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Abstract

The importance of network externalities affecting technology diffusion in the

greening of the economy is analyzed using a simple dynamic model. The socially

optimal path of the economy can be implemented by requiring firms to comply

to technical standards. As otherwise firms make investment decisions based on

their expectations of the magnitude of shocks affecting network effects, using

only incentive-based instruments of regulation (emissions taxes and subsidies for

green investments) to green the economy leads to efficiency losses due to economic

fluctuations.
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1 Introduction

Decoupling resource use and environmental discharges from economic growth is one

of the main challenges facing modern economies. Among these, decarbonisation, i.e.

reducing the carbon content of fuels, is a top priority. To achieve this goal, firms

must adopt cleaner and often newer technologies, which can be risky. At first, there

is a conversion cost: Green technologies are often more costly and less productive

than the technologies they use, and may require retraining of their workforces and

radical changes in their supply chains. In addition, these investment choices may prove

ineffective in the long term because they are too specific.1 Network externalities and

technology spillovers play an important role in determining the optimal technology for

firms to adopt. The profitability of a production line depends on technology spillovers,

like the known-how of the workforce, and the availability of the inputs and of the

maintenance services required by the technology. Since a machine is a durable good,

usually used for several years, it is important that the parts needed for its operation

and maintenance services are readily available in the future, which is all the more likely

as the technology becomes more widespread. There is also the issue of compatibility

of the technology with existing and future industry standards, which determines what

other machines can be employed. Moreover, the more a technology is used, the higher

the research effort of the machine industry sector to improve the technology. Therefore,

the optimal investment choice for a firm depends on the decisions made by all firms, and

the more firms use a given technology, the more attractive it is. It is however difficult

to anticipate these network effects, due to the many external factors that affect the

relative performance of technologies. Consider the case of energy-efficient technologies,

where profit depends on the price of energy, a highly fluctuating variable. Firms

investment, and hence the resulting network effects, depends on their expectations

about the magnitude of energy price changes.

Whatever the extend of these network effects, as markets prices do not account

for the environmental footprint of the economy, public policies must be designed to

guide firms in their investment choices. This can be done either by using incentive-

based instruments, like taxes on polluting emissions and subsidies for the purchase

of green technology, or by imposing that firms use machines that follow demanding

1Consider, for example, that a firm decides to replace its fleet of internal combustion vehicles with
electric vehicles (EVs). If many companies expect EVs to be used nationwide in the near future and
decide to do the same, it is likely that the network of charging stations for EVs will spread widely
and that the use of EVs can become very convenient and cheap. If the rest of the economy turns to
hydrogen vehicles instead, the few companies that have chosen EVs could be penalized.
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environmental standards, which reduces the firms’ possible choices but reduces the

coordination problem.

In this paper, I analyze the problem of greening the economy using a simple dy-

namic model that incorporates network externalities and technology spillovers. Firms

technology is represented by two variables, one capturing the productive capacity of

production lines (similar to the traditional economic definition of capital), the other

their pollution intensity. An essential feature of this framework is that a firm equipped

at a given date with the most profitable production process does not mean that it is

the latest or most innovative one: Network externalities and technological spillovers

determine optimal investment choices. However, in the absence of a coordination mech-

anism, firms must decide on their investment on the basis of their expectations on the

extend of shocks affecting network effects. This imperfect assessment of the future

economic environment is reflected in an industrial sector made up of firms with het-

erogeneous technological processes. Shocks affecting network effects are also the cause

of economic fluctuations.

The optimal investment policy is derived by solving the problem of a social plan-

ner who can decide on the levels of investment in production capacity and pollution

intensity of firms’ technology, taking into account the intertemporal trade-offs between

consumption, environmental quality and (total) investment. This policy corresponds

to productive and green investment levels that evolve over time. The implementation

of this policy by mean of incentive-based instruments, namely schedules of emissions

taxes and of subsidies for green investments, is then considered. The effectiveness of

these instruments depends on network effects and thus on the anticipations of firms.

The firms’ problem of adapting their production process over time is framed as a dy-

namic global game where firms face a coordination problem guided by private signals

on the optimal technological choice for the next period. Firms’ optimal investment

strategy is derived assuming Markov perfect equilibria. The resulting path followed

by the economy is affected by the uncertainty inherent in these network effects, which

leads to efficiency losses compared to a policy imposing technological standards on

firms. Interestingly, the subsidy scheme for green investments entails negative values

passed a certain date, i.e. it becomes a tax scheme, because network effects lead firms

to over-invest in green technology compared to the optimal path.

These general results are illustrated in a simple framework where the marginal rate

of substitution between environmental and industrial goods is constant, consumer pref-

erences are exponential (CARA) and the production function is Cobb-Douglas. This

framework allows for explicit solutions of the optimal policy and its implementation
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using incentive-based instruments. It shows that the optimal dynamic of the economy

entails 3 sequences, the first one corresponding to a decrease in the stock of productive

capital, and thus in GDP, the second one to a stagnant GDP but where investment in

clean technologies allows the economy to increase the quality of the environment, and

finally, a third sequence corresponding to an increasing GDP along an environmentally

neutral path (supposed to be the best that can be obtained with green technologies).

The economic fluctuations generated by shocks affecting network effects are derived

by assuming rational expectations on the part of consumers. While these shocks are

independent, they create economic fluctuations that are driven by the consumers desire

to smooth consumption over time. The resulting distribution of the interest rate, and

thus of the GDP of the economy, is shown to follow a first-order autoregressive process.

Since this path dependence can be significant, the likely trajectories of the economy

using emissions taxes and green subsidies can be very inefficient.

There is a abundant literature on growth and sustainability. The literature on

endogenous green growth focuses on productivity improvements and frontier innova-

tion. This is the case in the AK paradigm where capital-knowledge accumulates with

learning-by-doing (Stockey, 1998), and Lucas-like extensions (Bovenberg & Smulders,

1995), within a framework of product variety (Gerlagh & Kuik, 2007) or within the

Schumpetarian growth paradigm of destructive creation and directed technical changes

(Acemoglu et al., 2012), where the most productive innovations are adopted by firms as

soon as they are discovered. This article focuses on the adoption of existing technolo-

gies that have knock-on effects leading to the gradual replacement of old and polluting

machines with greener ones. The approach is thus close to the literature on endoge-

nous growth viewed as a process of adoption of existing ideas and mutual imitation

between firms, as exposed by Eaton & Kortum (1999); Lucas Jr & Moll (2014); Lucas

(2009); Perla & Tonetti (2014). These papers assume that each agent in the economy

is endowed with a certain amount of knowledge (“ideas”) and this knowledge evolves

through contact with the rest of the population. The approach here is similar for de-

scribing the adoption of technologies: although the R&D sector is not spelled out, there

is a set of existing technologies whose potential is more or less exploited depending on

the proportion of firms that use them. The distribution of technology used among firms

changes over time as firms’ incentives to adopt new technologies evolve.2 Comparisons

of policy instruments to implement an environmental objective have been quite nu-

2There is also a microeconomic literature that investigates the problem of network externalities,
initiated by Katz & Shapiro (1985). See Guimaraes & Pereira (2016) for a recent contribution, and
Shy (2011) for a survey.
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merous since Weitzman (1974). The main focus is on the information available to the

regulator on the firms’ pollution abatement costs. Few papers consider the importance

of firms’ expectations in achieving an environmental goal. In a recent paper, Aldy &

Armitage (2020) compare an emissions tax with a cap-and-trade instrument in which

firms are subject to forecasting errors in the price of pollution allowances on the sec-

ondary market, the effectiveness of the abatement technology being the same in both

cases. In what follows, the firms’ expectations about their economic environment are

important because of network effects that determine the effectiveness of the technology.

The remainder of the paper is organized as follows: Section 2 describes the econ-

omy and the dynamics of the technology adoption. The social planner’s program, the

optimal policy and its implementation using incentive-based instruments is presented

section 3. These paths are illustrated section 4, in a framework that allows the economy

to follow a Gaussian random path. The last section concludes.

2 Technology dynamics

Consider a discrete time economy composed of a continuum of firms, of total mass

equal to one, that collectively produce at date t an amount qt of output, taken as

the numeraire and corresponding to the GDP of the economy. The firms’ production

may come from various technological processes with different environmental impacts.

More precisely, we suppose that for each particular production task, firms have the

choice among a large set of machines characterized by their productivity and polluting

emissions level. These sets of machines evolve overtime, but each period, comparing

machines with similar productivity levels, the cheaper they are, the more they pollute.

A firm’s production line is characterized by machines acquired over time and renewed or

replaced when dimmed necessary. Each period, firms’ technological processes may thus

be very different, and to capture this heterogeneity in a simple way, the process of firm

i at date t is described by two parameters, kit and xit, dubbed ‘productive capacity’ and

‘green technology index’ (or ‘technology mix’) respectively. The productive capacity of

the technology is similar to the standard economic notion of capital: it corresponds to

the input that, once combined with labor, allows the firm to produce items or services.

It yields a gross revenue qit = Q(kit, `it) where `it is the firm’s employment level, and Q

a production function, homogeneous of degree one and satisfying the Inada conditions.

The green technology index captures the firm’s effort to diminish the environmental
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impact of its production, given by ιitqit where

ιit = ϕ− ξxit/qit (1)

corresponds to the emission intensity of its production process. The emission intensity

diminishes with xit, with a maximum equal to ϕ if xit = 0. Hence, the higher xit, the

lower the environmental impact of the firm’s production. This impact depends on ξ, a

positive parameter that measures the environmental efficiency of green investments.

Each period, part of the technology used by firms is depreciated, due to wear and

tear, or because some machines are obsolete or so deteriorated that maintenance costs

are too high. We suppose a constant depreciation rate 1 − g that affects both the

productive capacity and the green technology index. To renew and adapt their produc-

tion process, firms buy new machines that correspond to an investment in productive

capacity and/or in environmental quality. Firm i’s investment in productive capacity,

Iit, leads to a dynamic of kit given by kit+1 = gkit + Iit. Similarly, firm i’s spending in

environmental quality, κit, modifies its technology mix according to xit+1 = gxit +κit.
3

Depending on their technology choices, firms benefit from (or suffer from the lack

of) network effects related to their input suppliers, maintenance services (how easy it

is to find specific inputs and parts to service the machines), the know-how of workers,

and more generally, the peculiarities of the machines they use. The more widespread is

the technology used, the less a firm encounters problems and the easier it is to achieve

a production target. Our focus being on network effects related to the environmental

characteristics of the machines, we consider that for firm i at date t they can be

summarized to a monetary amount Git given by

Git = G(xit;µt−1, Kt−1, ωt) = (µt−1 + λKt−1 + ωt)xit − x2
it/2− Ḡt, (2)

where µt−1 ≡
´ 1

0
xit−1di is the adoption of green technology (AGT) index of the econ-

omy at the previous period, Kt−1 ≡
´ 1

0
κjt−1dj the sum of green investments made

simultaneously by firms at t − 1 for period t, and ωt a time-independent noise, nor-

mally distributed with variance σ2
ω, that summarizes the many unmodeled shocks af-

fecting the diffusion of technology.4Git may be positive or negative, and the last term,

3These investments may be negative, i.e. firms may consider resealing some of their machines.
Observe that we can have Iit = 0 and κit > 0, in which case firm i buys pollution abatement
equipment, i.e. devices that do not produce any items but reduce the polluting emissions of the firm.

4These shocks are due to factors external to the economy, such as energy prices that depend on
the worldwide demand and supply and can be affected by local conflicts, geopolitical rivalries, or
pandemics. To simplify the analysis, these factors are assumed to affect only network effects, not the
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Ḡt, ensures that the average network gain is nil.5 We suppose that µt−1 is known by

firms at date t − 1, when they decide to invest for period t, but the realization of

ωt, and thus the sum of their choices Kt−1, is unknown. Parameter λ ∈ [0, 1) in (2)

captures the immediate technology spillovers. If λ = 0, the first term of (2) reduces to

µt−1 + ωt, i.e. the former average mix plus a noise which may be positive or negative.

The productivity of firm i depends on the AGT index of the previous period thanks

to the diffusion of knowledge and the adaptation of the supply chain that occurred

previously. When immediate demand spillovers are at work (λ > 0), this productiv-

ity factor also depends on the most recent investments made by all firms, Kt−1, the

extreme case λ → 1 corresponding to an immediate adaptation of the workers and

the supply chain to new investment choices.6 With an average network effect null, i.e.´ 1

0
G(µt−1, Kt−1, xit, ωt)di = 0, simple algebra allows us to rewrite (2) as

Git = [(x?t − µt)2 + σ2
xt − (xit − x?t )2]/2, (3)

where σ2
xt =

´ 1

0
(xjt − µt)2dj is the variance of the technology indexes at date t, and

x?t ≡ µt−1 + λKt−1 + ωt (4)

the ideal technology mix at date t, (xit−x?t )2/2 corresponding to firm i’s relative loss due

to a less effective mix xit. Firms would ideally be equipped with the most efficient mix,

but they cannot perfectly assess it because they don’t know at date t−1 the realization

of the random shock ωt and the total of green investments made simultaneously by all

firms, Kt−1. Hence, firms must somehow anticipate the extent of the resulting total

green investment when making their own, which leads to an intertemporal coordination

problem that is formalized as a succession of global games taking place each period.7

This dynamic setup is solved sequentially: our focus is on Markov perfect equilibria

where x?t is a state variable. In period t, firms must anticipate the realization of the

next period ideal technology mix, x̃?t+1, a random variable which distribution depends

on the other firms behavior. More specifically, firm i infers the other firms decisions

productivity of the technology, which depends of kit.
5Since green investments are not productive per se, firms’ monetary gains and losses from network

effects must cancel out. For the sake of simplicity, it is supposed that they compensate for each other
each period.

6It is likely that the value of λ is particularly low. As stressed by Battisti (2008), a consistent
literature has shown that, even when a clean or a cost-reducing technology is ready available in the
market, its spreading takes several years.

7These coordination problems with strategic complementarity are known as “beauty contests” (see,
e.g., Angeletos & Pavan, 2004, 2007 and Morris & Shin, 2002).
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according to its beliefs on the shock affecting the diffusion of technology. We suppose

that these beliefs are unbiased idiosyncratic private signals of the shock: they are

formed according to η̃it = ωt+1 + υ̃it, where ωt+1 is the date-t + 1 realization of this

shock, υ̃it a time-independent noise, normally distributed with variance σ2
υ, verifying

E[υ̃it] = E[υ̃itυ̃jt] = 0 for all i, j, and
´ 1

0
υ̃itdi = 0.

Consider the Laissez-faire situation. Denote by t = 0 the present period and suppose

that firm i is endowed with technology (ki0, xi0) ≥ 0. Each period t, given wt and rt the

date-t wage and interest rate, it plans its technological investments and employment

level {(κit, Iit, `it), t = 0, 1, 2, . . .} to maximize the expected discounted sum of its profits

Et[
∑

h≥0(
∏t+h

τ=0 δτ )(qit+h +Git+h −wt`it+h − Iit+h − κit+h)] where δτ = 1/(1 + rτ ) is the

date-τ discount factor.8 With a total supply of labor equal to one each period, i.e.´ 1

0
`itdi = `t = 1 for all t, it is shown in the appendix that

Proposition 1 Firms’ equilibrium investment in productive capacity at time t is given

by

It = q′−1(1 + rt − g)− gkt (5)

for all i, where q(k) ≡ Q(k, 1) is an increasing and concave function, leading to a total

capacity kt+1 = q′−1(1 + rt − g). The equilibrium wage is given by wt = q(kt)− rt−1kt.

Firm i’s investment strategy in green technology satisfies

κit = E
[
x̃?t+1|ηit, µt, rt

]
− gxit − rt − 1 + g, (6)

leading to

κit =
(1− λg)µt + ηit − rt − 1 + g

1− λ
− gxit. (7)

at equilibrium. The resulting firms’ technology mixes at t+ 1 are normally distributed

with mean

µt+1 =
(1− λg)µt + ωt+1 − rt − 1 + g

1− λ
, (8)

corresponding to the date-t+ 1 AGT level of the economy, and constant standard devi-

ation σxt = σx ≡ συ/(1− λ) for all t.

Because firms have the same production function Q, the productive capacity of all

firms is the same, determined by choices that are guided unambiguously by the interest

rate. This is not the case for their spending in green technology (6) that depend on

8Et[X̃] is a shorthand for E[X̃|It], i.e. the expectation of the random variable X̃ given the infor-
mation It available at date t.
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individual estimates of the most efficient mix E
[
x̃?t+1|ηit, µt, rt

]
. At equilibrium, firm i

adopts the green investment strategy (7) that is a linear function of publicly observable

variables (the AGT index µt and the prevailing interest rate rt), its own technology

index xit and its private signal ηit.
9 For firms with a low mix and a high estimate,

this strategy corresponds to buying machines with a low environmental impact. For

those with a high mix and a low estimate, their investment is directed in the opposite

direction: they save on new equipment spending by buying less expensive brown tech-

nologies. The resulting dynamic of the AGT index (8) is magnified by a factor equal

to (1 − λ)−1: the more reactive is the supply chain, the larger are the effects of the

shock and of the cost of capital rt on the next period AGT index.10

The expected dynamic of the AGT index under Laissez-faire is positive if µt >

[1 + rt/(1− g)]/λ, hence if the technology spillovers are large enough, the depreciation

rate large and/or the interest rate low. Indeed, as firms have to renew their machines,

they may invest in less polluting ones if they expect that the supply chain and the

workforce know-how adapt rapidly. This is however not possible if the interest rate is

large and/or the depreciation rate of capital (i.e. the need to renew machines) is low.

Due to the idiosyncratic shocks on believes, υit, firms have different expectations

on x?t+1, hence choose machines with similar productive capacities but different envi-

ronmental impacts. These discrepancies lead to a Gaussian distribution of firms’ green

indexes around the AGT, given by xit = µt + υit/(1 − λ), resulting in an industrial

sector that can be thought of as a ‘cloud’ of firms with a green technology level that

is drawn each period from a normal distribution centered on the AGT index µt with

standard deviation συ/(1− λ) that increases with λ.

2.1 Environmental dynamic

Production generates pollution that deteriorates the quality and the availability of

environmental goods and services provided by Nature. These effects are summarized

in the dynamic of the environmental quality (EQ) index et, which is given by

et+1 = θet + ê− ιtqt (9)

9The proof follows Angeletos & Pavan (2004). Morris & Shin (2002) show that this linear, sym-
metric, rational-expectations strategy leads to the unique (per period) equilibrium.

10Observe that (8) is not biased by the lack of information. This is because signals are private and
affected by independent idiosyncratic noises. Would firms also shared a public signal, their choices
would be distorted in the same direction, and so the resulting dynamic of µt, to an extent that depends
on the relative signal reliability: the better the public signal’s precision, the larger the distortion.
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where θ ∈ (0, 1) is the environmental inertia rate, ê the per-period maximum regener-

ation capacity of the environment, and

ιt =

ˆ 1

0

qitιitdi/qt = ϕ− ξµt/qt (10)

the emission intensity of the economy at date t, which measures the total damage of

firms to the environment per unit of GDP. Without human interference (ιt = 0), the

EQ index is at its pristine level eN = ê/(1− θ). More generally, we obtain using (10)

a dynamic of EQ that follows the linear first-order recursive equation

et+1 = θet + ξµt − ϕqt + ê. (11)

We suppose that green technologies can only reduce emissions, i.e. that they do

not allow for direct improvement of EQ. As a result, environmental neutrality is the

best society can achieve.

Definition 1 (Environmentally Neutral Path) The economy has reached at date

T an Environmentally Neutral Path (ENP) if for all t ≥ T , ιt = 0.

An ENP is a sustainable situation in which the emission intensity of the economy

is nil. Along an ENP, thanks to the natural regeneration capacity of the environment,

the average EQ increases and tends toward its pristine level eN .

2.2 Consumers

Consumers maximize their intertemporal utility by arbitraging between consumption

and savings each period. Consumers’ well-being comes from consuming both manufac-

tured and environmental goods and services. Environmental goods are freely available

and their consumption is subsumed by the EQ index et. The consumption of man-

ufactured goods is denoted by ct. We suppose that consumers do not try to modify

the environment through their consumption and saving plans.11 Consumers’ per-period

preferences are represented by a concave utility function u(ct, et), and their behavior

is modeled by considering a representative consumer whose saving and consumption

11This could be because they consider that they are too numerous for their individual behavior to
have a significant impact on it.
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plans solve

maxEt

{
+∞∑
h=0

βhu(c̃t+h, ẽt+h) : c̃t+h = R̃t+h + r̃t+h−1S̃t+h−1 − s̃t+h, s̃t+h = S̃t+h − S̃t+h−1

}
(12)

each period, where Rt is her date-t revenue, St−1 her savings from the previous period,

rt−1St−1 the corresponding date-t capital earnings, st the savings adjustment of period

t, and β the psychological discount factor. Solving (12), we obtain

Lemma 1 The consumption rule that solves (12) satisfies

∂u(ct, et)/∂c

βEt [∂u(c̃t+1, ẽt+1)/∂c]
= 1 + rt (13)

at each date t.

Equation (13) corresponds to the Ramsey-Euler rule which states that the expected

intertemporal consumption rate of substitution (IRS) is equal to the return of capital

each period. It also defines the supply function of capital, while (5) and (8) are the

demand side coming from firms. At market equilibrium, aggregate production net of

investment must be equal to total consumption of manufactured goods, i.e.

ct = qt − It −Kt = q(kt)− (kt+1 − gkt)− (µt+1 − gµt). (14)

3 First-Best path of the economy

Consider a benevolent social planner in charge of determining the dynamics of the

productive capacity and the AGT index of the economy to maximize the consumer’s

welfare. We suppose that total investment cannot be negative so that this maximization

is constrained by12

kt+1 ≥ gkt, (15)

ϕq(kt) ≥ ξµt, (16)

12Constraint (15) implies that the social planner cannot forbid the use of machines that are too
environmentally damaging. Also, as the policy should result in green technology investments, the
constraint µt+1 ≥ gµt is neglected (It is shown that it never binds in the illustrative example).
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where the last inequality corresponds to the ENP constraint. The planner’s problem

is thus to solve

max
{µt,kt,et}t>0

{
+∞∑
t=0

βtu(ct, et) : (11), (14)− (16)

}
(17)

given e0, k0 and µ0. We suppose ξµ0 < ϕq0, so that society is not already on a ENP.

Denoting

ht =
∂u(ct, et)/∂c

β∂u(ct+1, et+1)/∂c
(18)

the IRS, it is shown in the appendix that:

Proposition 2 The optimal path of the economy {µ?t , k?t , c?t , e?t}t>0 satisfies (11), (14),

q′(k?t+1) ≤ h?t − g
1− (h?t − g)ϕ/ξ

, (19)

for all t > 0, with an equality when (15) is not binding and k?t+1 = gk?t otherwise, and

h?t+1(h?t − g − θ) + θg = ξ
∂u(c?t+2, e

?
t+2)/∂e

∂u(c?t+2, e
?
t+2)/∂c

. (20)

when constraint (16) is not binding, where h?t is the date-t IRS evaluated along the

optimal path.

The optimal policy is thus characterized by a sequence of IRS {h?t}t>0 that solves

(20). To interpret this condition, first observe that investment in green technology at

time t has an impact on the environment after two periods, i.e. at t + 2. The IRS

over these two periods is given by ht+1ht. Absent stock effects, i.e. g = θ = 0, this

condition states that the date-t two-period IRS must be equal to the marginal rate of

substitution (MRS) of consumption for EQ at date t+ 2. Condition (19) indicates that

when (15) is not binding, the IRS is larger than the rental rate of capital g + q′(kt+1)

due to the impact of production on the environment (i.e. unless ϕ = 0).

3.1 Policy implementation with incentive instruments

The optimal policy consists in a sequence of technological standards, i.e. limits on the

stock of productive capital and on the AGT index of the economy that change overtime.

Implementing such a policy at the firms level implies imposing these standards to

the production lines of each firm, hence limiting the set of machines they can use.

Suppose instead that the government chooses to implement the policy using incentive
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instruments, namely an emissions tax scheme {τt}t>0 and a green technology subsidy

scheme {zt}t>0. Given this policy, firm i’s per period profit becomes

πit ≡ Q(kit, `it) +Git − wt`it − Iit − κit(1− zt)− τt (ϕQ(kit, `it)− ξxit)

where the last term corresponds to the environmental tax payment, and the term

κit(1 − zt) to the net payment for clean technology investment. It is shown in the

appendix that at the optimum of the firms’ program, the total stock of productive

capital satisfies

q′(kt+1) =
1 + rt − g
1− τt+1ϕ

, (21)

and that the dynamic of the AGT index is given by

µt+1 =
1

1− λ
[(1− λg)µt + ωt+1 + ξτt+1 + g(1− zt+1)− (1 + rt)(1− zt)] . (22)

Compared to the first-best policy, the shock ωt+1 that affects the diffusion of tech-

nology makes the path of the AGT index stochastic. This uncertainty affects the

environmental quality but also the financial markets through the total demand of cap-

ital, hence the equilibrium interest rate. As this uncertainty is detrimental for the

consumer, the optimal path of the economy should be revised to account for the cost

of this risk (leading to a second-best path). The aim of this section being to assess the

impact of using incentive instruments to implement the environmental policy, suppose

for the sake of the argument that the social planner wants the economy to follow its

first-best path in expectation. To derive the rational expectation equilibrium (REE),

suppose also that he can credibly commit to implement the corresponding tax and

subsidy levels {τt, zt}t>0 as derived at t = 0 (it is thus an open loop policy that allows

for consistent expectations). It is shown in the appendix that

Proposition 3 The taxation and subsidy schemes {τt, zt}t>0 that implement the first-

best path in expectation are given by

τt+1 = (h?t − g)/ξ (23)

and

zt = [(1− λ)µ?t+1 − (1− λg)µ?t − (h?t − E[ht]) + gzt+1]/E[ht] (24)

for all t > 0, with E[ht] = g+q′(kt+1)(1−τt+1ϕ) when t < t0, and E[ht] = h?t otherwise.

We have limt→∞ zt < 0.

13



The emissions tax (23) is straightforwardly derived from (19) and (21) in the case

the constraint kt+1 ≥ gkt is not binding. When kt+1 = gkt, which corresponds to an

excess of productive capital, firms use all their capital stock nevertheless, leading to a

low interest rate at equilibrium, hence E[ht] < h?t . Proposition 3 also shows that the

subsidy schedule entails negative values passed a certain date, i.e. it becomes a tax

scheme. This is because network effects lead firms to over-invest in green technology

compared to the optimal path once the AGT index is high enough. As noted earlier,

the expected dynamic of the AGT index under Laissez-faire is positive if µt > [1 +

rt/(1 − g)]/λ. Hence, from an initial situation µ0 < [1 + (h0 − 1)/(1 − g)]/λ, i.e.

where firms would disinvest in green technology without an environmental policy, we

have µ?t > [1 + (h̄ − 1)/(1 − g)]/λ at some t > t0: even without a governmental

intervention, firms’ investment in green technology would be greater than gµ?t , the

level necessary to renew the green capital that is depreciated. This investment could

still be lower than the optimal next period investment µ?t+1, i.e. we could still have

µ?t+1 > µ?t + [(1− g)(λµ?t − 1)− (h̄− 1)]/(1−λ), in which case a subsidy is still needed.

However, firms over-invest when this inequality is reversed, and it is then optimal to

tax green investment.13

In the following section, we derive the optimal policy and detail the consequences

of incentive environmental instruments in a simple illustrative case.

4 Illustrative example

In this section, we first characterize the optimal path of the economy assuming that

the MRS is constant. It is then completely derived assuming exponential (CARA)

preferences and a Cobb-Douglas production function. Finally, the properties of the

policy implementation are analyzed.

To characterize the optimal policy, assume that the consumption of manufactured

and environmental good and services can be subsumed in a ‘global wealth index’ yt ≡
ct + pet where p is the constant value of the environment, so that the consumer’s MRS

is the same whatever the GDP of the economy, equal to p.14 With a constant MRS,

13Because the first-best policy imposes standards in the long term, the public intervention is long
lasting and results in taxing both polluting emissions and green investments. The government may
consider alternatively a policy without public intervention in the long run, perhaps as soon as an ENP
is reached. The resulting over-investment in green technology allows for greater productive investments
than the optimal ones, and thus an higher GDP level in the long run, but because consumption of
manufactured goods is reduced in the meantime, it is detrimental for the consumer welfare.

14Our results easily generalize to the case where p can take several discrete values depending on the
consumption and EQ levels, e.g. p ∈ {pi, i = 1, . . . , n}, pi+1 < pi, with p = pi if et/ct ∈ [mi,mi+1),

14



(20) simplifies to

h?t+1h
?
t − h?t+1(g + θ) + θg = pξ, (25)

which must hold for all t as long as (16) is not binding. Without stock effects, i.e.

g = θ = 0, we would have h?t+1h
?
t = pξ for all t, and thus h?t =

√
pξ for all t (as ht must

be positive, and ruling out cyclical solutions that are suboptimal since u is concave). If

β > 1/
√
pξ, i.e. if consumers are not too impatient, this corresponds to an increasing

path of the global wealth index yt. More generally, a constant IRS h̄ that solves (25)

is a root of P (h) = 0 where

P (h) ≡ pξ − (h− g)(h− θ). (26)

Using (19), we obtain that the optimal sequence of productive capital {kt}t>0 sat-

isfies kt+1 = max{gkt, k̄} where

k̄ ≡ q′−1

(
h̄− g

1− (h̄− g)ϕ/ξ

)
. (27)

The following lemma gives the principal properties of the optimal path of the econ-

omy when the MRS is constant.

Lemma 2 When the ENP constraint (16) is not binding, the IRS is constant, given

by h?t = h̄ = (g + θ +
√

(g − θ)2 + 4pξ)/2. h̄ > 1/β iff pξ > (1/β − θ)(1/β − g), and

k̄ > 0 iff p < ξ/ϕ2 + (g − θ)/ϕ. Moreover, we must have ξ/ϕ > 1/β − (3g − θ)/2 to

have both h̄ > 1 and k̄ > 0. If gk0 > k̄, k?t+1 = gk?t for all t < t0 ≡ ln(k̄/k0)/ ln g.

k?t = k̄ for all t0 ≤ t ≤ T + 1 where T is given by µ?T = q(k̄)ϕ/ξ.

The optimal path of the economy is thus characterized by a constant IRS as long

as environmental neutrality is not reached. This IRS corresponds to the largest root of

(26). Compared to the case θ = g = 0, stock effects relax the conditions on parameters

p, ξ and β to have an increasing path of the global wealth index: rather than pξ > 1/β2,

we must have pξ > (1/β− θ)(1/β− g). The condition p < ξ/ϕ2 + (g− θ)/ϕ is deduced

from (15) that is indefinitely binding otherwise: if p is too large, the environmental

quality would completely supplant consumption: the stock of capital would always

decrease overtime, i.e. kt+1 = gkt for all t. To have an increasing path of the global

wealth index and positive consumption (and production) of industrial goods, we also

must have ξ/ϕ > 1/β− (3g− θ)/2, i.e. green technologies that are sufficiently effective

in reducing CO2 emissions.

with m1 = 0 and mn+1 = +∞.
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Lemma 2 also states that the optimal dynamic of the economy may go through up

to 3 sequences depending on the parameter values (and at least two if ξµ0 � ϕq0).

If t0 > 1, the first sequence, 1 ≤ t < t0, corresponds to a progressive decrease in the

productive capital stock to k̄ since the depreciated capital is not replaced. This is

the case when p, the social value of the environment, is large since h̄ increases with p

and k̄ given by (27) is a decreasing function of h̄. Hence, while the IRS is constant,

the stock of capital may have to adapt over several period before reaching k̄ and the

GDP progressively decreases (while it takes only one period if k0 is not too large, i.e.

k̄ < k0 < k̄/g). The second sequence, t0 ≤ t < T corresponds to a stagnant GDP,

equal to q(k̄), where the investment in productive capital allows firms to maintain the

stock to k̄, while the investment in clean technology allows the economy to increase its

AGT and EQ indexes. Finally, the third sequence, t > T , corresponds to an increasing

GDP along an environmentally neutral path: the increase in GDP is proportional to

the increase in clean technology (the factor of proportionality being equal to ξ/ϕ).15

In the following proposition, the optimal dynamic of the economy is derived assum-

ing a Cobb-Douglas production function qt = Akαt and exponential (CARA) consumer’s

preferences, i.e. u(ct, et) = −e−γ(ct+pet).

Proposition 4 Assume ξ/ϕ ≥ 1 − g. With constant MRS, exponential preferences

and a Cobb-Douglas production function, the optimal sequence of the EQ index {e?t}t>1

is given by

e?t = e1 +

(
gα − gαt

1− gα
−
(
gα

h̄

)t0−1
h̄t − h̄
h̄− 1

)
ν0 +(t−1)ν1−

(1− θ)(1− g)ν1

ξph̄T
h̄t − h̄
h̄− 1

(28)

for all 1 < t ≤ T , and e?t = eN − θt−T (eN − e?T ) for all t > T , where e1 = θe0 +

ξµ0 − ϕq0 + ê, ν1 = ln(βh̄)ξ/γ/P (1) > 0, ν0 = [ξ + ϕ(g − gα)](1 − gα)q0/P (gα) > 0

for all 1 < t < t0, ν0 = 0 for all t0 ≤ t ≤ T , and where T is deduced from e?T =

eN − ln(βh̄)1/(1−θ)pγ. The value of the AGT index over {1, . . . , T} is deduced from EQ

using (11) with qt = gαtq0 for all t < t0 and qt = q(k̄) for all t0 ≤ t ≤ T + 2. EQ

increases and consumption decreases at decreasing rates for all 1 < t ≤ T . The total

welfare reached over {0, . . . , T} is given by W (T ) = u0(h̄− 1/h̄T−1)/(h̄− 1).

Because the IRS is constant as long as environmental neutrality is not reached, the

15From this result, we can infer that if p takes several discrete values p ∈ {pi, i = 1, . . . , n}, pi+1 < pi,
as mentioned footnote 14, the optimal solution entails decreasing optimal IRS h̄i, and thus increasing
levels of productive capital k̄i and GDP levels when the economy as not yet reached an ENP. In term
of industrial production, such a policy is thus very restrictive at first, and then progressively more
permissive as the AGT and EQ indexes are improving.
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Figure 1: Optimal dynamic (ξ = ϕ, θ = 0.8, g = 3/4, α = 2/5, pξ = .0975, β = .985, e0 =

2273.5, µ0 = 8.02, k0 = 11.9).

increase in global wealth is constant: yt+1 − yt = ct+1 − ct + p(et+1 − et) = ln(βh̄)1/γ.

However, because EQ is rapidly increasing, consumption decreases. This is due to the

investment in the green technology since investment in productive capital is either null

or constant during this period. Hence, during the first two sequences, when the GDP

decreases (1 ≤ t < t0) and when it is stabilized at level q(k̄) (t0 ≤ t ≤ T ), consumption

of industrial goods decreases.

These results are illustrated Fig. 1 where ξ = ϕ, θ = 4/5, g = 3/4 and pξ = .0975,

leading to h̄ = 1.089. The initial values of the state variables are e1 = 2434.38, k0 = 11.9

and µ0 = 8.02. The optimal EQ levels (28) are computed using α = 2/5 and v0 = 616.11

and v1 = 20.66.16

Fig. 1a shows the dynamic of EQ and the corresponding ENP levels. EQ increases

steeply the first two periods (when the stock of capital and thus the GDP decreases),

and still rapidly until t = T , when the ENP constraint is reached. The corresponding

level eT = 3203.46 is lower than eN = 3263, and EQ increases but at a very low rate

after T . Fig. 1b shows the sharp decrease in the productive capital but also in AGT

over the first 2 periods (from k0 = 11.9 to k̄ = 4.82 and µ0 = 8.02 to µT = 4.34

respectively). Then, the productive capital stays at k̄ until T , while AGT sharply

increases. Both capital stocks increase afterward, at the slow rate permitted by the

ENP constraint (the long term level of capital, which determines µ∞ = q∞ = 7.77,

is k∞ = 8.61.) Fig. 1c shows the decrease in consumption, very sharp at first (from

c1 = 8.72 to c3 = 3.8), then slower until t = 41. It increases afterward, at a very

slow pace. Total wealth decreases the first two periods, but increases afterward. This

simulations also show the limit of the assumption of a constant MRS: the decreases

16See Annex H for a detail of the model calibration.
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Figure 2: Tax and subsidy schemes (λ = 0.02).

in GDP and consumption are very sharp due to the perfect substitutability between

industrial and environmental goods.

The policy schemes (23) and (24) are illustrated Fig. 4 assuming a spillover coeffi-

cient λ = .02. The emissions tax is constant at .0052 over the period 1 < t < T and

then decreases progressively. The subsidy scheme is around 10% at t = 3, and decrease

to becomes negative at t = 33.

4.1 Policy implementation

Given the tax and subsidy schemes (23) and (24), it is possible to characterize the

dynamic of the economy for t ∈ {t0, . . . , T} assuming rational expectations. Indeed,

the interest rate is then given by r̃t = r̄(1 + ε̃t) where r̄ = h̄−1 is the expected interest

rate, and ε̃t is a zero-mean random shock whose distribution depends on the present

and past realizations of ωt. The productive capacity and total production k̃t and q̃t

are also randomly distributed around their stationary values k̄ and q(k̄). Using linear

approximations, the path of global wealth index yt can be approximated by a Gaussian

random walk at the REE, and the supply function of capital (29) by17

rt = ψ + γ(Et[ỹt+1]− yt)− γ2Vt[ỹt+1]/2 (29)

where ψ = − ln β is the intrinsic discount factor. Expression (29) exhibits the familiar

effects that determine the rental price of capital: the intrinsic preference for an immedi-

ate consumption ψ, the economic trend of the global wealth index that also encourages

17This expression is derived using E[e−γỹ] = e−γ(E[ỹ]−γV[ỹ]/2) when ỹ is normally distributed, and
the approximation 1 + rt ≈ ert .
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immediate consumption if it is positive, and a precautionary effect that operates in the

opposite direction and corresponds to a risk premium due to the uncertainty affecting

the economy.18

The following proposition details the resulting paths of the AGT and EQ indexes.

Proposition 5 Given {τt, zt}t>0, under a REE with constant MRS, exponential pref-

erences and a Cobb-Douglas production function, the interest rate for t ∈ {t0, . . . , T}
is approximated by r̃t = r̄(1 + ε̃t) where

ε̃t = χω̃t+1 + ρεt−1, (30)

with ρ > 0. ε̃t is normally distributed, with E[ε̃t|εt0 ] = ρt−t0εt0 and V[ε̃t|εt0 ] = χ2σ2
ω(1−

ρ2(t−t0)+1)/(1 − ρ2). Assuming λ ≤ 1/[1 + (1 − g)/(1 − θ)] and p ≤ g + (1 − λg)/γ,

the paths of et, µt and yt can be approximated by Gaussian random walks deduced from

(14), (11) and

µt+1 = a1µt + a2et + a3 + Zt + b1εt + b2εt−1 (31)

where

Zt = a0

+∞∑
i=0

(a0γ)i(ξτt+1+i + ht+izt+i − gzt+1+i). (32)

Moreover, we have χ = 1/[(1− λ)b1 + r̄], with 0 < a1 < g + (1− λ)/γ, 0 < a2 < p and

0 < a0 < 1/γ.

The equilibrium dynamic of the AGT index (31) follows a linear first-order recursive

equation that includes a forward looking term Zt given by (32). This policy index is

an exponential smoothing of the future tax and subsidy levels that is illustrated Fig.

2c. While zt is negative from t = 33, Zt is positive for all t because τt is positive for

all t. Eq. (30) shows that the distribution of the shocks affecting the interest rate,

and thus the GDP of the economy, follows a first-order autoregressive process. Hence,

the uncorrelated shocks affecting the network externalities generate path-dependent

fluctuations. This business cycle is not due to changes in the environmental policy:

we suppose that the regulator commits to a policy that is perfectly anticipated by

the agents. Rather, it is due to the consumer’s desire to smooth her consumption

overtime. The effect on the path of the economy of the date-t network shock ωt

attenuates overtime if ρ < 1 (i.e. if this process is stationary). In that case, the

variance V[ε̃t|εt0 ] converges to χ2σ2
ω/(1− ρ2), and the future states of the economy are

18This simple expression is due to the exponential preferences assumption that correspond to CARA
preferences under uncertainty, γ being the coefficient of absolute risk aversion.
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Figure 3: Shocks and the interest rate. Dashed lines correspond to the 95% CI. (λ =

.02, σω = .05, χ = .452, ρ = 1.088).

likely to be close to their first-best levels if σω is small. The use of incentive-based

instruments is then not too detrimental, particularly if ρ is small. However, as shown

in the simulations, ρ can be very large, leading to probable paths of the economy that

are very ineffective. This is illustrated Fig. 3a. The shocks ωt are distributed almost

evenly around 0 with a low variability (σω = .05), but the first two values, which are

positive, determine the increasing trend of εt which diverges rapidly from ε0 = 0, due

to a large autocorrelation (ρ = 1.088).

The confidence interval of the path of the economy when t0 ≤ t ≤ T can be

approximated from (11) and (31) using the recursion

Ỹt = BtYt−1 +Hν̃t (33)

where Ỹt = (µ̃t, ẽt, q̃t, 1, ε̃t, ε̃t−1)′ is the column vector of state values (with the constant)

and of the interest rate shock of date t and t− 1, Bt is the time-dependent transition

matrix

Bt =



a1 a2 0 a3 + Zt b1 b2

ξ θ −ϕ ê 0 0

0 0 0 q̄ q′(k̄)/q′′(k̄) 0

0 0 0 1 0 0

0 0 0 0 ρ 0

0 0 0 0 1 0


, H =



0

0

0

0

χσω

0


,
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Figure 4: Policy implementation with taxes and subsidies. Dashed lines correspond to
the 95% CI.

and ν̃t is an independent standardized Gaussian variable. Ỹt follows a Gaussian ran-

dom walk with E[Ỹt] = (Πt−t0
i=0 Bi)Xt0 and V[Ỹt] =

∑t−t0
i=0 (Πi

j=0Bj)HH
′(Πi

j=0Bj)
′. The

transition matrix Bt is time-dependent because of the policy index Zt defined by (32).

Fig. 3b and 4 depict the confidence intervals of the economic variables around their

expected values. Due to the autocorrelation of εt that is larger than 1, these intervals

increase rapidly.

5 Conclusion

This paper analyses the optimal path of the economy towards environmental neutrality.

This path, which can be achieved through a binding policy of technical standards, is

compared to the one obtained by using economic instruments of regulation, namely

emissions taxes and green investment subsidies. These instruments are less effective

than standards because of the network effects that affect diffusion of technologies.

Because investment choices are ultimately made by private agents who react to shocks

affecting their economic environment according to their anticipations, and because the

efficiency of technologies is the result of their choices, the economic instruments of

public policy can only steer the economy imperfectly. Although highly stylized, this

model shows that shocks that affect network effects cause economic fluctuations that

can push society away from the optimal path. There are, of course, many limitations

to this approach. In particular, it is very doubtful that governments will be able to

determine which technologies will prove most effective in the coming decades. At best,

the definition of technological standards should be limited to setting limit values for the

environmental quality indices that machines must meet, leaving it to firms to choose

the technologies best suited to achieving their objectives. But this model illustrates
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the problems faced by governments that rely on environmental taxes and subsidies to

guide agents’ choices (as for example in France, where these policies have also led to

significant social unrests). Emission standard policies such as those implemented by

the European Union, which force car manufacturers to move towards lower emissions,

appear to be much more effective to guide society toward environmental neutrality

than economic incentives given to car buyers.
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Appendix

A Proof of Proposition 1

As firm i’s profit is separable in revenues from productive capacity and network effects

from its green index, the firm’s investment problem can be split into two independent

programs. Applying the principle of optimality, the investment strategy in productive

capacity can be derived by using the Bellman equation

W(kit) = max
Iit,`it

Q(kit, `it)− w`it − Iit + δtW(gkit + Iit). (34)

Maximizing (34) with respect to `it gives

∂Q(kit, `it)/∂` = wt,

while the first-order condition with respect to Iit leads to

−1 + δtW ′(gkit + Iit) = 0. (35)

The envelop condition yields

W ′(kit) = ∂Q(kit, `it)/∂k + gδtW ′(gkit + Iit)

implying W ′(kit) = ∂Q(kit, `it)/∂k + g. Plugging this expression in (35) evaluated for

period t+ 1 yields

∂Q(gkit + Iit, `it+1)/∂k = 1− g + rt.

As Q is homogeneous of degree 1, we thus get q′(kit+1/`it+1) = 1−g+rt where q(k) ≡
Q(k, 1) is an increasing and concave function. Inverting, it comes that kit+1/`it+1 =

q′−1(rt + 1 − g), and using
´ 1

0
`itdi = `t = 1, kit/`it = kt/`t = kt for all i and t, with

kt = q′−1(rt−1 + 1 − g). Using wt = ∂Q(kit, `it)/∂` = d[`itq(kit/`it)]/d`it = q(kit/`it) −
q′(kit/`it)kit/`it yields wt = qt − rt−1kt.

Neglecting the constants in (3), the Bellman equation corresponding to the tech-

nology mix is given by

V(xit;x
?
t ) = max

κit
−(xit − x?t )2/2− κit + δtE[V(gxit + κit; x̃

?
t+1)|ηit, µt, rt]. (36)
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Maximizing (36) with respect to κit leads to

−1 + δtE
[
∂V(gxit + κit; x̃

?
t+1)/∂x|ηit, µt, rt

]
= 0. (37)

The envelop condition yields

∂V(xit;x
?
t )/∂x = x?t − xit + gδtE

[
∂V(gxit + κit; x̃

?
t+1)/∂x|ηit, µt, rt

]
(38)

implying ∂V(xit;x
?
t )/∂x = x?t − xit + g. Plugging this expression in (37) evaluated in

expectation for period t+ 1 yields

1 + rt = E
[
x̃?t+1 − (gxit + κit) + g|ηit, µt, rt

]
= E

[
x̃?t+1|ηit, µt, rt

]
− (gxit + κit) + g,

which gives (6).

Following Angeletos & Pavan (2004), the resulting investment strategy is linear in

the firm’s observable, i.e. it is given by

κ(µt, ηjt, xjt, rt) = β1µt + β2ηjt + β3xjt + β4rt + β5 (39)

where the coefficients βk, k = 1, . . . , 5, are derived as follows. On average, as
´ 1

0
ηjtdj =

ωt+1 and
´ 1

0
xjtdj = µt, we have

ˆ 1

0

κ(µt, ηt, εjt, xjt, rt)dj = (β1 + β3)µt + β2ωt+1 + β4rt + β5

and thus, from (4),

x?t+1 = µt + λ

ˆ 1

0

κitdi+ ωt+1 = [1 + λ(β1 + β3)]µt + (1 + λβ2)ωt+1 + λβ4rt + λβ5.

Using (6) and E[ω̃t+1|ηit] = ηit, we get

κit = E[x̃?t+1|ηit, µt, rt]− 1 + g − gxit − rt
= [1 + λ(β1 + β3)]µt + (1 + λβ2)ηit − (1− λβ4)rt + λβ5 − 1 + g − gxit.

Identifying with (39) yields β3 = −g, β1 = 1 + λ(β1 + β3) = (1 − λg)/(1 − λ),

β2 = 1 + λβ2 = 1/(1− λ), β4 = −1 + λβ4 = −1/(1− λ), β5 = −(1− g)/(1− λ), hence
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(7). Consequently,

xit+1 = gxit + κit =
(1− λg)µt + ηit + g − (1 + rt)

1− λ
,

and

µt+1 =
(1− λg)µt + ωt+1 + g − (1 + rt)

1− λ
= µt +

(1− g)(λµt − 1) + ωt+1 − rt
1− λ

using
´ 1

0
ηitdi = ωt+1. As idiosyncratic investments depend on signals that are normally

distributed, xit+1 is normally distributed around µt+1 with variance V[xit+1] = σ2
υ/(1−

λ)2 ≡ σ2
x.

B Proof of Lemma 1

At each date t, the Bellman equation corresponding to (12) can be written as

v(St−1; et) = max
st

u(rt−1St−1 +Rt − st, et) + βEt[v(St−1 + st; ẽt+1)]

where St and st are the state and the control variables respectively. The first-order

equation is given by

∂u(ct, et)/∂c = βEt [∂v(St; ẽt+1)/∂S] (40)

and the envelope theorem gives

∂v(St−1; et)/∂S = rt−1∂u(ct, et)/∂c+ βEt [∂v(St; ẽt+1)/∂S] .

Replacing the last term using (40), we get

∂v(St−1; et)/∂S = (1 + rt−1)∂u(ct, et)/∂c.

Taking the expectation and replacing in (40) yields (13) where 1 + rt on the RHS is

factorized out of the expected value since the date-t interest rate is a known parameter.
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C Proof of Proposition 2

The planner’s program is equivalently stated as

max
{µt,kt,et}t>0

{
+∞∑
t=0

βtu(q(kt)− kt+1 + gkt − µt+1 + gµt, et) : et+1 = θet + ξµt − ϕqt + ê; (15), (16)

}
,

given e0, k0 and µ0. Neglecting the constraints (15) and (16), and denoting by λt the

multiplier associated to the date-t equation of the dynamic of EQ, the Lagrangian of

this program is given by

L =
+∞∑
t=0

βtu(q(kt)− kt+1 + gkt − µt+1 + gµt, et)− λt(et+1 − θet − ξµt + ϕq(kt)− ê).

When (16) is not binding, the FOCs are

∂L
∂kt

= βt
∂ut
∂c

(q′(kt) + g)− βt−1∂ut−1

∂c
− λtϕq′(kt) ≤ 0 ⊥ kt ≥ gkt−1, (41)

∂L
∂µt

= βt
∂ut
∂c

g − βt−1∂ut−1

∂c
+ λtξ = 0, (42)

for all t > 0, and
∂L
∂et

= βt
∂ut
∂e
− λt−1 + θλt = 0, (43)

for all t > 1. Eq. (42) gives

λt =

(
βt−1∂ut−1

∂c
− βt∂ut

∂c
g

)
/ξ

and, using (18),

λt = βt
∂ut
∂c

(ht−1 − g)/ξ. (44)

Substituting in (43) evaluated at t+ 2, yields

0 = βt+2∂ut+2

∂e
− βt+1∂ut+1

∂c
(ht − g)/ξ + θβt+2∂ut+2

∂c
(ht+1 − g)/ξ

= βt+2∂ut+2

∂e
− βt+2∂ut+2

∂c
[ht+1(ht − g)− θ(ht+1 − g)] /ξ,

using (18), hence

ξ
∂ut+2/∂e

∂ut+2/∂c
= ht+1(ht − g − θ) + θg
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for all t > 1 such that (16) is not binding. Using (44) to substitute for λt+1 in (41)

evaluated at t+ 1 gives

0 ≥ βt+1∂ut+1

∂c
(q′(kt+1) + g)− βt∂ut

∂c
− βt+1∂ut+1

∂c
(ht − g)q′(kt+1)ϕ/ξ

= βt+1∂ut+1

∂c
[q′(kt+1)− (ht − g)(1 + q′(kt+1)ϕ/ξ)] ,

using (18), hence

ht − g ≥
q′(kt+1)

1 + q′(kt+1)ϕ/ξ
⊥ kt+1 ≥ gkt.

Assuming (16) is binding for all t ≥ T , the planer’s program becomes

max
{kt}t>T

{
+∞∑
t=T

βtu(q(kt)− kt+1 + gkt − [q(kt+1)− gq(kt)]ϕ/ξ, et) : et+1 = θet + ê

}
,

given eT , kT . The FOCs are

∂L
∂kt

= βt
∂ut
∂c

[q′(kt)(1 + gϕ/ξ) + g]− βt−1∂ut−1

∂c
[1 + q′(kt)ϕ/ξ] = 0

for all t > T , which gives

ht−1 =
g + q′(kt)(1 + gϕ/ξ)

1 + q′(kt)ϕ/ξ
,

or, equivalently,

ht − g =
q′(kt+1)

1 + q′(kt+1)ϕ/ξ

for all t ≥ T .

D Proof of Proposition 3

The problem of firm i is to solve

V(kit, xit;x
?
t ) = max

Iit,`itκit
πit + δtEt[V(gkit + Iit, gxit + κit; x̃

?
t+1)|ηit]

where

πit ≡ Q(kit, `it)− wt`it − Iit − (xit − x?t )2/2− κit(1− zt)− τt (ϕQ(kit, `it)− ξxit) .
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Using the same steps as those described above, it comes (21) and

κit = E[x̃?t+1|ηit, µt, rt]− gxit + ξτt+1 + g(1− zt+1)− (1 + rt)(1− zt).

At equilibrium, we get

κit =
1

1− λ
[(1− λg)µt + ηit + ξτt+1 + g(1− zt+1)− (1 + rt)(1− zt)]− gxit,

hence

xit+1 = gxit + κit =
1

1− λ
[(1− λg)µt + ηit + ξτt+1 + g(1− zt+1)− (1 + rt)(1− zt)] .

Summing over all firms and using
´ 1

0
ηitdi = ωt+1 gives (22).

From (21), 1 + rt − g = q′(kt+1)(1 − τt+1ϕ), while (19) gives h?t − g ≥ q′(kt+1)[1 −
(h?t − g)ϕ/ξ], with an equality when (15) is not binding. From (29), the realized IRS

satisfies ht = 1+rt and we have ht = h?t when kt+1 > gkt. Identifying gives (23). When

kt+1 = gkt, setting τt+1 = (h?t−g)/ξ implies h?t−g > g+q′(kt+1)(1−τt+1ϕ) = 1+rt−g,

hence 1 + rt < h?t : due to an excess of capital, the rental price of capital at equilibrium

is lower than the first-best IRS. Substituting (23) for τt+1 in the expectation of (22)

gives

E[µt+1] =
1

1− λ
[(1− λg)µt + h?t − E[ht]− gzt+1 + E[ht]zt] .

Assuming µt = µ?t , we have E[µt+1] = µ?t+1 if

zt = [(1− λ)µ?t+1 − (1− λg)µ?t − (h?t − E[ht]) + gzt+1]/E[ht].

At the stationary state, denoting with subscript ∞ the values of the variables, we

have e∞ = eN , c∞ = q(k∞) − (1 − g)(k∞ + µ∞), h∞ = 1/β, τ∞ = (1/β − g)ϕ/ξ and

k∞ = q′−1((1/β − g)/(1− (1/β − g)ϕ/ξ)). (16) and (22) imply µ∞ = (ϕ/ξ)q(k∞) and

(1− λ)µ∞ = (1− λg)µ∞+ ξτ∞− (1− z∞)(h∞− g). Replacing and reorganizing terms

yields z∞ = −λ(1− g)(ξ/ϕ)q(k∞)/(1/β − g) < 0.

E Proof of Lemma 2

The discriminant of P (h) = 0 is ∆ ≡ (g + θ)2 − 4(θg − ξp) = (g − θ)2 + 4pξ > 0, and

the equation admits two roots, h̄ = (g+θ+A)/2 > max{g, θ} and h = (g+θ−A)/2 <

min{g, θ}, where A =
√

∆. We have h > 0 iff ξp < θg. The optimal policy corresponds
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to a sequence of IRS with a subsequence defined by (25) as long as the ENP constraint

(16) is not binding, i.e. t < T − 1 where T is the first period (16) binds. The sequence

{h?t}T−1
t=0 is either degenerate, i.e. h?t ∈ {h, h̄} for all t ∈ {0, . . . , T − 1}, or h?0 /∈ {h, h̄},

and, reorganizing (25),

h?t = (ξp− θg)/(h?t−1 − g − θ) (45)

for all t = 1, . . . , T − 1. If T is large, this subsequence eventually converges to a root

of P (h) = 0 that we denote by h∞. We can derived the non degenerate subsequence

as follows. Defining vt = (h?t − h])
−1, h] ∈ {h, h̄}, we have h?t = 1/vt + h] and (45)

becomes
1

vt+1

+ h] =
pξ − θg

1/vt + h] − g − θ
,

which gives
1

vt+1

=
−h]

1 + vt(h] − g − θ)
,

using (26). We thus have

vt+1 = vt(g + θ − h])/h] − 1/h] ≡ vtb1 − b0

with b1 = h/h̄ if h] = h̄ and b1 = h̄/h otherwise. With an initial value v0 at t = t0, the

solution of this recurrence equation is given by

vt = v0b
t
1 − b0(1− bt1)/(1− b1) (46)

= [v0 + b0/(1− b1)]bt1 − b0/(1− b1).

where
b0

1− b1

=
1/h]

1 + (h] − g − θ)/h]
=

1

2h] − g − θ
.

If |b1| < 1, i.e. if h] = h̄, vt converges toward v∞ = −b0/(1 − b1) = 1/(g + θ − 2h̄) =

(h∞− h̄)−1, hence h?t converges toward h∞ = g+ θ− h̄ = h. If |b1| > 1, i.e. if h] = h, vt

diverges and thus h∞ = h. Hence, the recursion does not converge to h̄ (unless in the

degenerate case h0 = h̄), while it converges to h from any initial value h0 6= h̄. This

cannot be optimal if ξp ≥ θg since h ≤ 0. If ξp < θg, as h < min{g, θ} ≤ g, there is no

stock of productive capital that can satisfy (19) when h?t → h. We thus cannot have

h?0 < h. If h?t > h, re-expressing (46) using h] = h and b1 = h̄/h > 1, the sequence
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{h?t}T−1
t=0 is given by

h?t =
A(h?0 − h)

[A− (h?0 − h)](h̄/h)t + h?0 − h
+ h

where h?0 < A + h to have h?t > h for all t. As this sequence is decreasing, tending to

h < g, the stock of productive capital increases and eventually diverges as h?t converges

to h. We would thus have a decreasing path of global wealth with an investment of

productive capital tending to q(k?t ), hence ct and et tending to 0, which is obviously

not optimal. The optimal solution is thus h?t = h̄ for all t ∈ {0, . . . , T − 1}.
From the concavity of P , we have h̄ > 1/β iff P (1/β) > 0, i.e. iff pξ > (1/β −

θ)(1/β − g). From (19), using limk→0 q
′(k) = +∞, h̄ corresponds to the solution of

the (17) if it is lower than g + ξ/ϕ, otherwise (15) would be binding indefinitely. The

condition h̄ < g + ξ/ϕ simplifies to p < ξ/ϕ2 + (g − θ)/ϕ. The conditions P (1/β) > 0

and p < ξ/ϕ2 + (g − θ)/ϕ imply that (ξ/ϕ)2 + (g − θ)ξ/ϕ > pξ > (1/β − θ)(1/β − g).

We thus must have F (ξ/ϕ) > 0, where F (x) = x2 + (g− θ)x− (1/β − θ)(1/β − g) is a

second degree polynomial. The discriminant is given by

∆ = (g − θ)2 + 4(1/β − θ)(1/β − g) = (g + θ)2 − 4gθ + 4[1/β2 − (g + θ)/β + gθ]

= [2/β − (g + θ)]2,

implying that F (x) = (x − x)(x − x̄) where x < 0 < x̄ are the two real roots of

F (x) = 0. F (x) is positive if x < x or x > x̄, and since ξ/ϕ > 0, we must have

ξ/ϕ > x̄ = 1/β − (3g − θ)/2.

If gk0 > k̄, (15) is binding as long as gtk0 > k̄, i.e. t ≤ t0 given by gt0k0 = k̄, hence

t0 = ln(k̄/k0)/ ln g. For t > t0, kt+1 = k̄ until the ENP constraint (16) is binding, i.e.

until T given by µ?T = q(kT+1)ϕ/ξ. Using (25) for t = T − 1 yields hT = h̄, hence

kT+1 = k̄. The path of the economy for t > T is defined recursively by (11), (14), (16),

(18) and (19) that holds for all t > t0. Given the initial values eT , kT+1 = kT = k̄,

the IRS can be written as ht = h(kt, kt+1, kt+2) and (19) gives the implicit equation

q′(kt+1)[1 − (h(kt, kt+1, kt+2) − g)ϕ/ξ] − h(kt, kt+1, kt+2) + g = 0 defining kt+2 for all

t ≥ T .
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F Proof of Proposition 4

With exponential preferences ht = eγ[ct+1−ct+p(et+1−et)]/β. ht = h̄ gives

ct+1 − ct + p(et+1 − et) = ln(βh̄)1/γ (47)

for all t ≤ T . Using (11) to get µt = (et+1−θet+ϕqt− ê)/ξ and (14), (47) can expressed

as

ln(βh̄)ξ/γ = ξ[qt+1 − qt − kt+2 + (1 + g)kt+1 − gkt]− ϕ[qt+2 − (1 + g)qt+1 + gqt]

− (et+3 − et+2) + (θ + g)(et+2 − et+1) + (ξp− gθ)(et+1 − et) (48)

for all t ≤ T . For t < t0, we have kt = gtk0, and using q(k) = Akα, qt = gαtq0. For

t0 ≤ t ≤ T + 1, we have kt = k̄ and qt = q(k̄) ≡ q̄. (48) can thus be expressed as

mt+2 = (θ + g)mt+1 + (ξp− gθ)mt − κgαt − ln(βh̄)ξ/γ (49)

for all t ≤ T − 1, where mt ≡ et+1 − et and

κ =

{
[ξ + ϕ(g − gα)](1− gα)q0 t < t0

0 t0 ≤ t ≤ T − 1
.

The solution of (49) ismt = nt+vt where nt and vt are the solutions of the corresponding

homogeneous and particular equations. The characteristic equation of the homogeneous

equation is P (x) = 0. As h is irrelevant, nt = φh̄t where φ is a constant. The particular

solution of (49) is given by vt = gαtν0 + ν1 where ν0 and ν1 solve

gα(t+2)ν0 + ν1 = (θ + g)(ν0g
α(t+1) + ν1) + (ξp− gθ)(ν0g

αt + ν1)− κgαt − ln(βh̄)ξ/γ

for all t ≤ T − 1, which gives ν0 = κ/P (gα) and ν1 = ln(βh̄)ξ/γ/P (1). As P is concave

with P (g) = pξ and P (1/β) > 0, we have P (gα) > 0 and P (1) > 0, hence ν1 > 0 since

P (1/β) > 0 implies h̄ > 1/β, and ν0 ≥ 0 if ξ/ϕ ≥ 1− g > gα − g. The solution of (49)

is thus mt = nt + vt = φh̄t + gαtν0 + ν1, leading to

et+1 = et + φh̄t + gαtν0 + ν1,

where φ is specific to each sub-sequence and is derived from their initial conditions, i.e.

from (49) evaluated at t = t0 − 1, (48) evaluated at t = T , and from (11) at t = 1. For
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t ≥ T , as ϕq(kt) = ξµt, we have et+1 = θet + ê that implies mt+1 = θmt for all t ≥ T .

Using (48) at t = T , yields

ln(βh̄)ξ/γ = ξ(k̄ − kT+2)− ϕ(q(kT+2)− q̄)−mT+2 + (θ + g)mT+1 + (ξp− gθ)mT

= ξk̄ + ϕq̄ − [ξkT+2 + ϕq(kT+2)]− θ2mT + θ(θ + g)mT + (ξp− gθ)mT

= ξk̄ + ϕq̄ − [ξkT+2 + ϕq(kT+2)] + ξpmT ,

hence, using ln(βh̄)ξ/γ = ν1P (1),

φh̄T + ν1 = [ν1P (1) + κ1]/ξp,

where κ1 ≡ ξkT+2 + ϕq(kT+2)− ξk̄ − ϕq̄, which gives

φ = v1(P (1)/ξp− 1)/h̄T + κ1/(ξph̄
T ) = −[(1− θ)(1− g)v1 − κ1]/(ξph̄T )

for all t0 ≤ t ≤ T . We thus have

mt = ν1 − [(1− θ)(1− g)ν1 − κ1]/(ξph̄T−t)

for all t0 ≤ t ≤ T . Using eT+1 = θeT + ê = eT +mT , it comes

ê− (1− θ)eT = ν1 − [(1− θ)(1− g)ν1 − κ1]/(ξp) = [P (1)ν1 + κ1]/(ξp)

= [ln(βh̄)ξ/γ + κ1]/(ξp) = ln(βh̄)1/(pγ) + κ1/(ξp).

As cT+1 − cT + p(eT+1 − eT ) = −κ1 + p[ê− (1− θ)eT ], we have

hT = eγ[p(ê−(1−θ)eT )−κ1]/β = h̄eγκ1(1/ξ−1) = g + q′(kT+2)/[1 + q′(kT+2)ϕ/ξ].

kT+2 thus solves

h̄eγ(1−ξ)[kT+2+q(kT+2)ϕ/ξ−k̄−q̄ϕ/ξ] = g + q′(kT+2)/[1 + q′(kT+2)ϕ/ξ].

As the LHT increases with kT+2 while the RHT decreases with kT+2, the unique

solution is kT+2 = k̄ which implies κ1 = 0, hence mt = ν1− [(1− θ)(1− g)ν1]/(ξph̄T−t)

for all t0 ≤ t ≤ T . As mt ≥ P (1)ν1/ξp = ln(βh̄)1/pγ > 0, et+1 > et for all t0 ≤ t ≤ T .
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Using (49) for t = t0 − 1, it comes

ν1 − [(1− θ)(1− g)ν1]/(ξph̄(T−t0−1)) = (θ + g){ν1 − [(1− θ)(1− g)ν1]/(ξph̄(T−t0))}

+ (ξp− θg)(φh̄t0−1 + gα(t0−1)ν0 + ν1)− ν1P (1).

As P (1) = ξp− θg − 1 + θ + g, this equation simplifies to

[(1− θ)(1− g)ν1]/(ξph̄(T−t0−1)) = (θ + g)[(1− θ)(1− g)ν1]/(ξph̄(T−t0))

− (ξp− θg)(φh̄t0−1 + gα(t0−1)ν0).

Multiplying by ξph̄T−t0+1 yields

[(1−θ)(1−g)ν1]h̄2 = (θ+g)[(1−θ)(1−g)ν1]h̄−(ξp−θg)(φh̄t0−1 +gα(t0−1)ν0)ξph̄T−t0+1,

and re-organizing,

[(1− θ)(1− g)ν1][h̄− (θ + g)h̄] = −(ξp− θg)(φh̄t0−1 + gα(t0−1)ν0)ξph̄T−t0+1,

where, as P (h̄) = 0, pξ − θg = h̄2 − (θ + g)h̄. Simplifying, we get

(1− θ)(1− g)ν1 = −[φ+ (gα/h̄)t0−1ν0]ξph̄T ,

which gives

φ = −
(
gα

h̄

)t0−1

ν0 −
(1− θ)(1− g)ν1

ξph̄T
,

hence

mt = ν0g
αt[1− (gα/h̄)t0−1−t] + ν1 − [(1− θ)(1− g)ν1]/(ξph̄T−t)

for all 0 < t < t0. As mt > 0, et+1 > et for all 0 < t < t0. (28) is deduced from

t−1∑
τ=1

mτ = et − e1 =
t−1∑
τ=1

(φh̄τ + gατν0 + ν1) = φ
h̄t − h̄
h̄− 1

+ ν0
gα − gαt

1− gα
+ (t− 1)ν1

= ν0

(
gα − gαt

1− gα
−
(
gα

h̄

)t0−1
h̄t − h̄
h̄− 1

)
+ ν1(t− 1)− (1− θ)(1− g)ν1

ξph̄T
h̄t − h̄
h̄− 1
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for all 1 < t < t0, where e1 = θe0 + ξµ0 − ϕq0 + ê, and from

t−1∑
τ=t0−1

mτ = et − et0−1 = φ

t−1∑
τ=t0−1

h̄τ + (t− t0)ν1 = φ
h̄t − h̄t0−1

h̄− 1
+ (t− t0 + 1)ν1

= ν1(t− t0 + 1)− (1− θ)(1− g)ν1

ξph̄T
h̄t − h̄t0−1

h̄− 1
,

for all t0 ≤ t ≤ T . T is solution of (1 − θ)eT = ê − ln(βh̄)1/pγ, hence eT = eN −
ln(βh̄)1/(1−θ)pγ. As

mt −mt−1 = ν0(gαt − gα(t0−1)/h̄t0−1−t − gα(t−1) + gα(t0−1)/h̄t0−t)− ν1(1− θ)(1− g)

ξph̄T−t+1
(h̄− 1)

= −ν0[(1/gα − 1)gαt + (h̄− 1)gα(t0−1)/h̄t0−t]− ν1(1− θ)(1− g)

ξph̄T−t+1
(h̄− 1),

where ν0 > 0 if t < t0 and ν0 = 0 if t0 ≤ t ≤ T , mt − mt−1 < 0 for all t ≤ T :

the sequence {et}2≤t≤T increases at a decreasing rate. From (11), the AGT index is

deduced from these expressions using µt = (et+1 − θet + ϕqt − ê)/ξ. From (47),

ct+1 − ct = ln(βh̄)1/γ − pmt

for all t ≤ T where

mt = ν0g
αt[1− (gα/h̄)t0−1−t] + ν1[1− (1− θ)(1− g)/(ξph̄T−t)]

= ν0g
αt[1− (gα/h̄)t0−1−t] + ln(βh̄)1/γ[ξp− (1− θ)(1− g)/h̄T−t]/[pP (1)]

for all 1 < t ≤ T. We thus have

ct+1 − ct = −ν0g
αt[1− (gα/h̄)t0−1−t] + ln(βh̄)1/γ[P (1)− (ξp− (1− θ)(1− g)/h̄T−t)]/P (1)

= −ν0g
αt[1− (gα/h̄)t0−1−t]− ln(βh̄)1/γ(1− θ)(1− g)(1− 1/h̄T−t)/P (1)

which is negative and increasing, with a maximum equal to 0 at t = T . As ct+1 −
ct − (ct − ct−1) = −p(mt − mt−1) > 0, the consumption sequence is decreasing at a

decreasing rate. With u CARA, we have ht = ut/βut+1 and thus ut+1 = ut/(βht) =

u0β
−t∏t

τ=1 1/hτ . As ht = h̄ for all t < T at the optimum, we get ut+1 = u0(h̄β)−t and

T−1∑
t=0

βtut = u0

T−1∑
t=0

(1/h̄)t = u0
1− 1/h̄T

1− 1/h̄
= u0

h̄− 1/h̄T−1

h̄− 1
.
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G Proof of Proposition 5

We first characterize the distribution of ỹt+1 given the information available in period

t, t0 < t ≤ T , that we denote by ỹt+1|t. Given the information available in period t, the

prevailing interest rate rt (and thus the realization εt of ε̃t) is known, and thus both

kt+1 = q′−1((1 + rt − g)/(1− τt+1ϕ)) and qt+1 = q(kt+1) are known. From (11), et+1 is

also known since it depends on date t variables that are function of εt−1. Hence, from

(14), we get

ỹt+1|t = c̃t+1|t + pet+1 = qt+1 − k̃t+2|t + gkt+1 − (µ̃t+2|t − gµt+1) + pet+1, (50)

where k̃t+2 and µ̃t+2 are unknown since they depend on the realization of ε̃t+1: we have

k̃t+2 = q′−1((1 + r̃t+1 − g)/(1− τt+2ϕ)) and, from (31),

µ̃t+2|t = a1µt+1 + a2et+1 + a3 + Zt+1 + b1ε̃t+1 + b2εt. (51)

Replacing, we get

ỹt+1|t = qt+1 − k̃t+2|t + gkt+1 + (g − a1)µt+1 + (p− a2)et+1 − a3 − Zt+1 − b1ε̃t+1 − b2εt.

Using the linear approximation kt ≈ k̄ + k̄′(r̄)r̄εt−1 where k̄′(r̄) ≡ dk̄/dr = 1/[(1 −
τϕ)q′′(k̄)] < 0, we get using Et[k̃t+2] ≈ k̄ + k̄′(r̄)r̄E[ε̃t+1|εt] when t0 < t ≤ T , and (30)

that

ỹt+1|t − Et[ỹt+1] ≈ −(k̃t+2|t − E[k̃t+2|εt])− b1(ε̃t+1 − E[ε̃t+1|εt])

= −(k̄′(r̄)r̄ + b1)(ε̃t+1 − E[ε̃t+1|εt])

= −(k̄′(r̄)r̄ + b1)χω̃t+2

when t0 < t ≤ T . Hence, ỹt+1|t when t0 < t ≤ T is approximatively normally distributed

with variance Vt[ỹt+1] = (k̄′(r̄)r̄ + b1)2χ2σ2
ω ≡ σ2

y+1
.

The coefficients {aj}j=1,...,3, b1, b2, and Zt in (31), and χ and ρ in (30), are derived
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as follows. Using (50), (51), (11), (14) and Et[k̃t+2] = k̄ + k̄′(r̄)r̄E[ε̃t+1|εt], we get

Et[ỹt+1]− yt ≈ qt+1 − qt − k̄ − k̄′(r̄)r̄E[ε̃t+1|εt] + kt+1(1 + g)− gkt − Et[µ̃t+2] + (1 + g)µt+1 − gµt
+ p(et+1 − et)

= qt+1 − qt − k̄ − k̄′(r̄)r̄E[ε̃t+1|εt] + kt+1(1 + g)− gkt
− (a1µt+1 + a2et+1 + a3 + Zt+1 + b1E[ε̃t+1|εt] + b2εt) + (1 + g)µt+1 − µtg + p(et+1 − et)

= qt+1 − qt − k̄ − k̄′(r̄)r̄E[ε̃t+1|εt] + kt+1(1 + g)− gkt − a3 − Zt+1

− b1E[ε̃t+1|εt]− b2εt + (1 + g − a1)µt+1 − µtg + (p− a2)et+1 − pet
= qt+1 − qt − k̄ − (b1 + k̄′(r̄)r̄)E[ε̃t+1|εt] + kt+1(1 + g)− gkt − a3 − Zt+1

− b2εt + (1 + g − a1)µt+1 − µtg + (p− a2)(θet + ξµt − ϕqt + ê)− pet
= qt+1 − qt[1 + ϕ(p− a2)]− k̄ − (b1 + k̄′(r̄)r̄)E[ε̃t+1|εt] + kt+1(1 + g)− gkt
+ (1 + g − a1)µt+1 − µt[g − ξ(p− a2)] + [θ(p− a2)− p]et + (p− a2)ê− a3

− Zt+1 − b2εt.

Approximating (1 + rt)(1− zt) ≈ 1 + rt − h̄zt in (22) and using (29), we get

rt ≈ ψ−γ2σ2
y+1
/2+γ{Et[ỹt+1]−yt} ≈ (1−λg)µt+ωt+1+ξτt+1+g(1−zt+1)−1+h̄zt−(1−λ)µt+1

which gives, denoting a0 ≡ 1/[1− λ+ γ(1 + g − a1)],

µt+1/a0 ≈ [1− λg + γg − γξ(p− a2)]µt − γ[θ(p− a2)− p]et + ωt+1 + ξτt+1 + h̄zt − gzt+1

− (ψ − γ2σ2
y+1
/2)− γ(p− a2)ê+ γa3 + g − 1 + γZt+1 + γ(b1 + k̄′(r̄)r̄)E[ε̃t+1|εt]

+ γb2εt − γqt+1 + γqt[1 + ϕ(p− a2)] + γk̄ − γkt+1(1 + g) + γgkt.

Using kt+1 ≈ k̄+ k̄′(r̄)r̄εt and qt+1 ≈ q̄+ q̄′(r̄)r̄εt where q̄′(r̄) ≡ dq̄/dr = q′(k̄)k̄′(r̄) <

0 for t and t− 1, we get

−γqt+1 + γqt[1 + ϕ(p− a2)] ≈ −γq̄′(r̄)r̄εt + γq̄ϕ(p− a2) + γq̄′(r̄)r̄εt−1[1 + ϕ(p− a2)]

and

γk̄ − γkt+1(1 + g) + γgkt ≈ −γk̄′(r̄)r̄εt(1 + g) + γgk̄′(r̄)r̄εt−1.
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Substituting and, from (30), using E[ε̃t+1|εt] = ρεt, we arrive at

µt+1 ≈ a0[1− λg + γg − γξ(p− a2)]µt − a0γ[θ(p− a2)− p]et + a0ωt+1

− a0[ψ − γ2σ2
y+1
/2 + γ(p− a2)(ê− q̄ϕ)− γa3 + 1− g] + a0[ξτt+1 + h̄zt − gzt+1 + γZt+1]

(52)

+ a0γ(q̄′(r̄)[1 + ϕ(p− a2)] + gk̄′)r̄εt−1 − a0γ[q̄′(r̄)r̄ + k̄′(r̄)r̄(1 + g)− b2 − (b1 + k̄′(r̄)r̄)ρ]εt

Identifying the non-stochastic terms with those of (31) and simplifying gives

a1 =
1− λg + γ[g + ξ(a2 − p)]

1− λ+ γ(1 + g − a1)
, a2 =

γp(1− θ)
1− λ+ γ(1 + g − a1 − θ)

, (53)

a3 = −
ψ − γ2σ2

y+1
/2− γ(p− a2)(ϕq̄ − ê) + 1− g
1− λ+ γ(g − a1)

,

and

Zt = a0(ξτt+1 + h̄zt− gzt+1 + γZt+1) = a0

+∞∑
i=0

(a0γ)i(ξτt+1+i + ht+izt+i− gzt+1+i). (54)

The parameters concerning the stochastic terms are derived as follows. When εt−1 =

ωt+1 = 0, we have εt = 0 implying rt = r̄. Denoting by µt+1|rt=r̄ the value of µt+1 in

such a case, we get from (22), using (1 + rt)(1− zt) ≈ 1 + rt − h̄zt,

µt+1 − µt+1|rt=r̄ ≈
ωt+1 + r̄ − rt

1− λ
=
ωt+1 − r̄εt

1− λ
,

and from (52),

µt+1 − µt+1|rt=r̄ ≈ a0{ωt+1 + γ(q̄′(r̄)[1 + ϕ(p− a2)] + gk̄′(r̄))r̄εt−1 (55)

− γ[q̄′(r̄)r̄ + k̄′(r̄)r̄(1 + g)− b2 − (b1 + k̄′(r̄)r̄)ρ]εt}.

Equalizing gives

ωt+1 =
r̄ − (1− λ)a0γ[q̄′(r̄)r̄ + k̄′(r̄)r̄(1 + g)− b2 − (b1 + k̄′(r̄)r̄)ρ]

1− (1− λ)a0

εt (56)

+ (1− λ)γa0
q̄′(r̄)[1 + ϕ(p− a2)] + gk̄′(r̄)

1− (1− λ)a0

r̄εt−1.
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Substituting in (55) yields

µt+1 − µt+1|rt=r̄ ≈ γa0
q̄′(r̄)[1 + ϕ(p− a2)] + gk̄′

1− (1− λ)a0

r̄εt−1

+ a0
r̄ − γ[q̄′(r̄)r̄ + k̄′(r̄)r̄(1 + g)− b2 − (b1 + k̄′(r̄)r̄)ρ]

1− (1− λ)a0

εt.

Identifying with the stochastic terms of (31) gives, using 1 − (1 − λ)a0 = γa0(1 +

g − a1),

b2 =
q̄′(r̄)[1 + ϕ(p− a2)] + gk̄′(r̄)

1 + g − a1

r̄ (57)

b1 =
r̄ − γ[q̄′(r̄)r̄ + k̄′(r̄)r̄(1 + g − ρ)− b2 − ρb1]

γ(1 + g − a1)
. (58)

As (56) can be written as ωt+1 = [(1− λ)b1 + r̄] εt + b2(1 − λ)εt−1, we get χ =

[(1− λ)b1 + r̄]−1 and

ρ =
−b2(1− λ)

(1− λ)b1 + r̄
. (59)

Reorganizing terms to get b2 = −ρ [b1 + r̄/(1− λ)] and substituting in (58), we arrive

at

b1 =
1− γ[q̄′(r̄) + k̄′(r̄)(1 + g − ρ) + ρ/(1− λ)]

γ(1 + g − a1)
r̄.

From (57) and (59), we obtain that ρ solves

ρ =
−(1− λ)γa0{q̄′(r̄)[1 + ϕ(p− a2)] + gk̄′(r̄)}

1− γa0{(1− λ)[q̄′(r̄) + k̄′(r̄)(1 + g)] + ρ
[
1− k̄′(r̄)(1− λ)

]
}
. (60)

The first two equations of (53) form a system involving only coefficients a1 and a2

that can be solved separately from the others. More precisely, defining a0
1 ≡ g + (1 −

λ)/γ, we can express (53) as

a1 =
a0

1 + λ(1− g)/γ + ξ(a2 − p)
a0

1 − a1 + 1
, a2 =

p(1− θ)
a0

1 − a1 + 1− θ
, (61)

a3 = −
ψ − γ2σ2

y+1
/2− γ(p− a2)(ϕq̄ − ê) + 1− g

γ(a0
1 − a1)

, a0 =
1

γ(a0
1 − a1 + 1)

From the expression of a2, we get

a2 − p = −p a0
1 − a1

a0
1 − a1 + 1− θ

, (62)
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which, plugged into the expression of a1, gives

(a0
1 − a1)

(
a1 − 1 +

ξp

a0
1 − a1 + 1− θ

)
=
λ(1− g)

γ

that can be expressed as Q(a0
1 − a1) = 0 where

Q(x) ≡ x3 + (2− θ − a0
1)x2 + [(1− θ)(1− a0

1)− ξp+ λ(1− g)/γ]x+ λ(1− θ)(1− g)/γ

is a third degree polynomial. As Zt given by (54) converges if γa0 < 1, i.e. if a1 < a0
1,

only positive roots are relevant. As P (1) > 0, we have

(1− θ)(1− a0
1)− ξp+ λ(1− g)/γ < (1− θ)(1− a0

1)− (1− θ)(1− g) + λ(1− g)/γ

= (1− θ)(g − a0
1) + λ(1− g)/γ

= −(1− θ)(1− λ)/γ + λ(1− g)/γ

and a sufficient condition for the third coefficient to be negative is λ < 1/[1+(1−g)/(1−
θ)]. Under this condition, we have Q′(0) < 0, and since Q(0) > 0, there is at most two

positive roots, the smallest one corresponding to the largest value of a1. From (61) and

(62), a1 > 0 if a0
1+λ(1−g)/γ+ξ(a2−p) = g+(1−λg)/γ−pξ(a0

1−a1)/(a0
1−a1+1−θ) > 0.

Since a0
1 > a1, we must have g+(1−λg)/γ > p. Equation (60) can be written as ζ(ρ) = 0

where

ζ(x) = −x2
[
1− k̄′(r̄)(1− λ)

]
γa0 + x{1− γa0(1− λ)[q̄′(r̄) + k̄′(r̄)(1 + g)]}

+ (1− λ)γa0{q̄′(r̄)[1 + ϕ(p− a2)] + gk̄′(r̄)}.

Differentiating gives ζ ′(x) = −2x
[
1− k̄′(r̄)(1− λ)

]
γa0 + 1 − γa0(1 − λ)[q̄′(r̄) +

k̄′(r̄)(1 + g)]. As ζ is concave, with ζ(0) < 0 and ζ ′(0) > 0, it admits at most two

positive roots. As k̄′(r̄) = −k̄2−α/[(1 − (h̄ − g)ϕ/ξ)Aα(1 − α)] and q̄′(r̄) = −k̄/[(1 −
(h̄ − g)ϕ/ξϕ)(1 − α)] where k̄ = αA(1/(h̄ − g) − ϕ/ξ)1/(1−α) which decreases with h̄

and tends to 0 when h̄ → g + ξ/ϕ, we have limh̄→g+ξ/ϕ ζ(x) = x(1 − γa0x) and thus

ζ(x) admits positive roots if h̄ is sufficiently large.

Solving the recursion of (30), it comes

ε̃t = χω̃t+1 + ρε̃t−1 = χ

t−t0∑
k=0

ρkω̃t+1−k + ρt−t0εt0 ,
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hence E[ε̃t|εt0 ] = ρt−t0εt0 and

V[ε̃t|εt0 ] = E[(ε̃t − E[ε̃t|εt0 ])2|εt0 ] = E

(χ t−t0∑
k=0

ρkω̃t+1−k

)2
 = χ2

t−t0∑
k=0

ρ2kE[ω̃]2

using independence, which gives V[ε̃t|εt0 ] = χ2σ2
ω(1− ρ2(t−t0)+1)/(1− ρ2).

H Calibration of the model

The world GDP and population in 2018 (the reference year corresponding to t = 0)

are q0 = 8.59 trillions US$ and Pop = 7.7 billions. The consumer’s MRS p is set

at $15/tCO2, the psychological discount rate ψ = 1.5%, hence β ≈ .985, and the

intertemporal elasticity parameter γ = 7. As the intertemporal elasticity of consump-

tion is inversely related to the consumption level, computations are made using the per

capita global wealth level (yt/Pop× 104).

The capital share of GDP is set at 40% (i.e. α = 2/5) and the capital depreciation

at 25% (i.e., g = 3/4). With a Cobb-Douglas production function, the capital stock is

derived from the interest rate by k0 = αq0/(1 + r0 − g) where r0 = 6%, which gives

k0 = 11.9 trillions US$. The corresponding scale parameter is A = 3.28.

The EQ index et is defined as a global “carbon budget” at date t, i.e. the difference

between a tipping point level of CO2 in the atmosphere, `M , and the level of GHG at

date t, `t, expressed in CO2 equivalent: et = `M − `t.19 The world emissions of CO2 in

2018 is 37.1 Gt CO2, leading to emission intensity ι0 = 37.1/ 8.59 = 0.36kg/US$. The

maximum emission intensity ϕ is set to 6.5kg/US$ and the efficiency ratio of green

technology is equal to 1, i.e. ξ = ϕ. The resulting initial level of the AGT index is

µ0 = q0(ϕ− ι0)/ξ = 8.02. The standard deviation of the shocks affecting the diffusion

of technology is σω = 0.05.

It is assumed that EQ has reached its long term equilibrium eN = `M − ˆ̀ in

the preindustrial period, where ˆ̀ = 2176 Gt CO2 (280 ppm) and `M = 5439 Gt

CO2 (700 ppm), which gives eN = 3264 Gt CO2. Assuming that θ = 4/5 yields

ê = (1 − θ)eN = 652 Gt CO2. The GHG level in 2018 is 3165.5 Gt CO2 (407.4 ppm)

hence an initial EQ index e0 = 2273.5 Gt CO2. Given q0 and µ0 derived above, we get

19The unit used is the gigaton or Gt shorthand, i.e. 109 metric tons. Theses levels are also commonly
expressed in atmospheric concentration, the unit being the part per million or ppm shorthand, i.e.
0.01%. Each ppm represents approximately 2.13 Gt of carbon in the atmosphere as a whole, equivalent
to 7.77 Gt of CO2.
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e1 = θe0 + ê− ϕq0 + ξµ0 = 2434.38 Gt CO2.
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