Léo Bigorgne 
email: lb847@cam.ac.uk
  
Decay estimates for the massless Vlasov equation on Schwarzschild spacetimes

We consider solutions to the massless Vlasov equation on the domain of outer communications of the Schwarschild black hole. By adapting the r p -weighted energy method of Dafermos and Rodnianski, used extensively in order to study wave equations, we prove arbitrary decay for a non-degenerate energy flux of the Vlasov field f through a well-chosen foliation. An essential step of this methodology consists in proving a non-degenerate integrated local energy decay. For this, we take in particular advantage of the red-shift effect near the event horizon. The trapping at the photon sphere requires however to lose an of integrability in the velocity variable. Pointwise decay estimates on the velocity average of f are then obtained by functional inequalities, adapted to the study of Vlasov fields, which allow us to deal with the lack of conservation law for the radial derivative.

Introduction and preliminaries

The main goal of this article is to prove pointwise decay estimates for the velocity average of the solutions to the massless Vlasov equation in the exterior of a Schwarzschild spacetime (M, g) of mass M > 0. This region is covered by a coordinate system (t, r, θ, ϕ), where (t, r) ∈ R×]2M, +∞[ and (θ, ϕ) are spherical coordinates on the unit sphere S 2 , and the metric can be written

g = -1 - 2M r dt 2 + 1 - 2M r -1
dr 2 + r 2 dσ S 2 , dσ S 2 = dθ 2 + sin 2 (θ)dϕ 2 .

For the purpose of this paper, it will be more convenient to work with Regge-Wheeler coordinates (t, r * , θ, ϕ), where r * := r + 2M log(r -2M ) -3M -2M log M, r * ∈ R,

is the Regge-Wheeler tortoise coordinate and vanishes at the photon sphere r = 3M , which contains trapped null geodesics. In this coordinate system, the metric takes the form

g = -1 - 2M r dt 2 + 1 - 2M r dr * 2 + r 2 dσ S 2 . (2) 
The Vlasov equation on a Schwarzschild background models the evolution of particles of mass m ≥ 0 which do not self-interact. They are represented by the particle density f , which is a nonnegative function defined on a subset P of the cotangent bundle T M, sometimes abusively referred as the co-mass shell. In the exterior region r > 2M and in the coordinate system (t, r * , θ, ϕ, v r * , v θ , v ϕ ) of the co-mass shell induced by the Regge-Wheeler coordinates, the Vlasov equation for massless particles m = 0 reads

- v t 1 -2M r ∂ t f + v r * 1 -2M r ∂ r * f + v θ r 2 ∂ θ f + v ϕ r 2 sin 2 (θ) ∂ ϕ f + r -3M r 4 |/ v| 2 ∂ v r * f + cot(θ) r 2 sin 2 (θ) v 2 ϕ ∂ v θ f = 0, (3) 
where

v t = -|v r * | 2 + 1 - 2M r |/ v| 2 r 2 1 2 , / v := |v θ | 2 + sin 2 (θ)|v ϕ | 2 ,
and reflects that the particles are moving along null geodesics. In this article, we study solutions to massless Vlasov equation on the exterior region of Schwarzschild spacetime arising from sufficiently regular data prescribed on, say, the Cauchy hypersurface {t * := t + 2M log(r -2M ) = 0}. In particular, we will prove decay estimates for the energy flux of f through a well-chosen foliation and for its velocity average. For instance, we will prove that any sufficiently regular solution f to (3) satisfies, for any R * ∈ R and p ≥ 0,

∀ (t, r * , ω) ∈ R × R × S 2 , r * ≥ R * , t * ≥ 0, P |f ||v t | 2 dµ P (t,r * ,ω) ≤ C f,R * ,p r 2 (1 + |t -r * |) p ,
where the constant C f,R * ,p only depends on M , R * , p and a certain energy norm of f (t * = 0). Before presenting our main results (see Theorem 1.11), we introduce the notations used all along this paper.

The exterior of Schwarzschild spacetime

The maximally extended Schwarzschild spacetime (M, g) is a time-oriented Lorentzian manifold solution to the vacuum Einstein equations R µν = 0. The region which we are interested in and represented by the coordinate system (t, r > 2M, θ, ϕ), or alternatively by (t, r * , θ, ϕ), is D. The black hole B, covered by the coordinate system (t, 0 < r < 2M, θ, ϕ), is separated from the domain of outer communications by the event horizon H + , which is the null hypersurface r = 2M . The region D is a copy of D and B is a white hole. Note that the time orientation can be chosen so that ∂ t is future oriented for r > 2M .
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In this article, we will only work on the exterior region D. It will be convenient to use the retarded and advanced Eddington-Finkelstein coordinates u := t -r * , u = t + r * , which turn out to be null since the metric takes the form and the future event horizon H + corresponds to U = 0 (or abusively to u = +∞).

g = -1 - 2M r dudu + r 2 dσ S 2 . ( 4 
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It is well-known, and it can be easily observed in [START_REF] Andersson | Hidden symmetries and decay for the wave equation on the Kerr spacetime[END_REF], that the exterior of Schwarzschild spacetime is static and spherically symmetric. More precisely, ∂ t is a timelike Killing vector field and (Ω 1 , Ω 2 , Ω 3 ), where

Ω 1 := -sin ϕ ∂ θ -cot θ cos ϕ ∂ ϕ , Ω 2 := cos ϕ ∂ θ -cot θ sin ϕ ∂ ϕ , Ω 3 := ∂ ϕ , (5) 
is a basis of Killing vector fields generating the SO 3 (R)-symmetry.

Remark 1.2. Note that ∂ θ = -sin(ϕ)Ω 1 + cos(ϕ)Ω 2 . Moreover 1 sin(θ) ∂ ϕ = cos(ϕ) cos(θ) Ω 1 + cos(ϕ) cos(θ) Ω 2 can be extended in a smooth vector field on S 2 .

Finally, because of the degeneracy of the spherical coordinates (θ, ϕ), we will sometimes need to use a different set of spherical variables ( θ, ϕ), that we choose for simplicity so that sin(θ) cos(ϕ) = cos( θ), sin(θ) sin(ϕ) = sin( θ) cos( ϕ), cos(θ) = sin( θ) sin( ϕ).

More precisely, ( θ, ϕ) is obtained from (θ, ϕ) by applying the permutation x-axis → y-axis, y-axis → z-axis, z-axis → x-axis to the axis of the sphere. In particular, we have dµ S 2 = d θ 2 + sin 2 ( θ)d ϕ 2 ,

∂ θ = -sin( ϕ)Ω 2 + cos( ϕ)Ω 3 , ∂ ϕ = Ω 1 and sin(θ) ≤ 1 √ 2 ⇔ sin( θ) ≥ 1 √ 2 . ( 6 
)
In order to completely cover S 2 by these two spherical coordinate systems, we take ( θ, ϕ) ∈]0, π[×] -π, π[. We now construct the foliation used in this article in order to study solutions to the massless Vlasov equation. Consider

• S a spherically symmetric spacelike Cauchy hypersurface in (M, g) crossing the event horizon to the future of the sphere of bifurcation H + ∩ H -and terminating at spatial infinity i 0 or at future null infinity I + . Further, we define S := • S ∩ D and we will study solutions to the massless Vlasov equation, arising from initial data given on S, in J + (S) ∩ D, where J + (S) is the causal future of S. For this, we will use the foliation (Σ τ ) τ ∈R defined as follows. We fix, for all this paper, a constant R 0 > 3M and we consider t 0 ∈ R such that {(t 0 , R 0 )} × S 2 ∩ S = ∅. We introduce R * 0 := r * (R 0 ), u 0 := t 0 -R * 0 and, for any τ ∈ R,

N τ := {(t, r * , ω) ∈ R × R × S 2 / t -r * = τ + u 0 , r * ≥ R * 0 } ∩ J + (S),
where N τ is the piece of the outgoing null hypersurface u = τ + u 0 located in the region {r * ≥ R * 0 } of the causal future of S. Then, we define Σ 0 := (S ∩ {r * < R * 0 }) ∪ N 0 . Σ τ := ϕ τ (Σ 0 ) for all τ ≥ 0, where τ → ϕ τ is the flow generated by the static Killing vector field ∂ t .

Σ τ = N τ for all τ < 0.

Remark 1.3. For all τ ≥ 0, we have Σ τ = (ϕ τ (S) ∩ {r * < R * 0 }) ∪ N τ .

For -∞ ≤ a < b ≤ +∞, we also introduce

R b a := a≤τ ≤b Σ τ , so that J + (S) ∩ D = R +∞ -∞ = τ ∈R Σ τ .
These subsets are represented in the following Penrose diagram of the exterior of Schwarzschild spacetime.

i + i 0 H + ( u = + ∞ ) I + ( u = + ∞ ) S Στ Nτ Σs N 0 N τ R s τ Figure 3:
The foliation (Σ τ ) τ ∈R . In this diagram, τ < 0 < τ < s.

We now collect various formulas and properties for future reference. 

∂ r * = 1 - 2M r ∂ r , ∂ u = 1 2 (∂ t + ∂ r * ) , ∂ u = 1 2 (∂ t -∂ r * ) , (7) 
We denote by dµ R b a the invariant volume form induced by g on R b a and by dµ S 2 = sin(θ)dθ ∧ dϕ the standard volume element of the unit sphere S 2 . Let n Στ be the future oriented normal vector along Σ τ such that n Στ | Nτ = ∂ u and n Στ is unitary for r < R 0 . Then, we denote by dµ Στ the induced volume form on the hypersurface1 Σ τ . The following results are proved in Appendix A. There exists a strictly positive smooth function γ : [2M, R 0 ] → R * + such that, for all τ ∈ R, dµ Στ {2M <r<R0} = γ(r)r 2 dr ∧ dµ S 2 , dµ Στ {r≥R0} = dµ Nτ := r 2 du ∧ dµ S 2 .

There exist a strictly positive smooth function β : [2M, R 0 ] → R * + such that

n Στ {2M <r<R0} = 1 β(r) ∂ u + β(r) 1 -2M r ∂ u , n Στ Nτ = n Nτ = ∂ u .
There exists a smooth function U : [2M, R 0 ] → R such that, for any τ ≥ 0, Σ τ ∩ {r < R 0 } can be parameterized, in the Regge-Wheeler system of coordinates (t, r * , θ, ϕ), by

(r, ω) ∈ ]2M, R 0 [×S 2 → (U (r) -r * + τ, r * , ω),
where r * = r * (r) is defined in [START_REF] Andersson | Stability for linearized gravity on the Kerr spacetime[END_REF]. This implies in particular

∀ r * < R * 0 , |τ -u| ≤ U L ∞ , ∀ r * ≥ R * 0 , |τ -u| ≤ |u 0 |
and that τ ∼ t on the domains of bounded r * . Moreover, there exists

γ 0 : [2M, +∞[→ R * + such that dµ R +∞ -∞ = γ 0 (r)dτ ∧ dµ Στ , ∃ C ≥ 1, ∀ r ≥ 2M, 1 C ≤ γ 0 (r) ≤ C.
Remark 1.5. A possible and explicit choice for S is the hypersurface {t * = 0}, where t * := t + 2M log(r -2M ). In that case, for all τ ≥ 0, we have

Σ τ = ({t * = τ } ∩ {r * < R * 0 }) ∪ N τ , dµ Στ {r<R0} = γ(r)r 2 dr ∧ dµ S 2 , n Στ {r<R0} = 1 γ(r) ∂ u + γ(r) 1 -2M r ∂ u , γ(r) := 1 + 2M r 1 2
.

We will sometimes need to consider pieces of the hypersurfaces of constant u. More precisely, let

N w := {(t, r * , ω) ∈ R × R × S 2 / t + r * = w} ∩ J + (S), w ∈ R,
and n N w = ∂ u be a future oriented normal vector along N w . Then, the induced volume form is given by dµ N w = -r 2 du ∧ dµ S 2 . We will also denote by n S the future oriented normal unit vector to S and by dµ S the induced volume form on S.

Finally, in order to lighten the notations, we will throughout this article use the notation A B when there exists C > 0 such that A ≤ C • B, with C a constant depending only on M , the foliation (Σ τ ) τ ∈R and the constants 2M < r 0 < r 1 < 3M introduced in Section 2. If C depends also on a parameter p, we will write A p B.

Vlasov fields in the cotangent formulation

Our presentation follows the one of [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF]Subsection 2.1] in the special case of the exterior of Schwarzschild spacetime. For an introduction to the (co)tangent bundle formulation of Vlasov equations, we refer to [START_REF] Rioseco | Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole[END_REF][START_REF] Sarbach | The geometry of the tangent bundle and the relativistic kinetic theory of gases[END_REF]. In the cotangent formulation, massless Vlasov fields are defined on the bundle of future light cones

P := x∈M P x , P x := (x, v) / v ∈ T x M, g -1
x (v, v) = 0 and v future oriented .

Remark 1.6. Note that a 1-form v ∈ T x M is said to be future oriented if and only if the vector field g -1 x (v, •) is future oriented. In particular, if v ∈ P x , then v = 0.

In the exterior region r > 2M , we can decompose any 1-form v as v = v t dt + v r * dr * + v θ dθ + v ϕ dϕ, so that (t, r * , θ, ϕ, v t , v r * , v θ , v ϕ ) is a coordinate system on T M which is induced by the Regge-Wheeler coordinates. If g -1 (v, v) = 0 and v is future oriented, we have

v t = -|v r * | 2 + 1 - 2M r |/ v| 2 r 2 1 2 , / v := |v θ | 2 + sin 2 (θ)|v ϕ | 2 , (10) 
and (t, r * , θ, ϕ, v r * , v θ , v ϕ ) are smooth coordinates on P. In this coordinate system, denoted for convenience by (x 0 , x 1 , x2 , x 3 , v 1 , v 2 , v 3 ), the massless Vlasov equation takes the form 2

T(f ) := v α g αβ ∂ x β f - 1 2 ∂ x i g αβ v α v β ∂ vi f = 0,
where T is the Liouville vector field. Using (2), ∂ r * = 1 -2M r ∂ r and [START_REF] Blue | Phase space analysis on some black hole manifolds[END_REF], so that

1 2 ∂ r * g αβ v α v β = r-3M r 4 |/ v| 2 , we obtain T = - v t 1 -2M r ∂ t + v r * 1 -2M r ∂ r * + v θ r 2 ∂ θ + v ϕ r 2 sin 2 (θ) ∂ ϕ + r -3M r 4 |/ v| 2 ∂ v r * + cot(θ) r 2 sin 2 (θ) v 2 ϕ ∂ v θ . (11) 
Note that v can also be decomposed on the basis (du, du, dθ, dϕ), so that

v = v u du + v u du + v θ dθ + v ϕ dv ϕ , v u = v t -v r * 2 , v u = v t + v r * 2 , 4|v u ||v u | = 1 - 2M r |/ v| 2 r 2 . ( 12 
)
The isometries of the Schwarzschild spacetime generates symmetries for the Liouville vector field T as well as quantities preserved along its flow. For any (conformal) Killing vector field X, its complete lift X ∈ T T M is tangent to P and commute with T. Moreover, v(X) is solution to the massless Vlasov equation. These results, which hold in a more general setting (see [33, Proposition 1] and [20, Appendix C]), implies that

Ω 1 := -sin ϕ ∂ θ -cot θ cos ϕ ∂ ϕ -cos ϕ v ϕ sin 2 θ ∂ v θ + (cos ϕ v θ -sin ϕ cot θ v ϕ ) ∂ vϕ , (13) 
Ω 2 := cos ϕ ∂ θ -cot θ sin ϕ ∂ ϕ -sin ϕ v ϕ sin 2 θ ∂ v θ + (sin ϕ v θ + cos ϕ cot θ v ϕ ) ∂ vϕ , (14) 
Ω 3 := ∂ ϕ , ∂ t := ∂ t (15) 
commute with T and that v t as well as

/ v = v(Ω 1 ) 1 + v(Ω 2 ) 2 + v(Ω 3 ) 2 1 
2 are preserved by the flow of T. We summerize these properties, which can also be obtained by straightforward computations.

Proposition 1.7. We have

[T, ∂ t ] = 0, [T, Ω 1 ] = 0, [T, Ω 2 ] = 0, [T, Ω 3 ] = 0
as well as T(v t ) = 0 and, almost everywhere, T(/ v) = 0.

Remark 1.8. Note also that the vector field

S v := v r * ∂ v * + v θ ∂ v θ + v ϕ ∂ vϕ satisfies [T, S v ] = -T.
We will not take advantage of it in this article but let us mention that it was crucially used in [START_REF] Bigorgne | A vector field method for massless relativistic transport equations and applications[END_REF]Lemma 6.1].

If I ∈ 1, 3 n is a multi-index of length |I| = n ≥ 1, we define Ω I := Ω I1 . . . Ω In .
For convenience, we define the multi-index of length |I| = 0 such that for any function f , Ω I f = f . For any -∞ ≤ a < b ≤ +∞, we define the following subset of P,

R b a := {(x, v) ∈ P / x ∈ R b a }.
Let x be a point in the exterior of Schwarzschild spacetime. The inverve metric g -1 induces the volume element dµ

T x M = | det g -1 |dv t ∧ dv r * ∧ dv θ ∧ dv ϕ on T x M. Since P x is included in a level set of q : v → 1 2 g -1 (v, v), the differential form dq = -vt 1-2M r dv t + v r * 1-2M r dv r * + v θ r 2 dv θ + vϕ r 2 sin 2 θ dv ϕ is normal to P x . Hence, dµ Px := | det g -1 | -vt 1-2M r dv r * ∧ dv θ ∧ dv ϕ = dv r * ∧ dv θ ∧ dv ϕ r 2 | sin θ||v t |
is the unique volume form on P x satisfying dµ T x M = dq ∧ dµ Px . For any sufficiently regular function f : R +∞ -∞ → R, we denote by P f dµ P the function x → Px f dµ Px . Then, its energy momentum tensor T and particle current density N are defined by

T[f ] µν := P f v µ v ν dµ P , N [f ] µ := P f v µ dµ P
and there holds

∇ µ T[f ] µν = P T(f )v ν dµ P , ∇ µ N [f ] µ = P T(f )dµ P , (16) 
so that N [f ] is divergence free if f is solution to the massless Vlasov equation. If X = X ν ∂ ν is a vector field, we denote by v(X) = v ν X ν its image under the 1-form v. If X is the red-shift vector field N introduced below or n Στ , we will rather write v(N) = v N and v(n Στ ) = v • n Στ . Then, we have

∇ µ (T[f ] µν X ν ) = ∇ µ N [f v(X)] µ = P T(f )v(X) + f T (v(X)) dµ P .
Thus, using the vector field X as a multiplier corresponds to multiply the particle density f by the weight

v(X) = v ν X ν . In particular, if X is the static Killing field ∂ t and if T(f ) = 0, one can derive conservation laws for |v(∂ t )| a f = |v t | a f , a ∈ R.
Next, we recall the dominant energy condition. If f ≥ 0 and X 1 , X 2 are two future directed causal vectors, then

T[f ](X 1 , X 2 ) = P f v(X 1 )v(X 2 )dµ P ≥ 0.
This follows from the fact that v is lightlike and future directed, so that v(X 1 ) ≤ 0, with a strict inequality if X 1 is timelike. Finally, it will be convenient to use

ρ f := P f |v • n Στ | dµ P , (17) 
so that, if X is a timelike future oriented vector field, ρ

[f |v(X)|] = T[f ](X, n Στ
) is an energy density. In this paper, we will mainly be interested in

3 ρ[f |v N |].

The red-shift effect

Although ∂ t is timelike in the region of outer communications D, it becomes null on the event horizon. The consequence is that the energy density T[f ](∂ t , n Στ ) degenerates near H + . Even if we will work throughout this article with the Regge-Wheeler coordinates, it is convenient to use here the coordinate system (u, r, θ, ϕ) ∈ R×R * + ×]0, π[×]0, 2π[, which covers the region B∪H + ∪D of the maximally extended Schwarzschild spacetime (M, g) (see the Penrose diagram of Figure 1). The metric takes the form

g = -1 - 2M r du 2 + 2dudr + r 2 dσ S 2
and is indeed regular on H + . In order to avoid any confusion, we denote by ∂ u and ∂ r the differentiation with respect to u and r in the coordinate system (u, r, θ, ϕ). Then, in D,

∂ t = ∂ u , ∂ r * = ∂ u + 1 - 2M r ∂ r , ∂ u = ∂ u + 1 2 1 - 2M r ∂ r , ∂ u = - 1 2 1 - 2M r ∂ r .
This implies that ∂ u (respectively du) and, in particular, 

= lim r→2M + g(∂ u , ∂ u ) = 0, lim r→2M + v(∂ r ) v=g(∂u,•) = lim r→2M + g(∂ u , ∂ r ) = 1, so that T[f ](∂ t , n Στ ) does not uniformly control T[f ](∂ r , n Στ ) on D,
for a nonnegative function f . As it can be directly checked in [START_REF] Blue | Phase space analysis on some black hole manifolds[END_REF], the angular components cannot be uniformly controlled by

T[f ](∂ t , n Στ ) either.
The following result, implied by Lemma B.1, suggests us to consider an other multiplier than ∂ t in order to obtain a strong control of f near the event horizon.

Lemma 1.9. Let 2M < r 1 ≤ R 0 and V be a ϕ t -invariant future directed timelike vector field on the region {2M ≤ r ≤ r 1 } of H + ∪ D. Then, for any smooth vector fields X 1 , X 2 and for all τ ≥ 0, there holds on the compact set

Σ τ ∩ {2M ≤ r ≤ r 1 }, T[f ](X 1 , X 2 ) ≤ C • T[f ](V, n Στ ) ,
where C depends on τ, V, X 1 , X 2 and S.

The goal is then to find a ϕ t -invariant future directed timelike vector field N on H + ∪ D, which satisfies N = ∂ t for r ≥ r 1 > 2M , and such that we can control

T[f ](N, n Στ ). As ∂ u + 1 1-2M r ∂ u can be extended on a timelike vector field on B ∪ H + ∪ D, which contains {2M ≤ r ≤ r 1 }, we have 4 T[f ](N, n Στ ) = P f |v N ||v • n Στ |dµ P , where v N := v(N ), |v N | ∼ |v • n Στ | ∼ |v u | + |v u | 1 -2M r + | / v| r .
However, the conservation law given by Proposition 1.15). In order to bound the energy norm of f |v N |, or even f |v N | a , we take advantage of the redshift effect, which is in particular captured by the fact that such a timelike vector field N can be chosen so that

∇ µ T[f ] µt = ∇ µ N [v t f ] = 0 merely gives us a uniform bound on Στ T[f ](∂ t , n Στ )dµ Στ (see
∃ b > 0, ∃ r 0 > 2M, ∀ 2M < r ≤ r 0 , -T |v N | |v t | ≥ b|v N | 2 .
Hence, when we apply the divergence theorem to T[f ] µν N ν , the worst error terms have a good sign. It is wellknown that a similar issue occurs for the wave equation on black hole spacetimes and it was understood by Dafermos-Rodnianski in [START_REF] Dafermos | The red-shift effect and radiation decay on black hole spacetimes[END_REF] that the red-shift property of the horizon is the key for proving a non-degenerate energy estimate in the Schwarzschild spacetime. In fact, the existence of such a strictly timelike vector field N is related to the strict positivity of the surface gravity κ = 1 4M on the Killing horizon r = 2M . The surface gravity is defined such that the Killing vector field ∂ u , which is null on H + and equal to ∂ t in D, satisfies ∇ ∂ u ∂ u = κ∂ u on H + . We refer to [START_REF] Schlue | Decay of linear waves on higher-dimensional Schwarzschild black holes[END_REF]Section 3] for the detailed construction of N and to [START_REF] Dafermos | Lectures on black holes and linear waves[END_REF]Section 7] for a more general result covering all classical sub-extremal black holes. The behaviour of the solutions to the wave equation on extremal black holes, for which the surface gravity vanishes, is quite different (see [START_REF] Aretakis | Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations I[END_REF][START_REF] Aretakis | Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations II[END_REF]).

Vector field methods

In order to obtain decay estimates for solutions to wave equations, Klainerman developped in [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF] what is now referred as the vector field method. The methodology has been recently adapted for Vlasov equations by Fajman-Joudioux-Smulevici [START_REF] Fajman | A vector field method for relativistic transport equations with applications[END_REF]. These approaches turned out to be applicable for non-linear equations and led in particular to the proof of the stability of Minkowski spacetime as a solution to Einstein equations [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF][START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF] or to Einstein-Vlasov system [START_REF] Taylor | The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system[END_REF][START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF][START_REF] Lindblad | Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge[END_REF][START_REF] Bigorgne | Asymptotic Stability of Minkowski Space-Time with non-compactly supported massless Vlasov matter[END_REF]. Instead of using, say, representation formula, these strategies rely on 1. a set of vector fields, used as commutators, which reflect the symmetries of the equation. In our case, we will use the complete lift of the Killing vector fields of the Schwarzschild spacetime, i.e. ∂ t , Ω 1 , Ω 2 and Ω 3 , since they commute with the Vlasov operator T.

2. Energy inequalities. Well-chosen vector fields are used as multipliers in order to prove boundedness for weighted L p norms of the solution studied and its derivatives. For Vlasov equations, as mentionned previously, using the vector field X as a multiplier consists in multiplying f by the weight v(X) and then to apply the divergence theorem to N [v(X)f ] µ . More generally, we will consider quantities of the form |v(X)| a |∂ n t Ω I f |, with a ∈ R. In particular, if T(f ) = 0 and X is conformal Killing, this gives a conservation law.

3. Weighted Sobolev embeddings in order to derive pointwise decay estimates for the solution. For the classical vector field method, it is crucial to use commutators or multipliers with weights in t in order to obtain time decay.

The main difficulty for adapting this strategy to the study of wave equations on black holes is related to the lack of symmetries of these Lorentzian manifolds compared to Minkowski spacetime. Nonetheless, pointwise 4 In other words, near the event horizon, the velocity current v should then rather be decomposed as

v = v u du + v r dr + v θ dθ + vϕdϕ, where, in particular 2vu 1-2M r = v r .
decay estimates has been proved in the case of Schwarschild, and even slowly rotating Kerr spacetimes, by considering multipliers or commutators analogous to the Morawetz and the scaling vector fields of the Minkowski space [START_REF] Dafermos | The red-shift effect and radiation decay on black hole spacetimes[END_REF][START_REF] Blue | Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space[END_REF][START_REF] Luk | Improved decay for solutions to the linear wave equation on a Schwarzschild black hole[END_REF][START_REF] Luk | A vector field method approach to improved decay for solutions to the wave equation on a slowly rotating Kerr black hole[END_REF] (see also [START_REF] Andersson | Hidden symmetries and decay for the wave equation on the Kerr spacetime[END_REF] for an extension of the vector field method relying on hidden symmetries). In order to control the error terms arising in the energy estimates from the failure of these vector fields, which carry weights in t, to be conformal Killing, a new feature is required compared to the classical method of Klainerman. More precisely, in all these works, an integrated energy decay estimate is proved and crucially used. In our case, for the massless Vlasov equation, it would be an inequality of the form

+∞ τ =-∞ Στ P A(r)f |v N ||v • n Στ |dµ Στ dτ ≤ D 0 , (18) 
where D 0 is a constant depending on the values of f on the initial hypersurface S and A is a bounded nonnegative function which can possibly vanish. These type of estimates are obtained by using multipliers X generating a bulk integral with a nonnegative integrand and controllable boundary terms once the divergence theorem is applied to T [f ] µν X ν . In order to prove a non-degenerate local integrated energy decay on Schwarzschild spacetimes, i.e. an inequality such as [START_REF] Dafermos | Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case[END_REF] where A only vanishes at spatial infinity, the main difficulty once the redshift effect is well understood is to overcome the problems related to the trapping at the photon sphere r = 3M , where trapped null geodesics are orbiting. In the case of the wave equation, this can only be achieved by loosing regularity [START_REF] Sbierski | Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes[END_REF]. In fact, a loss of an of an angular derivative is sufficient [START_REF] Blue | Phase space analysis on some black hole manifolds[END_REF] and we prove in this paper a similar result for the massless Vlasov equation. More precisely, we obtain a non-degenerate local integrated energy estimate with a loss of an of integrability in / v and we prove that this loss is necessary (see Propositions 3.2 and 3.12).

In [START_REF] Dafermos | A new physical-space approach to decay for the wave equation with applications to black hole spacetimes[END_REF], Dafermos-Rodnianski presented a new approach for the study of wave equations which turns out to be more robust than the classical vector field method. One of the goal of this paper is to adapt it to massless Vlasov equations. It relies on 1. the boundedness of an energy norm. In this article, it will be Στ P f |v N ||v • n Στ |dµ P dµ Στ .

2. A non-degenerate integrated local energy decay. In our case, this would be an inequality such as [START_REF] Dafermos | Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case[END_REF] and where A(r) > 0.

3. A hierarchy of r p -weighted energy estimates. For the wave equation, this is achieved by using r p ∂ u , for 0 ≤ p ≤ 2, as a multiplier. In this article, in order to derive arbitrary decay for the massless Vlasov equation, we will consider the weights r p |v u | q , with 0 ≤ 2p ≤ q.

Together, these three points are sufficient to derive decay in τ for, in our case, Στ P f |v N ||v • n Στ |dµ P dµ Στ .

The pointwise decay estimates are then obtained by applying the method to, say, ∂ n t Ω I f and then by using Sobolev embeddings. However, for Vlasov fields, there is an additional difficulty compared to the case of the wave equation since we do not have a conservation law for the radial derivative ∂ r f . Instead, we use the equation T(f ) = 0 in order to estimate

∂ r P |v r * | 2 |vt| 2 f |v t ||v • n Στ |dµ P in L 1 (Σ τ
) and we control the nondegenerate energy density T[f ](N, N) by higher moments of the solution since, for instance,

P f |v N | 2 dµ P 1 r 3 2 P |v r * | 2 |v t | 2 |v u | 2 |v t | 2 |f | 4 1 + |v t | + |/ v| 4 |v t ||v N | 10 dµ P 1 4
.

An important feature of this approach, which explains part of its robustness, is that no vector field with weights growing in time are required. Indeed, the decay in t is retrieved by the energy decay.

Remark 1.10. We emphasize that it is crucial to choose a foliation adapted to the behaviour of massless particles such as the spacelike-null hypersurfaces Σ τ considered in this article (see Figure 3). In fact, the flux through Σ τ measures the energy that has not been radiated to null infinity or inside the black hole up to time τ ≥ 0. In contrast, the flux through the hypersurface {t = τ } is preserved. Since such an hypersurface intersects the event horizon at the bifurcation sphere H + ∩ H -and terminates at spatial infinity (see Figure 2), its energy flux will measure all the energy radiated to null infinity and inside the black hole.

This method has been extensively used in order to study solutions to wave equations in various context. It can be applied to a large class of spacetimes [START_REF] Moschidis | The r p -weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications[END_REF], including in particular the subextremal Kerr black holes |a| < M (see [START_REF] Dafermos | Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case[END_REF]). With a refinement of the approach, Angelopoulos-Aretakis-Gajic provided a characterization of all the solutions to the wave equation, on a large class of stationary spherically symmetric asymptotically flat spacetimes, which satisfy Price's law as a lower bound [START_REF] Angelopoulos | Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes[END_REF][START_REF] Angelopoulos | A vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary spacetimes[END_REF]. The r p -weighted energy method is also substantially applied in the dynamical satibility of Kerr family of black holes as solutions to the Einstein equations. This includes the study of the Teukolsky equation [START_REF] Pasqualotto | The spin ±1 Teukolsky equations and the Maxwell system on Schwarzschild[END_REF][START_REF] Dafermos | Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case[END_REF][START_REF] Giorgi | Boundedness and decay for the Teukolsky equation of spin ±1 on Reissner-Nordström spacetime: the = 1 spherical mode[END_REF], stability results for linearized gravity around a Schwarzschild or even a Kerr solution [START_REF] Dafermos | The linear stability of the Schwarzschild solution to gravitational perturbations[END_REF][START_REF] Johnson | The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge[END_REF][START_REF] Andersson | Stability for linearized gravity on the Kerr spacetime[END_REF] as well as the non-linear stability of the Schwarzschild family with respect to polarized axially symmetric perturbations [START_REF] Klainerman | Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF]. Finally, let us also mention that the method has also been succesfully applied in order to study various non-linear problems on spacetimes close to the Minkowski space [START_REF] Yang | Global solutions of nonlinear wave equations in time dependent inhomogeneous media[END_REF][START_REF] Yang | Global solutions of nonlinear wave equations with large data[END_REF][START_REF] Yang | Decay of solutions of Maxwell-Klein-Gordon equations with arbitrary Maxwell field[END_REF][START_REF] Yang | On the global behavior of solutions of the Maxwell-Klein-Gordon equations[END_REF][START_REF] Yang | Pointwise decay for semilinear wave equations in R 3+1[END_REF][START_REF] Yang | On global dynamics of the Maxwell-Klein-Gordon equations[END_REF][START_REF] Keir | The weak null condition and global existence using the p-weighted energy method[END_REF] and on a fixed black hole background [START_REF] Pasqualotto | Nonlinear stability for the Maxwell-Born-Infeld system on a Schwarzschild background[END_REF].

Very few are known about the asymptotic properties of solutions to the massless Vlasov equation on black hole spacetimes. To our knowledge, there is only one result, due to Andersson-Blue-Joudioux [START_REF] Andersson | Hidden symmetries and decay for the Vlasov equation on the Kerr spacetime[END_REF], for slowly rotating Kerr spacetimes. They proved the boundedness of a weighted energy norm as well as an integrated energy decay estimate degenerating at the horizon and on a neighborhood of r = 3M but they do not obtain any pointwise decay estimate on the velocity average of the Vlasov field. The main goal of this paper is then to adapt the r p -weighted energy method to massless Vlasov equation and to obtain pointwise decay estimates on P f |v N | 2 dµ P . Since the techniques used in this paper for the study of massless Vlasov fields are compatible with the ones developped by Dafermos-Rodnianski for solutions to wave equations, we expect that they will be useful for studying non-linear equations such as the Einstein-Vlasov system.

Statement of the main result

In order to present the main result of this paper, we will use the notations p := min{n ∈ N / n ≥ p}, u -:= max(0, -u) and v t := (1 + |v t | 2 ) 1 2 . We also introduce, for any k ∈ N * and s ≥ 1,

ζ k (s) := 1≤n≤k s -n . (19) 
Moreover, we will refer to an energy norm E p s [f ] which is defined in Section 7 (see (49)). It is the sum of weighted L q1 and L q2 norms of ∂ n t Ω I (f ) |S , with n + |I| ≤ 3 and 3 < q 1 < q 2 . Theorem 1.11. Let p ∈ R + , s > 1 and f : R +∞ -∞ → R be a sufficiently regular solution to the massless Vlasov equation T(f ) = 0. The following estimates holds. 

E p s [f ] r 2 (1 + |t + r * |) p .
Remark 1.12. Note that if p ∈ R + \ N is given and satisfies p is even, then there exists s 0 > 1 such that all the conditions required on p and s in Theorem 1.11 hold for any 1 < s ≤ s 0 . This follows from

∀ q ∈ R + \ N, lim s→+∞ ζ q (s) = q > q.
Remark 1.13. Similar decay results holds for any p ∈ R + . However, when p ∈ N * , the decay rates in τ are stricly weaker than |τ | -p . We refer to Section 4 for more details. According to Lemma 1.4, pointwise decay in |τ | corresponds to decay in min(1 + |t -r * |, 1 + |t + r * |). Note also that using Hölder's inequality, we obtain for any d ∈ [0, p],

P |v u | d/2 |v t | d/2 |f ||v N | 2 dµ P (t,r * ,ω) p,s E p s [f ] r 2 (1 + |τ |) p-d (1 + |t + r * |) d .
Moreover, we can obtain through [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], which provides Remark 1.14. In view of the existence of steady states for the massive Vlasov equation on the exterior of a Schwarzschild black hole [START_REF] Rioseco | Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole[END_REF], no analogous result to Theorem 1.11 can hold for massive particles.

|/ v| 2
We end this section by proving first an energy estimate which degenerates on the event horizon H + and then by explaining the strategy of the proof of Theorem 1.11.

Degenerate conservation law

We 

ρ h dµ Στ 2 ≤ Στ 1 ρ h dµ Στ 1 + R τ 2 τ 1 P T(h) dµ P dµ R τ 2 τ 1
.

Proof. Let w > τ 2 + u 0 , w > w + 2R * 0 and consider the domain R τ2 τ1 ∩ {u ≥ w} ∩ {u ≥ w}. As suggested by Figures 23, its boundary is composed by a piece of the hypersurfaces Σ τ1 and Σ τ2 . Recall that v • n Στ ≤ 0.

A piece of the hypersurface C w := {u = w} which admits n Cw = ∂ u as normal vector and dµ Cw = r 2 du ∧ dσ S 2 as induced volume form. In particular, v • n Cw ≤ 0.

A piece of the hypersurface

N w . Recall that v • n N w = v u ≤ 0 and dµ N w = -r 2 du ∧ dσ S 2 .
By applying the divergence theorem to N [h] µ in the domain considered, we have, in view of ( 16) and ( 17),

Cw 1 τ1≤τ ≤τ2 P h |v • n Cw |dµ P dµ Cw + Στ 2 1 u≤w 1 u≤w ρ [h] dµ Στ 2 + N w 1 τ1≤τ ≤τ2 P h |v • n N w |dµ P dµ N w - Στ 1 1 u≤w 1 u≤w ρ [h] dµ Στ 1 = R τ 2 τ 1 1 u≤w 1 u≤w P T(h) dµ P dµ R τ 2 τ 1 . ( 20 
)
Since h ≥ 0, we get

Στ 2 1 u≤w 1 u≤w ρ [h] dµ Στ 2 ≤ Στ 1 1 u≤w 1 u≤w ρ [h] dµ Στ 1 + R τ 2 τ 1 1 u≤w 1 u≤w P T(h) dµ P dµ R τ 2 τ 1
and the result follows from the dominated convergence theorem.

Remark 1.16. Note that [START_REF] Fajman | A vector field method for relativistic transport equations with applications[END_REF] and the dominated convergence theorem also gives us that, for all 0 ≤ τ 1 ≤ τ 2 ,

sup w∈R N w 1 τ1≤τ ≤τ2 P h |v u |dµ P dµ N w ≤ Στ 1 ρ h dµ Στ 1 + R τ 2 τ 1 P0 T(h) dµ P dµ R τ 2 τ 1
. This estimate will be useful in order to derive pointwise decay estimates since |v • n Στ | merely controls the component v u for r ≥ R 0 .

Remark 1.17. Although we will not use these properties in this article, it is interesting to remark that we also obtain from (20) that the following two limits exist,

H + 1 τ1≤τ ≤τ2 P h |v • n H + |dµ P dµ H + := lim u→+∞ N u 1 τ1≤τ ≤τ2 P h |v u |dµ P r 2 dσ S 2 du, I + 1 τ1≤u-u0≤τ2 P r 2 h |v u |dµ P dµ I + := lim u→+∞ N u 1 τ1≤u-u0≤τ2 P r 2 h |v u |dµ P dσ S 2 du. H + 1 τ1≤τ ≤τ2 P h |v • n H + |dµ P dµ H +
is the number of particles penetrating the black hole between the advanced times τ 1 and τ 2 . If h is well defined on H + this quantity can be explicitly computed in the system of coordinate (u, r, θ, ϕ), which is regular on H + .

I + 1 τ1≤u-u0≤τ2 P r 2 h |v u |dµ P dµ I + corresponds to the number of particles reaching null infinity between retarded times τ 1 and τ 2 . The set I + is not part of the Schwarzschild spacetime but can be viewed as the level set u = +∞ equipped with the volume form dµ I + = du ∧ dµ S 2 and having ∂ u as a normal vector.

Moreover, if T(h) = 0, the following conservation law holds

H + 1 τ1≤τ ≤τ2 P h |v • n H + |dµ P dµ H + + Στ 2 ρ h dµ Στ 2 + I + 1 τ1≤u-u0≤τ2 P r 2 h |v u |dµ P dµ I + = Στ 1 ρ h dµ Στ 1 .

Structure of the paper

The starting point for the proof of Theorem 1.11 consists in splitting the region R +∞ -∞ into two domains separated by N 0 , R +∞ 0 , where τ ≥ 0, and R 0 -∞ , corresponding to τ ≤ 0 and where the analysis is much easier.

In the region τ ≥ 0, we consider the massless Vlasov equation ( 3) with initial data given on the hypersurface Σ 0 . In Section 2, by taking advantage of the red-shift effect, we prove a non-degenerate energy estimate which allows us in particular to control the energy density ρ[|f ||v N |] in L 1 (Σ τ ). Next, we derive in Section 3 various integrated energy decay estimates, including the one stated in Theorem 1.11. In addition, we prove in Proposition 3.12 that no integrated local energy decay statement can hold without a loss of integrability. In Section 4, we establish first a hierarchy of r p |v u | q -weighted energy inequalities, leading to the boundedness of the r-weighted norm of Theorem 1.11. With the help of the results of Sections 2-3, we then prove energy decay estimates for massless Vlasov fields. Section 5 is devoted to L ∞ -L s estimates, with 1 ≤ s < +∞, for solutions to T(f ) = 0. In particular, this will allow us to derive pointwise decay estimates for ρ[|f ||v N |] in the region τ ≥ 0.

The full treatment of the second region, located in {r * ≥ R * 0 + t} and corresponding to the exterior of a light cone, can be carried out independantly of the other domain and is done in Section 6. None of the difficulties related to the event horizon or the trapping appear here, which makes the energy decay estimates much easier to prove. Moreover, if the initial data f | S is supported in {r * < R * 0 }, f vanishes on R 0 -∞ and the analysis is reduced to the first domain.

Finally, we prove Theorem 1.11 in Section 7. We apply first the results obtained in Section 6 in order to control the solution in the region τ ≤ 0, containing in particular the hypersurface Σ 0 . This permits us to study the solution in the domain τ ≥ 0 by appealling to the results proved in Sections 2-5.

Remark 1.18. The results of this paper are stated for functions defined on R +∞ -∞ . By using well-chosen cutoff functions, one can apply them to functions merely defined on, say, R T -∞ with T > 0.

Non-degenerate energy inequality

As explained in Subsection 1.3, |v t | does not uniformly control |v(∂ r )| and |/ v| r near the event horizon, and then on D. Consequently, we cannot obtain a strong control in L 1 (Σ τ ) of a solution to T(f ) = 0 from a direct application of Proposition 1.15. The purpose of this section is then prove an energy inequality allowing us to propagate norms carrying the weight v N , which satisfies

|v N | |v u | + |v u | 1 -2M r + / v r |v N |, (21) 
instead of v t .

Proposition 2.1. There exist 2M < r 0 < r 1 < 3M and a ϕ t -invariant future oriented timelike vector field

N on H + ∪ D such that 1. ∃ b > 0, ∀ 2M < r ≤ r 0 , -T(v N ) ≥ b |v N | 2 , 2. ∃ B > 0, ∀ r ≥ r 0 , |T(v N )| ≤ B |v t | 2 , 3. ∀ r ≥ r 1 , N = ∂ t .
For any sufficiently regular function f : R +∞ 0 → R and any a ∈ R + , we have, for all 0 ≤ τ 1 ≤ τ 2 ,

Στ 2 ρ |f ||v N | a dµ Στ 2 a Στ 1 ρ |f ||v N | a dµ Στ 1 + R τ 2 τ 1 P |T(f )| |v N | a dµ P dµ R τ 2 τ 1
.

Remark 2.2. The properties satisfied by N together with Lemma B.1 imply [START_REF] Giorgi | Boundedness and decay for the Teukolsky equation of spin ±1 on Reissner-Nordström spacetime: the = 1 spherical mode[END_REF]. This can also be obtained directly from the definition of N below (see Lemma 2.4).

Before starting the proof of this last result, we introduce, in order to lighten the notations, the following quantities.

Definition 2.3. Let h : R +∞ -∞ → R be a sufficiently regular function. For any a ∈ R + , 0 ≤ τ 1 ≤ τ 2 , we define

D N a [h] τ2 τ1 = R τ 2 τ 1 |T(h)||v N | a dµ R τ 2 τ 1
.

We point out that D N a [h] τ2 τ1 = 0 if h is solution to the massless Vlasov equation.

The red-shift effect

In order to capture the red-shift effect at the event horizon, we will take advantage of a combination of the nonnegative weights

- 2v u 1 -2M r = - v t -v r * 1 -2M r and |v t |.
More precisely, consider a constant 2M < r 0 < 3M which will be fixed below,

r 0 < r 1 < 3M and a smooth cutoff function χ ∈ C ∞ c (R, [0, 1]) such that χ |]-∞,r0] = 1 and χ |[r1,+∞[ = 0. Then, define N := 2χ(r) 1 -2M r ∂ u + 8χ(r) 1 - 2M r ∂ t + ∂ t , v N := v(N) = 2χ(r)v u 1 -2M r + 8χ(r) 1 - 2M r v t + v t , (22) 
which is indeed a timelike vector field on D, equal to ∂ t for r ≥ r 1 . Furthermore, using the notations of Subsection 1.3, we have N = -∂ r + 8 1 -2M r ∂ u + ∂ u for r ≤ r 0 so it can be extended on, and beyond, H + in a smooth timelike vector field. By construction, N and its extension are ϕ t -invariant and future oriented. Proof. According to Lemma 1.4 and ( 22), on the region

{2M < r < R 0 }, v • n Στ and v N are both of the form ξ(r)v u + ζ(r) vu 1-2M r
, where ξ and ζ are stricly positive functions defined on the compact [2M, R 0 ]. This implies that for 2M < r < R 0 [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], it also implies (21) for r < R 0 . Finally, note that ( 21) is straightforward in the region r ≥ R 0 since each side of the inequality is comparable to |v t |.

|v u | + |v u | 1 -2M r |v N | |v u | + |v u | 1 -2M r , |v u | + |v u | 1 -2M r |v • n Στ | |v u | + |v u | 1 -2M r , so that |v N | and |v • n Στ | are equivalent. Together with
In order to estimate T(|v N |), we are led to compute the following quantities. Lemma 2.5. There holds on P,

T 2|v u | 1 -2M r = - 4M r 2 |v u | 2 (1 -2M r ) 2 + 4 r |v u ||v u | (1 -2M r ) , T 1 - 2M r |v t | = 2M r 2 |v u | 2 - 2M r 2 |v u | 2 .
Proof. Recall from [START_REF] Blue | Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space[END_REF] the expression of T. [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] in order to obtain

Since 2|v u | = -v t + v r * , T(v t ) = 0 and ∂ r * = 1 -2M r ∂ r , we have T 2|v u | 1 -2M r = 2T 1 1 -2M r |v u | + 1 1 -2M r T(v r * ) = 2v r * 1 -2M r ∂ r * 1 1 -2M r |v u | + r -3M r 4 1 -2M r |/ v| 2 ∂ v * r (v r * ) = - 4M r 2 (1 -2M r ) 2 v r * |v u | + r -3M r 4 (1 -2M r ) |/ v| 2 . Now, use that v r * = v u -v u , v u ≤ 0, v u ≤ 0 and
T 2|v u | 1 -2M r = - 4M |v u | 2 r 2 (1 -2M r ) 2 + 4M |v u ||v u | r 2 (1 -2M r ) 2 + 4 r -3M r 2 (1 -2M r ) 2 |v u ||v u | = - 4M |v u | 2 r 2 (1 -2M r ) 2 + 4|v u ||v u | r(1 -2M r )
.

For the second identity, using

T(v t ) = 0, v t = v u + v u and v r * = v u -v u , we get T 1 - 2M r v t = v r * 1 -2M r ∂ r * 1 - 2M r v t = 2M r 2 v r * v t = 2M r 2 |v u | 2 - 2M r 2 |v u | 2
and it remains no notice that

|v t | = -v t .
We can now prove the first two properties satisfied by v N .

Lemma 2.6. If r 0 is chosen sufficiently close to 2M , there exist b > 0 and B > 0 depending only on M such that the following property holds. On P, we have

∀ 2M < r ≤ r 0 , -T |v N | ≥ b |v N | 2 and ∀ r ≥ r 1 , T |v N | ≤ B|v t | 2 1 r≤r1 . Proof. Recall from (22) the expression of v N ≤ 0. As T(|v t |) = 0 and ∂ r * = 1 -2M r ∂ r , we have T |v N | = v r * ∂ r (χ(r)) 2|v u | 1 -2M r + 8 1 - 2M r |v t | + χ(r)T 2|v u | 1 -2M r + 8χ(r)T 1 - 2M r |v t | .
On the region r ≥ r 0 , we have 1

-2M r ≥ 1-2M r0 > 0, so Lemma 2.5 together with |v u |, |v u |, |v r * | ≤ |v t | yield T |v N | χ L ∞ + χ L ∞ |v t | 2 .
Moreover, if r ≥ r 1 , we have v N = v t so T(|v N |) = 0. Now, recall that χ = 1 on the region 2M < r ≤ r 0 . Hence using Lemma 2.5 as well as the inequality 4ab ≤ a 2 + 4b 2 , we obtain

∀ 2M < r ≤ r 0 , -T |v N | ≥ 4M |v u | 2 r 2 (1 -2M r ) 2 - |v u | 2 r(1 -2M r ) 2 - 4|v u | 2 r - 16M r 2 |v u | 2 + 16M r 2 |v u | 2 ≥ 4M |v u | 2 r 2 (1 -2M r ) 2 1 - r 4M -4 1 - 2M r 2 + 16M r 2 |v u | 2 1 - r 4M
Consequently, there exists 2M < r 0 < 3M depending only on M such that for all 2M < r ≤ r 0 ,

-T |v N | ≥ 4M |v u | 2 r 2 (1 -2M r ) 2 • 1 4 + 16M r 2 |v u | 2 • 1 4 ≥ 1 9M |v u | 2 (1 -2M r ) 2 + 4|v u | 2 .
This implies the first estimate since, for r ≤ r 0 , |v

N | |v t | + |vu| 1-2M r and |v t | ≤ |v u | + |v u | ≤ |v u | + |vu| 1-2M r .

Proof of Proposition 2.1

The following lemma is a prerequisite for the proof of the non degenerate energy inequality.

Lemma 2.7. Consider two real numbers τ 1 ≤ τ 2 and three constants c > 0,

D ≥ 0, D ≥ 0. Let φ ∈ C 0 ([τ 1 , τ 2 ], R) satisfying ∀ τ 1 ≤ τ ≤ τ 2 , φ(τ 2 ) + c τ2 τ φ(s)ds ≤ φ(τ ) + D(τ 2 -τ ) + D.
Then,

φ(τ 2 ) ≤ φ(τ 1 ) + D c + D.
Proof. Introduce ψ : τ → φ(τ ) -D c as well as Ψ : τ → τ2 τ ψ(s)ds. Then, by assumption

∀ τ ∈ [τ 1 , τ 2 ], ψ(τ 2 ) + cΨ(τ ) ≤ ψ(τ ) + D. (23) 
Consequently, for all

τ 1 ≤ τ ≤ τ 2 , - d dτ (Ψ(τ ) • e cτ ) = -(-ψ(τ ) + cΨ(τ )) e cτ ≥ ψ(τ 2 ) -D e cτ .
Taking the integral between τ 1 and τ 2 of both side of this inequality, we obtain

Ψ(τ 1 )e cτ1 ≥ ψ(τ 2 ) -D c (e cτ2 -e cτ1 )
and, estimating cΨ(τ 1 ) using ( 23), we get

ψ(τ 1 ) -ψ(τ 2 ) + D ≥ cΨ(τ 1 ) ≥ ψ(τ 2 )(e c(τ2-τ1) -1) -D(e c(τ2-τ1) -1).
Using that ψ = φ -D c , we finally obtain, as e -c(τ2-τ1) ≤ 1 and D c ≥ 0,

φ(τ 2 ) ≤ φ(τ 1 )e -c(τ2-τ1) + D c 1 -e -c(τ2-τ1) + D ≤ φ(τ 1 ) + D c + D.
Finally, we will use several times the following technical result which is a direct consequence of Proposition 1.15.

Lemma 2.8. Let a ∈ R + and f : R +∞ 0 → R be a sufficiently regular function. We have,

∀ 0 ≤ τ 1 ≤ τ ≤ τ 2 , Στ ρ |f ||v t | a dµ Στ + R τ 2 τ P |T(f )||v N | a dµ P dµ R τ 2 τ ≤ Στ 1 ρ |f ||v N | a dµ Στ 1 + D N a [f ] τ2 τ1 . Proof. Fix 0 ≤ τ 1 ≤ τ ≤ τ 2 and remark that T(|f ||v t | a ) = T(|f |)|v t | a = f |f | T(f )|v t | a ≤ |T(f )||v t | a . Hence, applying Proposition 1.15 to h = |f ||v t | a and using |v t | a ≤ |v N | a , we get Στ ρ |f ||v t | a dµ Στ ≤ Στ 1 ρ |f ||v N | a dµ Στ 1 + R τ τ 1 P |T(f )||v N | a dµ P dµ R τ τ 1 = Στ 1 ρ |f ||v N | a dµ Στ 1 +D N a [f ] τ τ1
and the inequality then ensues from

D N a [f ] τ τ1 + D N a [f ] τ2 τ = D N a [f ] τ2 τ1 (see Definition 2.3).
We are now able to prove the non-degenerate energy inequality stated in Proposition 2.1.

Proposition 2.9. The estimate of Proposition 2.1 holds for any a ∈ R + and any sufficiently regular function f : R +∞ 0 → R. Moreover, we also have for all

0 ≤ τ 1 ≤ τ 2 , τ2 τ1 Στ 1 r≤r0 ρ |f ||v N | a dµ Στ dτ a τ2 τ1 Στ 1 r0≤r≤r1 ρ |f ||v t | a dµ Στ dτ + Στ 1 ρ |f ||v N | a dµ Στ 1 + D N a [f ] τ2 τ1 .
Proof. The main part of the proof consists in bounding sufficiently well the quantity

φ(τ ) := Στ ρ |f ||v N | a dµ Στ
in order to apply Lemma 2.7. Fix 0 ≤ τ 1 ≤ τ 2 and apply the energy inequality of Proposition 1.15 to h = |f ||v N | a . This gives, for any

τ 1 ≤ τ ≤ τ 2 , Στ 2 ρ |f ||v N | a dµ Στ 2 ≤ Στ ρ |f ||v N | a dµ Στ + R τ 2 τ P T |f ||v N | a dµ P dµ R τ 2 τ .
According to Lemma 2.6 and using, in view of [START_REF] Johnson | The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge[END_REF], that |v t | ≤ |v N | |v t | for r ≥ r 0 , we have

T(|f ||v N | a ) = f |f | T(f )|v N | a + |f |T(|v N | a ) ≤ |T(f )||v N | a -ab|f ||v N | a+1 1 r≤r0 + aB|f ||v t | a+1 1 r0≤r≤r1 .
We then deduce from these two inequalities and by applying Lemma 2.8 that,

φ(τ 2 ) + ab R τ 2 τ 1 r≤r0 P |f ||v N | a+1 dµ P dµ R τ 2 τ ≤ φ(τ ) + aB R τ 2 τ 1 r0≤r≤r1 P |f ||v t | a+1 dµ P dµ R τ 2 τ + D N a [f ] τ2 τ1 . Recall now that R τ2 τ is foliated by the spacelike hypersurfaces Σ s , s ∈ [τ, τ 2 ]. Moreover, by Lemma 1.4, for all τ 1 ≤ τ ≤ τ 2 , we have dµ R τ 2 τ = γ 0 (r)dτ ∧ dµ Στ and C -1 ≤ γ 0 ≤ C on ]2M, +∞[.
According to [START_REF] Johnson | The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge[END_REF] and Lemma 2.4,

|v t | ≤ |v N | |v • n Στ | |v N | for all 2M < r ≤ r 1 .
We then obtain that

R τ 2 τ 1 r0≤r≤r1 P |f ||v t | a+1 dµ P dµ R τ 2 τ = τ2 s=τ Σs 1 r0≤r≤r1 γ 0 (r) P |f ||v t | a+1 dµ P dµ Σs ds τ2 s=τ Σs 1 r0≤r≤r1 ρ |f ||v t | a dµ Σs ds, R τ 2 τ 1 r≤r0 P |f ||v N | a+1 dµ P dµ R τ 2 τ τ2 s=τ Σs 1 r≤r0 ρ |f ||v N | a dµ Σs ds.
Consequently, there exist 0 < b ≤ B , both depending on a, such that

φ(τ 2 ) + b τ2 s=τ Σs 1 r≤r0 ρ |f ||v N | a dµ Σs ds ≤ φ(τ ) + B τ2 s=τ Σs 1 r0≤r≤r1 ρ |f ||v t | a dµ Σs ds + D N a [f ] τ2 τ1 . ( 24 
)
This implies the second inequality of the proposition. For the first one, remark that, using |v N | |v t | for r ≥ r 0 (see [START_REF] Giorgi | Boundedness and decay for the Teukolsky equation of spin ±1 on Reissner-Nordström spacetime: the = 1 spherical mode[END_REF]) and Lemma 2.8, τ2 s=τ Σs

1 r0≤r≤r1 ρ |f ||v t | a + 1 r≥r0 ρ |f ||v N | a dµ Σs ds τ2 s=τ Στ 1 ρ |f ||v t | a dµ Στ 1 + D N a [f ] τ2 τ1 ds.
Hence, adding b τ2 s=τ Σs 1 r≥r0 ρ |f ||v N | a dµ Σs ds to both sides of (24) yields

φ(τ 2 ) + b τ2 τ φ(s)ds ≤ φ(τ ) + B 0 (1 + τ 2 -τ ) Στ 1 ρ |f ||v t | a dµ Στ 1 + D N a [f ] τ2 τ1 ,
for a certain constant B 0 > 0 which depends on a. To conclude the proof, it then only remains to apply Lemma 2.7 to φ :

[τ 1 , τ 2 ] → R, with c = b and C = D = B 0 Στ 1 ρ |f ||v t | a dµ Στ 1 + B 0 D N a [f ] τ2 τ1 .
Remark 2.10. Note that a similar non-degenerate energy estimate holds for massive Vlasov fields. In that case, if m > 0 is the mass of the particles, the distribution function is defined on

P m := x∈M P m,x , P m,x := (x, v) / v ∈ T x M, g -1 (v, v) = -m 2 and v future oriented , so that v t = -1 -2M r m 2 + |v r * | 2 + 1 -2M r |/ v| 2 r 2 1 2 in D.
One can check that all the computations made in this section can be adapted to this context. The only difference would arise in Lemma 2.5, since we have for massive particles

T 2|vu| 1-2M r = -4M r 2 |vu| 2 (1-2M r ) 2 + 4 r |vuvu| (1-2M r ) -m 2
r . As the extra term -m 2 r has a good sign, it does not prevent Lemma 2.6 to hold in the context of massive particles. In particular, the constants r 0 , r 1 , b and B could be chosen to be independant of the mass m ∈ R + .

Integrated local energy decay

Positive bulk integrals for solutions to the free massless Vlasov equation can be generated by using multipliers of the form φ(r)∂ r * . This corresponds to multiplying the distribution function by the weight φ(r)v r * . In fact, in order to obtain stronger results, we will also consider weights of the form φ(r

) v r * |v r * | |v r * | δ . Remark 3.1. The benefices of considering φ(r) v r * |v r * | |v r * | δ instead of φ(r)v r * in
the study of Vlasov fields can be compared with the use of modifications of the current J X [ψ] α = T [ψ] αβ X β , where X = φ(r)∂ r * , for the study of scalar fields. In particular, the modified currents contain not only first order derivatives of ψ, but also lower order term.

Unfortunately, the integrated local energy decay that we will obtain in this way degenerates at the photon sphere r = 3M . The second part of this section will then consist in dealing with this degeneracy. The results proved in this section will imply in particular the following estimate, which is crucial for performing the r p -weighted energy method. Recall the notation w := (1 + |w| 2 ) 

1 r≤R0 ρ |f ||v N | a dµ Στ dτ a,s Στ 1 ρ |f ||v N | a dµ Στ 1 + |τ 2 -τ 1 | s-1 s Στ 1 ρ / v 4(s-1) |f | s |v t | as dµ Στ 1 1 s and τ2 τ1 Στ 1 r≤R0 ρ |f ||v N | a dµ Στ dτ a,s Στ 1 ρ |f ||v N | a dµ Στ 1 +|τ 2 -τ 1 | s-1 s Στ 1 ρ v t 4(s-1) |f | s |v t | as dµ Στ 1 1 s . Remark 3.3.
We prove in Proposition 3.12 below that we cannot control the left hand side of these two inequalities by

Στ 1 ρ[|f ||v N | a ]dµ Στ 1
because of the trapping at the photon sphere. This result has to be compared with the one obtained by Sbierski in the context of wave equations (see [START_REF] Sbierski | Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes[END_REF]Subsection 3.1.1]). Any non-degenerate integrated local energy decay statement for the wave equation on Schwarzschild spacetime has to lose regularity. In fact, Blue-Soffer proved in [START_REF] Blue | Phase space analysis on some black hole manifolds[END_REF] that it is sufficient to lose an of an angular derivative. If we schematically consider that a function

Ψ ∈ L 1 (R 3 ) behaves as 5 Ψ(x) = O |x|→+∞ (|x| -3 ), then Στ 1 ρ[|f ||v N | a ]dµ Στ 1 < +∞ schematically implies that for |v r * | + |/ v| → +∞, |f | = O((|v r * | + |/ v|) -3-a ) whereas Στ 1 ρ[ / v 4(s-1) |f | s |v t | as ]dµ Στ 1 < +∞ provides |f | = O (|v r * | + |/ v|) -3 s -a (1 + |/ v|) -4+ 4 s .
In this sense, we have then proved an integrated local energy decay estimate for massless Vlasov fields requiring the loss of an |/ v| of integrability and Proposition 3.2 then has to be compared with [START_REF] Blue | Phase space analysis on some black hole manifolds[END_REF]Theorem 8.20]. We point out that, modifying appropriately the integrals I and K in (29), we could require an even smaller loss. More precisely, we could replace / v 4(s-1) by / v|

s-1 |F ( / v )| s-1 , where |y| |F (1+|y|)| ∈ L 1 (R y )
, in the second norm appearing on the right hand side of the integrated local energy decay estimate.

We fix for all this section a sufficiently regular function f : R +∞ 0 → R, which does not necessarily satisfies T(f ) = 0.

Degenerate integrated local energy decay

The first step of the proof of Proposition 3.2, and the main goal of this subsection, consists in proving the following result. Proposition 3.4. For any δ > 0, we have, for all

0 ≤ τ 1 ≤ τ 2 , R τ 2 τ 1 P 1 r |v r * | 2 log 2 (3 + r) + |r -3M | δ r δ |/ v| 2 r 2 |f |dµ P dµ R τ 2 τ 1 δ Στ 1 ρ |f ||v t | dµ Στ 1 + R τ 2 τ 1 P |T(f )||v t |dµ P dµ R τ 2 τ 1
.

Remark 3.5. We can obtain a better control for the region {r ≤ r 0 } by combining this inequality with the one of Proposition 2.9.

As we will consider functions which are not necessarily nonnegatives, we will not be able to apply Proposition 1.15. Instead, we will use the next estimate. 

≤ τ 1 ≤ τ 2 , R τ 2 τ 1 P T(F ) dµ P dµ R τ 2 τ 1 ≤ 2D Στ 1 ρ |f ||v t | dµ Στ 1 + D R τ 2 τ 1 P |T(f )||v t |dµ P dµ R τ 2 τ 1
.

Proof. We follow closely the proof of Proposition 1.15, which cannot be applied to F . Fix 0 ≤ τ 1 ≤ τ 2 and consider w > τ 2 + u 0 , w > w + 2R * 0 . Then, remark that (20) can be applied to h = F , so that we obtain from the triangle inequality for integrals and

|F | ≤ D|f ||v t |, R τ 2 τ 1 1 u≤w 1 u≤w P T(F ) dµ P dµ R τ 2 τ 1 ≤ D Στ 1 1 u≤w 1 u≤w ρ |f ||v t | dµ Στ 1 + D Στ 2 1 u≤w 1 u≤w ρ |f ||v t | dµ Στ 2 +D Cw 1 τ1≤τ ≤τ2 P |f ||v t ||v • n Cw |dµ P dµ Cw + D N w 1 τ1≤τ ≤τ2 P |f ||v t ||v • n N w |dµ P dµ N w . Apply (20) to h = |f ||v t | and use |T(|f ||v t |)| = f |f | T(f )|v t | = |T(f )||v t | in order to obtain R τ 2 τ 1 1 u≤w 1 u≤w P T(F ) dµ P dµ R τ 2 τ 1 ≤ 2D Στ 1 ρ |f ||v t | dµ Στ 1 + D R τ 2 τ 1 P |T(f )||v t |dµ P dµ R τ 2 τ 1
.

It then remains to apply the dominated convergence theorem.

Furthermore, in order to generate positive bulk integrals, we will use the function Φ δ define as follows. Let us now state a direct consequence of the previous results before explaining the strategy that we will follow in order to prove a degenerate integrated local energy decay estimate.

Lemma 3.7. Let δ > 0. The function Φ δ : s → s |s| |s| δ is locally in W 1,1 (R) and its derivative is almost everywhere equal to Φ δ : s → δ|s| δ-1 . Proof. Let ψ ∈ C ∞ c (R)
Lemma 3.8. Let 0 < δ ≤ 1 and φ ∈ C 1 (]2M, +∞[, R) such that φ L ∞ < +∞. Then, for all 0 ≤ τ 1 ≤ τ 2 , R τ 2 τ 1 P φ (r)|v r * | 1+δ + δφ(r) (r -3M ) r 2 |/ v| 2 r 2 |v r * | 1-δ |v t | 1-δ |f | dµ P dµ R τ 2 τ 1 ≤ 2 φ L ∞ Στ 1 ρ |f ||v t | dµ Στ 1 + R τ 2 τ 1 P |T(f )||v t |dµ P dµ R τ 2 τ 1
.

Proof. This follows from Lemma 3.6 applied with

F = φ(r)Φ δ (v r * )|v t | 1-δ |f | and D = φ L ∞ .
Indeed, using Lemma 3.7 and T(v t ) = 0, we have

T (F ) = T(φ(r)) v r * |v r * | |v r * | δ |v t | 1-δ |f | + φ(r)T (Φ δ (v r * )) |v t | 1-δ |f | + φ(r) v r * |v r * | |v r * | δ |v t | 1-δ T(|f |) ≥ φ (r)|v r * | 1+δ |v t | 1-δ |f | + φ(r) (r -3M )|/ v| 2 r 4 δ|v r * | δ-1 |v t | 1-δ |f | -φ L ∞ |v t ||T(f )|.
The goal now is to find a function φ ∈ L ∞ such that the integrand of the term in the left hand side of the inequality of Lemma 3.8 is nonnegative. More precisely, we would like φ to be strictly positive, (r -3M )φ(r) ≥ 0 and (r -3M )φ(r) ≥ C η > 0 for all |r -3M | ≥ η > 0.

Moreover, we would like that φ → r→+∞ 0 with a slow decay rate and that (r -3M )φ(r) ∼ r→3M (r -3M ) η with η as small as possible.

Note that the choice δ = 1 and φ(r) = log -1 (3 + 3M ) -log -1 (3 + r) checks all the conditions but the last one since r → (r -3M )φ (r) vanishes quadratically at the photon sphere. Although it is not possible to remove completely this quadratic degeneracy, we will prove, as stated in Proposition 3.4, that we can considerably reduce it. For this, the rough idea is to apply the previous lemma for arbitrary small δ and φ(r) ∼ r→3M Φ δ (r).

Let us start by proving an integrated local energy decay estimate with a strong degeneracy at r = 3M .

Proposition 3.9. We have, for all

0 ≤ τ 1 ≤ τ 2 , R τ 2 τ 1 P 1 r |v r * | 2 log 2 (3 + r) + (r -3M ) 2 r 2 |/ v| 2 r 2 |f | dµ P dµ R τ 2 τ 1 Στ 1 ρ |f ||v t | dµ Στ 1 + R τ 2 τ 1 P |T(f )||v t |dµ P dµ R τ 2 τ 1
.

Proof. Apply Lemma 3.8 with δ = 1, φ(r) = log -1 (3 + 3M ) -log -1 (3 + r) and note that

φ (r) = 1 (3 + r) log 2 (3 + r) 1 r log 2 (3 + r)
.

It then only remains to prove that

∀ r > 2M, (r -3M )φ(r) (r -3M ) 2 r . (25) 
We treat first the region close to r = 3M . By Taylor-Lagrange inequality,

∀ |r -3M | < M, |φ(r) -∂ r φ(3M )(r -3M )| ≤ 1 2 sup ]2M,4M ] |∂ 2 r φ| • (r -3M ) 2 . As ∂ r φ(3M ) = (3 + 3M ) -1 log -2 (3 + 3M ) > 0, sup [2M,4M ] |∂ 2 r φ| ≤ (3 + 2M ) -2 < +∞
and since 2M r ≤ 1 for r ∈]2M, 4M ], there exists a constant 0 < η < M such that

∀ |r -3M | < η, (r -3M )φ(r) ≥ ∂ r φ(3M ) 2 (r -3M ) 2 (r -3M ) 2 r .
This implies [START_REF] Klainerman | Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] for |r -3M | < η. For the remaining region, we use that (r -3M )φ is nonnegative and then that φ strictly increases and vanishes at r = 3M in order to get

∀ |r -3M | ≥ η, (r -3M )φ(r) = |r -3M ||φ(r)| ≥ |r -3M || min (φ(3M -η), φ(3M + η)) | |r -3M |.
This leads to [START_REF] Klainerman | Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] for

|r -3M | ≥ η since |r -3M | (r-3M ) 2 r
in this region.

We now improve the estimate near the photon sphere r = 3M .

Proposition 3.10. For any 0 < δ 1 ≤ 1 and 0 < δ 2 ≤ 1, we have, for all

0 ≤ τ 1 ≤ τ 2 , R τ 2 τ 1 P 1 r≤R0 |v r * | 1+δ1 |r -3M | 1-δ2 + |r -3M | 1+δ2 |/ v| 2 r 2 |v r * | 1-δ1 |v t | 1-δ1 |f | dµ P dµ R τ 2 τ 1 δ1,δ2 Στ 1 ρ |f ||v t | dµ Στ 1 + R τ 2 τ 1 P |T(f )||v t |dµ P dµ R τ 2 τ 1
.

Proof. Let χ ∈ C ∞ (R, R + ) be a nonnegative cutoff function such that χ(s) = 1 for all s ≤ R 0 and χ(s) = 0 for all s ≥ 2R 0 . Consider (δ 1 , δ 2 ) ∈]0, 1] 2 and φ defined by φ(r) = χ(r)Φ δ2 (r -3M ). In view of the definition of χ and using Lemma 3.7, we have for all r > 2M ,

r -3M r 2 φ(r) = χ(r) |r -3M | 1+δ2 r 2 ≥ 1 r≤R0 |r -3M | 1+δ2 , φ (r) = χ(r)Φ δ2 (r -3M ) + χ (r)Φ δ2 (r -3M ) ≥ δ 2 1 r≤2R0 |r -3M | δ2-1 -1 R0≤r≤2R0 χ L ∞ |2R 0 -3M | δ2 .
The result then ensues from Lemma 3.8, applied to φ with δ = δ 1 , provided that

R τ 2 τ 1 P 1 R0≤r≤2R0 |v r * | 1+δ1 |v t | 1-δ1 |f |dµ P dµ R τ 2 τ 1 Στ 1 ρ |f ||v t | dµ Στ 1 + R τ 2 τ 1 P |T(f )||v t |dµ P dµ R τ 2 τ 1
.

holds. This last inequality follows from Proposition 3.9 since, for 3M < R 0 ≤ r ≤ 2R 0 , we have

|v r * | 1+δ1 |v t | 1-δ1 |v t | 2 = |v r * | 2 + 1 - 2M r |/ v| 2 r 2 |v r * | 2 r log(3 + r) + (r -3M ) 2 r 3 |/ v| 2 r 2 .
From this, we can deduce the following inequality which, combined with Proposition 3.9, implies the integrated local energy estimate of Proposition 3.4. Recall that the constant r 0 , introduced in Proposition 2.1, satisfied 2M < r 0 < 3M and that R 0 > 3M .

Corollary 3.11. For any δ > 0, there holds, for all

0 ≤ τ 1 ≤ τ 2 , R τ 2 τ 1 P 1 r0≤r≤R0 |r -3M | δ r 1+δ |/ v| 2 r 2 |f |dµ P dµ R τ 2 τ 1 δ Στ 1 ρ |f ||v t | dµ Στ 1 + R τ 2 τ 1 P |T(f )||v t |dµ P dµ R τ 2 τ 1
.

Proof. Fix δ > 0 and consider p > 2 as well as its conjugate exponent q = p p-1 > 2. On the region r 0 ≤ r ≤ R 0 , we have

|/ v| r 2 |v t | and r -1-δ 1, so |r -3M | δ r 1+δ |/ v| 2 r 2 δ |r -3M | 1 2 +2δ |/ v| 2 q |v t | 1 2 r 2 q |v r * | 1 2 • |v t | 2 p -1 2 |v r * | 1 2 |r -3M | 1 2 -δ ≤ 1 q |r -3M | q( 1 2 +2δ) |/ v| 2 |v t | q 2 r 2 |v r * | q 2 + 1 p |v t | 2-p 2 |v r * | p 2 |r -3M | p( 1 2 -δ) . Note now that if p = 2 + 2δ, we have p( 1 2 -δ) = 1 -δ -2δ 2 < 1 and q( 1 2 + 2δ) = (1 + δ)(1 + 2δ 1+2δ ) > 1.
We then obtain the result from this last inequality and by applying Proposition 3.10, first with

δ 1 = 1 -q 2 , δ 2 = q( 1 2 + 2δ) -1 and then with δ 1 = p 2 -1, δ 2 = 1 -p( 1 2 + δ).
All the estimates proved in this subsection degenerate for the angular component |/ v| 2 |f | for r ≈ 3M , reflecting that there exist trapped null geodesics orbiting on the photon sphere r = 3M . This problem also appears for the wave equation and can be solved by loosing an of an angular derivative [START_REF] Blue | Phase space analysis on some black hole manifolds[END_REF]. Moreover, this loss is necessary [35, Subsection 3.1.1] and we prove in the following proposition a similar result for the massless Vlasov equation. Proposition 3.12. For all n ∈ N * , there exists a smooth solution

f n ∈ R +∞ 0 → R to the massless Vlasov equation T(f n ) = 0 and T n ∈ R + such that R Tn 0 1 |r * |≤1 ρ |f n ||v t | dµ R Tn 0 ≥ n Σ0 ρ |f n ||v t | dµ Σ0 .
This implies that a non-degenerate integrated local energy decay statement for massless Vlasov fields has to lose integrability.

Proof. Given a C 1 curve c : [0, T [→ M, we denote by c its velocity vector and we define the associated covector c (s) := g( c(s), •). Since in this article the Vlasov fields are defined on P ⊂ T M, we rather work with c instead of c. Note that c is a null geodesics future oriented, i.e. cα + Γ α βξ c β c ξ = 0, g( c, c) = 0 and c is future oriented, if and only if c satisfies

c ∈ P, dc α ds + 1 2 ∂ x α g βξ c β c ξ = 0, where c = g -1 ( c, •) = c t dt + c r * dr * + c θ dθ + c ϕ dϕ. ( 26 
)
For simplicity, we have denoted (t, r * , θ, ϕ) by (x 0 , . . . , x 3 ). This means that (c, c r * , c θ , c ϕ ) is a characteristic of the massless Vlasov equation. Since the obstruction for a non-degenerate integrated local energy decay to hold comes from the trapping at the photon sphere r * = 0, we consider the trapped null geodesic

γ : t → (t, 0, π 2 , (27M 2 ) -1 2 t), γ (t) = 1 3 dt + √ 3M dϕ.
The idea is to consider solutions approaching the time dependant distribution

F (t) := δ r * =0 ⊗ δ θ= π 2 ⊗ δ ϕ=(27M 2 ) -1 2 t ⊗ δ v r * =0 ⊗ δ v θ =0 ⊗ δ vϕ= √ 3M ∈ D R t × R r * × S 2 × R 3 \ {0} . Recall from Lemma 1.4 that dµ R T 0 = γ 0 (r)dτ ∧ dµ Στ with C -1 ≤ γ 0 ≤ C on ]2M
, +∞[. Then, for any function h : R T 0 → R solution to the massless Vlasov equation and supported in {-1 ≤ r * ≤ 1}, we have, according to the energy inequality of Proposition 1.15,

R T 0 1 |r * |≤1 ρ |h||v t | dµ R T 0 ≥ C -1 T τ =0 Στ 1 |r * |≤1 ρ |h||v t | dµ Στ dτ = T C • Σ0 ρ |h||v t | dµ Σ0 .
Moreover, according to Lemma 1.4, we have t + t 0 ≤ τ for all |r * | ≤ 1, where

t 0 := -1 -|u 0 | -U L ∞ .
The proposition is then implied by the following assertion. For all n ∈ N * , there exists a smooth solution

f n ∈ R +∞ 0 → R to the massless Vlasov equation T(f n ) = 0 such f n (t, •) is supported in {-1 ≤ r * ≤ 1} for all t ∈ [t 0 , n].
Let χ ∈ C ∞ (R, R + ) be a function satisfying χ(0) = 1 and χ(s) = 0 if |s| ≥ 1. Consider, for all 0 < ≤ 1, the unique solution h to the massless Vlasov equation such that6 

h (t 0 , r * , θ, ϕ, v r * , v θ , v ϕ ) = χ r * χ θ -π 2 χ ϕ χ v r * χ v θ χ v ϕ - √ 3M .
Since h solves the massless Vlasov equation on

J + ({t = t 0 }) ∩ D, h is conserved along any future oriented null geodesic c : [t 0 , +∞[→ M such that t(c(t 0 )) ≥ t 0 . More precisely, ∀ s ∈ [t 0 , +∞[, h (c(s), c r * (s), c θ (s), c ϕ (s)) = h (c(t 0 ), c r * (t 0 ), c θ (t 0 ), c ϕ (t 0 )). ( 27 
)
In particular, h is equal to 1 along γ and we will prove that the support of h stay localized around γ during a time T satisfying T → →0 +∞. By continous dependence on the initial data of the solutions to the geodesic equations ( 26), we know that there exists δ n > 0 such that all null geodesics c satisfying

|c(t 0 ) -γ(t 0 )| + |c (t 0 ) -γ (t 0 )| ≤ δ n verifies ∀ s ∈ [t 0 , n], |c(s) -γ(s)| + |c (s) -γ (s)| ≤ 1. In particular |r * (c(s))| ≤ 1.
Applying this property to the future oriented null geodesics c satisfying t(c(t 0 )) = t 0 , we obtain using ( 27) that f n (t,

•) := h δn (t, •) is supported in {-1 ≤ r * ≤ 1} for all t ∈ [t 0 , n]. Since J + ({t = t 0 }) ∩ D contains R +∞ 0
, this concludes the proof.

Proof of Proposition 3.2

The purpose of this subsection is to prove the next result, which directly implies Proposition 3.2.

Proposition 3.13. For any a ∈ R + and s > 1, we have for all 0 ≤ τ 1 ≤ τ 2 , τ2 τ1 Στ

1 r≤R0 ρ |f ||v N | a dµ Στ dτ s Στ 1 ρ |f ||v N | a dµ Στ 1 + |τ 2 -τ 1 | s-1 s Στ 1 ρ / v 4(s-1) |f | s |v t | as dµ Στ 1 1 s + D N a [f ] τ2 τ1 + |τ 2 -τ 1 | s-1 s D N 0 / v 4(s-1) |f | s |v t | as τ2 τ1 1 s and τ2 τ1 Στ 1 r≤R0 ρ |f ||v N | a dµ Στ dτ s Στ 1 ρ |f ||v N | a dµ Στ 1 + |τ 2 -τ 1 | s-1 s Στ 1 ρ v t 4(s-1) |f | s |v t | as dµ Στ 1 1 s + D N a [f ] τ2 τ1 + |τ 2 -τ 1 | s-1 s D N 0 v t 4(s-1) |f | s |v t | as τ2 τ1 1 s . Proof. Let 0 ≤ τ 1 ≤ τ 2 , a ∈ R + and s > 1.
Recall that from (21) that |v N | |v t | for r ≥ r 0 . Hence, applying Proposition 2.9 and using r 1 ≤ R 0 , we get τ2 τ1 Στ

1 r≤R0 ρ |f ||v N | a dµ Στ dτ a τ2 τ1 Στ 1 r0≤r≤R0 ρ |f ||v t | a dµ Στ dτ + Στ 1 ρ |f ||v N | a dµ Στ 1 + D N a [f ] τ2 τ1 .
It then remains to deal with the first term on the right hand side of the previous inequality. In order to lighten the notations, we introduce = γ 0 (r)dτ ∧dµ Στ , with 1/γ 0 L ∞ < +∞ (see Lemma 1.4) and r log(3+r) ≤ R 0 log(3+R 0 )

h = f |v t | a-1 . As, in view of Lemma 1.4, |v • n Στ | |v t | and 1 -2M r 1 r 2 ≤ 1 r 2 0 on {r 0 ≤ r ≤ R 0 }, we have ∀ r 0 ≤ r ≤ R 0 , ρ |h||v t | = P |v r * | 2 + 1 - 2M r |/
on {r 0 ≤ r ≤ R 0 }, we obtain τ2 τ =τ1 Στ 1 r0≤r≤R0 ρ |h||v t | dµ Στ dτ R τ 2 τ 1 P |v r * | 2 r log(3 + r) + 1 r0≤r≤R0 1 |v r * |≤|/ v| |/ v| 2 |h| dµ P dµ R τ 2 τ 1
.

Since |v t | ≤ |v N |, so that |T(h)||v t | = |T(f )||v t | a |T(f )||v N | a , an application of Proposition 3.4 yields τ2 τ =τ1 Στ 1 r≤R0 ρ |f ||v N | a dµ Στ dτ Στ 1 ρ |f ||v N | a dµ Στ 1 + D N a [f ] τ2 τ1 + R τ 2 τ 1 P 1 r0≤r≤R0 1 |v r * |≤|/ v| |/ v| 2 |h|dµ P dµ R τ 2 τ 1 . ( 28 
)
Denoting by q := s s-1 the conjugate exponent of s, we obtain from the Hölder inequality that

R τ 2 τ 1 P 1 r0≤r≤R0 1 |v r * |≤|/ v| |/ v| 2 |h| dµ P dµ R τ 2 τ 1 ≤ |I| 1 s |K| s-1 s , (29) 
where

I := R τ 2 τ 1 P 1 r0≤r≤R0 |r -3M | s 2q |/ v| 2s |h| s (1 + |/ v|) 4 s q |v t | s q dµ P dµ R τ 2 τ 1 , K := R τ 2 τ 1 P 1 r0≤r≤R0 1 |v r * |≤|/ v| |v t | |r -3M | 1 2 (1 + |/ v|) 4 dµ P dµ R τ 2 τ 1
.

We start by dealing with K. As dµ P = r -2 sin -1 (θ)|v 

1 + |v θ | + |vϕ| sin(θ) 3 ≤ 16 r 2 .
We then deduce, since dµ R τ 2

τ 1 = r 2 dt ∧ dr ∧ dµ S 2 = r 2 dτ ∧ dr ∧ dµ S 2 according to Lemma 1.4, that K ≤ 64π τ2 τ =τ1 R0 r=r0 dr |r -3M | 1 2 dτ = 64π |R 0 -3M | 1 2 + |r 0 -3M | 1 2 τ2 t=τ1 dt τ 2 -τ 1 .
We now turn to I. As |/ v| |v t | and 1 r -1 on {r 0 ≤ r ≤ R 0 }, we have the following two estimates

I R τ 2 τ 1 P |r -3M | s-1 2 r 1+ s-1 2 |/ v| 2 r 2 |h| s / v 4(s-1) |v t | s-1 dµ P dµ R τ 2 τ 1 I R τ 2 τ 1 P |r -3M | s-1 2 r 1+ s-1 2 |/ v| 2 r 2 |h| s v t 4(s-1) |v t | s-1 dµ P dµ R τ 2 τ 1
.

Applying Proposition 3.4 to the functions / v 4(s-1) |v t | s-1 |h| s and v t 4(s-1) |v t | s-1 |h| s , with δ = s-1 2 , we then obtain, as h = f |v t | a-1 ,

I s Στ 1 ρ / v 4(s-1) |f | s |v t | sa) dµ Στ 1 + D N 0 / v 4(s-1) |f | s |v t | sa τ2 τ1 I s Στ 1 ρ v t 4(s-1) |f | s |v t | sa dµ Στ 1 + D N 0 v t 4(s-1) |f | s |v t | sa τ2 τ1 .
To conclude the proof, it remains to combine ( 28) with ( 29), K τ 2 -τ 1 and the last two estimates on I.

Energy decay estimates

We prove in this section decay estimates for the energy Στ ρ |f ||v N | dµ Στ by adapting the r p -weighted energy method of Dafermos-Rodnianski to the massless Vlasov equation. In the case of wave equations, vector fields of the form r p ∂ u , 0 ≤ p ≤ 2, are used as multipliers 7 . In our case, this corresponds to considering weights of the form r p |v u |, 0 ≤ p ≤ 2. In fact, assuming enough decay on the initial data, we will prove that stronger results can be obtained by using r p |v u | q , with 0 ≤ p ≤ 2q. This reflects that outside the wave zone, one can prove arbitrary decay for the solutions to the massless Vlasov equation. Before presenting the main result of this section, we recall the definition (19) of ζ n (s) and we introduce the following notations. Definition 4.1. We denote by 2Z the set of the even integers and by 2Z + 1 the set of the odd integers. Moreover, we recall the floor and the ceiling functions, defined for any x ∈ R by

x := max{n ∈ Z / n ≤ x}, x := min{n ∈ Z / n ≥ x}.
For any x ∈ R, we define the real number q x as

q x := x 2 if x ∈ 2Z is even. Note that if x = 2n, n ∈ Z, then q x = n. q x = x+1 2 if x ∈ 2Z + 1 is odd. In particular, if x = 2n -1, n ∈ Z, then q x = n.
Proposition 4.2 (energy decay estimates). Let (a, p) ∈ R 2 + and f : R +∞ 0 → R be a sufficiently regular solution to the massless Vlasov equation T(f ) = 0. Then, we have

∀ τ ∈ R + , Στ ρ r p |v u | p/2 |v t | p/2 |f ||v N | a dµ Στ a,p Σ0 ρ 1 + r p |v u | p/2 |v t | p/2 |f ||v N | a dµ Σ0 .
Assume moreover that p ∈ R + \ N and consider s > 1 satisfying ζ p (s) ≥ p. Then, there holds . Consequently, we obtain by using Hölder's inequality and then Young's inequality for products, both applied for the conjugate exponents λ -1 and (1 -λ) -1 , that, for any λ ∈]0, 1[,

∀ τ ∈ R + , Στ ρ |f ||v N | a dµ Στ a,p 1 (1 + τ ) p Σ0 ρ 1 + r p |v u | qp |v t | qp |f ||v N | a dµ Σ0 + 1 (1 + τ ) p Σ0 ρ 1 + r p |v u | qp |v t | qp |f | s p v t 4 
Στ ρ r λp |v u | λqp |v t | λqp |f ||v N | a dµ Στ ≤ (1 + τ ) λp Στ ρ |f ||v N | a dµ Στ + 1 (1 + τ ) p-λp Στ ρ r p |v u | p/2 |v t | p/2 |f ||v N | a dµ Στ .
Remark 4.4. We could also consider p ∈ N in the second estimate of the Proposition but the decay rate would be τ -ζp(s) , which is strictly weaker than τ -p (see Proposition 4.14).

Hierarchy of r p |v u | q -weighted energy estimates

We start with a computation, which will also be useful for the treatment of the region τ ≤ 0.

Lemma 4.5. Let (p, q) ∈ R 2 satisfying 0 ≤ p ≤ 2q. Then, we have almost everywhere

-T r p |v u | q |v t | q = pr p-1 |v u | q+1 |v t | q + 1 4 (2q -p) r p-1 |v u | q-1 |v t | q |/ v| 2 r 2 -(3q -p) M 2 r p-2 |v u | q-1 |v t | q |/ v| 2 r 2 .
Note that in view of (12), |v u | does not really carry a negative exponent. When p = 0, we have in particular

∀ r ≥ R 0 , -T |v u | q |v t | q q r |v u | q-1 |v t | q |/ v| 2 r 2 .
Proof. We will use many times that v u , v u ≤ 0, so that

|v u | = -v u and |v u | = -v u . Since T(v t ) = 0 and 2v u = v t + v r * , we get T r p |v u | q |v t | q = pr p-1 |v u | q |v t | q T (r) - q 2 r p |v u | q-1 |v t | q T (v r * ) .

Recall the expression (11) of T and ∂ r

* = 1 -2M r ∂ r . Then, T(r) = v r * = |v u | -|v u | and T(v r * ) = (r-3M )|/ v| 2 r 4
, so

T r p |v u | q |v t | q = -pr p-1 |v u | q+1 |v t | q + pr p-1 |v u | q-1 |v t | q |v u ||v u | - q 2 r p-1 |v u | q-1 |v t | q |/ v| 2 r 2 + 3M q 2 r p-2 |v u | q-1 |v t | q |/ v| 2 r 2 .
The first identity then ensues from the mass-shell condition g -1 (v, v) = 0, which provides 4|v

u ||v u | = 1 -2M r |/ v| 2 r 2 .
This implies in particular that

-T |v u | q |v t | q = q 2r 1 - 3M r |v u | q-1 |v t | q |/ v| 2 r 2
and the second part of the Lemma follows from R 0 > 3M .

We are now ready to prove hierarchized r p |v u | q -weighted estimates.

Proposition 4.6. Let (p, q) ∈ R + such that 0 ≤ p ≤ 2q and h : R +∞ 0 → R be a sufficiently regular function satisfying T(h) = 0. There holds for all 0 ≤ τ 1 ≤ τ 2 , r p-1 |v u | q-1 |v t | q-1 |h||v u |dµ P dµ Nτ dτ p,q

Nτ 2 P r p |v u | q |v t | q |h||v u |dµ Nτ 2 + τ2 τ =τ1 Nτ P pr p-1 |v u | q+1 |v t | q |h| + (2q -p) r p-1 |v u | q-1 |v t | q |/ v| 2 r 2 |h|dµ P dµ Nτ dτ q Nτ 1 P r p |v u | q |v t | q |h||v u |dµ Nτ 1 + Στ 1 ρ |h| dµ Στ 1 .
Nτ 1 P r p |v u | q |v t | q |h||v u |dµ Nτ 1 + Στ 1 ρ |h| dµ Στ 1 .
By making use of these hierarchies in (p, q), we will then be able to convert the weight r|v u | into τ decay, providing us in particular time decay for the region of bounded r. In fact, by fully exploiting the hierarchies given by the inequality of Proposition 4.6, we will extract a decay rate of τ -2 from r 2 |v u |.

Remark 4.8. For the purpose of establishing pointwise decay estimates, we will also prove that

sup w≥τ2+u0+2R * 0 N w 1 τ1≤u-u0≤τ2 P r p |v u | q |v t | q |h||v u |dµ P dµ N w q Nτ 1 P r p |v u | q |v t | q |h||v u |dµ Nτ 1 + Στ 1 ρ |h| dµ Στ 1 .
Proof. Let 0 ≤ τ 1 ≤ τ 2 and introduce

D τ2 τ1 := R τ2 τ1 ∩ {r ≥ R 0 } = τ1≤τ ≤τ2 N τ = {(t, r * , ω) ∈ R × R × S 2 / r * ≥ R * 0 , τ 1 ≤ t -r * -u 0 ≤ τ 2 }.
Using Lemma 1.4, we have dµ 

D τ 2 τ 1 = γ 0 (r)dτ ∧ N τ where 0 < C -1 ≤ γ 0 ≤ C,
Remark also that for any w ≥ τ 2 + u 0 + 2R * 0 , the boundary of D τ2 τ1 ∩ {u ≤ w} is composed by

N τ1 ∩ {u ≤ w}, N τ2 ∩ {u ≤ w}, N w ∩ {τ 1 ≤ u -u 0 ≤ τ 2 }, {r = R 0 } ∩ {τ 1 ≤ u -u 0 ≤ τ 2 }. I + ( u = + ∞ ) N τ 1 ∩ { u ≤ w } N τ 2 ∩ { u ≤ w } N w ∩ { τ 1 ≤ u - u 0 ≤ τ 2 } r = R 0 D τ2 τ1 ∩ {u ≤ w} i + i 0 H + I + r = R 0 S Figure 4:
The set D τ2 τ1 ∩ {u ≤ w} and its boundary.

Fix 0 ≤ p ≤ 2q and apply the divergence theorem to the current N r p |vu| q |vt| q |h| µ in the domain D τ2 τ1 ∩ {u ≤ w}. This leads, as v

• n Nτ = v u ≤ 0 and v • n N w = v u ≤ 0, to Nτ 2 1 u≤w P r p |v u | q |v t | q |h||v u |dµ P dµ Nτ 2 + N w 1 τ1≤u-u0≤τ2 P r p |v u | q |v t | q |h||v u |dµ P dµ N w - Nτ 1 1 u≤w P r p |v u | q |v t | q |h||v u |dµ P dµ Nτ 1 - τ2+u0+R * 0 t=τ1+u0+R * 0 S 2 P |R 0 | p |v u | q |v t | q |h|v r * dµ P R 2 0 dµ S 2 dt = D τ 2 τ 1 1 u≤w P T r p |v u | q |v t | q |h| dµ P dµ D τ 2 τ 1 . (31) 
Let

K p := sup w≥τ2+u0+2R * 0 N w 1 τ1≤u-u0≤τ2 P r p |v u | q |v t | q |h||v u |dµ P dµ N w ≥ 0
be the quantity that we need to bound in order to prove Remark 4.8. According to Beppo-Levi's theorem, we have for τ ∈ {τ 1 , τ 2 }, lim w→+∞ Nτ

1 u≤w P r p |v u | q |v t | q |h||v u |dµ P dµ Nτ = Nτ P r p |v u | q |v t | q |h||v u |dµ P dµ Nτ .
It will also be convenient to introduce

J := τ2+u0+R * 0 t=τ1+u0+R * 0 S 2 P |v u | q |v t | q |h|v r * dµ P R 2 0 dµ S 2 dt. ( 32 
)
Note also that according to Lemma 4.5, -T r p |vu| q |vt| q |h| is the sum of two nonnegative terms and a nonpositive one. Consequently, Beppo-Levi's theorem yields lim w→+∞ -

D τ 2 τ 1 1 u≤w P T r p |v u | q |v t | q |h|dµ P dµ D τ 2 τ 1 = D τ 2 τ 1 P pr p-1 |v u | q+1 |v t | q |h|dµ P dµ D τ 2 τ 1 + 2q-p 4 I p -(3q-p) M 2 I p-1 ,
where I s , introduced in order to clearly identify the hierarchy between the r-weighted energy estimates, is defined for any 0 ≤ s ≤ 2q as

I s := D τ 2 τ 1 P r s-1 |v u | q-1 |/ v| 2 |v t | q r 2 |h|dµ P dµ D τ 2 τ 1
.

We then deduce, using also T(|h|) = 0, that for any 0 ≤ p ≤ 2q,

Nτ 2 P r p |v u | q |v t | q |h||v u |dµ P dµ Nτ 2 + D τ 2 τ 1 P pr p-1 |v u | q+1 |v t | q |h|dµ P dµ D τ 2 τ 1 + K p + 2q-p 4 I p ≤ (3q -p) M 2 I p-1 + Nτ 1 P r p |v u | q |v t | q |h||v u |dµ P dµ Nτ 1 + |R 0 | p • J. ( 33 
)
The remainder of the proof is composed of two steps. The first one consists in controlling sufficiently well I p-1 by taking advantage of the hierarchy in p between these r-weighted energy estimates. Then, it will remain us to control J.

In order to initialize an induction, we need first to improve [START_REF] Rioseco | Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole[END_REF] for p ≤ 1. For this, note first that we have, as R 0 > 3M ,

q I 0 q 2 D τ 2 τ 1 P 1 r 1 - 3M r |v u | q-1 |/ v| 2 |v t | q-1 r 2 |h|dµ P dµ D τ 2 τ 1 = 2q 4 I 0 -3q M 2 I -1 ,
so that I 0 can be bounded applying [START_REF] Rioseco | Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole[END_REF] for p = 0. Now remark that for all 0 ≤ p ≤ 1, I p-1 ≤ (2M ) -1+p I 0 and (33) yields, for any 0 ≤ p ≤ min(1, 2q),

Nτ 2 P r p |v u | q |v t | q |h||v u |dµ P dµ Nτ 2 + D τ 2 τ 1 P pr p-1 |v u | q+1 |v t | q |h|dµ P dµ D τ 2 τ 1 + K p + (2q -p)I p q Nτ 1 P (1 + r p ) |v u | q |v t | q |h||v u |dµ P dµ Nτ 1 + J. ( 34 
)
If 2q > 1, it remains to improve (33) for 1 < p ≤ 2q. We then assume that 2q > 1 and we fix 1 < p ≤ 2q. Applying [START_REF] Rioseco | Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole[END_REF] to p = p -n, for all n ∈ 0, p -1 , and (34) to p = p -p , we obtain, since r s ≤ (2M ) s-p r p for all 0 ≤ s ≤ p ,

Nτ 2 P r p |v u | q |v t | q |h||v u |dµ P dµ Nτ 2 + D τ 2 τ 1 P p r p -1 |v u | q+1 |v t | q |h|dµ P dµ D τ 2 τ 1 + K p + (2q -p )I p q Nτ 1 P r p |v u | q |v t | q |h||v u |dµ P dµ Nτ 1 + J. ( 35 
)
In view of [START_REF] Sarbach | The geometry of the tangent bundle and the relativistic kinetic theory of gases[END_REF], the estimate (35) holds for any 0 ≤ p ≤ 2q. We can then conclude the proof by using [START_REF] Moschidis | The r p -weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications[END_REF], in order to bound by below the left hand side of the previous inequality, provided that

J q Στ 1 ρ |h| dµ Στ 1 . (36) 
In order to prove this last inequality, recall the definition (32) of J and apply [START_REF] Pasqualotto | Nonlinear stability for the Maxwell-Born-Infeld system on a Schwarzschild background[END_REF] for p = 0 and, say,

w = τ 2 + u 0 + 2R * 0 . As |v u | ≤ |v t |, N τ ⊂ Σ τ , D τ2 τ1 ⊂ R τ2 τ1 and T(|h|) = 0, this gives |J| q Στ 2 ρ |h| dµ Στ 2 + K 0 + Στ 1 ρ |h| dµ Στ 1 + D τ 2 τ 1 P T |v u | q |v t | q |h|dµ P dµ D τ 2 τ 1
.

Note now that according to the energy inequality of Proposition 1.15 and Remark 1.16,

Στ 2 ρ |h| dµ Στ 2 + N w 1 τ1≤u-u0≤τ2 P |h||v u |dµ P dµ N w ≤ Στ 1 ρ |h| dµ Στ 1 .
Moreover, using Lemma 4.5,

|v u | ≤ |v t | and R 0 > 3M , we obtain ∀ r ≥ R 0 , T |v u | q |v t | q = q 2r 1 - 3M r |v u | q-1 |v t | q |/ v| 2 r 2 |v t | q (r -3M ) 2 r 3 |/ v| 2 r 2 ,
so that, as D τ2 τ1 ⊂ R τ2 τ1 and according to Proposition 3.9, applied to

|v t | -1 h, D τ 2 τ 1 P T |v u | q |v t | q |h|dµ P dµ D τ 2 τ 1 q Στ 1 ρ |h| dµ Στ 1 .
The last inequalities imply [START_REF] Schlue | Decay of linear waves on higher-dimensional Schwarzschild black holes[END_REF], which concludes the proof.

4.2

The particular case (p, q) = (2, 1)

Contrary to the region {r * ≥ R * 0 + t}, which is studied below in Section 6, one cannot derive decay on Στ ρ |f ||v N | dµ Nτ through a direct application of the r p |v u | q -weighted energy inequalities. Instead, the decay will be obtained from integrated energy estimates, which will be proved using Propositions 3.2 and 4.6. Before considering a wider framework in the next subsection, we illustrate the strategy by treating the particular case (p, q) = (2, 1). We prove first a technical result, which will be useful for the general case as well.

Lemma 4.9. Let h 1 and h 2 be two sufficiently regular functions defined on R +∞ -∞ and s > 1. Then, for any integers 0 ≤ k ≤ i, there holds

Σ0 ρ |h 1 ||h 2 | s k -1 dµ Σ0 1 s k i Σ0 ρ |h 1 | dµ Σ0 + Σ0 ρ |h 1 ||h 2 | s i -1 dµ Σ0 1 s i .
Proof. As the inequality is straightforward for k ∈ {0, i}, we assume that 0 < k < i and we consider p = s i -1 s k -1 . Using Hölder's inequality, we get

Σ0 |h 1 ||h 2 | s k -1 dµ Σ0 1 s k i Σ0 ρ |h 1 | dµ Σ0 p-1 ps k Σ0 ρ |h 1 ||h 2 | s i -1 dµ Σ0 1 ps k .
In then remains to apply the inequality A

1 q B q-1 q ≤ 1 q A + q-1 q B, with q = p p-1 s k . Indeed, (q -1)ps k q = (p -1)(q -1) = ps k -p + 1 = s i+k -s k -(s i -1) + s k -1 s k -1 = s i+k -s i s k -1 = s i .
We now prove an energy decay statement for solutions to the massless Vlasov equation. → R be a sufficiently regular solution to T(f ) = 0. Then, for any s > 1, we have for all τ ≥ 0, We then deduce from these last two estimates and Proposition 1.15, applied between times τ 1 and τ , (τ 2 -τ 1 )

Στ ρ |f ||v N | dµ Στ s 1 (1 + τ ) s -1 +s -2 Σ0 ρ 1 + r 2 |v u | |v t | |f ||v N | dµ Σ0 + 1 (1 + τ ) s -1 +s -2 Σ0 ρ 1 + r 2 |v u | |v t | |f | s 2 v t 5(s 2 -1) |v N | dµ Σ0 s -2 . Proof. Fix
Nτ 2 P r|f ||v u | 2 dµ P dµ Nτ 2 N0 P r 2 |f ||v u | 2 dµ N0 + Σ0 ρ |f ||v t | dµ Σ0 +(τ 2 -τ 1 ) Στ 1 ρ |f ||v t | dµ Στ 1 .
The idea, in order to derive decay from such an inequality, will be to apply it for a dyadic sequence of times, i.e. with (τ 1 , τ 2 ) = (2 j , 2 j-1 ) so that 

τ 1 ∼ τ 2 -τ 1 ∼ τ 2 ,
ρ |f ||v N | dµ Στ dτ s 1 τ 2 -τ 1 Σ0 ρ 1 + r 2 |v u | |v t | |f ||v N | dµ Σ0 + Στ 1 ρ |f ||v N | dµ Στ 1 + Στ 2 ρ |f ||v N | dµ Στ 2 + (τ 3 -τ 2 ) s-1 s Στ 2 ρ v t 4(s-1) |f | s |v t | s dµ Στ 2 1 s . Now, use |v t | s v t s-1
|v N | and apply three times the energy estimate of Proposition 2.1. Between times τ 2 and τ in order to bound below the left hand side of the last inequality. Between times τ 1 and τ 2 in order to bound above the last two terms on the right hand side. This gives, for all τ 3 > τ 2 ,

Στ 3 ρ |f ||v N | dµ Στ 3 s 1 (τ 3 -τ 2 )(τ 2 -τ 1 ) Σ0 ρ 1 + r 2 |v u | |v t | |f ||v N | dµ Σ0 + 1 τ 3 -τ 2 Στ 1 ρ |f ||v N | dµ Στ 1 + 1 (τ 3 -τ 2 ) 1 s Στ 1 ρ v t 5(s-1) |f | s |v N | dµ Στ 1 1 s
.

Let j ≥ 0 and remark that 2 j+1 -2 j = 2 j . We apply first this inequality to f , with τ 3 = 2 j+3 , τ 2 = 2 j+2 , τ 1 = 2 j+1 and then to |f | as well as v t 5(s-1) |f | s , with τ 3 = 2 j+1 , τ 2 = 2 j , τ 1 = 0. This leads to

Σ 2 j+3 ρ |f ||v N | dµ Σ 2 j+3 s 2 -j-j/s + 2 -3j/s + 2 -2j/s Σ0 ρ 1 + r 2 |v u | |v t | v t 5(s-1) |f | s |v N | dµ Σ0 1 s + 2 -2j + 2 -3j Σ0 ρ 1 + r 2 |v u | |v t | |f ||v N | dµ Σ0 + 2 -j/s-j/s 2 Σ0 ρ v t 5(s 2 -1) |f | s 2 |v N | dµ Σ0 1 s 2 .
We bound the first term on the right hand side by applying Lemma 4.9 to h 1 = 1 + r 2 |vu| |vt| |v N |f and h 2 = v t 5 f , with i = 2 and k = 1. As s > 1, we obtain

2 j/s+j/s 2 Σ 2 j+3 ρ |f ||v N | dµ Σ 2 j+3 s Σ0 ρ 1 + r 2 |v u | |v t | |f ||v N | dµ Σ0 + Σ0 ρ 1 + r 2 |v u | |v t | v t 5(s 2 -1) |f | s 2 |v N | dµ Σ0 1 s 2 . ( 37 
)
Let τ ≥ 2 3 and consider j ≥ 0 satisfying 2 j+3 ≤ τ < 2 j+4 , so that 1 + τ ≤ 2 5 • 2 j . We then deduce from Proposition 2.1 that

(1 + τ ) 1/s+1/s 2 Στ ρ |f ||v N | dµ Στ 2 j/s+j/s 2 Σ 2 j+3 ρ |f ||v N | dµ Σ 2 j+3 ,
which, combined with [START_REF] Taylor | The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system[END_REF], implies the required estimate. If τ ≤ 2 3 , 1 (1 + τ ) -s -1 -s -2 and the estimate directly follows from Proposition 2.1.

Proof of Proposition 4.2

Let, for all this subsection, f : R +∞ 0 → R be a sufficiently regular function satisfying T(f ) = 0. Recall that

N τ = Σ τ ∩ {r ≥ R 0 }, v • n Nτ = v u and v N = v t for all r ≥ R 0 .
|v u | ≤ |v t | and r p p 1 in the region {r < R 0 }.

Consequently, for any (a, p) ∈ R 2 + , we have ∈ N but merely on the ones of r p-p f and r p-p f . This forces us to carefully choose q and then to estimate the energy norm of f through an interpolation. More precisely, we will apply Proposition 4.6 with (p-n, q p-n ), for all n ∈ 0, p . For the purpose of proving and exploiting a hierarchy of r p-n |v u | qp-n -weighted energy estimates, the following properties, which can easily be checked, will be useful. Lemma 4.11. Let x ∈ R * + and recall the notations introduced in Definition 4.1. We have if x ∈ 2Z is even, then q x-1 = q x and 0 < x = 2q x .

∀ τ ∈ R + , Στ ρ r p |v u | p/2 |v t | p/2 |f
Otherwise x ∈ 2Z + 1 is odd and q x-1 = q x -1. Moreover, 2q x -x = 1 so 0 ≤ x < 2q x .

Consequently, we can apply Proposition 4.6 with the parameters (x, q x ). Moreover, if x is odd, we will also be able to use Remark 4.7.

The first step of the proof consists in proving an integrated decay estimate for the region {r ≥ R 0 }. Proof. Fix j ∈ N, p > 0 and let us perform an induction in order to prove the first estimate. In view of Lemma 4.11, we obtain from Proposition 4.6, applied with the parameters (p, q p ),

τj+1 τ =τj Nτ P r p-1 |v u | qp-1 |v t | qp-1 |h||v u |dµ Nτ dτ p Nτ j P r p |v u | qp |v t | qp |h||v u |dµ Nτ j + Στ j ρ |h| dµ Στ j .
The inequality then holds at the rank n = 1. Assume now that p > 1 and consider n ∈ N * satisfying n ≤ p -1 and such that the result holds at the rank n. Applying Proposition 4.6 with the parameters (p -n, q p-n ) and between times τ and τ j+n leads to We then obtain the inequality at the rank n + 1 by applying once again Proposition 1.15, between times τ j and τ j+n .

For the second part of the lemma, apply Proposition 4.6, with the parameters (p, q p ) and between times τ j and τ . This gives,

Nτ P r p |v u | qp |v t | qp |h||v u |dµ Nτ p Nτ j P r p |v u | qp |v t | qp |h||v u |dµ Nτ j + Στ j ρ |h| dµ Στ j .
It then remains to integrate the previous inequality between τ j and τ j+1 .

Corollary 4.13. Let a ≥ 0 and p > 0. Then, for any j ∈ N, we have

τ j+ p τ =τ j+ p -1 1 r≥R0 Στ ρ |f ||v N | a dµ Στ dτ p 1 2 (p-1)j Σ0 ρ 1 + r p |v u | qp |v t | qp |f ||v N | a dµ Σ0 + Σj ρ |f ||v t | a dµ Σj .
Proof. Fix j ∈ N and apply Proposition 4.6 to h = f |v t | a with the parameters (p, q p ), between times 0 and τ j . This gives

Nτ j P r p |v u | qp |v t | qp |f ||v t | a |v u |dµ P dµ Nτ j p N0 P r p |v u | qp |v t | qp |f ||v t | a |v u |dµ P dµ N0 + Σ0 ρ |f ||v t | a dµ Σ0 .
We then deduce, since [START_REF] Johnson | The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge[END_REF]), that

Σ τ ∩ {r ≥ R 0 } = N τ , v u = v • n Nτ , |v t | ≤ |v N | and v t = v N for r ≥ R 0 (see
Nτ j P r p |v u | qp |v t | qp |f ||v t | a |v u |dµ P dµ Nτ j p Σ0 ρ 1 + r p |v u | qp |v t | qp |f ||v N | a dµ Σ0 , (38) 
Q := τ j+ p τ =τ j+ p -1 1 r≥R0 Στ ρ |f ||v N | a dµ Στ dτ = τ j+ p τ =τ j+ p -1 Nτ P |f ||v t | a |v u |dµ P dµ Nτ dτ.
Hence, if p ∈ N * , one only has to apply Lemma 4.12 with h = f |v t | a and n = p. We now assume p ∈ R * + \ N and we use Hölder's inequality in order to obtain

Q p τ j+ p τ =τ j+ p +1 Nτ P r p-p |v u | p-p 2 |v t | p-p 2 |f ||v t | a |v u |dµ P dµ Nτ dτ p-p +1 × τ j+ p τ =τ j+ p +1 Nτ P r p-p +1 |v u | p-p +1 2 |v t | p-p +1 2 |f ||v t | a |v u |dµ P dµ Nτ dτ p -p .
Remark now that, since -1 < p -p < 0 and 0 < p -p + 1 < 1, we have 2q p-p = p -p and 2q p-p +1 = p -p + 1. So, using the last inequality, Lemma 4.12, applied for n = p and n = p -1, as well as Young's inequality for products A

s-1 s B 1 s ≤ s-1 s A + 1 s B, with 1 s = p -p, we get Q p 1 2 (p-1)j Nτ j P r p |v u | qp |v t | qp |f ||v t | a |v u |dµ P dµ Nτ j + max(1, 2 (1-p)j ) Στ j ρ |f ||v t | a dµ Στ j .
The result then follows from [START_REF] Yang | Global solutions of nonlinear wave equations in time dependent inhomogeneous media[END_REF] and, if p < 1, Proposition 1.15, applied between times 0 and τ j .

Unfortunately, if 0 < p 0 < 1, we cannot prove the second estimate of Proposition 4.2 for all p 0 + n by performing an induction on n ∈ N (we would obtain a slower decay rate than τ -p0-n ). Instead, we prove the following result which, applied for p ∈ R + \ N and s > 1 such that ζ p (s) ≥ p, concludes the proof of Proposition 4.2.

Proposition 4.14. Let (a, p) ∈ R 2 + and s > 1. For any n ∈ 0, p , we have for all τ ∈ R + ,

Στ ρ |f ||v N | a dµ Στ a,p,s 1 (1 + τ ) min(p,ζn(s)) Σ0 ρ 1 + r p |v u | qp |v t | qp |f ||v N | a dµ Σ0 + 1 (1 + τ ) ζn(s) Σ0 ρ 1 + r p |v u | qp |v t | qp |f | s n v t 4(s n -1) |v t | s n a dµ Σ0 s -n .
Remark 4.15. Note that this result, applied with a = 1 and p = ζ 2 (s) < 2, implies Proposition 4.10.

Proof. Let (a, p) ∈ R 2 + , s > 1 and note that if n = 0, it suffices to apply the energy estimate of Proposition 2.1. Assume then that p > 0 and that the result holds at the rank n ∈ 0, p -1 . According to Proposition 3.2, applied between times τ j+ p and τ j+ p -1 , and Proposition 2.1, applied between times τ j and τ j+ p -1 ,

τ j+ p τ =τ j+ p -1 1 r≤R0 Στ ρ |f ||v N | a dµ Στ dτ s Στ j ρ |f ||v N | a dµ Στ j +2 j s-1 s Στ j ρ v t 4(s-1) |f | s |v t | as dµ Στ j 1 s
.

Moreover, according to Proposition 2.1, applied between times τ and τ j+ p , and

τ j+ p -τ j+ p -1 = 2 p -1 •2 j , Στ j+ p ρ |f ||v N | a dµ Στ j+ p a 1 2 p -1 • 2 j τ j+ p τ =τ j+ p -1 Στ ρ |f ||v N | a dµ Στ dτ.
Combining the last two estimates with Lemma 4.13 yields

Στ j+ p ρ |f ||v N | a dµ Στ j+ p a,p,s 1 2 pj Σ0 ρ 1 + r p |v u | qp |v t | qp |f ||v N | a dµ Σ0 + 1 2 j Στ j ρ |f ||v N | a dµ Στ j + 1 2 j s Στ j ρ v t 4(s-1) |f | s |v t | sa dµ Στ j 1 s , (39) 
where T( v t 4(s-1) |f | s |v t | sa ) = 0 according to Lemma 1.7. Now, we apply the induction hypothesis to f and v t 4(s-1) |f | s |v t | sa at the rank n in order to bound the last two terms of (39). Then, using Lemma 4.9 with

h 1 = 1 + r p |v u | qp |v t | qp |v t | a f, h 2 = f v t 4 |v t | a , i = n + 1 and k ∈ {1, n},
one obtains, since ζ n (s) ≤ n ≤ p and s > 1,

Στ j+ p ρ |f ||v N | dµ Στ j+ p a,p,s 2 -pj + 2 -j s (1+ζn(s)) Σ0 ρ 1 + r p |v u | qp |v t | qp |f ||v N | a dµ P dµ Σ0 + 2 -j s (1+ζn(s)) Σ0 ρ 1 + r p |v u | qp |v t | qp v t 4(s n+1 -1) |f | s n+1 |v t | s n+1 a dµ Σ0 s -n-1 . (40) 
We are now able to prove the result at the rank n + 1.

If τ ≥ τ p , there exists j ∈ N such that τ j+ p ≤ τ < τ j+ p +1 . Then, remark that, using Proposition 2.1 and the definition (19

) of ζ n+1 (s), Στ ρ |f ||v N | a dµ Στ a Στ j+ p ρ |f ||v N | a dµ Στ j+ p , 1 s (1 + ζ n (s)) = ζ n+1 (s), 1 + τ p 2 j .
Combining these three properties with [START_REF] Yang | Decay of solutions of Maxwell-Klein-Gordon equations with arbitrary Maxwell field[END_REF] yields the estimate at the rank n + 1 in the case τ ≥ τ p .

Otherwise, 1 + τ ≤ 1 + 2 p and one only has to apply Proposition 2.1 between times 0 and τ .

Remark 4.16. Note that if we did not apply Lemma 4.9 during the proof of the previous proposition, we would have obtain an estimate requiring a slightly lower decay hypothesis on the initial data but which would be much more complicated to write and to manipulate.

Remark 4.17. In order to simplify the presentation, we did not consider the case where T(f ) = F , with F a source term decaying sufficiently fast. Otherwise, we would have to add spacetime integrals such as

1 (1 + τ ) p τ 0 Σ τ P r p-n |v u | qp-n |v t | qp-n (1 + τ ) n |T(f )||v N | a dµ P dµ Σ τ dτ , n ∈ N,
to the right hand side of the estimates proved in this subsection.

5 Pointwise decay estimates

Preparatory results

The purpose of this subsection is to express the radial derivative of ρ[|f ||v N |], for f a solution to the massless Vlasov equation, in terms of derivatives of f that we can control in L 1 by applying the results obtained previously in this paper. This will allow us to prove pointwise decay estimates on the velocity average of f through Sobolev inequalities.

We start with useful computations.

Lemma 5.1. For any i ∈ 1, 3 , there holds almost everywhere

Ω i (v r * ) = 0, Ω i (|/ v|) = 0, Ω i (v t ) = 0, Ω i (v N ) = 0.
For any a ∈ R + and 0 ≤ p ≤ 2q, we have on

R +∞ -∞ , ∂ r |v N | a r 2 |v t | 2 a |v N | a r 2 |v t | 2 , ∂ u r p |v u | q+1 r 2 |v t | 3 q r p |v u | q+1 r 2 |v t | 3 , ∂ u r p |v u | q |v u | r 2 |v t | 3 q r p |v u | q |v u | r 2 |v t | 3 .
For any s ∈ [1, +∞[, any vector field V ∈ {∂ t , Ω 1 , Ω 2 , Ω 3 , T} and any locally W 1,s function h,

|V (|h| s )| ≤ |V (h)| s + (s -1)|h| s . (41) 
Proof. We start by the first part of the Lemma and we fix 1 ≤ i ≤ 3. In view of the expression of Ω i (see ( 13)-( 15)), we have Ω i (v r * ) = 0. For the second equality, since (v θ , v ϕ ) = 0 almost everywhere, it is sufficient

to prove Ω i (|/ v| 2 ) = 0. Recall that |/ v| 2 := |v θ | 2 + |vϕ| 2 sin 2 (θ) , so that Ω 1 (|/ v| 2 ) = sin(ϕ) cot(θ)|v ϕ | 2 sin 2 (θ) -cos(ϕ) v ϕ sin 2 (θ) v θ + cos(ϕ)v θ v ϕ sin 2 (θ) -sin(ϕ) cot(θ)v ϕ v ϕ sin 2 (θ) = 0, Ω 2 (|/ v| 2 ) = -cos(ϕ) cot(θ)|v ϕ | 2 sin 2 (θ) -sin(ϕ) v ϕ sin 2 (θ) v θ + sin(ϕ)v θ v ϕ sin 2 (θ) + cos(ϕ) cot(θ)v ϕ v ϕ sin 2 (θ) = 0, Ω 3 (|/ v| 2 ) = ∂ ϕ |/ v| 2 = 0.
As Ω i (r) = 0, this implies directly, in view of the definition of v t and v N (see [START_REF] Blue | Phase space analysis on some black hole manifolds[END_REF], [START_REF] Johnson | The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge[END_REF]), that Ω i (v t ) = Ω(v N ) = 0. For [START_REF] Yang | On the global behavior of solutions of the Maxwell-Klein-Gordon equations[END_REF], one only has to note that for any smooth vector field V ,

|V (|h| s )| = s|V (h)h|h| s-2 | = s|V (h)||h| s-1 ≤ |V (h)| s + (s -1)|h| s .
We now turn to the second part of the Lemma. Recall that ∂ r * = 1 -2M r ∂ r . Hence, using the expression (10) of v t and then the co-mass shell condition [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], we get

∂ r * v t = 1 - 2M r ∂ r 1 -2M r r 2 |/ v| 2 v t = 6M -2r r 2 1 - 2M r |/ v| 2 r 2 v t = 8(3M -r)|v u ||v u | r 2 v t . Recall now that v u = vt+v r * 2 ≤ 0 and v u = vt-v r * 2 ≤ 0, so that ∂ r * |v u | = ∂ r * |v u | = 4(r -3M )|v u ||v u | r 2 v t , ∂ r * |v u | 1 -2M r = 4(r -3M )|v u | r 2 v t - 2M r 2 |v u | 1 -2M r . Together with |r -3M | ≤ r, 1 r 1, v t ≤ 0, |v u | ≤ |v t |, |v u | ≤ |v t | and the definition (22) of v N , this leads to |∂ r * |v t || |v t |, |∂ r * |v u || |v u |, |∂ r * |v u || |v u |, |∂ r * |v N || |v N |.
As |∂ r * (r s )| ≤ sr s-1 s r s , this implies the result.

The following commutation property between the angular derivatives and the averaging in v will be useful.

Lemma 5.2. Let h : R +∞ -∞ → R be a sufficiently regular function. We have

∀ i ∈ 1, 3 , Ω i P |h|dµ P ≤ P Ω i h dµ P .
Moreover, for any s ∈ [1, +∞[, there exists a constant C s > 0 depending only on s such that

P |h| s dµ P L ∞ (S 2 ) ≤ C s |I|≤2 S 2 P Ω I h s dµ P dµ S 2 .
Proof. For simplicity, we introduce Ω v i := Ω i -Ω i . Note first that using Lemma 5.1, we have

Ω i |h||v t | -1 = Ω i (h) h |h| |v t | -1 = Ω i (h) |v t | -1 in W 1,1 .
Hence, since dµ P = |v t | -1 r -2 sin -1 (θ)dv r * dv θ dv ϕ , there holds

Ω i P |h|dµ P = P Ω i |f ||v t | -1 -Ω v i |f ||v t | -1 dv r * dv θ dv ϕ r 2 sin(θ) + P |h||v t | -1 Ω i 1 sin θ dv r * dv θ dv ϕ r 2 ≤ P Ω i (h) dµ P + P |h||v t | -1 Ω i 1 sin θ - Ω v i |h||v t | -1 sin(θ) dv θ dv ϕ dv r * r 2 .
It remains to notice that the last term on the right hand side of the last inequality vanishes. Indeed, this is

straightforward if i = 3 since Ω 3 = ∂ ϕ and Ω ϕ = ∂ ϕ . If i = 1, we have Ω 1 = -sin ϕ ∂ θ -cot θ cos ϕ ∂ ϕ , so that Ω 1 1 sin θ = sin(ϕ) cot(θ) sin(θ)
, and

Ω v 1 = -cos ϕ vϕ sin 2 θ ∂ v θ + (cos ϕ v θ -sin ϕ cot θ v ϕ ) ∂ vϕ , so by integration by parts in 8 (v θ , v ϕ ), - P Ω v i |h||v t | -1 sin(θ) dv θ dv ϕ dv r * r 2 = - P sin(ϕ) cot(θ) sin(θ) |h||v t | -1 dv θ dv ϕ dv r * r 2 .
The case i = 2 can be treated similarly. We then deduce from Remark 1.2 and (6) the following inequalities, for the derivatives of the spherical coordinate systems (θ, ϕ) and ( θ, ϕ),

∂ θ P |h|dµ P + ∂ ϕ P |h|dµ P + ∂ θ P |h|dµ P + ∂ ϕ P |h|dµ P ≤ 2 3 j=1 P Ω j h dµ P . (42) 
We now turn to the Sobolev inequality. Let V be the subset of S 2 containing all the points ω which are in the set covered by the coordinate system (θ, ϕ) and satisfying π 4 ≤ θ(ω) ≤ 3π 4 . We start by considering ω ∈ V. Using first a local one dimensional Sobolev inequality and then [START_REF] Yang | Pointwise decay for semilinear wave equations in R 3+1[END_REF], applied to |h| s , together with (41), we get

P |h| s dµ P (θ(ω),ϕ(ω)) θ(ω)+ π 12 θ=θ(ω) P |h| s dµ P (θ,ϕ(ω)) + ∂ θ P |h| s dµ P (θ,ϕ(ω)) dθ s |I|≤1 5π 6 θ= π 4 P Ω I h s dµ P (θ,ϕ(ω)) dθ.
Applying again a one dimensional Sobolev inequality and then using ( 42), [START_REF] Yang | On the global behavior of solutions of the Maxwell-Klein-Gordon equations[END_REF] as well as sin(θ) ≥ 1 2 on the domain of integration, we obtain

P |h| s dµ P (θ(ω),ϕ(ω)) s |I|≤1 2π ϕ=0 5π 6 θ= π 4 P Ω I h s dµ P + ∂ ϕ P Ω I h dµ P s dθdϕ s |J|≤2 2π ϕ=0 5π 6 θ= π 4 P Ω J h s dµ P sin(θ)dθdϕ ≤ |J|≤2 S 2 P Ω J h s dµ P dµ S 2 .
The case of the points ω ∈ S 2 \ V can be handled similarly using this time the coordinate system ( θ, ϕ) instead of (θ, ϕ) and [START_REF] Yang | Pointwise decay for semilinear wave equations in R 3+1[END_REF]. Indeed, in view of (6), if ω ∈ S 2 \ V, then π 4 ≤ θ(ω) ≤ 3π 4 .

The following result will be crucial in order to derive boundedness in L s (Σ t ) for quantities involving |v r * | 2 ∂ r * f , where f is a solution to the massless Vlasov equation. The main idea of the proof consists in rewritting v r * ∂ r * f using the operator T and then to deal with the terms containing v derivatives of f by integration by parts. Lemma 5.3. Let a ∈ R + and h : R +∞ -∞ → R be a sufficiently regular function. On R +∞ -∞ , we have

1 1 -2M r ∂ u P |v r * | 2 |v t | 2 |h||v t ||v N | a dµ P a 3 i=1 P |h| + |∂ t h| + Ω i h |v N | a+1 dµ P + P |T(h)| |v N | a dµ P .
For any 0 ≤ p ≤ 2q, there holds on R +∞ -∞ ∩ {r ≥ R 0 },

∂ u P |v r * | 2 |v t | 2 r p |v u | q |h||v u |dµ P q 3 i=1 P r p |v u | q |h| + |∂ t h| + Ω i h |v u |dµ P + P r p |v u | q |v t | |T(h)| |v u |dµ P , ∂ u P |v r * | 2 |v t | 2 r p |v u | q |h||v u |dµ P q 3 i=1 P r p |v u | q |h| + |∂ t h| + Ω i h |v u |dµ P + P r p |v u | q |v t | |T(h)| |v u |dµ P .
Proof. Since dµ

P = r -2 sin -1 (θ)|v t | -1 dv θ dv ϕ dv r * and 2∂ u = ∂ t -1 -2M r ∂ r , we have 1 1 -2M r ∂ u P |v r * | 2 |v t | |h||v N | a dµ P = P |v r * | 2 1 -2M r ∂ u (|h|) |v N | a r 2 |v t | 2 - 1 2 |v r * | 2 |h|∂ r |v N | a r 2 |v t | 2 dv θ dv ϕ dv r * sin(θ) .
The second term of the integrand on the right hand side can be bounded using Lemma 5.1. For the first one, note that 2v

r * ∂ u = -v r * ∂ r * + v t ∂ t -2v u ∂ t and |vu| 1-2M r ≤ |v N | (see (21)). Consequently, 1 1 -2M r ∂ u P |v r * | 2 |v t | |h||v N | a dµ P P v t ∂ t (|h|)-v r * ∂ r * (|h|) 1 -2M r v r * |v N | a |v t | 2 dv θ dv ϕ dv r * r 2 sin(θ) + P (|h|+|∂ t h|)|v N | a+1 dµ P .
Similarly, using Lemma 5.1, 1 -2M r ≤ 1 as well as 2v

r * ∂ u = -v r * ∂ r * + v t ∂ t -2v u ∂ t or 2v r * ∂ u = v r * ∂ r * - v t ∂ t + 2v u ∂ t , we get ∂ u P |v r * | 2 |v t | 2 r p |v u | q |h||v u |dµ P = P r p |v u | q+1 r 2 |v t | 3 |v r * | 2 ∂ u (|h|) + |v r * | 2 |h|∂ r * r p |v u | q+1 r 2 |v t | 3
dv θ dv ϕ dv r * sin(θ)

q P v t ∂ t (|h|) -v r * ∂ r * (|h|) 1 -2M r v r * r p |v u | q+1 |v t | 3 dv θ dv ϕ dv r * r 2 sin(θ) + P r p |v u | q (|h| + |∂ t h|) |v u |dµ P and ∂ u P |v r * | 2 |v t | 2 r p |v u | q |h||v u |dµ P q P v t ∂ t (|h|) -v r * ∂ r * (|h|) 1 -2M r v r * r p |v u | q |v u | |v t | 3 dv θ dv ϕ dv r * r 2 sin(θ) + P r p |v u | q (|h| + |∂ t h|) |v u |dµ P .
In order to unify the treatment of these three cases, we introduce α(v) ∈ |v N | a , r p |vu| q+1 |vt| , r p |vu| q |vt| |v u | and let us prove

P v t ∂ t (h) -v r * ∂ r * (h) 1 -2M r v r * α(v) |v t | 2 dv θ dv ϕ dv r * r 2 sin(θ) a,q 3 
i=1 P |h| + Ω i h |v N |α(v)dµ P + P |T(h)| α(v)dµ P .
As v N = v t in the region r ≥ R 0 according to Proposition 2.1, this will imply the three estimates of the Lemma. The starting point consists in noticing, using the definition (11) of T, that

v t ∂ t (|h|) -v r * ∂ r * (|h|) 1 -2M r = T (|h|) - v θ r 2 ∂ θ (|h|) - v ϕ r 2 sin 2 (θ) ∂ ϕ (|h|) - r -3M r 4 |/ v| 2 ∂ v * r (|h|) - cot(θ)|v ϕ | 2 r 2 sin 2 (θ) ∂ v θ (|h|).
We now deal with the first three terms on the right hand side of the previous inequality. In particular, we need to express ∂ θ and 1 sin(θ) ∂ ϕ in terms of the commutation vector fields Ω i and the v derivatives.

We have T(|h|) v r * α(v)

|vt| 2 = h |h| T(h) v r * α(v) |vt| 2 ≤ |T(h)| α(v) |vt| .
Here, we will use two different decompositions of 1 sin(θ) ∂ ϕ in order to deal with the two singularities of 1 sin(θ) on9 [0, π]. In view of ( 13)-( 15), we have

∂ θ = -sin(ϕ) Ω 1 + cos(ϕ) Ω 2 -cot(θ)v ϕ ∂ vϕ , 1 sin(θ) ∂ ϕ = 1 + cos(θ) sin(θ) ∂ ϕ -cot(θ)∂ ϕ = 1 -cos(θ) sin(θ) Ω 3 + cos(ϕ) Ω 1 + sin(ϕ) Ω 2 + v ϕ sin 2 (θ) ∂ v θ -v θ ∂ vϕ , 1 sin(θ) ∂ ϕ = 1 -cos(θ) sin(θ) ∂ ϕ + cot(θ)∂ ϕ = 1 -cos(θ) sin(θ) Ω 3 -cos(ϕ) Ω 1 -sin(ϕ) Ω 2 - v ϕ sin 2 (θ) ∂ v θ + v θ ∂ vϕ .
Since 1+cos(θ) sin(θ) (respectively 1-cos(θ) sin(θ) ) vanishes at first order at θ = π (respectively θ = 0), there exists a smooth bounded function

ψ : ]0, π[→ [0, 2] such that v θ r 2 ∂ θ + v ϕ r 2 sin 2 (θ) ∂ ϕ + cot(θ) r 2 sin 2 (θ) |v ϕ | 2 ∂ v θ = 1≤i≤3 ψ i (r, θ, ϕ, v θ , v ϕ ) Ω i + ψ(θ) r 2 v ϕ v θ ∂ vϕ - v ϕ sin 2 (θ) ∂ v θ ,
where

|ψ i (r, θ, ϕ, v θ , v ϕ )| |v θ | r 2 + |v ϕ | r sin(θ) |/ v| r 2 . In particular, |v r * |α(v) |v t | 2 |ψ i (r, θ, ϕ, v θ , v ϕ )| |v N |α(v) |v t | .
These observations lead to

P v t ∂ t (|h|) -v r * ∂ r * (|h|) 1 -2M r v r * α(v) |v t | 2 dv θ dv ϕ dv r * r 2 sin(θ) ≤ 3 i=1 P Ω i h |v N |α(v)dµ P + P |T(h)|α(v)dµ P + P v ϕ r 2 v θ ∂ vϕ (|h|) - v ϕ sin 2 (θ) ∂ v θ (|h|) v r * α(v) |v t | 2 dv θ dv ϕ dv r * r 2 sin(θ) + P r -3M r 2 |/ v| 2 r 2 ∂ v * r (|h|) v r * α(v) |v t | 2
dv θ dv ϕ dv r * r 2 sin(θ) .

It then remains to deal with the last two integrals on the right hand side of the previous inequality. For the first one, we start by noticing that

P v ϕ r 2 v θ ∂ vϕ (|h|) - v ϕ sin 2 (θ) ∂ v θ (|h|) v r * α(v) |v t | 2 dv θ dv ϕ dv r * r 2 sin(θ) = - P v θ r 2 |h| v r * α(v) |v t | 2
dv θ dv ϕ dv r * r 2 sin(θ) .

Indeed, this follows from integration by parts in v θ and v ϕ ,

v θ ∂ vϕ (v ϕ ) - v ϕ sin 2 (θ) ∂ v θ (v ϕ ) = v θ , ∂ vϕ v θ v r * α(v) |v t | 2 -∂ v θ v ϕ v r * α(v) sin 2 (θ)|v t | 2 = 0. ( 43 
)
The first identity of ( 43) is straightforward and we then focus on the second one. Remark that for fixed

(t, r * , θ, ϕ), v r * α(v) |vt| 2 = φ v r * , |v θ | 2 , |vϕ| 2 
sin 2 (θ) , with φ a smooth function on R 3 + \{0} with the symmetry property φ(w 1 , w 2 , w 3 ) = φ(w 1 , w 3 , w 2 ) for any (w 1 , w 2 , w 3

) ∈ R 3 + \ {0}. Hence, dropping the dependence of φ in v r * , |v θ | 2 , |vϕ| 2 sin 2 (θ) , ∂ vϕ v θ v r * α(v) |v t | 2 -∂ v θ v ϕ v r * α(v) sin 2 (θ)|v t | 2 = v θ ∂ vϕ - v ϕ sin 2 (θ) ∂ v θ v r * α(v) |v t | 2 = 2v θ v ϕ sin 2 (θ) (∂ w3 φ -∂ w2 φ) = 0.
We then deduce, as [START_REF] Giorgi | Boundedness and decay for the Teukolsky equation of spin ±1 on Reissner-Nordström spacetime: the = 1 spherical mode[END_REF], that

|v θ | r |v r * | ≤ |v N ||v t | by
P v ϕ r 2 v θ ∂ vϕ (|h|) - v ϕ sin 2 (θ) ∂ v θ (|h|) v r * α(v) |v t | 2 dv θ dv ϕ dv r * r 2 sin(θ) 1 r P |h||v N |α(v)dµ P .
and it remains to bound r -1 by 1 2M . Finally, for the last integral recall the definitions of v t , v u , v u and v N (see [START_REF] Blue | Phase space analysis on some black hole manifolds[END_REF], ( 12) and ( 22)). Then, remark

∂ v r * v t = v r * v t , ∂ v r * v u = 1 2 ∂ v r * (v t + v r * ) = v u v t , ∂ v r * v u = 1 2 ∂ v r * (v t -v r * ) = - v u v t . It implies |∂ v r * v N | ≤ |v N | |vt| and |∂ v r * α(v)| a,q α(v)
|vt| . We then deduce, using also

|/ v| 2 r 2 = 4 |vu| 1-2M r |v u | |v N ||v t | and ∂ v r * |/ v| 2 = 0, that ∂ v r * |/ v| 2 v r * α(v) r 2 |v t | 2 a,q |v N |α(v) |v t | .
Consequently, by an integration by parts in v r * and using The next result will also be useful in order to deal with the region R 0 -∞ .

Lemma 5.4. Let (a, p, q) ∈ R 3 + such that 0 ≤ p ≤ 2q, s ∈ [1, +∞[ and f : R +∞ -∞ → R be a sufficiently regular function satisfying T(f ) = 0. For all τ ∈ R and (t, r * , ω) ∈ Σ τ such that r * < R * 0 , we have

P |v r * | 2 |v t | 2 |f | s |v t ||v N | a dµ P (t,r * ,ω) a,s 1 r 2 n+|I|≤3 n≤1 Στ ρ ∂ n t Ω I f s |v N | a dµ Στ .
For all τ ∈ R and (t, r * , ω) ∈ Σ τ such that r * ≥ R * 0 , there holds Proof. Fix (t, x * , ω 0 ) ∈ R +∞ -∞ and consider τ ∈ R such that (t, x * , ω 0 ) ∈ Σ τ . In order to avoid any confusion, we emphasize that during this proof, f will be viewed as a function of the variables (t, r * , θ, ϕ, v r * , v θ , v ϕ ) and r as a function of the coordinate r * .

P |v r * | 2 |v t | 2 |v u | q |v t | q |f | s |v t ||v N | a dµ P (t,r * ,ω) q,s 1 r 2+p n+|I|≤3 n≤1 Στ ρ r p |v u | q |v t | q ∂ n t Ω I f s |v t | a dµ Στ + 1 r 2+p n+|I|≤3 n≤1 N t+r * 1 τ ≤u-u0≤τ +1 P r p |v u | q |v t | q ∂ n t Ω I h s |v t |
Recall from Lemma 5.1 that Ω J (v r * ) = Ω J (v t ) = Ω J (v N ) = 0. Consequently, Lemma 5.2 yields

P |v r * | 2 |v t | 2 |v u | q |v t | q |f | s |v t ||v N | a dµ P (t,x * ,ω0) s |J|≤2 ω∈S 2 P |v r * | 2 |v t | 2 |v u | q |v t | q Ω J f s |v t ||v N | a dµ P (t,x * ,ω) dµ S 2 . ( 44 
)
Fix ω ∈ S 2 , |J| ≤ 2 and denote Ω J f by h, so that T(h) = 0 according to Lemma 1.7. Assume first that x * < R * 0 and recall from Lemma 1.4 that Σ τ ∩{r * < R * 0 } can be parameterized by (U (r)-r * (r)+τ, r * (r), ω ), with 2M < r < R 0 and ω ∈ S and we bound H 1 and H 2 separately. By one dimensional Sobolev inequalities, we have

since v • n Nτ = v u does not control |v t |. Instead, we use v t = v u + v u and v N = v t for r ≥ R 0 (see Proposition 2.1), so that P |v r * | 2 |v t | 2 |v u | q |v t | q |h| s |v t ||v N | a dµ P (t,x * ,ω) ≤ H 1 (t, x * , ω) + H 2 (t, x * , ω), (45) 
H 1 (t, x * , ω) = - +∞ u=t+x * ∂ u H 1 1 2 u + 1 2 (t -x * ), 1 2 u - 1 2 (t -x * ), ω du, H 2 (t, x * , ω) n≤1 t+x * +1 u=t-x * ∂ n u H 2 1 2 (t + x * ) + 1 2 u, 1 2 (t + x * ) - 1 2 u, ω du.
Note that r(x * ) ≤ r on the domain of integration of the first integral and r * ≥ x * -1 2 , so that R 0 ≤ r(x * ) r, on the one of the second integral. Thus, applying Lemma 5.3 to |h| s |v t | a , we obtain, using [START_REF] Yang | On the global behavior of solutions of the Maxwell-Klein-Gordon equations[END_REF] and since

∂ t (v t ) = Ω i (v t ) = T(|h| s |v t | a ) = 0, |r(x * )| 2+p H 1 (t, x * , ω) q,s n+|I|≤1 +∞ u=t+x * P r p |v u | q |v t | q ∂ n t Ω I h s |v t | a |v u |dµ P 1 2 u+ 1 2 (t-x * ), 1 2 u-1 2 (t-x * ),ω r 2 du, |r(x * )| 2+p H 2 (t, x * , ω) q,s n+|I|≤1 t-x * +1 u=t-x * P r p |v u | q |v t | q ∂ n t Ω I h s |v t | a |v u |dµ P 1 2 (t+r * )+ 1 2 u, 1 2 (t+r * )-1 2 u,ω r 2 du. Note now that t -x * = τ + u 0 since x * ≥ R 0 and (t, x * , ω 0 ) ∈ Σ τ . Recall from Subsection 1.1 that Σ τ ∩ {r * ≥ R * 0 } = N τ , v • n Nτ = v u , dN τ = r 2 du ∧ dµ S 2 and dN t+x * = r 2 du ∧ dµ S 2 . Moreover, t -x * ≤ u ≤ t -x * + 1 ⇔ τ ≤ u -u 0 ≤ τ + 1.
We then deduce the second estimate of the Proposition from (44), (45) and the last two inequalities.

This allows us to deduce the following estimate for the region τ ≥ 0.

Proposition 5.6. Let (a, p, q) ∈ R 3 + such that 0 ≤ p ≤ 2q and s ∈ [1, +∞[. Consider a sufficiently regular function f : R +∞ 0 → R satisfying T(f ) = 0. There holds, for all τ ≥ 0 and (t, r * , ω) ∈ Σ τ ,

P |v r * | 2 |v t | 2 |v u | q |v t | q |f | s |v t ||v N | a dµ P (t,r * ,ω) a,q,s 1 r 2+p n+|I|≤3 n≤1 Στ ρ 1 + r p |v u | q |v t | q ∂ n t Ω I f s |v N | a dµ Στ .
Proof. If r * < R * 0 , then remark that |v u | q ≤ |v t | q , so that the result ensues from Lemma 5.4 and r -2 q r -2-p . Otherwise r * ≥ R * 0 and we also apply Lemma 5.4. We bound the flux through the piece of the hypersurface N t+r * using Remark 1.16, applied with τ 1 = τ and τ 2 sufficiently large, if r * ≤ R * 0 + 1 since r p |v u | q q |v t | q .

Remark 4.8, applied with τ 1 = τ and τ 2 = τ + 1, if r * ≥ R * 0 + 1, since in that case we have the inclusion

N t+r * ∩ {τ ≤ u -u 0 ≤ τ + 1} ⊂ {r ≥ R 0 } or, equivalently, t + r * ≥ τ + 1 + u 0 + 2R * 0 .
It then remains to use that |v t | ≤ |v N | (see [START_REF] Johnson | The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge[END_REF]).

The next lemma will permit us to estimate P |f ||v N | 2 dµ P by L s norms of f through an application of the previous result.

Lemma 5.7. Let s ∈ ]3, 4], δ > 0 and f : R +∞ -∞ → R be a sufficiently regular function. Then, for any q ∈ R + ,

P |v u | q |v t | q |f ||v N | 2 dµ P s,δ r 4 s r 2 s-1 s P |v r * | 2 |v t | 2 |v u | sq+2 |v t | sq+2 f |v t | 4-s s v t s-3+δ s / v 2 s-3+δ s s |v t ||v N | 2(s+1) dµ P 1 s
.

Proof. We start by applying the Hölder inequality. As s s-1 is the conjugate exponent of s, we have

P |v u | q |v t | q |f ||v N | 2 dµ P |I| 1 s • |J | s-1 s , (46) 
where

I := P |v u | q |v t | q |f ||v N | 2 s |v r * | 2 |/ v| 4 (1 + |v r * |) s-3+δ (1 + |/ v|) 2(s-3+δ) |v t | s-1 dµ P , J := P |v t | |v r * | 2 s-1 (1 + |v r * |) s-3+δ s-1 |/ v| 4 s-1 (1 + |/ v|) 2 s-3+δ
s-1 dµ P .

Note now that since dµ

P = r -2 sin -1 (θ)|v t | -1 dv r * dv θ dv ϕ and √ 2|/ v| ≥ |v θ | + sin -1 (θ)|v ϕ |, J 1 r 2 v r * ∈R dv r * |v r * | 2 s-1 (1 + |v r * |) s-3+δ s-1 (v θ ,vϕ)∈R 2 dv θ d vϕ sin(θ) |v θ | + |vϕ| sin(θ) 4 s-1 1 + |v θ | + |vϕ| sin(θ) 2 s-3+δ s-1 .
We then deduce, as s > 3, that J s,δ r -2 . We now turn to I and we recall that

|v r * | ≤ |v t | and 1 -2M r |/ v| 2 r 2 = 4|v u ||v u | (see (12)). Hence, in view of the definition (22) of v N , we have |/ v| 2 r 2 |v u ||v N |, so that I P |v u | q |v t | q |f ||v N | 2 s |v r * | 2 |v t | 2 r 4 |v u | 2 |v t | 2 |v t ||v N | 2 (1 + |v t |) s-3+δ (1 + |/ v|) 2(s-3+δ) |v t | s-4 dµ P .
The result then follows from (46), J s,δ r -2 and this last estimate.

We are now able to prove pointwise decay estimates for the non-degenerate energy density T[f ](N, N).

Proposition 5.8. Let q ∈ R + , z ∈ ]3, 4], δ > 0 and f : R +∞ 0 → R be a sufficiently regular function. Then, for all τ ≥ 0 and (t, r * , ω) ∈ Σ τ , Remark 5.10. In the context of a non linear problem, T(f ) could be schematically of the form ψ • h, where ψ is a solution to a wave equation. Consequently, it could be difficult to deal with |ψ| s for s > 2 if ψ cannot be estimated pointwise. For this reason, we considered only solutions to T(f ) = 0. Note however that with more informations on T(f ), we could extend our results to a more general setting. For instance, if s = 1, p = 0 and a = 1, one can obtain by following the proof of Proposition 5.4 that, for all τ ≥ 0 and (t, r * , ω) ∈ Σ τ ,

P |v u | q |v t | q |f ||v N | 2 dµ P (t,r * ,ω) q,z,δ 1 r 2+2q n+|I|≤3 n≤1 Στ ρ 1 + r 2zq+4 |v u | zq+2 |v t | zq+2 ∂ n t Ω I f z |v t | + |/ v| 3(z-3+δ) |v t | 4-z |v N | 2(z+1)
r 2 P |v r * | 2 |v t | 2 |f ||v t ||v N |dµ P (t,r * ,ω) n+|I|≤3 Στ ρ ∂ n t Ω I f |v N | dµ Στ + |J|≤2 Στ P T Ω J f |v N |dµ P dµ Στ + n+|I|≤3 |J|≤2 τ +1 τ =τ Σ τ P T ∂ n t Ω I f |v t | + T T Ω J f dµ P dµ Σ τ dτ .
The bulk integral arises from an application of Remark 1.16 in order to bound the flux on N t+r * .

6 The region r * ≥ R 0 + t As in Minkowski spacetime, Vlasov fields behave better in such a region, which corresponds to the exterior of a light cone. One can already see that if f satisfies T(f ) = 0 and is initially compactly supported in S ∩ {r * ≤ R * 0 } as, in that case, f vanishes in R 0 -∞ . This means in particular that Στ ρ |f ||v N | dµ Στ = 0 for all τ ≤ 0. More generally, solutions to the Vlasov equation can be studied in {r * ≥ R * 0 + t} without any information on their behaviour in the remaining part of Schwarzschild spacetime since this region is globally hyperbolic. This will simplify the analysis compared to the domain {r * ≤ R * 0 + t}. In particular, no difficulty related to the photon sphere or the event horizon will arise here. Proposition 6.1 (energy decay estimates for the region τ ≤ 0). Let (d, p) ∈ R 2 + , a ∈ R and f : R 0 -∞ → R be a sufficiently regular function such that T(f ) = 0. For all τ ≤ 0, there holds

Nτ P r p |v u | p/2 |v t | p/2 |f ||v t | a |v u |dµ Nτ d,p 1 (1 + |τ |) d S 1 r≥R0 P r p |v u | p/2 |v t | p/2 (1 + |u|) d |f ||v t | a |v • n S |dµ P dµ S .
Remark 6.2. We will also use the following inequality. For all τ ≤ 1,

sup w∈R N w 1 u-u0≤τ P r p |v u | p 2 |v t | p 2 |f ||v t | a |v u |dµ N w d,p 1 (1 + |τ |) d S P r p |v u | p 2 |v t | p 2 (1 + u -) d |f ||v t | a |v • n S |dµ P dµ S ,
where u -:= max(0, -u).

Proof. Even if τ = u -u 0 in the region studied here, we will abusively consider τ as a fixed parameter during this proof. Note that since h = f |v t | a also satisfies T(h) = 0 in view of Lemma 1.7, it suffices to treat the case a = 0. Fix τ ≤ 0, w ∈ R and introduce the set

D(τ, w) = {(t, r * , ω) ∈ R × R × S 2 / u ≤ τ + u 0 , u ≤ w} ∩ R +∞ -∞ ,
which is non empty if w is sufficiently large, and remark that its boundary is composed by

N τ ∩ {u ≤ w}, N w ∩ {u ≤ τ + u 0 }, S ∩ {u ≤ w, u ≤ τ + u 0 }. i 0 I + ( u = + ∞ ) N τ ∩ { u ≤ w } N w ∩ { u ≤ τ + u 0 } S ∩ {u ≤ w, u ≤ τ + u 0 } D(τ, w) r * = R * 0 i + i 0 H + I + S r * = R * 0 Figure 5:
The set D(τ, w) and its boundary.

We fix, for all the proof, q ∈ R + and we consider 0

≤ p ≤ 2q. Recall that v•n Nτ = v u ≤ 0, v•n N w = v u ≤ 0
and v • n S < 0 since n S is timelike and future oriented. An application of the divergence theorem to the current N r p |vu| q |vt| q |f | µ in the domain D(τ , w) then leads to Nτ

1 u≤w P r p |v u | q |v t | q |f ||v u |dµ P dµ Nτ + N w 1 u-u0≤τ P r p |v u | q |v t | q |f ||v u |dµ P dµ N w - S 1 u≤w 1 u-u0≤τ P r p |v u | q |v t | q |f ||v • n S |dµ P dµ S = D(τ,w) P T r p |v u | q |v t | q |f | dµ P dµ D(τ,w) .
Since u -u 0 ≤ τ ≤ 0 implies |u| + |u 0 | ≥ -τ ≥ 0 as well as r ≥ R 0 on S, there holds

S 1 u≤w 1 u-u0≤τ P r p |v u | q |v t | q |f ||v • n S |dµ P dµ S d S (1 + |u|) d (1 + |τ |) d 1 u-u0≤τ P r p |v u | q |v t | q |f ||v • n S |dµ P dµ S d,q I S := 1 (1 + |τ |) d S 1 r≥R0 P r 2q |v u | q |v t | q (1 + |u|) d |f ||v • n S |dµ P dµ S .
In order to lighten the notations, we also introduce

F p,q τ,w := N w 1 u-u0≤τ P r p |v u | q |v t | q |f ||v u |dµ P dµ N w .
As T(|f |) = 0, we then deduce, for all p ∈ [0, 2q], the following r-weighted energy estimates Nτ

1 u≤w P r p |v u | q |v t | q |f ||v u |dµ P dµ Nτ + F p,q τ,w - D(τ,w) P T r p |v u | q |v t | q |f |dµ P dµ D(τ,w) q I S .
We now apply these last inequalities together with Lemma 4.5 in three different settings. First, if p = 2q, Nτ 1 u≤w P r 2q |v u | q |v t | q |f ||v u |dµ P dµ Nτ + F 2q,q τ,w q D(τ,w) P r 2q-1 |v u | q-1 |v t | q |/ v| 2 r 2 |f |dµ P dµ D(τ,w) + I S .

The goal now is to bound sufficiently well the first term on the right hand side of the previous inequality.

For this, we exploit the hierarchy in p given by the r-weighted energy estimates. Applying it for p = 2q -n, with n ∈ 1, 2q , so that 2q -p ≥ 1 and 3q -p ≤ 3q, we get |/ v| 2 r 2 |f |dµ P dµ D(τ,w) q I S .

D(τ,w) P r p-1 |v u | q-1 |v t | q |/
The combination of the last estimates yields to Nτ 1 u≤w P r 2q |v u | q |v t | q |f ||v u |dµ P dµ Nτ + F p,q τ,w q I S .

An application of Beppo-Levi's theorem provides us the estimate of the proposition. As this inequality holds for all w ∈ R, we obtain the estimate of Remark 6.2 for τ ≤ 0. One can prove it for 0 < τ ≤ 1 by applying the results proved here to the foliation ( N τ ) τ ≤0 , defined similarly as (N τ ) τ ≤0 but where u 0 = u 0 + 1.

We now turn to the pointwise decay estimates.

Proposition 6.3. Let (d, q) ∈ R 2 + , z > 3, δ > 0 and f : R +∞ -∞ → R be a sufficiently regular function. Then, for all τ < 0 and (t, r * , ω) ∈ Σ τ , P |v u | q |v t | q |f ||v N | 2 dµ P (t,r * ,ω) q,z,δ Then, we bound these two terms as follows.

For the first one, note that for τ < 0, Σ τ = N τ and v • n Στ = v u . It remains to apply Proposition 6.1 to 3+δ) , for p = 2zq + 4, a = 2(z + 1) + 4 -z and, by an abuse of notation, d = zd.

∂ n t Ω I f z |v t | + |/ v| 3(z-
The second one can be controlled similarly, using Remark 6.2 instead of Proposition 6.1.

7 Proof of Theorem 1.11

Let f : R +∞ -∞ → R be a solution to the massless Vlasov equation T(f ) = 0. We introduce for any sufficienly regular function h : R +∞ -∞ → R, (a, q) ∈ R 2 + and s ≥ 1, the initial energy norms E a,q s [h] := S P r q |v u | q/2 |v t | q/2 + (1 + u -) q |h||v N | a |v • n S |dµ P dµ S + S P r q |v u | q/2 |v t | q/2 + (1 + u -) q |h| s q v t 4(s q -1) |v t | s q a |v • n S |dµ P dµ S s -q .

The next lemma is a direct consequence of Propositions 4.2 and 6.1.

Lemma 7.1. Let a ∈ R + and q ∈ R + \ N such that q is even. Consider s > 1 such that ζ q (s) ≥ q and h : R +∞ -∞ → R a solution to T(h) = 0 satisfying E a,q s [h] < +∞. Then, for all τ ∈ R,

∀ d ∈ [0, q], Στ ρ r q-d |v u | q-d 2 |v t | q-d 2
|h||v N | a dµ Στ a,q,s E a,q s [f ] (1 + |τ |) d .

(47)

Proof. We will use all along the proof that, in view of Lemma 1.7, |h| s q v t 4(s q -1) |v t | s q a is a solution to the massless Vlasov equation. Note first that

∀ d ∈ [0, q], r q-d |v u | q-d 2 |v t | q-d 2 (1 + u -) d ≤ r q |v u | q 2 |v t | q 2 + (1 + u -) q . ( 48 
)
As Σ τ = N τ , v • n Nτ = v u and v t = v N for τ < 0, we obtain by applying Proposition 6.1 that (47) holds for all τ < 0. Moreover, since Σ 0 = S ∩{r < R 0 } N 0 , Proposition 6.1, applied to h and |h| s q v t 4(s q -1) |v t | s q a with d ∈ {0, q}, also provides us Σ0 ρ 1+r q |v u | q/2 |v t | q/2 |h||v N | a dµ Σ0 + Σ0 ρ 1 + r q |v u | q/2 |v t | q/2 |h| s q v t 4(s q -1) |v t | s q a dµ Σ0 s -q q E a,q s [h].

According to Proposition 4.2 and Remark 4.3, we then obtain that (47) also holds for all τ ≥ 0.

We now start the proof of Theorem 1.11. Let s > 1 and assume that E It remains to prove the pointwise decay estimates. The main idea consists in proving decay estimates for well-chosen energy norms of f and then to apply Propositions 5.8 and 6.3. In order to reduce the number of parameters, we will apply these last two results with z = 2 + s and δ = s -1 but these restrictions are not necessary. Let p ∈ R + and 1 < s ≤ 2 such that (2 + s)p / ∈ N, (2 + s)p is even and This concludes the proof of Theorem 1.11.

Lemma A.1. There exists a smooth function U : [2M, R 0 ] → R such that, for any τ ≥ 0, Σ τ ∩ {r < R 0 } can be parameterized, in the system of coordinates (u, r, θ, ϕ), by (r, ω) ∈ ]2M, R 0 [×S 2 → (U (r) + τ, r, ω).

Moreover, the vector field n := g -1 (du -U (r)dr, •) is normal to Σ τ ∩ {r < R 0 } and timelike in the region {2M ≤ r ≤ R 0 }.

Proof. It will be convenient to work here with the coordinate system (u, r, θ, ϕ). Since Σ τ ∩ {r < R 0 } = ϕ τ (Σ 0 ∩ {r < R 0 }), where ϕ τ is the flow generated by the Killing vector field ∂ t = ∂ u , it suffices to prove the result for τ = 0. Then, recall that by construction, Σ 0 ∩ {2M < r < R 0 } = We then deduce that the 1-form du -U (r)dr is normal to the spacelike hypersurface S. This implies that the ϕ τ -invariant vector field n is normal to Σ τ ∩ {r * < R * 0 } and timelike on H + ∪ D.

As we have t = u -r * in the region D, this implies that the parameterization of Σ τ ∩ {r < R 0 } in the Regge-Wheeler coordinates given in Lemma 1.4 holds. In order to prove the remaining four properties, notice first that, as n is ϕ τ -invariant, SO 3 (R)-invariant and timelike on {2M ≤ r ≤ R 0 }, we can define the smooth function

γ : [2M, R 0 ] → R * + , γ(r) = |g( n, n)| 1 2 , which satisfies ∃ C ≥ 1, ∀ 2M ≤ r ≤ R 0 , 1 C ≤ 1 γ(r) ≤ C.
Note now that the future oriented normal vector along Σ τ ∩ {r < R 0 } is equal either to n γ(r) or to -n γ(r) . So, as the induced volume form on Σ τ satisfies dµ R +∞ -∞ = -g -1 (n Στ , •) ∧ dµ Στ , we have dµ Στ {2M <r<R0} = γ(r)r 2 dr ∧ dµ S 2 .

Since τ = u -U (r) for 2M < r < R 0 , we have

∀ 2M < r < R 0 , |τ -u| ≤ U L ∞ and dµ R +∞ -∞
= γ 0 (r)dτ ∧ dµ Στ , γ 0 (r) = 1 γ(r) . 

B Controlling all the components of the energy-momentum tensor

We prove here a general result which motivates the introduction of the red-shift vector field N. More precisely, we prove that if T and T are strictly timelike vector fields, then, on any compact set, T[f ](T, T ) controls uniformly all the components of the energy-momentum tensor T[f ] of the Vlasov field f .
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v| 2 r 2 |/ v| 2 r 2 |/ v| 2 r 2

 222 |f |dµ P dµ D(τ,w) q D(τ,w) P r p-2 |v u | q-1 |v t | q |f |dµ P dµ D(τ,w) + I Sand applying it for p = 0, we obtain, since r 2q-2q -2 r -1 ,D(τ,w) P r 2q-2q -2 |v u | q-1 |v t | q |f |dµ P dµ D(τ,w) D(τ,w) P r -1 |v u | q-1 |v t | q

r 2

 2 (r + |τ |) p .As |v u | ≤ |v t | and since (50) holds, it suffices to bound the left hand side by r -2-p E p s [f ]. For this, If (t, r * , ω) ∈ Σ τ , with τ < 0, we apply Proposition 6.3 for z = 2 + s, δ = s -1, q = p/2 and d = 0. Otherwise (t, r * , ω) ∈ R +∞ 0 and use first Proposition 5.8, with z = 2 + s, δ = s -1 and q = p/2. Then, apply Lemma 7.1 to∂ n t Ω I f 2+s |v t | + |/ v| 6(s-1) , with a = 8 + s, q = (2 + s)p + 4 and d = 0.

•S∩

  {2M < r < R 0 }, where • S is a spacelike hypersurface crossing H + to the future of the bifurcation sphere. Hence, there exists δ < 0 such that S :=• S ∩ {2M -δ < r} ⊂ B ∪ H + ∪ D.As S is a smooth spherically symmetric hypersurface, for any x ∈ S, there exist an open set O containing x and a smooth functionF O such that S ∩ O = (u, r, ω) ∈ R × R * + × S 2 / F O (u, r) = 0 . Since S is spacelike, ∂ t = ∂ u / ∈ T x Sfor any x in the region r ≥ 2M , so that ∂ u F O does not vanish on S ∩ O ∩ {r ≥ 2M }. According to the implicit function theorem, we obtain that for any x ∈ S ∩ {r ≥ 2M }, there exist an open set O containing x and a smooth function U O such thatS ∩ O = (u, r, ω) ∈ R × R * + × S 2 / u = U O (r) .By a connexity argument, this implies, if δ > 0 is chosen small enough, that there exists a smooth function U : ]2M -δ, +∞[→ R such that S = (u, r, ω) ∈ R×]2M -δ, +∞[×S 2 / u = U (r) .

Finally, in view

  of the properties of n, there exist smooth functions ξ,ζ : [2M, R 0 ] → R such that n Στ = ξ(r)∂ u + ζ(r)∂ r .We then deduce from (51) that there exist smooth functions α, β :[2M, R 0 ] → R satisfying n Στ = α(r)∂ u + β(r) 1-2M r ∂ u .As n Στ is unitary and timelike, we have using (4) that α(r)β(r) = 1 for all 2M < r < R 0 . By continuity, the relation holds for all r ∈ [2M, R 0 ] and this implies, since n Στ is future oriented, that β and α = 1/β are both strictly positives on [2M, R 0 ]. This concludes the proof of Lemma 1.4.

|f ||v N ||v • n Στ |dµ P dµ Στ p S P 1
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  derive here energy inequalities for ρ[h] which, if h ≥ 0 is a solution to the massless Vlasov equation, are related to the conservation of the number of particles. Combined with T(v t ) = 0, it implies estimates for the degenerate energy density ρ[h|v t |]. + be a sufficiently regular nonnegative function. For all 0 ≤ τ 1 ≤ τ 2 ,

	Proposition 1.15. Let h : R +∞ 0 → R Στ 2
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	Using again Proposition 4.6 together with the conservation law of Proposition 1.15, both applied between
	times 0 and τ 1 , yields,				
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	Applying this time Proposition 4.6 with (p, q) = (1, 1), between times τ and τ 2 , we obtain
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s > 1 and consider 0 ≤ τ 1 < τ 2 . Applying Proposition 4.6 to h = f |v t |, with (p, q) = (2, 1), gives τ2 τ =τ1 Nτ P r|f ||v u | 2 dµ P dµ Nτ dτ Στ ρ |f ||v t | dµ Στ dτ.

  and then to use that the energy norms decrease. In view of Remark 4.7, Proposition 4.6, applied to h = f |v t | with (p, q) = (1, 1), leads, for all τ 3 > τ 2 , toτ3 τ =τ2 Nτ P |f ||v t ||v u |dµ P dµ Nτ dτ 1 τ 2 -τ 1 N0 P r 2 |f ||v u | 2 dµ N0 + 1 τ 2 -τ 1 Σ0 ρ |f ||v t | dµ Σ0 + Στ 1 ρ |f ||v t | dµ Στ 1 + Στ 2 ρ |f ||v t | dµ Στ 2 .Recall now that v u = v • n Στ and v t = v N for r ≥ R 0 (see Proposition 2.1). Moreover, by[START_REF] Johnson | The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge[END_REF] we have|v t | ≤ |v N |and, according to Lemma 1.7, T v t 4(s-1) |f | s |v t | s = 0. Hence, combining the last inequality with the integrated local energy decay estimate of Proposition 3.2, we get
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  ||v N | a dµ Στ p Στ ρ |f ||v N | a dµ Σ0 + Nτ P r p |v u | p/2 |v t | p/2 |f ||v t | a |v u |dµ P dµ Nτ . The first estimate of Proposition 4.2 then ensues from the energy inequality of Proposition 2.1 and Proposition 4.6, applied to h = f |v t | a , with the parameters (p, p/2) and between times 0 and τ . We now turn to the second estimate. Even if the main ideas are the same than those used in the proof of Proposition 4.10, a new difficulty arises. Indeed, by iterating Proposition 4.6 we do not obtain an estimate of the energy norm of f if p /
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  Nτ j+n P r p-n |v u | qp-n |v t | qp-n |h||v u |dµ P dµ Nτ j+n dτ Applying again Proposition 4.6 with the parameters (p -n, q p-n ), between times τ j+n and τ j+n+1 , yields, in view of Lemma 4.11, p-n-1 |v u | qp-n-1 |v t | qp-n-1 |h||v u |dµ P dµ Nτ dτ p p |v u | qp |v t | qp |h|v u |dµ P dµ Nτ j Στ j+n ρ |h| dµ Στ j+n .

	τj+n+1	1		
	τ =τj+n Nτ P	2 nj	Nτ j P
		+	Στ j	ρ |h| dµ Στ j	+
	τj+n			
	p			
	τ =τj+n-1	Nτ P		
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  Weighted L s -L ∞ estimates for the velocity average of massless Vlasov fieldsThe purpose of this subsection is to estimate pointwise the non-degenerate energy density T[f ](N, N) by applying Sobolev inequalities. For the reason mentionned below in Remark 5.10 and in order to simplify the presentation, we will only work with solutions to T(f ) = 0 but we could in fact prove functional inequalities adapted to the study of solutions to massless Vlasov equations in the spirit of[START_REF] Bigorgne | A vector field method for massless relativistic transport equations and applications[END_REF] Proposition 2.11]. In view of the previous subsection, we start by estimating P |v r * | 2 |vt| 2 |f ||v t ||v N |dµ P .

								|r-3M | r	≤ 1, we get	
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	5.2											

  a |v u |dµ P dµ N t+r * . Replacing |v r * | 2 |vt| 2 by |v r * | s |vt| s , we could only require to control 3 s derivatives of f but this would not provide us any additional useful information (because, in particular, of Proposition 5.7).

	Remark 5.5.
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Finally, as

|v N | |v • n s |v N | a dµ Στ . Suppose now that x * ≥ R * 0 .

Here, we cannot merely integrate on Σ τ

  Apply first Lemma 5.7 to f with s = z and then Proposition 5.6 to f |v t | = z, a = 2(z + 1), p = 2zq + 4 and, by an abuse of notation, q = zq + 2. Finally, usev t / v 2 |v t | + |/ v| 3 .Remark 5.9. Note that the assumption z ≤ 4 is important. Indeed, if z > 4, |v t | would carry a negative exponent and this would force us to assume stronger vanishing properties in the variable v u on f near the event horizon. By a similar heuristic analysis as the one carried out in Remark 3.3, one can check that

	z-4 z	v t	z-3+δ s	/ v 2 z-3+δ z	, for
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dµ Στ 1 z . Proof.

  2zq+4 |v u | zq+2 |v t | zq+2 (1 + u -) zd ∂ n t Ω I f z |v t | + |/ v| 3(z-3+δ) |v N | z+6|v • n S |dµ P dµ S Remark 6.4. By a slight modification of our proof, we could control the velocity average of f by weighted L s norms of f over the domain S ∩ {r ≥ R 0 }. Proof. Fix τ < 0 and consider (t, r * , ω) ∈ Σ τ = N τ . Apply first Lemma 5.7 to f with s = z and then Proposition 5.4 to f |v t | = 2zq + 4 and, by an abuse of notation, q = zq + 2. Since v t / v 2 |v t | + |/ v| 3 , we can then estimate r 2+2q P |vu| q |vt| q |f ||v N | 2 dµ P (t,r * ,ω) by | 4-z |v t | + |/ v| 3(z-3+δ) |v t | 2(z+1) dµ Στ | 4-z |v t | + |/ v| 3(z-3+δ) |v t | 2(z+1) |v u |dµ P dµ N t+r * .
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r z , for the parameters s = z, a = 2(z + 1), p z |v t z |v t

  1,0 s [f ] < +∞. By Lemma 1.7, we haveT(|f | s v t 4(s-1) |v t | s )) = 0. Hence, as Σ 0 = S ∩ {r < R 0 } N 0 and v • n N0 = v u , we obtain from Proposition 6.1 that Σ0 ρ |f ||v N | dµ Σ0 + Σ0 ρ v t 4(s-1) |f | s |v t | s dµ Σ0Then, the integrated local energy decay estimate follows from Proposition 3.2. For p ∈ R + , the boundedness of the r-weighted energy norm Στ P r p |v u | p/2 |v t | p/2 |f ||v N ||v • n Στ |dµ P dµ Στ p S P 1 + r p |v u | p/2 |v t | p/2 |f ||v N ||v • n S |dµ P dµ S is a direct consequence of Propositions 6.1, 4.2 and that v N = v t for all r ≥ R 0 . Consider now p ∈ R + \ N such that p is even and s > 1 satisfying ζ p (s) ≥ p. If E 1,p s [f ] < +∞, we obtain from Lemma 7.1 the following decay estimate for the energy flux ∀ τ ∈ R, Στ ρ |f ||v N | dµ Στ p,s E 1,p s [f ] (1 + |τ |) p .

	1	
	s	E 1,0 s [f ].

  10 ζ (2+s)p +4 (s) ≥ (2 + s)p + 4. Introduce then the energy norm < +∞. Start by noticing that, according to Lemma 1.7, we have Indeed, if (t, r * , ω) ∈ Σ τ with τ < 0, this directly follows from Proposition 6.3, applied with z = 2 + s, δ = s -1, q = 0 and d = (2 + s)p, together with (48), applied with q = (2 + s)p + 4 and d = (2 + s)p.Otherwise (t, r * , ω) ∈ R +∞ 0 and use first Proposition 5.8, with z = 2 + s, δ = s -1 and q = 0. It then remains to bound |v t | 2-s |v N | 2s+6 by |v N | 8+s and to apply Lemma 7.1 to ∂ n t Ω I f 2+s |v t | + |/ v| 6(s-1) , with a = 8 + s, q = (2 + s)p + 4 and d = (2 + s)p. Similarly, we have ∀ τ ∈ R, (t, r * , ω) ∈ Σ τ , P |v u | p/2 |v t | p/2 |f ||v N | 2 dµ P (t,r

	E p s [f ] :=	E 8+s, (2+s)p+4 s	∂ n t Ω I f	2+s |v t | + |/ v|	6(s-1)	1 2+s	(49)
	n≤1 n+|I|≤3						
	and assume that E p s [f ]						

∀ n ≤ 1, |I| ≤ 3 -n, T ∂ n t Ω I f 2+s |v t | + |/ v| 6(s-1) = 0. Now, we prove ∀ τ ∈ R, (t, r * , ω) ∈ Σ τ , P |f ||v N | 2 dµ P (t,r * ,ω) p,s E p s [f ] r 2 (1 + |τ |) p .

(50) * ,ω) p,s

This means that dµ R +∞ -∞ = -g n Στ , • ∧ dµ Στ .

This formula holds in a more general setting (see[START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF]).

In the context of wave equations, this quantity is often denoted byJ N [f ] • n Στ , where J N [f ]µ := T[f ]µν N ν .

This property is of course not satisfied for any L 1 (R 3 )-function but this is an heuristic discussion.

Note that there exist constants C such that, in the sense of the distributions, C h (t 0 , •) → →0 F (t 0 ).

When applied to the time derivative of the solution, one can in fact extend the method to the range 0 ≤ p < 4 (see[36, Section 5C]).

Note that there is no boundary terms since {v r * = 0} has Lebesgue measure 0.

Note that this difficulty is related to the degeneracy of the spherical coordinates and is then purely technical.

Note that these conditions are satisfied if p ∈ R + \ N and s -1 > 0 is small enough.
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A Basic properties of the foliation (Σ τ ) τ ∈R The purpose of this section is to prove Lemma 1.4. As the Regge-Wheeler coordinates degenerates at the horizon, it will be convenient to use the coordinate system (u, r, θ, ϕ) ∈ R × R * + ×]0, π[×]0, 2π[, which covers the region B ∪ H + ∪ D (see Figure 1) and which is then regular on the event horizon H + , where r = 2M . Recall that the metric takes the following form

and that, denoting by ∂ u and ∂ r the differentiation with respect to u and r in the coordinate system (u, r, θ, ϕ), we have in D,

In particular, 

where dµ S 2 is the standard volume form on the unit sphere S 2 . As the hypersurfaces N τ are null, there is no canonical choice of normal vector n Nτ . Since

we choose n Nτ := ∂ u and the induced volume form on N τ is dµ

We have then obtained all the results of Lemma 1.4 which concern the region r ≥ R 0 and we now focus on the domain 2M < r < R 0 , where Σ τ is spacelike. We start by proving the following result.

Let (M, g) be a smooth time-oriented and oriented 4-dimensional Lorentzian manifold and consider the bundle of future light cones

Given a coordinate system (U, x 0 , x 1 , x 2 , x 3 ) on M, for any y ∈ U ⊂ M, we can decompose any v ∈ T y M as v = v α dx α | y . Consequently, (x α , v α ) is a coordinate system on T M, called conjugates to (x 0 , x 1 , x 2 , x 3 ). The metric g induces the invariant volume element dµ

It induces a volume form on P x , satisfying dµ Px = dq ∧ dµ T x M with q(v) := 1 2 g -1 x (v, v). We can then define the energy-momentum tensor of any sufficiently regular function f : P → R by

where

If x 0 is a temporal function, then (x 0 , x 1 , x 2 , x 3 , v 1 , v 2 , v 3 ) are smooth coordinates on P since we have

Lemma B.1. Consider a smooth nonnegative function f : P → R + and a compact subset K ⊂ M. Let X, X, T, T be four smooth vector fields such that T and T are strictly timelike and future oriented on K.

Then, there exists D > 0 such that

Moreover, there exists

Proof. We start by the first estimate. Let x ∈ K and consider a coordinate system (x 0 , . . . 

which is a compact subset of O x ∩ K. Note that v(T ) < 0 on K for any v ∈ P. Indeed, v is causal, T is strictly timelike on K and they are both future oriented. Consequently, we have S := sup Q |v(X)| < +∞, I := inf Q -v(T ) > 0 and the first inequality of the lemma holds with D = S I . Together with the definition (52) of T[f ], this directly implies the second estimate.