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Abstract

The importance of coordination problems in the greening of the economy

is analyzed using a global game approach in a simple macro-dynamic model.

Two policy options to motivate firms to adopt green technology are examined:

one coupling an emissions tax with subsidies, the other coupling an emissions

tax with environmental standards. Compared to the First-Best, these policies

face coordination problems and their effectiveness depends on shocks affecting

network externalities. The resulting path of the economy is stochastic and can

deviate significantly from its benchmark. The subsidy policy is more particularly

subject to these shocks and its path dependence is stronger than that affecting the

environmental standards policy. These results are derived in a simple framework

and illustrated by numerical simulations.
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1 Introduction

Decoupling resource use and environmental discharges from economic growth is one

of the main challenges facing modern economies. Among these, decarbonization, i.e.

reducing carbon dioxide (CO2) emissions per unit of GDP, is a top priority. As the

International Energy Agency (IEA, 2021) points out, most of the global reductions

in CO2 emissions through 2030 in its model come from technologies readily available

today, but by 2050, nearly half of the reductions come from technologies that are cur-

rently in the demonstration or prototype stage. In heavy industry and long-distance

transportation, the share of emission reductions from technologies still in development

today is even higher. This is a significant challenge for decarbonization because, as

noted by Battisti (2008), the diffusion of existing cost-effective clean technologies has

been notoriously slow and below potential. Indeed, the diffusion of green technologies

is hindered by multiple obstacles. At first, there is a conversion cost: Green tech-

nologies are often more costly and less productive than the technologies that firms are

using, and may require retraining of their workforce and radical changes in their supply

chains. Because of network externalities and technological spillovers, optimal invest-

ment choices do not necessarily correspond to the latest or most innovative machines.1

Since a machine is a durable good, usually used for several years, it is important that

the parts needed for its operation and maintenance services are readily available in the

future, which is all the more likely as the technology becomes more widespread. There

is also the issue of compatibility of the technology with existing and future industry

standards, which determines what other machines can be employed. Moreover, the

more a technology is used, the higher the research effort of the machine industry sector

to improve the technology. Therefore, the optimal investment choice for a firm depends

on the decisions made by all firms, and the more firms use a given technology, the more

attractive it is. All of these phenomena, hereafter referred to as “network effects”, are

difficult to anticipate, due to the many external factors that affect the supply chain

and the supporting infrastructure of firms.2

1Technology spillovers refer to the unintended benefits resulting from the research and development
efforts of others. Network externalities refers to a situation in which the value of a technology increases
with the number of its users.

2Hoevenagel et al. (2007) discusses the problems of green technology adoption in Europe. 99.8%
of firms are small and medium-sized enterprises, run by entrepreneurs with significant time and task
pressure. Their basic perception of environmental technologies is one of cost and risk. Their staff is
not adequately trained and familiar with the installation and operation of new technologies. They
are generally uninformed about potential environmental technologies and rely heavily on the advice
of their professional entourage, such as suppliers, who often have the same lack of information. A
firm’s network relationships influence the adoption of environmental innovations at each stage as it
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In this paper, I analyze the issue of designing policies to green the economy when

firms face such a coordination problem using an original micro-founded growth model.

A large number of firms must adopt cleaner and often newer technologies whose devel-

opment and diffusion are subject to network effects. Firms’ investment decisions are

based on their expectations about these effects. Their heterogeneous assessments are

reflected in an industrial sector made up of firms with diverse production processes.

This diversity is captured by the distribution of two variables, one corresponding to the

productive capacity of the production processes (similar to the traditional economic

definition of capital), the other to their pollution intensity. The firms’ coordination

problem in their investment choices is framed as a sequence of global games (Carlsson

& Van Damme, 1993) played each period. The dynamic unfold as follows: Each period,

given the prevailing interest rate and wage (and the public policy), the knowledge of

the current distribution of production processes and private signals about the shock

affecting network effects allow firms to determine their optimal investment. Because

of idiosyncratic signals leading to different expectations, firms’ choices are diverse, re-

sulting in a new distribution of production processes in the next period, when another

global game takes place, and so on. The resulting path of the economy is stochastic

due to the shocks affecting network effects. The incentives created by environmental

policies are also subject to these shocks, and this framework allows us to compare the

paths taken by the economy with different policy instruments without making arbitrary

assumptions about firms’ self-fulfilling beliefs.3

Two widely used environmental policies are examined. Both involve an emissions

tax that makes firms responsible for the pollution they emit. It influences their choice

of machines both on their production capacity and on their pollution intensity charac-

teristics. To better guide firms in their choices, these policy options also incorporate

one of two alternative instruments: either a schedule of subsidies for green investments,

or a schedule of environmental standards, i.e. restrictions on the pollution intensity

of new machines. Although the shocks affecting network effects are independent, both

gathers information about potential solutions for implementing new technologies, and conversely, a
firm’s strategic orientation influences the types of external expertise and network relationships that
are developed.

3Unlike other approaches that often lead to multiple equilibria, global games yield a single equilib-
rium by taking into account the intrinsic uncertainty affecting the economy. Multiplicity of equilibria
in coordination games is due to the strong assumptions that the economic fundamentals are common
knowledge and that agents are certain about each other’s behavior in equilibrium thanks to an ap-
propriate set of beliefs. By introducing a noisy signal about the actual state of the world and some
uncertainty about what other agent knows, global games lead to a unique equilibrium for each un-
derlying state of the world without resorting to arbitrary assumptions about self-fulfilling beliefs (see
Morris & Shin, 2000, 2003).
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policies present a path dependency induced by the consumers’ desire to smooth their

consumption over time, which impacts the interest rate. The main results are that the

tax-subsidy policy is more particularly subject to the variations of the interest rate,

and the path dependence of the economy under this policy is likely to be stronger

than that under the tax-standards policy. Interestingly, because network externalities

generate excessive demand for prevailing technologies, optimal subsidies become taxes

once green technologies are widespread, in order to curb over-investment.

To examine more closely the fluctuations of the economy under these policies, I

consider their implementation of a deterministic path. This benchmark path corre-

sponds to the socially optimal path assuming that production processes are imposed

on firms and are not subject to network shocks. This analysis is done using an il-

lustrative example that allows explicit solutions of the First-Best policy and its two

implementations, as well as explicit confidence intervals for the stochastic paths of the

economy. The corresponding distribution of the interest rate follows a first-order au-

toregressive process during the transition period to environmental neutrality under the

two policy options. Given the scale of investment needed to green the economy, long

lasting deviations of the economy from the First-Best path are thus likely. Simulations

show that this path dependence can be significant under the two policies examined,

and that environmental standards permit a transition to green technologies more likely

in line with the regulator’s intended path than subsidies do.

There is an abundant literature on growth and sustainability. The literature on

endogenous green growth focuses on productivity improvements and frontier innova-

tion. This is the case in the AK paradigm where capital-knowledge accumulates with

learning-by-doing (Stockey, 1998), and Lucas-like extensions (Bovenberg & Smulders,

1995), within a framework of product variety (Gerlagh & Kuik, 2007) or within the

Schumpetarian growth paradigm of destructive creation and directed technical changes

(Acemoglu et al., 2012), where the most productive innovations are adopted by firms as

soon as they are discovered. This article focuses on the adoption of existing technolo-

gies that have knock-on effects leading to the gradual replacement of old and polluting

machines with greener ones. The approach is thus close to the literature on endogenous

growth viewed as a process of adoption of existing ideas and mutual imitation between

firms, as exposed by Eaton & Kortum (1999); Lucas Jr & Moll (2014); Lucas (2009);

Perla & Tonetti (2014).4 The approach here is similar for describing the adoption of

technologies: although the R&D sector is not spelled out, there is a set of existing

4These papers assume that each agent in the economy is endowed with a certain amount of knowl-
edge (“ideas”) and this knowledge evolves through contact with the rest of the population.
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technologies whose potential is more or less exploited depending on the proportion of

firms that use them. The distribution of production processes changes over time as

firms’ incentives to adopt new technologies evolve.5 Comparisons of policy instruments

to implement an environmental objective have been quite numerous since Weitzman

(1974). The main focus is on the information available to the regulator on the firms’

pollution abatement costs. Few papers consider the importance of firms’ expectations

in achieving an environmental goal. Aldy & Armitage (2020) compare an emissions tax

with a cap-and-trade instrument in which firms are subject to forecasting errors in the

price of pollution allowances on the secondary market, the effectiveness of the abate-

ment technology being the same in both cases. In what follows, the firms’ expectations

about their economic environment are important because of network externalities that

determine the effectiveness of the technology.

The remainder of the paper is organized as follows: Section 2 describes the dynamics

of technology adoption under Laissez-Faire and the two policy options. Section 3

presents the environmental dynamic, the First-Best path of the economy and the policy

schemes that implement it in expectation. An illustrative example is detailed section

4. The last section concludes. All proofs are in the Appendix.

2 Technology adoption

Consider a discrete time economy composed of a continuum of firms, of total mass

equal to one, that collectively produce at date t an amount qt =
� 1

0
qitdi of output

corresponding to the GDP. Firms’ output may come from various production processes

with different environmental impacts. More precisely, I suppose that for each particular

production task, firms have the choice among a large set of machines characterized

by their productivity and polluting emissions level. These sets of machines evolve

over time, but each period, comparing machines with the same productivity level, the

cheaper they are, the more they pollute. Firm i’s investment at date t is therefore made

up of spending on production capacity and environmental quality, noted respectively

Iit and oit, representing a total expenditure on new machines equal to Iit+ oit, and the

higher oit is for a given Iit, the less polluting the machines are.6 Assuming a depreciation

rate 1− g of the machines, firm i’s production process at date t is described by vector

5There is also a microeconomics literature that investigates the problem of network externalities,
initiated by Katz & Shapiro (1985). See Guimaraes & Pereira (2016) for a recent contribution, and
Shy (2011) for a survey.

6We may have Iit = 0 and oit > 0, in which case firm i buys pollution abatement equipment, i.e.
devices that do not produce any items but reduce the polluting emissions of the firm.
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(kit, xit) whose dynamic is given by[
kit+1

xit+1

]
= g

[
kit

xit

]
+

[
Iit

oit

]
. (1)

The productive capacity of firm i’s production process at date t, kit, is similar to the

standard economic notion of capital: it is a monetary measure of the durable goods

that allow the firm to produce items or services when combined with labor. It yields a

gross revenue qit = Q(kit, ℓit) where ℓit is the firm’s employment level, and Q a produc-

tion function, homogeneous of degree one and satisfying the Inada conditions.7 The

environmental quality of the firm i’s production process, xit, also dubbed ‘technology

mix’, is a monetary measure of its effort to diminish the environmental impact of its

production, given by ιitqit where

ιit = φ− ξxit/qit (2)

is its emission intensity of the production process. As green technologies are often the

most recent and innovative, xit is also a monetary measure of the degree of innovation

of firm i’s production process, which should be compared with that of other firms

in the economy, given by µt ≡
� 1

0
xjtdj, dubbed the ‘green technology index’ (GTI)

of the economy at date t.8 A very low xit compared to µt indicates that firm i’s

production process is polluting and most probably dated. A high index, on the other

hand, indicates that its production process is sound and most probably uses recent

technologies.

Depending on their choice of machines over time, firms benefit from (or suffer

from the absence of) network effects linked to their input suppliers, maintenance ser-

vices (ease of finding inputs and specific parts to maintain machines), workers’ know-

how and, more generally, the particularities of their production process. The more

widespread the technology used by a firm, the fewer logistical problems it encounters,

and the easier it is to reach a production target. A firm must therefore anticipate

the other firms’ choice of machines when making its own choice, which leads to an

intertemporal coordination problem that is formalized in the following as a succession

of global games taking place each period.9 More formally, denoting by Ot ≡
� 1

0
ojtdj

7We thus have kit > 0 for all i and t.
8Of course, there are also technical improvements in traditional production processes, but these

are mostly focused on increasing productivity and thus lowering the relative price of the machines
that benefit from them.

9These coordination problems with strategic complementarity are known as “beauty contests” (see,
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the sum of green investments made simultaneously by firms at date t, network effects

correspond for firm i to monetary amounts given by

Git = G(xit;µt−1,Ot−1, ωt), (3)

where G(·) is a concave function of xit that increases with µt−1 and Ot−1, and ωt

the realization of a time-independent normally distributed noise, ω̃t with E[ω̃t] = 0

and standard deviation σω, that summarizes the many unmodeled shocks affecting the

development and the diffusion of technology.10 G(·) increases with µt−1 because only

part of the capital stock is renewed each period, and µt−1 reflects the set of the most

commonly used machines at t−1. It also increases with Ot−1 since the service network

adapts to the investments made by all firms. However, this adaptation may be more

or less rapid, depending on the reactivity of the network of suppliers. To fix ideas, I

assume that11

G(xit;µt−1,Ot−1, ωt) = (µt−1 + λOt−1 + ωt)xit − x2it/2, (4)

where λ ∈ [0, 1) captures the extent of immediate network effects. If λ = 0, the first

term in (4) reduces to µt−1 + ωt, i.e. the former average mix plus a noise which may

be positive or negative. When immediate network effects are at work (λ > 0), the

first term in (4) also depends on the most recent green investments made by all firms,

Ot−1. The economic infrastructure evolves more rapidly the larger λ is, the extreme

case where λ is close to 1 corresponding to an immediate adaptation of the workers

and the supporting infrastructure to new investment choices.12 Using (3) and (4), we

can define the ‘ideal’ technology mix at date t as

x⋆t ≡ µt−1 + λOt−1 + ωt (5)

e.g., Angeletos & Pavan, 2004, 2007 and Morris & Shin, 2002).
10These shocks may come from the service network, input suppliers or machines producers, reflecting

the expectations of these operators on technology development. To streamline the analysis, I assume
that these shocks do no directly affect the firms’ production level qit.

11This formulation can be considered as a second-order approximation of a more general expression
where the term −x2

it/2 ensures that G(·) is strictly concave with respect ot xit and thus that there is a
unique investment level in green technology for firm i at date t−1. It leads to close-form solutions and
more importantly, it preserves the structure of the intertemporal coordination game between firms
from one period to the next (the distribution of xit at equilibrium remains Gaussian with mean µt

and a constant standard deviation).
12It is likely that the value of λ is low. As stressed by Battisti (2008), a consistent literature has

shown that, even when a clean or a cost-reducing technology is readily available in the market, its
spreading takes several years.
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since we have

Git = x⋆2t − (x⋆t − xit)
2/2 (6)

where (x⋆t −xit)
2/2 corresponds to firm i’s loss due to a mix xit different from the ideal

one.13 Firm i must anticipate at t − 1 its optimal date-t technology mix xit, but it

cannot perfectly assess the ideal mix x⋆t because it doesn’t know the realization of ω̃t

and the total of green investments Ot−1 made simultaneously by all firms.

This dynamic setup is solved sequentially, focusing on Markov perfect equilibria

where x⋆t is a state variable. In period t−1, firms learn the distribution of (kit−1, xit−1)

and must anticipate the realization of the next period ideal technology mix, x̃⋆t , a

random variable which distribution depends on ω̃t and the behavior of all firms. Firms

beliefs are unbiased idiosyncratic private signals of the shock: they are formed according

to η̃it−1 = ω̃t + υ̃it−1, where υ̃it−1 is a time-independent noise, normally distributed

with variance σ2
υ, verifying E[υ̃it−1] = E[υ̃it−1ω̃t] = E[υ̃it−1υ̃jt−1] = 0 for all i, j, and� 1

0
υit−1di = 0.14 Given its signal, firm i’s expectation of the next period shock is given

by E[ω̃t|ηit−1] = ηit−1/(1 + σ2
υ/σ

2
ω) where 1/(1 + σ2

υ/σ
2
ω) is the signal-to-noise ratio in

this inference.

2.1 Laissez-Faire

Consider the Laissez-Faire situation from date t = 0 (the present period) assuming

that firm i is endowed with technology (ki0, xi0) > 0. Each following period t, given wt

and rt, the date-t wage and interest rate, firm i plans its investments and employment

levels {(oit, Iit, ℓit), t = 0, 1, 2, . . .} to maximize the expected discounted sum of its

profits Et[
∑

h≥0(
∏h

τ=1 δt+τ )(qit+h+Git+h−wtℓit+h−Iit+h−oit+h)] where δt = 1/(1+rt)

is the date-t discount factor.15 With a total supply of labor equal to one each period,

i.e.
� 1

0
ℓitdi = ℓt = 1 for all t, it is shown in the appendix that

Proposition 1 Under Laissez-Faire, firms’ equilibrium investment in productive ca-

13As ω̃t is normally distributed, x⋆
t can take negative values, and all the more probably if µt is

small. I will neglect this possibility in the following by assuming that µt remains far enough from 0.
14I thus assume that the law of large numbers applies to a continuum of i.i.d. random variables.

While Judd (1985) points out that this is not true when working within the usual probability space
on realizations of a continuum of draws, Uhlig (1996) shows that it suffices to redefine all integrals
over the continuum as L2-Riemann integrals. See also Sun (2006) for a framework in which pairwise
independence ensures that all law of large numbers and sample distribution equalities hold exactly.

15Et[X̃] is a shorthand for E[X̃|It], i.e. the expectation of the random variable X̃ given the infor-
mation It available at date t.
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pacity at time t is given by

Iit = q′−1(1 + rt − g)− gkit (7)

where q(k) ≡ Q(k, 1), leading to kit+1 = kt+1 = q′−1(1+rt−g) for all i. The equilibrium
wage is given by wt = q(kt) − (1 + rt−1 − g)kt. Firm i’s investment strategy in green

technology satisfies

oit = E
[
x̃⋆t+1|ηit, µt, rt

]
− gxit + g − 1− rt, (8)

leading to

oit = g(µt − xit) +
(1− g)µt + g − 1− rt

1− λ
+

ηit
1− λ+ σ2

υ/σ
2
ω

(9)

at equilibrium. The resulting firms’ technology mixes at t+ 1 are normally distributed

with mean

µt+1 = gµt +
(1− g)µt + g − 1− rt

1− λ
+

ωt+1

1− λ+ σ2
υ/σ

2
ω

, (10)

and standard deviation σxt = σx ≡ συ/(1− λ+ σ2
υ/σ

2
ω) for all t.

Because firms have the same production function Q, the productive capacity of all

firms is the same, determined by choices that are guided unambiguously by the interest

rate. This is not the case for their spending on green technology (8) which depends on

their estimates of the most efficient mix E
[
x̃⋆t+1|ηit, µt, rt

]
and thus on their individual

signals ηit. The trade-offs that firms are facing when investing are the following. The

date-t borrowing cost of one monetary unit is 1 + rt. Invested in productive capital,

its return is equal to the sum of the marginal productivity of capital, q′(kt+1), and

g, the remaining value of capital (the rest being depreciated). With investment It,

the date-t + 1 productive capital stock is equal to kt+1 = gkt + It, hence an optimal

productive investment that solves q′(gkt + It) + g = 1 + rt. (8) is derived similarly:

a monetary unit invested in green technology has a marginal return equal to the sum

of the marginal network gain dGit+1/dxit+1 = x̃⋆t+1 − xit+1 and g. With investment

oit, the firm date-t + 1 green index is given by xit+1 = gxit + oit. Firm i’s investment

rule is thus to equalize 1+ rt to the expected return E
[
x̃⋆t+1|ηit, µt, rt

]
− (gxit+ oit)+ g

given its signal ηit. At equilibrium, firm i adopts the green investment strategy (9) that

is a linear function of the publicly observable variables µt and rt, its own technology

9



index xit, and its private signal ηit.
16 The first term in (9), g(µt − xit), indicates that

firm i makes-up for the difference between its green index and that of the economy

on its undepreciated capital stock. The two other terms correspond to its estimate of

the average green investment. It is affected by the magnification effect of the network

externality, 1/(1− λ), since all firms operate the same way.

Firms’ green indexes are distributed normally around the GTI given by (10). This

equation shows that the more reactive is the supporting infrastructure, the larger are

the effects of ωt and rt on the next period GTI. The expectated dynamic given by

(10) can be negative, i.e. E[µt+1] < µt, in which case firms acquire increasingly dirty

technologies, or positive if µt is large enough, greater than [1 + rt/(1 − g)]/λ, i.e. if

the technology spillovers are sufficiently large, the depreciation rate large and/or the

interest rate low. Indeed, as firms have to renew their machines, they may invest in

less polluting ones if they expect that the supporting infrastructure and the workforce

know-how adapt rapidly. This is however very unlikely if the initial GTI µ0 is low.

Indeed, firms will only purchase green technologies in the absence of governmental

incentives if these technologies are already the most widely used in the economy, and

thus the most easily exploitable.

Due to the idiosyncratic shocks on beliefs, υit, firms have different expectations

on x⋆t+1, hence choose machines with similar productive capacities but different en-

vironmental impacts. These discrepancies lead to a Gaussian distribution of firms’

green indexes around the GTI, given by xit = µt + υit/(1 − λ + σ2
υ/σ

2
ω). Hence, the

industry sector can be viewed as a “cloud” of firms whose green technology levels are

drawn in each period from a normal distribution centered on µt with standard deviation

συ/(1− λ+ σ2
υ/σ

2
ω) which is all the greater as λ is large.

2.2 Environmental policies

Consider two environmental policy options involving the use of an emissions tax to

limit firms’ production capacity, but differing in their instrument for promoting green

technologies: subsidies or technology standards.17

16The proof follows Angeletos & Pavan (2004). Morris & Shin (2002) show that this linear, sym-
metric, rational-expectations strategy leads to the unique (per period) equilibrium.

17I assume that the social planer can credibly commit to these policies so that economic agents
form consistent expectations. They are thus open loop policies, i.e. policies designed before the
regulatory period and not revised thereafter: the levels of taxes and subsidies or standards that have
been chosen for each period by the regulator are implemented regardless of the actual path followed
by the economy.
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Subsidy programs

Suppose that the government implements an environmental policy using an emissions

tax scheme {τt}t>0 and a green technology subsidy scheme {zt}t>0. Given this policy,

firm i’s per period profit becomes

πit ≡ Q(kit, ℓit) +Git − wtℓit − Iit − oit(1− zt)− τt (φQ(kit, ℓit)− ξxit)

where the last term corresponds to the environmental tax payment, and the term

oit(1 − zt) to the net payment for green technology investment. It is shown in the

appendix that

Proposition 2 Under a tax-subsidy scheme {τt, zt}t>0, firms’ investment in productive

capacity at date t satisfies

q′(kt+1) =
1 + rt − g

1− τt+1φ
. (11)

Their technology mixes at t+ 1 are normally distributed with mean

µt+1 = gµt+
(1− g)µt + g − 1− rt

1− λ
+

ωt

1− λ+ σ2
υ/σ

2
ω

+
ξτt+1 + (1 + rt)zt − gzt+1

1− λ
(12)

and standard deviation σx for all t.

The impact of the environmental tax on productive capital appears in the denomi-

nator of (11): the higher the tax level, the lower the denominator and thus the higher

the marginal productivity of kt+1, i.e. the lower its level. Compared to (10), the GTI

dynamic (12) presents an additional term (ξτt+1+(1+rt)zt−gzt+1)/(1−λ). While this

term increases with τt+1, it appears that the subsidy policy has countervailing effects

on the dynamic: on the one hand, the current subsidy level zt impacts it positively,

but that of the next period decreases it. Indeed, the anticipation of a large subsidy in

the next period encourages firms to postpone their green investments.

Environmental standards

Consider now environmental standards, i.e. policy instruments that constrain invest-

ment choices. These standards limit the set of machines that can be used or that

are allowed to be offered by machine suppliers on the market. They correspond to

restrictions on the pollution intensity of the machines that are tightened over time.18

18This is the case in the European Union which imposes emission standards for vehicles that have
evolved in stages of 4 to 5 years (from the Euro 1 standard in 1992 to the Euro 6 standard currently
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Denote by xt the green index targeted for new machines by the government at date

t with a standard policy. Absent network effects, firms would renew their old ma-

chines (a proportion 1 − g of their stocks) with new ones that just meet the stan-

dard. The corresponding dynamic of firm i’s technology mix would thus be given by

xit = gxit−1 + (1 − g)xt, and summing over all firms, GTI would evolve according to

µt = gµt−1 + (1− g)xt. Taking into account networks effects that induce firms to buy

the same machines, they have to anticipate an ideal technology mix given by

x⋆t = gµt−1 + (1− g)xt + λOt−1 + ωt. (13)

Compared to (5), the index of the most used machines in the last period, µt−1,

is replaced by gµt−1 + (1 − g)xt in (13) due to the governmental restrictions on new

machines. The remaining terms in (13) are the same as in (5): the ideal mix depends

on the shock that will affect the service network, ωt, and on its sensitivity λ to total

green investment Ot−1.

Proposition 3 With a tax-standard policy {τt, xt}t>0, firms’ investments satisfy (11)

and

oit = g(µt − xit) +
(1− g)xt + g − 1− rt

1− λ
+

ηit
1− λ+ σ2

υ/σ
2
ω

+
ξτt+1

1− λ
.

The resulting firms’ technology mixes at t+ 1 are normally distributed with mean

µt+1 = gµt +
(1− g)xt + g − 1− rt

1− λ
+

ωt

1− λ+ σ2
υ/σ

2
ω

+
ξτt+1

1− λ
, (14)

and standard deviation σx for all t.

The effect of the environmental tax on the firms’ productive capacity is the same

under the two policy options, given by (11). The tax also produces the same positive

effect on the GTI dynamics (14) and (12). Both (12) and (14) show that whatever

the implementation chosen by the government, the shock ωt+1 affects the diffusion of

technology, rendering the path of GTI stochastic. Also, under both policy regimes,

this uncertainty affects financial markets through the total demand of capital, hence

the interest rate rt. The main difference between these dynamics is that the term

(1−g)µt+(1+rt)zt−gzt+1 in (12) is replaced by (1−g)xt in (14). xt anchors the path

of GTI under the standard policy to the one desired by the social planer, whereas µt re-

enforces the path dependency of GTI under the subsidy policy. Moreover, the incentives

in force for light-duty vehicles).
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given by this latter policy depend on rt, and are thus subject to its uncertainty (and

its path dependency). Therefore, although they have the same first term gµt, we can

expect the path dependence of µt to be stronger under the tax-subsidy policy than

under the tax-standard policy, i.e. the latter policy should be more effective than the

former in stimulating the greening of the economy.

3 Optimal path of the economy

To better compare these two policy options, I consider in this section and the next

their effectiveness in implementing the socially optimal path.19

3.1 Consumers and capital markets

Capital supply comes from consumers who maximize their intertemporal utility by

arbitraging between consumption and savings each period. Consumers derive well-

being from consumption ct and environmental quality (EQ) et. Their behavior is

modeled by considering a representative consumer whose saving and consumption plans

solve

maxEt

{
+∞∑
h=0

βhu(c̃t+h, ẽt+h) : c̃t+h = R̃t+h + r̃t+h−1S̃t+h−1 − s̃t+h, s̃t+h = S̃t+h − S̃t+h−1

}
(15)

each period, where u is a concave utility function, Rt is her date-t revenue, St−1 her

savings from the previous period, rt−1St−1 the corresponding date-t capital earnings,

st the savings adjustment of period t, and β = exp(−ψ) the intrinsic discount factor

corresponding to a psychological discount rate ψ > 0. Solving (15), we obtain

Lemma 1 The consumption plan that solves (15) satisfies

hat ≡
∂u(ct, et)/∂c

βEt [∂u(c̃t+1, ẽt+1)/∂c]
= 1 + rt (16)

at each date t.

Equation (16) corresponds to the Ramsey-Euler rule which states that hat , the

expected intertemporal rate of substitution in consumption (IRS), is equal to the return

19By considering policies that induce economic paths with the same expectation, we can compare
their fluctuations. However, as these paths are stochastic, the policy specifications given in the
following are not optimal. Optimal policies take into account the cost of this risk, which leads to
paths whose expectations are likely to be different and to differ from the socially optimal path.
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on capital each period. It also defines the supply function of capital, while (7) and (10)

are the demand side coming from firms.

At equilibrium, aggregate production net of investment must be equal to total

consumption of manufactured goods, i.e.

ct = qt − It −Ot = q(kt)− (kt+1 − gkt)− (µt+1 − gµt). (17)

Hence, at equilibrium on financial markets, i.e. when the total demand for capital

by firms meets the supply provided by consumers, the interest rate is affected by the

network shock. Its distribution over time depends on accumulated capital, on the con-

sumer’ expectations whose preferences are affected by the quality of the environment,

and on her desire to smooth consumption over time. Since productive investment de-

pends on the interest rate, GDP is also affected by these fluctuations and thus follows

a random path.

3.2 Environmental dynamic

Production generates pollution that deteriorates the quality and the availability of

environmental goods and services provided by Nature. These effects are summarized

in the dynamic of et, which is given by

et+1 = θet + ê− ιtqt (18)

where θ ∈ (0, 1) is the environmental inertia rate, ê the per-period maximum regener-

ation capacity of the environment, and

ιt =

� 1

0

qitιitdi/qt (19)

the emission intensity of the economy at date t, which measures the total environmental

damage per unit of GDP. Without human interference (ιt = 0), et is at its pristine level

eN = ê/(1 − θ). More generally, it comes using ιt = φ − ξµt/qt that the EQ dynamic

follows the linear first-order recursive equation

et+1 = θet + ξµt − φqt + ê. (20)
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3.3 The socially optimal path

Consider a social planner whose task is to determine the optimal path of the economy.

Assuming that he can force firms to adopt the socially optimal set of machines each

period, network effects are irrelevant. As a result, the economy follows a determinis-

tic path to environmental neutrality that corresponds to the First-Best.20 I suppose

however that investment in productive capacity cannot be negative, i.e.21

kt+1 ≥ gkt, (21)

and that green technologies can only reduce emissions, i.e.

φq(kt) ≥ ξµt, (22)

so that reaching an environmentally neutral path (ENP) is the best situation society

can achieve.

In absence of shocks, the planner’s problem is to solve

max
{µt,kt,ct,et}t>0

{
+∞∑
t=0

βtu(ct, et) : (17), (20)− (22)

}
(23)

given e0, k0 and µ0. I suppose ξµ0 < φq(k0), so that society is not already on a ENP.

Denoting

ht =
∂u(ct, et)/∂c

β∂u(ct+1, et+1)/∂c
(24)

the date-t IRS, it is shown in the appendix that:

Proposition 4 The First-Best path of the economy {µ⋆
t , k

⋆
t , c

⋆
t , e

⋆
t , h

⋆
t}t>0 satisfies (17),

(20)–(22),

q′(k⋆t+1) ≤
h⋆t − g

1− (h⋆t − g)φ/ξ
, (25)

for all t > 0, with an equality when (21) is not binding , and

h⋆t+1(h
⋆
t − g − θ) + θg = ξ

∂u(c⋆t+2, e
⋆
t+2)/∂e

∂u(c⋆t+2, e
⋆
t+2)/∂c

(26)

20While the supporting infrastructure can adapt well in advance to the policy, shocks may still
exist, requiring the social planner to revise the policy plan each period. I neglect these shocks in the
determination of the optimal policy because they do not cause a coordination problem.

21Constraint (21) implies that the social planner cannot forbid the use of machines already bought
that are too environmentally damaging.
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when (22) is not binding.

Condition (25) indicates that when (21) is not binding, the IRS is larger than the

rental rate of capital g + q′(kt+1) due to the impact of production on the environment

(i.e. unless φ = 0). To interpret (26), observe that the impact on EQ of new green

investment occurs after two periods. The IRS over these two periods is given by ht+1ht.

Absent stock effects, i.e. g = θ = 0, (26) states that the optimal date-t two-period IRS

must be equal to the marginal rate of substitution (MRS) of consumption for EQ at

date t+2. The regenerative capacity of the environment (θ > 0) and the durability of

capital (g > 0) allow for larger IRSs, i.e. larger increases in consumption over time.

Proposition 5 The tax-subsidy and the tax-standard schemes that implement the First-

Best path in expectation satisfy

(i) τt+1 ≤ (h⋆t − g)/ξ given by

τt+1 =

{
(1− (h⋆t − g)/q′(gk⋆t )) /φ t < t0

(h⋆t − g)/ξ t ≥ t0
, (27)

(ii)

zt =
(1− λ)µ⋆

t+1 − (1− λg)µ⋆
t + gzt+1

h⋆t
+
h⋆t − g − ξτt+1

h⋆t
(28)

for all t > 0, with limt→∞ zt < 0, and

(iii)

xt =
(1− λ)(µ⋆

t+1 − gµ⋆
t )

1− g
+
h⋆t − g − ξτt+1

1− g
(29)

for all t > 0.

Not surprisingly, the emissions tax (27) is the same for both policy implementations.

When kt+1 > gkt, it equates the rental price of capital, h⋆t − g = 1 + rt − g, with the

marginal savings from investing in green technology, ξτt+1. When kt+1 = gkt, the tax

is reduced so that firms use all the productive capital that is not depreciated. This

reduction is compensated by a large subsidy level or a stringent standard as shown by

the last terms in (28) and (29) that are positive when t < t0 and null when t ≥ t0.

Proposition 5 also shows that the subsidy schedule entails negative values passed a

certain date, i.e. it becomes a tax scheme. This is due to the herd behavior of firms

generated by the network effects: firms over-invest in green technology compared to
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the First-Best once GTI is high enough. As noted earlier, the expected GTI dynamic

under Laissez-Faire is positive if µt > [1 + rt/(1 − g)]/λ. With environmental taxes

(27) and absent a complementary subsidy or standard policy, this condition becomes

µt > [h⋆t − (1+ rt)]/[(1− g)λ], i.e. µt > 0 since E[r̃t] = h⋆t − 1. Hence, green investment

could be greater than gµt, the level necessary to renew the capital depreciated, and

firms are very likely to over-invest when µt is large.

4 Illustrative example

To illustrate, assume that ct and et can be subsumed in a ‘global wealth index’ yt ≡
ct + pet, so that the consumer’s MRS is the same whatever the GDP, equal to p.

Lemma 2 With constant MRS, {µ⋆
t , k

⋆
t , c

⋆
t , e

⋆
t , h

⋆
t}t>0 is characterized by:

(i) h⋆t = h̄ ≡ (g + θ+
√

(g − θ)2 + 4pξ)/2 > 1/β and k⋆t ≥ k̄ as long as ξµ⋆
t < q(k̄)φ

where

k̄ ≡ q′−1

(
h̄− g

1− (h̄− g)φ/ξ

)
> 0. (30)

(ii) If gk0 > k̄, k⋆t+1 = gk⋆t for all t < t0 ≡ ln(k̄/k0)/ ln g.

(iii) k⋆t = k̄ and q⋆t = q̄ ≡ q(k̄) for all t0 ≤ t ≤ T+1 where T is given by µ⋆
T = q(k̄)φ/ξ.

Assuming moreover an exponential consumer’s utility, i.e. u(ct, et) = −e−γ(ct+pet)

and a Cobb-Douglas production function qt = Akαt , we obtain

Proposition 6 With constant MRS, exponential utility function and a Cobb-Douglas

production function,

(i) the First-Best sequence of the EQ index {e⋆t}t>1 is given by

e⋆t = e1+

(
gα − gαt

1− gα
−
(
gα

h̄

)t0−1
h̄t − h̄

h̄− 1

)
ν0+(t−1)ν1−

(1− θ)(1− g)ν1
ξph̄T

h̄t − h̄

h̄− 1

for all 1 < t < t0,

e⋆t = e⋆t0−1 + (t− t0 + 1)ν1 −
(1− θ)(1− g)ν1

ξph̄T
h̄t − h̄t0−1

h̄− 1
(31)

for all t0 ≤ t ≤ T , and

e⋆t = eN − θt−T (eN − e⋆T )
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Table 1: Calibration parameters and equilibrium values

q0 Pop r0 g α E0 ι0 ξ φ µ0 A
101.33 8 0.06 4/5 1/3 36.8 0.363 0.84 0.84 57.52 20.01

CO20 CO2N TP θ ê e0 eN p γ ψ
417.9 280 450 0.985 19.81 249.42 1,320.9 15/1000 0.19 0.015

k0 h̄ k̄ q̄ τ̄ t0 T k∞ q∞ λ σω
129.91 1.038 98.71 92.46 0.283 2 64 120.04 98.69 0.005 1/2

Date t = 0 is 2022. GDP and capital stocks (qt, kt, µt) are expressed in US$ trillions,
world population in billions, CO2 concentrations (Tipping Point TP, CO20, CO2N ) in
ppm, 2022 emissions E0 and carbon budgets (e0, eN , ê) in Gt of CO2. Emission intensities
ι0 and φ in kg of CO2 for US$1. φ corresponds to the emission intensity for 1960 (as
estimated by the World Bank).

for all t > T , where ν1 > 0, ν0 > 0 if ξ/φ ≥ 1− g.

(ii) EQ increases and consumption decreases at decreasing rates for all t ∈ {1, . . . , T}.

The dynamic of the economy entails three sequences, the first being characterized by

k⋆t+1 = gk⋆t , the second by k⋆t = k̄, and the third by φq(k⋆t ) = ξµ⋆
t (which corresponds

to the ENP). Because the IRS is constant before reaching the ENP, the increase in

global wealth is constant: we have h̄ = eγ(yt+1−yt)/β and thus c⋆t+1 − c⋆t + p(e⋆t+1 − e⋆t )

is constant. However, while EQ is increasing, consumption decreases. This is due to

investment in green technologies, as investment in productive capital is either zero or

constant (equal to gk̄) over this period. Hence, during the first two sequences, when

the GDP decreases (1 ≤ t < t0) and when it is stabilized at level q(k̄) (t0 ≤ t ≤ T ),

consumption decreases.

These results are illustrated in Fig. 1 using the calibration parameters and equilib-

rium values presented Table 1.22 Panel 1a shows that e⋆t increases rapidly until t = T

and then increases at a lower rate toward eN . Panel 1b shows the sharp decrease

in k⋆t and the sharp increase in µ⋆
t from period 0 to period 1 (from k0 = 129.91 to

k̄ = 98.71 and µ0 = 57.52 to µ⋆
1 = 86.33, respectively). Then, k⋆t = k̄ until t = T ,

while µ⋆
t increases. Both capital stocks increase afterward, at the slow rate permitted

22The reference year t = 0 is 2022. The corresponding world GDP and population are q0=US$101.33
trillions and Pop=8 billions. p is set at US$15/tCO2. k0 is derived from k0 = αq0/(1 + r0 − g)
where r0 = 6%. et is defined as a global “carbon budget” at date t (expressed in Gt of CO2 in
the atmosphere), i.e. the difference between a tipping point (TP) and the level of GHG at date t
expressed in CO2 equivalent. e0 = 249.42 Gt CO2. Given a pre-industrial level CO2N=280 ppm, the
pre-industrial budget is eN = 1321 Gt CO2. θ is set at .985, leading to ê = (1 − θ)eN = 19.81 Gt
CO2. The initial emission intensity ι0 corresponds to the ratio CO20/q0 = 363 g CO2/US$, leading
to µ0 = q0(ϕ− ι0)/ξ=US$57.52 trillions.
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Figure 1: Optimal dynamic.

by the ENP constraint (the long term level of productive capital, which determines

µ∞ = q∞ = 98.69, is k∞ = 120.04). Panel 1c shows the decrease in c⋆t , very sharp at

first (from c0 = 63.84 to c⋆2 = 55.58), then slower until period T . It increases afterward,

at a very slow pace. Total wealth also decreases the first two periods, but increases

sharply afterward.23

The policy schemes (27)–(29) are illustrated in Fig. 2 assuming λ = .005. τ̄ = .283

(i.e. 283 US$/t CO2) over the period t0 < t < T , and then slowly decreases. The

subsidy scheme (panel 2a) is around 34% at t0 = 2 and decreases to become negative

at t = 45. As shown panel 2b, the net impact of the tax-subsidy policy on GTI, i.e.

the term ξτt+1+htzt−gzt+1 in (12), is decreasing but positive over this period (it stays

positive and increases slightly thereafter). Simulations show that the subsidy scheme

is extremely sensitive to λ (the schedule is positive for only a decade when λ = .01,

and entire negative when λ ≥ .02). The standard policy depicted panel 2c increases

rapidly until environmental neutrality is reached, then slowly along the ENP.

Assuming rational expectations, it is possible to be more specific about the dynamic

of the economy for t ∈ {t0, . . . , T} under these policy implementations. Indeed, over

this period the interest rate satisfies r̃t = r̄(1 + ε̃t) where r̄ = h̄ − 1 is the expected

interest rate and ε̃t is a random shock whose distribution depends on the present and

past realizations of ω̃t. kt and qt are also randomly distributed around their stationary

values k̄ and q(k̄). Using linear approximations, the path of yt can be approximated

by a Gaussian random walk at the rational expectations equilibrium (REE), and the

23These simulations show the limit of the assumption of a constant MRS: the decreases in GDP
and consumption are very sharp due to the perfect substitutability between ct and et. It is however
possible to relax this assumption (e.g. by allowing p to take several discrete values depending on
ct/et) so that the productive capital increases during the transition period to an ENP.
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Figure 2: Tax and subsidy schemes.

supply function of capital (16) by24

rt = ψ + γ(Et[ỹt+1]− yt)− γ2Vt[ỹt+1]/2. (32)

Expression (32) exhibits the familiar effects that determine the rental price of capital:

the intrinsic preference for an immediate consumption ψ, the economic trend of the

global wealth index that also encourages immediate consumption if it is positive, and

a precautionary effect that operates in the opposite direction and corresponds to a risk

premium due to the uncertainty affecting the economy.

Proposition 7 Assuming a REE with constant MRS, a CARA utility function and a

Cobb-Douglas production function, the interest rate under either the tax-subsidy (ℓ =

sub) or the tax-standard (ℓ = std) policy is approximated by r̃ℓt = r̄(1 + ε̃ℓt) for t ∈
{t0, . . . , T}, where

ε̃subt = χsub(zt)ω̃t+1 + ρsub(zt)ε
sub
t−1, (33)

ε̃stdt = χstdω̃t+1 + ρstdεstdt−1,

are normally distributed. The paths of ẽℓt, µ̃
ℓ
t and ỹℓt under policy ℓ ∈ {sub, std}, can

be approximated by Gaussian random walks deduced from (17), (20), and

µsub
t+1 = asub1 µsub

t + asub2 esubt + asub3 (zt) + Zsub
t + bsub1 (zt)ε

sub
t + bsub2 εsubt−1 (34)

24This expression is derived using 1 + rt ≈ ert , and E[e−γỹ] = e−γ(E[ỹ]−γV[ỹ]/2) when ỹ is normally
distributed. γ corresponds to both the coefficient of absolute risk aversion and the inverse of the
intertemporal elasticity of substitution.
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Table 2: REE coefficients

aℓ0 aℓ1 aℓ2 āℓ3 b̄ℓ1 bℓ2 ρ̄ℓ χ̄ℓ σ̄ℓ
yt+1|t

0.870 0.999 4.513−5 −5.019−2 33.824 −32.886 0.971 0.030 1.515−1

0.842 0.798 4.338−5 −4.857−2 27.065 −26.296 0.970 0.037 6.398−2

Values and average values of the coefficients of (33)–(37) under the tax-subsidy (ℓ = sub, first

row) and the tax-standard (ℓ = std, second row) policies, with āsub3 ≡
∑T

t=t0
asub3 (zt)/(T−t0+1),

āstd3 ≡ astd3 and similarly for b̄ℓ1, ρ̄
ℓ, χ̄ℓ and σ̄ℓ

yt+1|t
. The last column corresponds to the average

value of the one-period-ahead standard deviation of the aggregate wealth. Subscripts correspond
to exponents (i.e. 2.3−2 = 2.3 · 10−2).

with

Zsub
t = asub0

+∞∑
i=0

(asub0 γ)i(ξτt+1+i + ht+izt+i − gzt+1+i), (35)

and

µstd
t+1 = astd1 µstd

t + astd2 estdt + astd3 + Zstd
t + bstd1 εstdt + bstd2 εstdt−1 (36)

with

Zstd
t = astd0

+∞∑
i=0

(astd0 γ)i(ξτt+1+i + (1− g)xt+i). (37)

Eq. (33) shows that r̃ℓt follows a first-order autoregressive process where ω̃t is the

innovation, with constant parameters under the tax-standard policy, and parameters

function of zt under the tax-subsidy policy. Similarly, (34) and (36) are linear first-

order recursive equations with constant parameter in the latter, and some parameters

(asub3 and bsub1 ) function of zt in the former. Both include forward looking term Zℓ
t given

by either (35) or (37) that is an exponential smoothing of future tax and subsidy levels

or future tax and standard levels respectively.

Coefficient values are reported Table 2.25 As ρ̄sub > ρstd and χstd > χ̄sub, the

autocorrelation of ϵ̃ℓt is larger, and the impact of innovations lower, under the tax-

subsidy policy than under the tax-standard policy. Also, as asub1 > astd1 , the path

dependency of µ̃sub
t is higher than the one of µ̃std

t . The innovation coefficients b̄ℓ1 and

bℓ2 have large absolute values of opposite signs. As a result, σℓ
yt+1|t

, the volatility of ỹℓt

from period to period, is small, but larger under the tax-subsidy policy than under the

tax-standard policy.

The distributions of ε̃ℓt and r̃
ℓ
t are illustrated in Fig. 3. In panel 3a, the realizations

of ω̃t are randomly distributed around 0, while ε̃ℓt fluctuates somehow smoothly and stay

25ρsub1 (zt) and χsub(zt) are slightly increasing while asub3 (zt), b
sub
1 (zt) and σsub

yt+1|t
are slightly de-

creasing. All stay very close to their average values reported Table 2.
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Figure 3: Shocks and the interest rate (95% CIs are delineated by the dashed black lines).

below εℓt0 = 0 under both policies. The large autocorrelation coefficient ρℓ compared

to the low impact of the innovation χℓ explain this path dependency of ε̃ℓt under both

policies. As a result, r̃ℓt departs from r̄ = h̄−1 = 3.8% following the same variations as

ε̃ℓt (panel 3b), the amplitude of its path under the tax-standard policy being often larger

than under the tax-subsidy policy due to χstd > χ̄sub. The dashed curves above and

below the horizontal lines located at εℓt0 = 0 and r̄ delineate the 95% confidence interval

(CI) deduced from the Gaussian distributions N (0,V[ε̃ℓt]) (panel 3a) and N (r̄, r̄2V[ε̃ℓt])
(panel 3b). Because χstd > χ̄sub, the CI is larger at first under the tax-standard policy

than under the tax-subsidy policy. This effect is progressively attenuated due to the

difference in the autocorrelation coefficients (ρsub is larger than ρstd on average and

increasing). CIs for the paths of µ̃ℓ
t, ẽ

ℓ
t and q̃ℓt over {t0, . . . , T} are derived from (20)

and (34)-(37) using

Ỹ ℓ
t = Bℓ

tY
ℓ
t−1 +Hℓ

t ν̃t (38)

where Ỹ ℓ
t = (µ̃ℓ

t, ẽ
ℓ
t, q̃

ℓ
t , 1, ε̃

ℓ
t, ε̃

ℓ
t−1)

′,

Bℓ
t =



aℓ1 aℓ2 0 aℓ3t + Zℓ
t bℓ1t bℓ2

ξ θ −φ ê 0 0

0 0 0 q̄ q′(k̄)/q′′(k̄) 0

0 0 0 1 0 0

0 0 0 0 ρℓt 0

0 0 0 0 1 0


, Hℓ

t =



0

0

0

0

χℓ
tσω

0


,
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Figure 4: GTI, EQ and GDP under the two policies (95% CIs are delineated by the dashed

blue (red) lines under the tax-subsidy (tax-standard) implementation).

and where ν̃t is an independent standardized Gaussian variable. Ỹ ℓ
t follows a Gaussian

random walk with E[Ỹ ℓ
t ] = (Πt−t0

i=0 B
ℓ
i )Yt0 and V[Ỹ ℓ

t ] =
∑t−t0

i=0 (Π
i
j=0B

ℓ
j)HℓH

′
ℓ(Π

i
j=0B

ℓ
j)

′.

Fig. 4 depicts the paths and the CIs of GTI, EQ and GDP. While µ̃std
t fluctuates

around µ⋆
t , µ̃

sub
t do not show this positive trend (panel 4a). The consequence on EQ is

apparent (panel 4b): the stochastic path of ẽstdt is much closer to e⋆t than ẽsubt . Also,

there is a striking difference in the magnitude of the CIs for these variables: The CI

for the tax-subsidy policy delineated by the dashed blue curves are much larger than

those for the tax-standard policy (dashed red curves). Panel 4c, q̃subt and q̃stdt stay

(relatively) close. This is because k̃ℓt is not directly affected by ω̃t, but only by r̃ℓt .

5 Conclusion

This paper analyzes the effect of coordination problems on the adoption of green tech-

nologies. Governments design policies to drive their economies toward environmental

neutrality, but investment choices are ultimately made by private agents who respond

to policies according to their own expectations about the future of the economy. The

effectiveness of green technologies is partly the result of their choices, through complex

network and spillover effects. As a result, regulatory instruments can only imperfectly

guide economies on their paths to environmental neutrality. By modeling the coor-

dination problem of firms as a succession of global games, the paths of the economy

that are derived in this paper are not subject to arbitrary assumptions about firms’

self-fulfilling beliefs. Instead, it is assumed that agents are aware that the development

and diffusion of technologies are subject to shocks that they imperfectly anticipate.

While the resulting equilibrium path does not depend on firms’ beliefs, it is indirectly

affected by these shocks and the equilibrium conditions in real and financial markets.
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Although highly stylized, the model presented in this article shows that these shocks

cause economic fluctuations that can move the economy away from the First-Best path,

or any path envisioned by the authorities. Technology standards permit a transition

to green technologies more in line with the regulator’s intended path than subsidies

do. This is because producers have less flexibility to adapt their green investments to

economic conditions when standards rather than subsidies are implemented. The latter

instrument allows firms to better react to changes on financial markets, for better or

for worse in terms of the resulting environmental quality.

The First-Best path of the economy is derived assuming that governments know

the technologies that make such a path feasible, which is unrealistic. Environmental

policies are based on scenarios that depend heavily on assumptions about how tech-

nologies will evolve –both in terms of performance and cost– in the distant future. As

noted by the IEA (2021), its model’s forecasts based on already existing technologies

have a time horizon of about a decade. Forecasts beyond 2030 (and up to 2070) rely on

assumptions about the evolution of green technologies. These assumptions are based

on the opinion of experts who cannot have complete knowledge of all the technologies

that will be deployed, but only indications of those that are under development, at the

research stage or in demonstration projects. The likely evolution of these technologies,

in terms of cost and performance, is subject to many uncertainties. Determining the

appropriate policy is therefore a very difficult task. Technology standards, by impos-

ing minimum environmental quality characteristics that machines must meet, seem

to be the most appropriate instrument for achieving binding objectives such as those

imposed by international environmental agreements. And indeed, emission standards

policies such as those implemented by the European Union for vehicles, which oblige

car manufacturers to produce low-emission models, seem to be more effective in guid-

ing society towards environmental neutrality than have been the economic incentives

given to car buyers to date.
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Appendix

A Proof of Proposition 1

As firm i’s profit is separable in revenues from productive capacity and network effects

from its green index, the firm’s investment problem can be split into two independent

programs. Applying the principle of optimality, the investment strategy in productive

capacity can be derived by using the Bellman equation

W(kit) = max
Iit,ℓit

Q(kit, ℓit)− wℓit − Iit + δtEt[W(gkit + Iit)]. (39)

Maximizing (39) with respect to ℓit gives

∂Q(kit, ℓit)/∂ℓ = wt,

while the first-order condition with respect to Iit leads to

−1 + δtEt[W ′(gkit + Iit)] = 0. (40)

The envelop condition yields

W ′(kit) = ∂Q(kit, ℓit)/∂k + gδtEt[W ′(gkit + Iit)]

implying using (40) W ′(kit) = ∂Q(kit, ℓit)/∂k + g. Plugging this expression evaluated

for period t+ 1 in (40) yields

∂Q(gkit + Iit, ℓit+1)/∂k = 1 + rt − g.

AsQ is homogeneous of degree 1, we thus get q′(kit+1/ℓit+1) = 1+rt−g where q(k) ≡
Q(k, 1) is an increasing and concave function. Inverting, it comes that kit+1/ℓit+1 =

q′−1(1 + rt − g), and using
� 1

0
ℓitdi = ℓt = 1, kit/ℓit = kt/ℓt = kt for all i and t, kt+1 =

q′−1(1 + rt − g) which gives (7). Using wt = ∂Q(kit, ℓit)/∂ℓ = d[ℓitq(kit/ℓit)]/dℓit =

q(kit/ℓit)− q′(kit/ℓit)kit/ℓit yields wt = qt − (1 + rt−1 − g)kt.

Neglecting the constants in (6), the Bellman equation corresponding to the tech-

nology mix is given by

V(xit;x⋆t ) = max
oit

−(xit − x⋆t )
2/2− oit + δtE[V(gxit + oit; x̃

⋆
t+1)|ηit, µt, rt]. (41)
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Maximizing (41) with respect to oit leads to

−1 + δtE
[
∂V(gxit + oit; x̃

⋆
t+1)/∂x|ηit, µt, rt

]
= 0. (42)

The envelop condition yields

∂V(xit;x⋆t )/∂x = x⋆t − xit + gδtE
[
∂V(gxit + oit; x̃

⋆
t+1)/∂x|ηit, µt, rt

]
(43)

implying ∂V(xit;x⋆t )/∂x = x⋆t − xit + g. Using this expression for t+ 1 in (42) yields

1 + rt = E
[
x̃⋆t+1 − (gxit + oit) + g|ηit, µt, rt

]
= E

[
x̃⋆t+1|ηit, µt, rt

]
− (gxit + oit) + g,

which gives (8). Following Angeletos & Pavan (2004), the resulting investment strategy

is linear in the variables observed by the firm at date t, i.e. it is given by

o(µt, ηjt, xjt, rt) = β1µt + β2ηjt + β3xjt + β4rt + β5 (44)

where the coefficients βk, k = 1, . . . , 5, are derived as follows. On average, as
� 1

0
ηjtdj =

ωt+1 and
� 1

0
xjtdj = µt, we have

� 1

0

o(µt, ηt, εjt, xjt, rt)dj = (β1 + β3)µt + β2ωt+1 + β4rt + β5

and thus, from (5),

x⋆t+1 = µt + λ

� 1

0

oitdi+ ωt+1 = [1 + λ(β1 + β3)]µt + (1 + λβ2)ωt+1 + λβ4rt + λβ5.

Using (8) and E[ω̃t+1|ηit] = ηitσ
2
ω/(σ

2
ω + σ2

υ), we get

oit = E[x̃⋆t+1|ηit, µt, rt]− 1 + g − gxit − rt

= [1 + λ(β1 + β3)]µt + (1 + λβ2)ηitσ
2
ω/(σ

2
ω + σ2

ν)− (1− λβ4)rt + λβ5 − 1 + g − gxit.

Identifying with (44) yields β3 = −g, β1 = 1 + λ(β1 + β3) = (1 − λg)/(1 − λ),

β2 = (1 + λβ2)σ
2
ω/(σ

2
ω + σ2

υ) = 1/(1 − λ + σ2
υ/σ

2
ω), β4 = −1 + λβ4 = −1/(1 − λ),

β5 = −(1− g)/(1− λ), hence (9). Consequently,

xit+1 = gxit + oit =
(1− λg)µt +ϖηit + g − 1− rt

1− λ
,
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where ϖ ≡ (1− λ)/(1− λ+ σ2
υ/σ

2
ω). Integrating, it comes

µt+1 =
(1− λg)µt +ϖωt+1 + g − (1 + rt)

1− λ

using
� 1

0
ηitdi = ωt+1. Re-organizing terms gives (10). As idiosyncratic investments

depend on signals that are normally distributed, xit+1 is normally distributed around

µt+1 with variance V[xit+1] = σ2
υ/(1− λ+ σ2

υ/σ
2
ω)

2 ≡ σ2
x.

B Proof of Proposition 2

The problem of firm i is to solve

V(kit, xit;x⋆t ) = max
Iit,ℓitoit

πit + δtE[V(gkit + Iit, gxit + oit; x̃
⋆
t+1)|ηit, µt, rt]

where

πit ≡ Q(kit, ℓit)− wtℓit − Iit − (xit − x⋆t )
2/2− oit(1− zt)− τt (φQ(kit, ℓit)− ξxit) .

Using the same steps as those described in the proof of Proposition 1, it comes (11)

and

oit = E[x̃⋆t+1|ηit, µt, rt]− gxit + ξτt+1 + g(1− zt+1)− (1 + rt)(1− zt).

At equilibrium, we get

oit =
1

1− λ
[(1− λg)µt +ϖηit + ξτt+1 + g(1− zt+1)− (1 + rt)(1− zt)]− gxit,

where ϖ ≡ (1− λ)/(1− λ+ σ2
υ/σ

2
ω), hence

xit+1 = gxit + oit =
1

1− λ
[(1− λg)µt +ϖηit + ξτt+1 + g(1− zt+1)− (1 + rt)(1− zt)] .

Summing over all firms and using
� 1

0
ηitdi = ωt+1 gives (12).

C Proof of Proposition 3

Using

πit = Q(kit, ℓit)− wtℓit − Iit − (xit − x⋆t )
2/2− oit − τt (φQ(kit, ℓit)− ξxit)
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where x̃⋆t+1 is given by (13), it comes

oit = ot(µt, xt, ηit, xit, rt) ≡ E
[
x̃⋆t+1|ηit, µt, xt, rt

]
− gxit + ξτt+1 + g − 1− rt. (45)

Assuming linearity, i.e.

ot(µt, ηit, xit, rt) = β0xt + β1µt + β2ηit + β3xit + β4rt + β5 + β6τt+1, (46)

which leads to

� 1

0

ojtdj = β0xt + (β1 + β3)µt + β2ωt + β4rt + β5 + β6τt+1,

and substituting in (13), we arrive at

x⋆t+1 = gµt + (1− g)xt + λ

� 1

0

ojtdj + ωt+1

= (1− g + λβ0)xt + [g + λ(β1 + β3)]µt + λβ4rt + λβ5 + β6τt+1 + (1 + λβ2)ωt+1.

Using (45) and E[ω̃t+1|ηit] = ηit/(1 + σ2
υ/σ

2
ω) we get

ot(µt, ηit, xit, rt) = (1− g + λβ0)xt + [g + λ(β1 + β3)]µt + (λβ4 − 1)rt + λβ5 + (λβ6 + ξ)τt+1

+ ηit(1 + λβ2)/(1 + σ2
υ/σ

2
ω)− gxit + g − 1.

Identifying with (46) yields β2 = 1/(1− λ+ σ2
υ/σ

2
ω), β0 = (1− g)/(1− λ), β1 = g,

β3 = −g, β4 = −1/(1− λ), β5 = (g − 1) /(1− λ), β6 = ξ/(1− λ). It comes

oit = g(µt − xit) +
(1− g)xt +ϖηit − 1− rt + g + ξτt+1

1− λ
,

where ϖ ≡ (1− λ)/(1− λ+ σ2
υ/σ

2
ω), hence

xit+1 = gxit + oit = gµt +
(1− g)x+ϖηit − 1− rt + g + ξτt+1

1− λ
.

Summing over [0, 1] and using
� 1

0
ηitdi = ωt+1 gives (14). We thus have xit+1 = µt+1 +

υit/(1−λ+ σ2
υ/σ

2
ω) which is normally distributed with standard deviation συ/(1−λ+

σ2
υ/σ

2
ω) = σx.
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D Proof of Lemma 1

At each date t, the Bellman equation corresponding to (15) can be written as

v(St−1; et) = max
st

u(Rt + rt−1St−1 − st, et) + βEt[v(St−1 + st; ẽt+1)]

where St and st are the state and the control variables respectively. The first-order

equation gives

∂u(ct, et)/∂c = βEt [∂v(St; ẽt+1)/∂S] , (47)

and the envelope theorem gives

∂v(St−1; et)/∂S = rt−1∂u(ct, et)/∂c+ βEt [∂v(St; ẽt+1)/∂S] .

Replacing the last term using (47), we get

∂v(St−1; et)/∂S = (1 + rt−1)∂u(ct, et)/∂c.

Taking the expectation and replacing in (47) yields (16) where 1 + rt on the RHS is

factorized out of the expected value since the date-t interest rate is a known parameter.

E Proof of Proposition 4

The planner’s program is equivalently stated as

max
{µt,kt,et}t>0

{
+∞∑
t=0

βtu(q(kt)− kt+1 + gkt − µt+1 + gµt, et) : (20), (21), (22)

}
,

given e0, k0 and µ0. Neglecting the constraints (21) and (22), and denoting by λ̂t the

multiplier associated to (20), the Lagrangian of this program is given by

L =
+∞∑
t=0

βtu(q(kt)− kt+1 + gkt − µt+1 + gµt, et)− λ̂t(et+1 − θet − ξµt + φq(kt)− ê).

31



When (22) is not binding, the FOCs are

∂L
∂kt

= βt∂ut
∂c

(q′(kt) + g)− βt−1∂ut−1

∂c
− λ̂tφq

′(kt) ≤ 0 ⊥ kt ≥ gkt−1, (48)

∂L
∂µt

= βt∂ut
∂c

g − βt−1∂ut−1

∂c
+ λ̂tξ = 0, (49)

for all t > 0, and
∂L
∂et

= βt∂ut
∂e

− λ̂t−1 + θλ̂t = 0, (50)

for all t > 1. Eq. (49) gives

λ̂t =

(
βt−1∂ut−1

∂c
− βt∂ut

∂c
g

)
/ξ

and, using (24),

λ̂t = βt∂ut
∂c

(ht−1 − g)/ξ. (51)

Substituting in (50) evaluated at t+ 2, yields

0 = βt+2∂ut+2

∂e
− βt+1∂ut+1

∂c
(ht − g)/ξ + θβt+2∂ut+2

∂c
(ht+1 − g)/ξ

= βt+2∂ut+2

∂e
− βt+2∂ut+2

∂c
[ht+1(ht − g)− θ(ht+1 − g)] /ξ,

using (24), hence

ξ
∂ut+2/∂e

∂ut+2/∂c
= ht+1(ht − g − θ) + θg

for all t > 1 such that (22) is not binding. Using (51) to substitute for λ̂t+1 in (48)

evaluated at t+ 1 gives

0 ≥ βt+1∂ut+1

∂c
(q′(kt+1) + g)− βt∂ut

∂c
− βt+1∂ut+1

∂c
(ht − g)q′(kt+1)φ/ξ

= βt+1∂ut+1

∂c
[q′(kt+1)− (ht − g)(1 + q′(kt+1)φ/ξ)] ,

using (24), hence

ht − g ≥ q′(kt+1)

1 + q′(kt+1)φ/ξ
⊥ kt+1 ≥ gkt.
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Assuming (22) is binding for all t ≥ T , the planer’s program becomes

max
{kt}t>T

{
+∞∑
t=T

βtu(q(kt)− kt+1 + gkt − [q(kt+1)− gq(kt)]φ/ξ, et) : et+1 = θet + ê

}
,

given eT , kT . The FOCs are

∂L
∂kt

= βt∂ut
∂c

[q′(kt)(1 + gφ/ξ) + g]− βt−1∂ut−1

∂c
[1 + q′(kt)φ/ξ] = 0

for all t > T , which gives

ht−1 =
g + q′(kt)(1 + gφ/ξ)

1 + q′(kt)φ/ξ
,

or, equivalently,

ht − g =
q′(kt+1)

1 + q′(kt+1)φ/ξ

for all t ≥ T .

F Proof of Proposition 5

To implement the First-Best, the realized IRS given by (16), that satisfies hat = 1+ rt,

must be equal to h⋆t . For the tax policy, we have from (11), 1 + rt − g = q′(kt+1)(1 −
τt+1φ), while (25) gives h

⋆
t − g ≥ q′(k⋆t+1)[1− (h⋆t − g)φ/ξ], with an equality when (21)

is not binding. Identifying the two equations when k⋆t+1 > gk⋆t , i.e. when t ≥ t0, gives

τt+1 = (h⋆t − g)/ξ. When k⋆t+1 = gk⋆t , substituting h
⋆
t for 1 + rt in (11) defines τt+1 for

t < t0, and we have h⋆t − g = q′(gk⋆t )[1 − τt+1φ] > q′(gk⋆t )[1 − (h⋆t − g)φ/ξ] implying

τt+1 < (h⋆t − g)/ξ. Substituting h⋆t for 1 + rt in (12) taken in expectation gives

E[µt+1] = [(1− λg)µt + h⋆t zt − gzt+1 + ξτt+1 − (h⋆t − g)] /(1− λ).

Re-arranging terms gives (28) using µt = µ⋆
t and E[µt+1] = µ⋆

t+1. (29) is obtained

similarly from (14). At the stationary state, denoting with subscript ∞ the values

of the variables, we have e∞ = eN , c∞ = q(k∞) − (1 − g)(k∞ + µ∞), h∞ = 1/β,

τ∞ = (1/β− g)φ/ξ and k∞ = q′−1((1/β− g)/(1− (1/β− g)φ/ξ)). (22) and (12) imply

µ∞ = (φ/ξ)q(k∞) and (1− λ)µ∞ = (1− λg)µ∞ + ξτ∞ − (1− z∞)(h∞ − g). Replacing

and reorganizing terms yields z∞ = −λ(1− g)(ξ/φ)q(k∞)/(1/β − g) < 0.
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G Proof of Lemma 2

With a constant MRS, (26) simplifies to

h⋆t+1h
⋆
t − h⋆t+1(g + θ) + θg = pξ, (52)

which must hold for all t as long as (22) is not binding.

(i). The discriminant of P (h) = 0 where

P (h) ≡ pξ − (h− g)(h− θ). (53)

is ∆ ≡ (g − θ)2 + 4pξ > 0, and the equation admits two roots, h̄ = (g + θ +
√
∆)/2 >

max{g, θ} and h = (g + θ −
√
∆)/2 < min{g, θ}. We have h > 0 iff ξp < θg. The

First-Best policy corresponds to a sequence of IRS with a subsequence defined by (52)

as long as the ENP constraint (22) is not binding, i.e. t < T where T is the first period

(22) binds. The sequence {h⋆t}T−1
t=0 is either degenerate, i.e. h⋆t = h or h⋆t = h̄ for all

t ∈ {0, . . . , T − 1}, or h⋆0 /∈ {h, h̄}, and, reorganizing (52),

h⋆t = (ξp− θg)/(h⋆t−1 − g − θ) (54)

for all t = 1, . . . , T − 1. If T is large, this sequence eventually converges to a root

of P (h) = 0 that we denote by h∞. We can derived this non-degenerate sequence as

follows. Defining vt = (h⋆t −h♯)−1, h♯ ∈ {h, h̄}, we have h⋆t = 1/vt+h♯ and (54) becomes

1

vt+1

+ h♯ =
pξ − θg

1/vt + h♯ − g − θ
,

which gives
1

vt+1

=
−h♯

1 + vt(h♯ − g − θ)
,

using (53). We thus have

vt+1 = vt(g + θ − h♯)/h♯ − 1/h♯ ≡ vtb1 − b0

with b1 = h/h̄ if h♯ = h̄ and b1 = h̄/h if h♯ = h. With an initial value v0 at t = t0, the
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solution of this recurrence equation is given by

vt = v0b
t
1 − b0(1− bt1)/(1− b1) (55)

= [v0 + b0/(1− b1)]b
t
1 − b0/(1− b1).

where
b0

1− b1
=

1/h♯
1 + (h♯ − g − θ)/h♯

=
1

2h♯ − g − θ
.

If |b1| < 1, i.e. if h♯ = h̄, vt converges toward v∞ = −b0/(1 − b1) = 1/(g + θ − 2h̄) =

(h∞− h̄)−1, hence h⋆t converges toward h∞ = g+ θ− h̄ = h. If |b1| > 1, i.e. if h♯ = h, vt

diverges and thus h∞ = h. Hence, the recursion does not converge to h̄ (unless in the

degenerate case h0 = h̄), while it converges to h from any initial value h0 ̸= h̄. This

cannot be optimal if ξp ≥ θg since h ≤ 0. If ξp < θg, as h < min{g, θ} ≤ g, there is no

stock of productive capital that can satisfy (25) when h⋆t → h. The optimal solution

is thus h⋆t = h̄ for all t ∈ {0, . . . , T − 1}.
(ii). If gk0 > k̄, (21) is binding as long as gtk0 > k̄, i.e. t ≤ t0 given by gt0k0 = k̄,

hence t0 = ln(k̄/k0)/ ln g.

(iii). For t > t0, kt+1 = k̄ until (22) is binding, i.e. until T given by µ⋆
T =

q(kT+1)φ/ξ. Using (52) for t = T − 1 yields hT = h̄, hence kT+1 = k̄.

Finally, the path of the economy for t > T is defined recursively by (20), (17), (22),

(24) and (25) that holds for all t > t0. Given the initial values eT , kT+1 = kT = k̄,

the IRS can be written as ht = h(kt, kt+1, kt+2) and (25) gives the implicit equation

q′(kt+1)[1 − (h(kt, kt+1, kt+2) − g)φ/ξ] − h(kt, kt+1, kt+2) + g = 0 defining kt+2 for all

t ≥ T .

Finally, the solution of (52) exists if

H1: ξ/φ > 1/β − (3g − θ)/2.

H2: (1/β − θ)(1/β − g) < pξ < (ξ/φ)2 + (g − θ)ξ/φ.

The path of yt is increasing if h̄ > 1/β. From the concavity of P , as 1/β >

max{g, θ}, we have h̄ > 1/β iff P (1/β) > 0, i.e. iff pξ > (1/β − θ)(1/β − g). Also, we

have to verify that (21) is not binding indefinitely. From (25), using limk→0 q
′(k) = +∞,

this is the case if h̄ is lower than g + ξ/φ, i.e. p < ξ/φ2 + (g − θ)/φ. The conditions

P (1/β) > 0 and p < ξ/φ2 + (g − θ)/φ imply that (ξ/φ)2 + (g − θ)ξ/φ > pξ >

(1/β − θ)(1/β − g) which is assumption H2. H2 is possible only if F (ξ/φ) > 0, where

F (x) = x2+(g−θ)x−(1/β−θ)(1/β−g) is a second degree polynomial. The discriminant
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of F (x) = 0 is given by [2/β − (g + θ)]2, implying that F (x) = (x − x)(x − x̄) where

x < 0 < x̄ are the two real roots of F (x) = 0. F (x) is positive if x < x or x > x̄, and

since ξ/φ > 0, we must have ξ/φ > x̄ = 1/β − (3g − θ)/2 (assumption H1).

H Proof of Proposition 6

With exponential preferences ht = eγ[ct+1−ct+p(et+1−et)]/β. ht = h̄ gives

ct+1 − ct + p(et+1 − et) = ln(βh̄)1/γ (56)

for all t ≤ T . Multiplying both sides by ξ and using (20) and (17) leads to

ln(βh̄)ξ/γ = ξ[qt+1 − qt − kt+2 + (1 + g)kt+1 − gkt]− φ[qt+2 − (1 + g)qt+1 + gqt]

− (et+3 − et+2) + (θ + g)(et+2 − et+1) + (ξp− gθ)(et+1 − et) (57)

for all t ≤ T . For t < t0, we have kt = gtk0, and using q(k) = Akα, qt = gαtq0. For

t0 ≤ t ≤ T + 1, we have kt = k̄ and qt = q(k̄) ≡ q̄. (57) can thus be expressed as

mt+2 = (θ + g)mt+1 + (ξp− gθ)mt − κgαt − ln(βh̄)ξ/γ (58)

for all t ≤ T − 1, where mt ≡ et+1 − et and

κ =

{
[ξ + φ(g − gα)](1− gα)q0 t < t0

0 t0 ≤ t ≤ T − 1
.

For t ≥ T , as φq(kt) = ξµt, we have et+1 = θet + ê implying mt+1 = θmt.

The solution of (58) is mt = nt + vt where nt and vt are the solutions of the

corresponding homogeneous and particular equations. The characteristic equation of

the homogeneous equation is P (x) = 0. As h is irrelevant, nt = ϕh̄t where ϕ is a

constant. The particular solution of (58) is given by vt = gαtν0 + ν1 where ν0 and ν1

solve

gα(t+2)ν0 + ν1 = (θ + g)(ν0g
α(t+1) + ν1) + (ξp− gθ)(ν0g

αt + ν1)− κgαt − ln(βh̄)ξ/γ

for all t ≤ T − 1, which gives ν0 = κ/P (gα) and ν1 = ln(βh̄)ξ/γ/P (1). As P is concave

with P (g) = pξ and P (1/β) > 0, we have P (gα) > 0 and P (1) > 0, hence ν1 > 0

since P (1/β) > 0 implies h̄ > 1/β. We also have ν0 ≥ 0 if ξ/φ ≥ 1− g > gα − g. The
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solution of (58) is thus

mt = ϕh̄t + gαtν0 + ν1, (59)

where ϕ is specific to each sub-sequence and is derived from their initial conditions, i.e.

from (58) evaluated at t = t0 − 1, (57) evaluated at t = T , and from (20) at t = 1.

Using (57) at t = T , yields

ln(βh̄)ξ/γ = ξ(k̄ − kT+2)− φ(q(kT+2)− q̄)−mT+2 + (θ + g)mT+1 + (ξp− gθ)mT

= ξk̄ + φq̄ − [ξkT+2 + φq(kT+2)]− θ2mT + θ(θ + g)mT + (ξp− gθ)mT

= ξk̄ + φq̄ − [ξkT+2 + φq(kT+2)] + ξpmT ,

where the first line comes from kt = k̄ and qt = q̄ for t0 ≤ t ≤ T + 1, and the second

from mt+1 = θmt for t ≥ T . Identifying each term with (56) multiplied by ξ on both

sides, it comes

ξ(cT+1 − cT ) = ξk̄ + φq̄ − [ξkT+2 + φq(kT+2)] ≡ κ1. (60)

We thus get, using (59) where ν0 = 0 and ln(βh̄)ξ/γ = ν1P (1),

ϕh̄T + ν1 = [ν1P (1)− κ1]/ξp.

It comes

ϕ = ν1(P (1)/ξp− 1)/h̄T − κ1/(ξph̄
T ) = −[(1− θ)(1− g)ν1 + κ1]/(ξph̄

T )

for all t0 ≤ t ≤ T . Substituting into (59) and using ν0 = 0 for all t0 ≤ t ≤ T gives

mt = ν1 − [(1− θ)(1− g)ν1 + κ1]/(ξph̄
T−t)

for all t0 ≤ t ≤ T . Using (56) evaluated at T and (60) we get

cT+1 − cT + pmT = κ1/ξ + pν1 − [(1− θ)(1− g)ν1 + κ1]/ξ = P (1)ν1/ξ = ln(βh̄)1/γ,

and it comes

hT = eγ[cT+1−cT+p(eT+1−eT )]/β = h̄ = g + q′(kT+2)/[1 + q′(kT+2)φ/ξ].
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We thus have kT+2 = k̄, and from and (60) cT+1 − cT = 0 = κ1, implying

mt = ν1 − [(1− θ)(1− g)ν1]/(ξph̄
T−t)

for all t0 ≤ t ≤ T . As mt ≥ P (1)ν1/ξp = ln(βh̄)1/pγ > 0, et+1 > et for all t0 ≤ t ≤ T .

Using (58) for t = t0 − 1, it comes

mt0+1 = ν1 − [(1− θ)(1− g)ν1]/(ξph̄
(T−t0−1))

= (θ + g){ν1 − [(1− θ)(1− g)ν1]/(ξph̄
(T−t0))}+ (ξp− θg)(ϕh̄t0−1 + gα(t0−1)ν0 + ν1)− ν1P (1).

As P (1) = ξp− θg − 1 + θ + g, this equation simplifies to

[(1− θ)(1− g)ν1]/(ξph̄
(T−t0−1)) = (θ + g)[(1− θ)(1− g)ν1]/(ξph̄

(T−t0))

− (ξp− θg)(ϕh̄t0−1 + gα(t0−1)ν0).

Multiplying by ξph̄T−t0+1 yields

[(1−θ)(1−g)ν1]h̄2 = (θ+g)[(1−θ)(1−g)ν1]h̄−(ξp−θg)(ϕh̄t0−1+gα(t0−1)ν0)ξph̄
T−t0+1,

and re-organizing terms,

[(1− θ)(1− g)ν1][h̄
2 − (θ + g)h̄] = −(ξp− θg)(ϕh̄t0−1 + gα(t0−1)ν0)ξph̄

T−t0+1,

where, as P (h̄) = 0, pξ − θg = h̄2 − (θ + g)h̄. Simplifying, we get

(1− θ)(1− g)ν1 = −[ϕ+ (gα/h̄)t0−1ν0]ξph̄
T ,

which gives

ϕ = −
(
gα

h̄

)t0−1

ν0 −
(1− θ)(1− g)ν1

ξph̄T
.

Substituting into (59) yields

mt = ν0g
αt[1− (gα/h̄)t0−1−t] + ν1 − [(1− θ)(1− g)ν1]/(ξph̄

T−t)
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for all 0 < t < t0. As mt > 0, et+1 > et for all 0 < t < t0. (31) is deduced from

t−1∑
τ=1

mτ = et − e1 =
t−1∑
τ=1

(ϕh̄τ + gατν0 + ν1) = ϕ
h̄t − h̄

h̄− 1
+ ν0

gα − gαt

1− gα
+ (t− 1)ν1

= ν0

(
gα − gαt

1− gα
−
(
gα

h̄

)t0−1
h̄t − h̄

h̄− 1

)
+ ν1(t− 1)− (1− θ)(1− g)ν1

ξph̄T
h̄t − h̄

h̄− 1

for all 1 < t < t0, where e1 = θe0 + ξµ0 − φq0 + ê, and from

t−1∑
τ=t0−1

mτ = et − et0−1 = ϕ
t−1∑

τ=t0−1

h̄τ + (t− t0)ν1 = ϕ
h̄t − h̄t0−1

h̄− 1
+ (t− t0 + 1)ν1

= ν1(t− t0 + 1)− (1− θ)(1− g)ν1
ξph̄T

h̄t − h̄t0−1

h̄− 1
,

for all t0 ≤ t ≤ T . Using mT = ln(βh̄)1/(pγ) and mT = eT+1 − eT = ê − (1 − θ)eT , it

comes that T is solution of eT = eN − ln(βh̄)1/(1−θ)pγ. As

mt −mt−1 = ν0(g
αt − gα(t0−1)/h̄t0−1−t − gα(t−1) + gα(t0−1)/h̄t0−t)− ν1(1− θ)(1− g)

ξph̄T−t+1
(h̄− 1)

= −ν0[(1/gα − 1)gαt + (h̄− 1)gα(t0−1)/h̄t0−t]− ν1(1− θ)(1− g)

ξph̄T−t+1
(h̄− 1),

where ν0 > 0 if t < t0 and ν0 = 0 if t0 ≤ t ≤ T , mt − mt−1 < 0 for all t ≤ T : the

sequence {et}2≤t≤T increases at a decreasing rate. From (20), the GTI index is deduced

from these expressions using µt = (et+1 − θet + φqt − ê)/ξ. From (56),

ct+1 − ct = ln(βh̄)1/γ − pmt

for all t ≤ T where

mt = ν0g
αt[1− (gα/h̄)t0−1−t] + ν1[1− (1− θ)(1− g)/(ξph̄T−t)]

= ν0g
αt[1− (gα/h̄)t0−1−t] + ln(βh̄)1/γ[ξp− (1− θ)(1− g)/h̄T−t]/[pP (1)]

for all 1 < t ≤ T. We thus have

ct+1 − ct = −ν0gαt[1− (gα/h̄)t0−1−t] + ln(βh̄)1/γ[P (1)− (ξp− (1− θ)(1− g)/h̄T−t)]/P (1)

= −ν0gαt[1− (gα/h̄)t0−1−t]− ln(βh̄)1/γ(1− θ)(1− g)(1− 1/h̄T−t)/P (1)

which is negative and increasing, with a maximum equal to 0 at t = T . As ct+1 − ct −
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(ct − ct−1) = −p(mt −mt−1) > 0, the consumption sequence decreases at a decreasing

rate.

I Proof of Proposition 7

For ease of notation, superscript ℓ is omitted and results are derived in the tax-subsidy

policy case (ℓ = sub). Variations from these results in the tax-standard policy case are

specified in the text. Also, subscript t is used as a shorthand for coefficients function of

zt, e.g. a3t ≡ asub3 (zt). I first characterize the distribution of ỹt+1 given the information

available in period t, t0 < t ≤ T , a random variable denoted by ỹt+1|t. Define

k̂(r) ≡ q′−1((1 + r − g)/(1− (h̄− g)φ/ξ)),

and q̂(r) ≡ q(k̂(r)). We have k̄ = k̂(r̄), and q̄ ≡ q̂(r̄) denotes the corresponding GDP.

Given the information available in period t, the prevailing interest rate rt (and thus

the realization εt of ε̃t) is known, and both kt+1 = k̂(rt) and qt+1 = q̂(rt+1) are known.

From (20), et+1 is also known since it depends on variables of the previous period, that

are function of εt−1. Hence, from (17), we get

ỹt+1|t = c̃t+1|t + pet+1 = qt+1 − k̃t+2|t + gkt+1 − (µ̃t+2|t − gµt+1) + pet+1, (61)

where k̃t+2 and µ̃t+2 are unknown since they depend on the realization of ε̃t+1: we have

k̃t+2 = k̂(r̃t+1) and, from (34),

µ̃t+2|t = a1µt+1 + a2et+1 + a3t + Zt+1 + b1tε̃t+1 + b2εt. (62)

Replacing, we get

ỹt+1|t = qt+1 − k̃t+2|t + gkt+1 + (g − a1)µt+1 + (p− a2)et+1 − a3t − Zt+1 − b1tε̃t+1 − b2εt.

Using the linear approximation kt ≈ k̄+ k̂′(r̄)r̄εt−1 where k̂
′(r̄) = 1/[(1− τφ)q′′(k̄)],

we get using Et[k̃t+2] ≈ k̄ + k̂′(r̄)r̄E[ε̃t+1|εt] and (33),

ỹt+1|t − Et[ỹt+1] ≈ −(k̃t+2|t − E[k̃t+2|εt])− b1t(ε̃t+1 − E[ε̃t+1|εt])

= −(k̂′(r̄)r̄ + b1t)(ε̃t+1 − E[ε̃t+1|εt])

= −(k̂′(r̄)r̄ + b1t)χtω̃t+2
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when t0 < t ≤ T . Hence, ỹt+1|t is approximately normally distributed with variance

Vt[ỹt+1] = (k̂′(r̄)r̄ + b1t)
2χ2

tσ
2
ω ≡ σ2

yt+1|t
when t0 < t ≤ T . For the tax-standard policy,

as bstd1 and χstd do not depend on t (as shown below), σ2
yt+1|t

is a constant.

The coefficients a1,a2, a3t b1t, b2, and Zt in (34), and χt and ρt in (33), are derived

as follows. Using (20), (17), (61), (62) and Et[k̃t+2] ≈ k̄ + k̂′(r̄)r̄E[ε̃t+1|εt], it comes

Et[ỹt+1]− yt ≈ qt+1 − qt − k̄ − k̂′(r̄)r̄E[ε̃t+1|εt] + kt+1(1 + g)− gkt − Et[µ̃t+2] + (1 + g)µt+1

− gµt + p(et+1 − et)

= qt+1 − qt − k̄ − k̂′(r̄)r̄E[ε̃t+1|εt] + kt+1(1 + g)− gkt

− (a1µt+1 + a2et+1 + a3t + Zt+1 + b1tE[ε̃t+1|εt] + b2εt) + (1 + g)µt+1

− µtg + p(et+1 − et)

= qt+1 − qt − k̄ − k̂′(r̄)r̄E[ε̃t+1|εt] + kt+1(1 + g)− gkt − a3t − Zt+1

− b1tE[ε̃t+1|εt]− b2εt + (1 + g − a1)µt+1 − µtg + (p− a2)et+1 − pet

= qt+1 − qt − k̄ − (b1t + k̂′(r̄)r̄)E[ε̃t+1|εt] + kt+1(1 + g)− gkt − a3t − Zt+1

− b2εt + (1 + g − a1)µt+1 − µtg + (p− a2)(θet + ξµt − φqt + ê)− pet

= qt+1 − qt[1 + φ(p− a2)]− k̄ − (b1t + k̂′(r̄)r̄)E[ε̃t+1|εt] + kt+1(1 + g)− gkt

+ (1 + g − a1)µt+1 − µt[g − ξ(p− a2)] + [θ(p− a2)− p]et + (p− a2)ê− a3t

− Zt+1 − b2εt.

Using (1 + rt)zt = (h̄+ r̄εt)zt in (12) and (32), we get

(1−λ)(gµt−µt+1)+(1−g)(µt−1)+ϖωt+1+ξτt+1+(h̄+r̄εt)zt−gzt+1 ≈ rt ≈ ψ−γ2σ2
y+1
/2+γ{Et[ỹt+1]−yt}

where ϖ ≡ (1−λ)/(1−λ+σ2
υ/σ

2
ω), which gives, denoting a0 ≡ 1/[1−λ+γ(1+g−a1)],

µt+1/a0 ≈ [1− λg + γg − γξ(p− a2)]µt − γ[θ(p− a2)− p]et +ϖωt+1 + ξτt+1 + (h̄+ r̄εt)zt − gzt+1

− (ψ − γ2σ2
y+1
/2)− γ(p− a2)ê+ γa3 + g − 1 + γZt+1 + γ(b1 + k̂′(r̄)r̄)E[ε̃t+1|εt]

+ γb2εt − γqt+1 + γqt[1 + φ(p− a2)] + γk̄ − γkt+1(1 + g) + γgkt.

Using kt+1 ≈ k̄ + k̂′(r̄)r̄εt and qt+1 ≈ q̄ + q̂′(r̄)r̄εt where q̂
′(r̄) = q′(k̄)k̂′(r̄) for t and

t− 1, the last terms can be approximated by

−γqt+1 + γqt[1 + φ(p− a2)] ≈ −γq̂′(r̄)r̄εt + γq̄φ(p− a2) + γq̂′(r̄)r̄εt−1[1 + φ(p− a2)]
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and

γk̄ − γkt+1(1 + g) + γgkt ≈ −γk̂′(r̄)r̄εt(1 + g) + γgk̂′(r̄)r̄εt−1.

Substituting and, from (33), using E[ε̃t+1|εt] = ρtεt, we arrive at

µt+1 ≈ a0[1− λg + γg − γξ(p− a2)]µt − a0γ[θ(p− a2)− p]et + a0ϖωt+1

− a0[ψ − γ2σ2
yt+1|t

/2 + γ(p− a2)(ê− q̄φ)− γa3t + 1− g] + a0[ξτt+1 + h̄zt − gzt+1 + γZt+1]

+ a0γ(q̂
′(r̄)[1 + φ(p− a2)] + gk̂′(r̄))r̄εt−1

− a0γ[q̂
′(r̄)r̄ + k̂′(r̄)r̄(1 + g)− b2 − r̄zt/γ − (b1t + k̂′(r̄)r̄)ρt]εt (63)

Identifying the non-stochastic terms with those of (34) and simplifying gives

a1 =
1− λg + γ[g + ξ(a2 − p)]

1− λ+ γ(1 + g − a1)
, a2 =

γp(1− θ)

1− λ+ γ(1 + g − a1 − θ)
, (64)

a3t = −
ψ − γ2σ2

yt+1|t
/2− γ(p− a2)(φq̄ − ê) + 1− g

1− λ+ γ(g − a1)
,

and Zt = a0(ξτt+1 + h̄zt − gzt+1 + γZt+1). Solving the recursion gives (35).

For the standard policy, using (14) and (32) to get

(1−λ)(gµt−µt+1)+(1−g)(xt−1)+ϖωt+1+ξτt+1 = rt ≈ ψ−γ2σ2
y+1
/2+γ{Et[ỹt+1]−yt},

it comes following the same steps that astd2 and and astd3 are given also by (64) (but

where σ2
yt+1|t

is a constant in the latter) while we have

astd1 =
(1− λ)g + γ[g + ξ(astd2 − p)]

1− λ+ γ(1 + g − astd1 )

and Zstd
t = astd0 (ξτt+1 + (1 − g)xt + γZstd

t+1), with astd0 = 1/[1 − λ + γ(1 + g − astd1 )].

Solving the recursion gives (37).

The parameters of the stochastic terms are derived as follows. When εt−1 = ωt+1 =

0, we have εt = 0 implying rt = r̄. Denoting by µt+1|rt=r̄ the value of µt+1 in such a

case, we get from (12),

µt+1 − µt+1|rt=r̄ ≈
ϖωt+1 + (1 + rt − h̄)zt + r̄ − rt

1− λ
=
ϖωt+1 − (1− zt)r̄εt

1− λ
,
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using (1 + rt)zt ≈ (h̄+ r̄εt)zt, and from (63),

µt+1 − µt+1|rt=r̄ ≈ a0{ϖωt+1 + γ(q̂′(r̄)[1 + φ(p− a2)] + gk̂′(r̄))r̄εt−1 (65)

− γ[q̂′(r̄)r̄ + k̂′(r̄)r̄(1 + g)− b2 − r̄zt/γ − (b1t + k̂′(r̄)r̄)ρt]εt}.

Equalizing gives

ϖωt+1 =
r̄(1− zt)− (1− λ)a0γ[q̂

′(r̄)r̄ + k̂′(r̄)r̄(1 + g)− b2 − r̄zt/γ − (b1t + k̂′(r̄)r̄)ρt]

1− (1− λ)a0
εt

(66)

+ (1− λ)γa0
q̂′(r̄)[1 + φ(p− a2)] + gk̂′(r̄)

1− (1− λ)a0
r̄εt−1.

Substituting in (65) yields

µt+1 − µt+1|rt=r̄ ≈ γa0
q̂′(r̄)[1 + φ(p− a2)] + gk̂′(r̄)

1− (1− λ)a0
r̄εt−1

+ a0
r̄ − γ[q̂′(r̄)r̄ + k̂′(r̄)r̄(1 + g)− b2 − (b1t + k̂′(r̄)r̄)ρt]

1− (1− λ)a0
εt.

Identifying with the stochastic terms of (34) gives, using 1 − (1 − λ)a0 = γa0(1 +

g − a1),

b2 =
q̂′(r̄)[1 + φ(p− a2)] + gk̂′(r̄)

1 + g − a1
r̄ (67)

b1t =
r̄ − γ[q̂′(r̄)r̄ + k̂′(r̄)r̄(1 + g − ρt)− b2 − ρb1t]

γ(1 + g − a1)
. (68)

As (66) can be written as ϖωt+1 = [(1− λ)b1 + r̄(1− zt)] εt + b2(1− λ)εt−1, we get

from (33) that χt = ϖ/ [(1− λ)b1 + r̄(1− zt)] and

ρt =
−b2(1− λ)

(1− λ)b1t + r̄(1− zt)
. (69)

Reorganizing terms to get b2 = −ρt [b1t + r̄(1− zt)/(1− λ)] and substituting in (68),

we arrive at

b1t =
1− γ[q̂′(r̄) + k̂′(r̄)(1 + g − ρt) + ρt(1− zt)/(1− λ)]

γ(1 + g − a1)
r̄.
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From (67) and (69), we obtain that ρt solves

ρt =
−(1− λ)γa0{q̂′(r̄)[1 + φ(p− a2)] + gk̂′(r̄)}

1− γa0

{
(1− λ)[q̂′(r̄) + k̂′(r̄)(1 + g)] + ρt

[
1− zt − k̂′(r̄)(1− λ)

]} . (70)

For the standard policy, the same steps give identical formulae but with zt replaced

by 0. As a result, parameters bstd1 , ρstd and χstd are constant.

The first two equations of (64) form a system involving only coefficients a1 and a2

that can be solved separately from the others. More precisely, defining a01 ≡ g + (1 −
λ)/γ, we can express (64) as

a1 =
a01 + λ(1− g)/γ + ξ(a2 − p)

a01 − a1 + 1
, a2 =

p(1− θ)

a01 − a1 + 1− θ
, (71)

a3t = −
ψ − γ2σ2

yt+1|t
/2− γ(p− a2)(φq̄ − ê) + 1− g

γ(a01 − a1)
, a0 =

1

γ(a01 − a1 + 1)

From the expression of a2, we get

a2 − p = −p a01 − a1
a01 − a1 + 1− θ

, (72)

which, plugged into the expression of a01 − a1, gives

(a01 − a1)

(
a1 − 1 +

ξp

a01 − a1 + 1− θ

)
=
λ(1− g)

γ

that can be expressed as Q(a01 − a1) = 0 where

Q(x) ≡ x3 + (2− θ − a01)x
2 + [(1− θ)(1− a01)− ξp+ λ(1− g)/γ]x+ λ(1− θ)(1− g)/γ

is a third degree polynomial. As Zt given by (35) converges if γa0 < 1, i.e. if a1 < a01,

only positive roots are relevant. From (71) and (72), a1 > 0 if a01 + λ(1 − g)/γ +

ξ(a2 − p) = g + (1 − λg)/γ − pξ(a01 − a1)/(a
0
1 − a1 + 1 − θ) > 0. Since a01 > a1,

it suffices to have g + (1 − λg)/γ ≥ pξ. Under the tax-standard policy, astd1 > 0 if

a01− (1−g)(1−λ)/γ+ ξ(a2−p)g = g(1+(1−λ)/γ)−pξ(a01−a1)/(a01−a1+1−θ) > 0.

A sufficient condition is thus g(1 + (1 − λ)/γ) ≥ pξ which is more stringent than the

tax-subsidy one. Both are satisfied if g ≥ pξ.

Equation (70) can be written as ζt(ρ) = −Atρ
2+Bρ−C = 0, where At ≡ [1− zt−

k̂′(r̄)(1−λ)]γa0, B ≡ 1−(1−λ)γa0[q̂′(r̄)+ k̂′(r̄)(1+g)], and C ≡ −(1−λ)γa0{q̂′(r̄)[1+
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φ(p− a2)] + gk̂′(r̄)} are positive coefficients. As ζ(0) < 0 and ζ ′(0) > 0, ζ admits two

positive roots provided that ∆t ≡ B2 − 4AtC > 0, the smallest root being given by

(B −
√
∆t)/(2At). In the tax-standard policy case, formulae are identical but with zt

replace by 0, implying that ρstd is a constant.

Solving the recursion of (33), it comes

ε̃t = χtω̃t+1 + ρtε̃t−1 =

t−t0∑
k=0

χt−kω̃t+1−k

k−1∏
i=0

ρt−i + εt0

t0∏
k=0

ρt−k,

hence E[ε̃t|εt0 ] = εt0
∏t0

k=0 ρt−k and

V[ε̃t|εt0 ] = E[(ε̃t − E[ε̃t|εt0 ])2|εt0 ] = E

(t−t0∑
k=0

χt−k

k−1∏
i=0

ρt−i

)2
E[ω̃]2

using independence. In the tax-standard policy case, as ρt = ρstd and χt = χstd, it

comes E[ε̃t|εt0 ] = εt0(ρ
std)t−t0 and V[ε̃t|εt0 ] = (χstdσω)

2(1− (ρstd)2(t−t0)+1)/(1− (ρstd)2).
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