	8,00E-15	80.6		
locus_7065	DPSCF300030	1210754 1210819	89.39	66	4,00E-16	84.2		
locus_56182	DPSCF300032	800216 800170	95.83	48	3,00E-13	75.2		
locus_9208	DPSCF300033	37338 37255	83.33	84	1,00E-17	89.7	DPOGS213564-TA	Protein disulfide-isomerase
locus_39358	DPSCF300034	225066 225150	85.88	85	8,00E-21	100	DPOGS204184-TA	
locus_36129	DPSCF300038	1105994 1106051	91.38	58	2,00E-15	82.4		
locus_9061	DPSCF300041	1435324 1435406	87.95	83	2,00E-22	105	DPOGS215762-TA	
locus_18124	DPSCF300041	1632655 1632739	84.71	85	4,00E-19	95.1	DPOGS215771-TA	Uncharacterized helicase C17H9.02
locus_7639	DPSCF300042	1148866 1148782	85.88	85	8,00E-21	100	DPOGS207841-TA	
locus_15855	DPSCF300044	922991 923073	83.53	85	2,00E-15	82.4		

locus_9976	DPSCF300047	27674	27596	83.54	79	7,00E-16 8	34.2	DPOGS215265-TA	
locus_13421	DPSCF300048	729948	730032	87.06	85	7,00E-22 1	104	DPOGS206628-TA	
locus_16663	DPSCF300048	860848	860929	92.68	82	3,00E-27 1	122		
locus_11355	DPSCF300052	339442	339358	80.00	85	1,00E-13 7	77.0	DPOGS208609-TA	
locus_51320	DPSCF300052	511744	511813	90.00	70	4,00E-18 9	91.5		
locus_16883	DPSCF300064	259762	259678	84.71	85	4,00E-19 9	95.1	DPOGS208524-TA	
locus_1104	DPSCF300066	72184	72264	82.72	81	8,00E-15 8	30.6		
locus_14418	DPSCF300073	565519	565435	92.94	85	6,00E-29 1	127		
locus_26323	DPSCF300074	116559	116475	84.71	85	4,00E-19 9	95.1	DPOGS205078-TA	
locus_3251	DPSCF300082	579057	579142	83.72	86	1,00E-18 9	93.3	DPOGS206318-TA	DNA-directed RNA polymerase I subunit rpa1
locus_6613	DPSCF300092	467872	467788	89.41	85	2,00E-23 1	109		
locus_17924	DPSCF300095	220263	220183	81.48	81	3,00E-14 7	78.8		
locus_17571	DPSCF300099	149029	149094	93.94	66	2,00E-21 1	102		
locus_6969	DPSCF300112	257821	257733	87.64	89	1,00E-24 1	113		
locus_42925	DPSCF300117	317371	317306	83.58	67	5,00E-11 6	58.0		
locus_80	DPSCF300119	307017	306933	98.82	85	2,00E-35 1	149		
locus_8829	DPSCF300128	685276	685191	77.91	86	1,00E-11 6	59.8	DPOGS200181-TA	Chromodomain-helicase-DNA-binding protein 4
locus_23486	DPSCF300128	685283	685351	82.61	69	4,00E-12 7	71.6	DPOGS200181-TA	Chromodomain-helicase-DNA-binding protein 4
locus_10447	DPSCF300129	295733	295816	91.67	84	9,00E-27 1	120	DPOGS215550-TA	
locus_8696	DPSCF300131	292633	292709	79.22	77	5,00E-11 6	58.0	DPOGS202524-TA	Dynein heavy chain, cytoplasmic
locus_24658	DPSCF300153	302796	302868	80.82	73	1,00E-11 6	59.8	DPOGS214919-TA	Structural maintenance of chromosomes protein 4 (Fragment)
locus_50550	DPSCF300160	254056	254135	81.25	80	3,00E-14 7	78.8		
locus_4637	DPSCF300160	502195	502271	89.61	77	7,00E-22 1	104		
locus_1279	DPSCF300160	533929	534011	96.39	83	1,00E-31 1	136		
locus_25495	DPSCF300170	555014	554930	92.94	85	6,00E-29 1	127	DPOGS204700-TA	Inhibitor of growth protein 4
locus_760	DPSCF300171	509326	509246	91.36	81	4,00E-25 1	114		
locus_15055	DPSCF300172	330603	330522	81.71	82	8,00E-15 8	30.6	DPOGS205104-TA	ATP-binding cassette sub-family G member 4
locus_44871	DPSCF300176	877906	877987	81.71	82	8,00E-15 8	30.6	DPOGS201276-TA	
locus_13278	DPSCF300184	311089	310999	81.32	91	2,00E-17 8	39.7	DPOGS204141-TA	
locus_10628	DPSCF300189	257	334	82.05	78	3,00E-14 7	78.8	DPOGS212552-TA	
locus_45809	DPSCF300192	328851	328931	90.12	81	5,00E-24 1	111		
locus_50	DPSCF300196	630167	630237	92.96	71	2,00E-22 1	105	DPOGS207656-TA	
locus_36202	DPSCF300224	20899	20974	89.47	76	2,00E-21 1	102		
locus_3993	DPSCF300235	508167	508086	84.34	83	5,00E-17 8	37.8		
locus_4021	DPSCF300250	293523	293607	95.29	85	1,00E-31 1	136		
locus_19317	DPSCF300258	53527	53451	80.52	77	4,00E-12 7	71.6	DPOGS212418-TA	
locus_16210	DPSCF300258	210889	210825	83.08	65	5,00E-11 6	58.0		
locus_11201	DPSCF300283	220103	220179	84.42	77	2,00E-16 8	36.0	DPOGS210186-TA	
locus_21486	DPSCF300298	103299	103230	82.19	73	4,00E-12 7	71.6	DPOGS215444-TA	
locus_13053	DPSCF300300	50254	50175	91.25	80	1,00E-24 1	113		
locus_14218	DPSCF300304	184614	184531	79.76	84	3,00E-13 7	75.2	DPOGS210561-TA	Cyclin-dependent kinase 2
locus_9530	DPSCF300407	236218	236141	84.62	78	6,00E-16 8	34.2	DPOGS205394-TA	Fructose-1,6-bisphosphatase isozyme 2
locus_878	DPSCF300424	30626	30707	89.02	82	6,00E-23 1	107		
locus_8293	DPSCF300446	77824	77901	92.31	78	5,00E-24 1	111		
locus_17	DPSCF300575	2185	2124	90.32	62	2,00E-16 8	36.0		

	l	BL	ASTn Best	t-Hit					
Locus_ID	Danaus plexippus scaffold	start	stop	%_id	alignment length	e-value	Score	Danaus plexippus cds	Protein homology
Ithomia salapia	I							1	
locus_575	DPSCF300006	929124	929055	85.71	70	2E-15	82.4		
locus_10434	DPSCF300037	729941	730017	81.82	77	1E-12	73.4		
locus_6641	DPSCF300038	1144841	1144764	86.42	81	4E-19	95.1	DPOGS212179-TA	Serine/threonine kinase
locus_5230	DPSCF300046	93689	93772	96.43	84	3E-32	138		
locus_11053	DPSCF300054	645838	645902	89.23	65	3E-14	78.8		
locus_3841	DPSCF300071	431640	431701	88.71	62	8E-15	80.6		
locus_15377	DPSCF300081	548500	548415	84.88	86	1E-19	96.9	DPOGS205859-TA	Down syndrome critical region protein 3 homolog
locus_10724	DPSCF300164	45882	45969	85.23	88	3E-20	98.7		
locus_16002	DPSCF300171	38821	38903	80.72	83	3E-14	78.8	DPOGS214065-TA	Carnitine O-palmitoyltransferase 2
locus_2581	DPSCF300232	508892	508818	82.67	75	1E-13	77.0		
locus_9663	DPSCF300395	68400	68317	89.29	84	5E-24	111		
locus_4352	DPSCF300598	15776	15694	80.72	83	3E-14	78.8	DPOGS200524-TA	
Oleria onega	55555399994	2445655	2445574	~~~~	05	4 005 40	77.0		
10CUS_6600	DPSCF300001	2445655	2445571	80.00	85	1,00E-13	77.0	DPOGS207070-TA	Bleomycin hydrolase
locus_54320	DPSCF300001	248/99/	2488051	89.09	55	1,00E-12	73.4	DP0GS207073-TA	
locus_2138	DPSCF300001	5999940	5999893	91.67	48	1,00E-11	69.8		
locus_5821	DPSCF300002	991352	991435	/8.5/	84	4,00E-12	/1.6	DPOGS204406-TA	
locus_18347	DPSCF300012	275034	274963	86.11	72	2,00E-16	86.0		
locus_50	DPSCF300013	1476318	1476235	90.48	84	1,00E-25	116	DPOGS207656-TA	
locus_2696	DPSCF300016	1060706	1060623	83.33	84	2,00E-17	89.7	DPOGS213145-TA	Thioredoxin-like protein 1
locus_291	DPSCF300046	701709	701774	92.42	66	1,00E-19	96.9	DPOGS204311-TA	
locus_4636	DPSCF300051	713048	712964	87.06	85	7,00E-22	104	DPOGS207490-TA	Teneurin-a
locus_302	DPSCF300063	548496	548419	81.18	85	3,00E-14	78.8		
locus_14881	DPSCF300064	1707322	1707239	91.67	84	9,00E-27	120	DPOGS208460-TA	Cadherin-related tumor suppressor
locus_2602	DPSCF300073	701149	701226	88.46	78	1,00E-19	96.9		
locus_8241	DPSCF300086	693323	693404	86.59	82	3,00E-20	98.7		
locus_24045	DPSCF300115	366338	366397	95.00	60	3,00E-19	95.1		
locus_6523	DPSCF300120	68784	68700	83.53	85	4,00E-18	91.5	DPOGS215317-TA	Innexin inx1
locus_12311	DPSCF300162	175614	175527	81.82	88	2,00E-16	86.0		
locus_6481	DPSCF300196	262147	262068	82.50	80	2,00E-15	82.4		
locus_1830	DPSCF300209	256021	255940	86.59	82	3,00E-19	95.1		
locus_47502	DPSCF300221	281710	281775	82.86	70	5,00E-11	68.0		
locus_878	DPSCF300424	30618	30696	92.50	80	5,00E-24	111		
locus_14178	DPSCF300431	40916	41000	77.65	85	5,00E-11	68.0		

Scada reckia junina

Scada reckia ethica

batesi

Napeogenes pharo lamia

Napeogenes pharo ssp nov

Episcada sulphurea ssp nov

Pteronymia primula primula

pharo

Ithomia salapia aquinia

Napeogenes inachia patentia

Napeogenes juanjuiensis juanjuiensis

Pseudoleria aelia pachiteae

Hyposcada zarepha flexibilis

Ithomia salapia

derasa (Andes)

Scada reckia

quotidiana

(Andes)

Hypoleria virginia oriana

orianula

Hyposcada illinissa ssp nov 4

Oleria agarista agarista

(Amazon)

Oleria astrea

tigilla

Oleria gunilla lota

Oleria gunilla serdolis

Hypoleria virginia

Napeogenes pharo

Napeogenes inachia pozziana

Mcclungia cymo

subtilis

Ithomia salapia PCs

Oleria onega PCs