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Abstract1

In this paper we develop new indicators and statistical tests to characterize patterns of crop2

diversity at local scales. Households growing a large number of species or landraces are known3

to contribute an important share of local available diversity of both rare and common plants4

but the role of households with low diversity remain little understood: do they grow only com-5

mon varieties – following a nestedness pattern typical of mutualistic networks in ecology – or6

do ‘diversity poor’ households also grow rare varieties? This question is pivotal in ongoing ef-7

forts to assess the contribution of small farmers to global agrobiodiversity at local scales. We8

develop new network-based approaches to characterize the distribution of local crop diversity9

at the village level (species and infra-species) and validate these approaches using meta-data10

sets from 10 countries. Our results highlight the sources of heterogeneity in the local crop di-11

versity. We often identify two or more groups of households based on their different levels of12

diversity. In some datasets, ’diversity poor’ households significantly contribute to the local crop13

diversity. Generally, we find that the distribution of crop diversity is more heterogeneous at the14

species than at the infra-species level. This analysis reveals the absence of a general pattern of15

crop diversity distribution independent of agro-ecological and socio-cultural context.16
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1 Glossary50

Network: is a finite set of nodes (vertices) connected by links (edges).51

Node: is a synonym of a vertex and is the fundamental unit of which graphs are formed.52

Edge: an edge is a link between two vertices,every edge has two endpoints in the sets of vertices.53

In the particular case of bipartite networks, the two endpoints belong to two disjoint subsets of54

nodes, e.g. farmer households (H) and crops (S, species or landraces). The presence of an edge55

indicates that the household grows the considered crop.56

Degree: the number of edges incident to a vertex, e.g. a household’s degree is the number of crops57

grown by the considered household.58

Interaction network: a network of nodes that are connected by features, e.g. in a crop-household59

interaction network, crops are grown by farmers that are members of the household.60

Bipartite network: network whose vertices can be partitioned into two disjoint subsets (e.g. F61

to represent the farmer households and S to represent the species/landraces) such that no edge62

connects two vertices from F or two vertices from S.63

Incidence matrix: 0/1 matrix A. Its rows are indexed by the set of households F and its columns64

are indexed by the set of plants S. The entry Ai j equals one if and only if farmer i grows plant j65

(see Section 4.1).66

Nestedness: this index quantifies the extent to which nodes of one subset (e.g.: F ) with low67

degrees are linked to nodes of the other sub-set (e.g.: S) with high degrees. In the example of68

household-plant network, it measures to what extent ’diversity poor’ households grow a subset69

of plants grown by ’diversity rich’ households.70

Erdős-Rényi model: a random graph model where all the edges are drawn independently with71

the same probability p.72

Latent block models: random graph models assuming a mixture distribution both on rows (house-73

holds) and columns (plants). Households and plants are assumed to belong to blocks which are74
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latent (not observed). Thanks to a statistical inference procedure this block structure can be un-75

covered (see Section 4.3).76

Configuration model: a random graph model with a prescribed degree sequence. All graphs77

with this degree sequence obtained by permutation are equiprobable in this model (for details78

see section 4.4.1).79

2 Introduction80

Agriculture relies on the use of crop plant species to provision human societies with food, cloth-81

ing, medicinal, narcotic, fodder purpose, and building materials. Crop species have been domesti-82

cated from wild ancestors, which often display variability in traits related to their local adaptation83

to the environment. During domestication, only a subset of diversity from the wild ancestors was84

selected, and shaped in divergent ways depending on the goals of farmers, to produce a diversity of85

landraces, named and managed as distinct entities (Diamond, 2002). Furthermore, different crop86

species play distinctive, often complementary, roles in agriculture. In traditional agro-ecosystems,87

the end result of these processes of selection among wild diversity, divergent selection in farmers’88

fields and adoption of numerous kinds of crops, is a substantial diversity of cultivated plants, both89

in terms of the number of species and landrace diversity within species (Jarvis et al., 2008).90

A primary requisite to understanding and predicting the sustainability of agricultural systems91

facing environmental, political, social and economical changes is to assess how these systems can92

maintain crop diversity (e.g. Samberg et al., 2013). For instance, in the case of manioc managed93

by Makushi Amerindians of Guyana, some varieties are specially grown for special dishes, others94

for another use; some grow quickly, thereby ensuring early yield, while others grow slowly and act95

ever-present insurance (Elias et al., 2000). Often, diversity is just valued for its own sake (Boster,96

1985), or as a means to foster social relations (Heckler and Zent, 2008). Another example is the97

great diversity of landraces present in milpas of Yucatan, the end product of several thousand years98

of directed selection on maize, beans, squash and chile peppers by the region’s farmers. Under-99

standing landraces relationships, it is possible to gain insight into the cultural history of crops in100

Yucatan. The particular traits exhibited by local varieties grown in milpas today reflect Yucate-101
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can farmers’ short- and long-term responses to agroenvironmental conditions, the ecological de-102

mands of crop production, and the aesthetic, culinary, and religious sensibilities of farmers (Tuxill103

et al., 2010). Maintaining crop diversity is of paramount importance in helping crops and farmers104

adapt to global changes, notably climate change (Vigouroux et al., 2011) and the increasingly rapid105

emergence of agricultural pests (Diamond, 2002). In the face of such change, drastically reduced106

diversity of crop species and varieties would inevitably lead to increasingly unpredictable yields.107

In addition, cultivating diverse crops and varieties at the landscape level favors ecological and eco-108

nomic sustainability by reducing the need for chemical inputs (Bianchi et al., 2006; Crowder et al.,109

2010).110

From a purely biological perspective, the spatial distribution of crop diversity is expected to111

be partially explained by environmental factors due to the differential adaptation of crops to local112

conditions (Mariac et al., 2011). For instance, dry and wet climates do not require the same phys-113

iological adaptations of plants, and different limiting factors impose different strategies to cope114

with them. Selective pressures in cultivated environments differ from those in wild environments.115

However, unless massive inputs (unsustainably) free crops from environmental constraints, adap-116

tation to local abiotic environments is expected to shape crop diversity — as it shapes the diversity117

of wild plants — at more or less large spatial scales, e.g. over latitudinal or altitudinal gradients.118

At fine spatial scales, local adaptation is also expected to play a role in the distribution of crop di-119

versity, e.g. due to the heterogeneity of soil quality of agricultural fields and to variability in local120

rainfall (Fraser et al., 2012).121

In addition to environmental factors, it has been argued that crop diversity can only be under-122

stood by accounting for social and cultural aspects of their contextual environment (Leclerc and123

Coppens d’Eeckenbrugge, 2012; Rival and McKey, 2008). Agricultural societies have shaped the124

diversity of their cultivated crops in ways that fitted their traditions, habits, myths, social organi-125

zations, and livelihoods (Dêletre et al., 2011; Leclerc and Coppens d’Eeckenbrugge, 2012). In fact,126

crops and humans have likely evolved together, as cultural practices may have been shaped by127

available edible plants as much as agricultural selection may have answered cultural needs. The128

study of crop genetic and interspecific diversity in the context of both environment- and society-129

driven selective pressures is now taken into account through the GxExS framework (Leclerc and130
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Coppens d’Eeckenbrugge, 2012).131

Thus, studying the distribution of crop diversity and linking it with both social and environ-132

mental factors cannot be based on a uniquely biological perspective. However, interdisciplinary133

studies of the distribution of crop diversity must retain quantitative rigor and thus be based on134

a sound statistical framework. So far, the distribution of crop diversity has been assessed mostly135

through the use of diversity indices adopted from ecology and economics, e.g. indices of richness,136

evenness, concentration, etc. (textite.g. Jarvis et al., 2008). However, such indices only make use137

of crop diversity data as an instance of “type in location” data, and this limits the types of ques-138

tions they address. For example, these indices can help explain why crops are found in the fields139

they are in, but not why farmers happen to cultivate this or that crop. A significant shortcoming of140

studies of the distribution of crop diversity is that they have failed to utilize the network* 1 feature141

of crops-by-farmers datasets which include social aspects such as farmer-to-farmer circulation of142

seeds (and other propagules) of varieties and crop species.143

Our main goal in this paper is to answer the question “which households contribute, and how,144

to the diversity of crops grown in a given village?” by examining on inventories of crops species and145

landraces grown at the household level. To do so, we offer a novel methodological framework us-146

ing network-based and null model-based statistical tests. From a methodological perspective, in-147

ventory datasets can be construed as bipartite networks*, namely crop-by-household interaction148

networks, in the same way as plant-pollinator or host-parasite interaction networks in ecology. In149

social network analysis, network approaches have been used to assess the properties of network150

processes linked to social institutions such as friendship, advice or seed exchange networks (“who151

interacts with whom” or “who gives to whom”) (Wasserman and Faust, 1994; Lazega et al., 2012;152

Reyes-García et al., 2013). In ecology, on the other hand, networks have been used to study both153

contact networks (metapopulations or metacommunities) and structured interaction networks*154

such as food webs (e.g. host-plant networks) or mutualistic networks (e.g. plant-pollinator net-155

works). When interaction partners can be clearly categorized (e.g. plants vs. pollinators; plants,156

herbivores and parasitoids), the use of bi- or multi-partite networks is an appropriate approach. In157

the present study, we develop a framework for the study of crop-by-household datasets that makes158

1* indicates these words or expression are defined in the Glossary section
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use of the bipartite nature of the data to reveal potential patterns of diversity structure at the scale159

of the village or of clusters of interacting villages.160

Our paper offers an alternative to the nestedness* approach, for several reasons as detailed be-161

low. The study of bipartite networks in ecology is a recent endeavor (Jordano, 1987). In the last162

three decades, the topological properties of bipartite networks have been studied to answer a vari-163

ety of questions, e.g. whether such networks are stable, robust to species extinctions or additions,164

functionally redundant, etc. (Jordano et al., 2003; Thébault and Fontaine, 2010). In particular, the165

nestedness of mutualistic bipartite networks often has been investigated, and studies suggest how166

it nestedness may be the key property explaining the dynamics and structural stability of mutual-167

istic networks (Thébault and Fontaine, 2010). Such patterns are often explained as resulting from168

source-sink processes wherein species-rich locations function as sources producing many emi-169

grating individuals which, in turn, contribute to the diversity in species-poor, sink locations Mat:170

[ref] (), or from feasibility constraints on the existence of specialist-specialist interactions in mu-171

tualistic networks Mat: [ref] (). In systems involving social as well as ecological processes, such172

as in the present case of crop-by-household interactions, one may ask whether the plants present173

in less diverse farms systematically comprise a subset of those cultivated in more diverse farms.174

Among the Duupa in northern Cameron, for example, older farmers accumulate crop diversity175

during over their life (sources) and become sources of diversity for young farmers (sinks) (Alvarez176

et al., 2005). When crops are actively cultivated by farmers, for example as staple food, copying177

other farmers’ portfolios of crops might result in strong similarities in cultivated diversity among178

fields, but not necessarily following a nested pattern. Therefore, contrary to the case for ecological179

systems, certain mechanistic reasons may justify considering crop-by-household interactions as180

systematically nested, precluding explanations solely based on source-sink processes.181

From a purely methodological perspective, available indices of network nestedness are quite182

inconsistent, both in the value of nestedness metrics and in their associated p-value when con-183

fronted with the configuration model, a null model of partner interactions constrained by degree,184

i.e. fixing the degree of rows and columns (Podani and Schmera, 2012). Therefore, nestedness is185

still a more or less verbal concept, its mathematical definition is in need of refinement, researchers186

have yet to study possible nestedness patterns in crop diversity research.187
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In the first section of our paper, we introduce a meta-dataset of specific and infra-specific crop188

diversity at the local scale in different agricultural contexts. In the second section, we describe our189

methodological framework, and the tests proposed, illustrated with a few toy examples, i.e.: a hy-190

pothetical example: (i) to test whether the variability in the number of connection per household191

and per crop type is different from random expectations under an homogeneous random graph192

model (Erdős-Rényi model*); (ii) to reveal structure (e.g. modules, cores, etc.) in the dataset using193

latent block models* (LBMs); (iii) to uncover “outliers” (i.e. farmers or crop types that do not con-194

form to the general connection pattern) using principal component analyses (PCAs); and, (iv) to195

measure and to test the originality of farmers’ contributions to overall crop diversity using beta-196

diversity indices. In the third section, we perform a meta-analysis applying the methodological197

framework to our meta-dataset, which allows us to highlight both regularities and particularities198

among the datasets. Overall, our approach yields graphical representations of the different tests199

(e.g. re-ordering of interactions in the case of LBMs or principal plane representations for PCAs)200

and non-parametric tests of our hypotheses, the significance of which is assessed through com-201

parison with a permutation-based null model (the configuration model for graphs with given de-202

grees). These graphical and statistical approaches are to be easily transferable to similar problems203

arising in other research fields, e.g. in ecology. Before concluding, we dedicate the final section to204

the discussion of the results and of the value and the limits of this approach.205

3 Description of the datasets used in the meta-analysis206

Fifty published or unpublished datasets dealing with crop inventories were provided by ethno-207

biologists, geographers, and ecologists (Table 1 and 2). These data were collected in 10 different208

countries (Figure 1) between 1998 and 2013. For each dataset, a partial set or the full set of house-209

holds from the same village was characterized for one of the two classes of Operational Taxonomic210

Units (OTU) considered: the species or the infra-species level. This information was gathered211

through direct interviews with the cultivators of the household, a subset of them or only with the212

head of the household. Datasets were selected when the number of characterized households and213

OTU was higher than 10. For 18 datasets, information was collected at the species level (Table 1),214
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Figure 1: Map locating the different data sets used in the meta-analysis. Filled circles correspond
to the data sets collected at the specific level and filled squares correspond to the data set collected
at the infra-specific level

for 32 datasets, information was collected at the landrace level, which corresponds to the termi-215

nal taxon in the farmer local naming systems, covering seven different species (maize, rice, wheat,216

bean, manioc, taro and sorghum) which correspond to the major crops of the under area (Table217

2). These species are characterized by their predominant propagation mode with partially out-218

crossing, outcrossing, inbreeding and clonal following the classification proposed by Jarvis et al.219

(2008). Data were structured following a rectangular incidence matrix* with households in rows220

and species or landraces in columns, and represented as a bipartite network. Data collected at the221

species or infra-species level represent two levels of local crop biodiversity. Underlying processes222

shaping the distribution of local crop diversity are assumed to be different for these two levels.223

Therefore, species and infra-species data are analyzed and described separately.224
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4 Description of the methodological framework225

This section introduces the statistical framework for analyzing household-plant network data. Af-226

ter defining the main concepts, we detail the four main steps of the analysis. First, the degree227

distribution of the data is evaluated as a way to test whether a completely random model (Erdős-228

Renyii model) fits well the data. Second, we use a latent block model to investigate more thor-229

oughly the structure of the network. Intuitively, this method pinpoints groups of households and230

groups of plants that tend to be highly connected. Then, it is tested whether this high-level struc-231

ture (blocks) is not simply a consequence of low-level structures such as degree heterogeneity.232

These methods provide new graphical representations of the data emphasizing the studied pat-233

terns. Finally, complementary analyses based diversity measures on diversity measure are intro-234

duced. In each subsection, toy-examples illustrate the purpose, the benefits and the downsides of235

the proposed methods.236

4.1 Mathematical formalism237

In the following, we denote n the number of households, m the number of plants. The incidence238

matrix (with households as rows and plants as columns) that summarizes the data is noted X, so239

that Xi j = 1 when household i cultivates plant j . Using this representation (see Figure 2), we can240

readily apply statistical methods for binary matrices.241

Any incidence matrix X can also be treated as the adjacency matrix of some bipartite graph G .242

More specifically, consider a collection of nodes corresponding to all households and all species243

(or landraces) and put an edge between the household i and the plant j if and only if Xi j = 1.244

The obtained network is bipartite (see Figure 2) as no two households and no two species are245

connected in the network. Building on this equivalence between incidence matrices and bipartite246

graphs, we can borrow methodologies developed in the field of network analysis Kolaczyk (2009).247

As these two representations are equivalent, any statistical analysis could be defined either in248

terms of the incidence matrix X or in terms of the bipartite network G . To ease the reading, this249

paper makes use of the incidence matrix terminology but we sometimes borrow network notations250

to emphasize the connection with the extant literature on network analysis.251
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Figure 2: a) Example of incidence matrix where 0 are black cells and 1 are white cells; b) example
of bipartite network between households and landraces (dataset AB-M02).

Summing over plant species, the number of species cultivated by household i , Si , is252

Si =
∑

j
Xi j . (1)

Summing over farmers, the number of households that cultivate plant j , F j , is253

F j =
∑

i
Xi j . (2)

Quantities N , Si , F j and Xi j are finally linked by the following relations:254

N =∑
i

Si =
∑

j
F j =

∑
i , j

Xi j . (3)

Following the network terminologly, Si is also called the household’s degree and F j the plant’s255

degree.256
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4.2 Variability of households’ and plants’ degrees257

4.2.1 Description of the test on degree distributions258

First, we evaluate whether all households in the same village grow a similar number of species or if259

there is high heterogeneity between farms’ species richness. Formally, we test whether the degrees260

Fi follow binomial distributions by considering a statistics T that compares the observed variance261

of the plants degree with the one that would have been expected if the degrees Si were following262

independent and identically distributed Binomial distribution.263

Trow := V̂ar(S)

np̂(1− p̂)
,

where p̂ := N
nm is the density of the incidence matrix and V̂ar(S) = 1

n−1

∑n
i=1

(
Si −mp̂

)2 is the empir-264

ical variance of (Si ), i = 1, . . . ,n. Large Trow values suggest that the household’s species richness is265

highly heterogeneous whereas small Trow values suggest more equity. The statistical significance266

of T is assessed by a parametric bootstrap method working as follows. For i = 1, . . . ,nsi m , a new in-267

cidence matrix X(i ) is generated by sampling independent Bernoulli distributions with parameters268

p̂ in each entry. For all these matrices, the link density p̂(i ), the empirical variance of the house-269

hold’s degrees V̂ar
(i )

(S) and the variance ratio T (i )
row are computed. Finally, the left p-value and right270

p-values are respectively271

pvalL,row :=
#
{

i : T (i )
row < Trow

}
n

and pvalR,row :=
#
{

i : T (i )
row > Trow

}
n

.

272

The plants’ degree distribution are evaluated in a similar fashion.273

Tcol := V̂ar(F )

mp̂(1− p̂)
; V̂ar(F ) = 1

m −1

m∑
j=1

(
F j −np̂

)2 .

The corresponding p-values are also evaluated by parametric bootstrap. In our analysis, the pa-274

rameter nsi m is fixed to 10000.275
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plants

ho
us

eh
ol

ds

Figure 3: Incidence matrix with entries generated independently and identically distributed ac-
cording to a Bernoulli distribution with probability 0.2.

Under a null model, called Erdős-Renyii, where all the entries of X follow independent Bernoulli276

distribution with identical parameter, the households’ degrees and the plants’ degrees follow bino-277

mial distributions. consequently, any small p-value (pvalL,row, pvalR,row, pvalL,col, pvalR,col) entail278

that this Erdős-Renyii model is not realistic.279

4.2.2 Application of the test on degree distributions to a toy example280

Figures 3, 4 and 5 display three examples of incidence matrices. The last two matrices were gen-281

erated by assuming groups of plants and groups of households according to a Latent Block Model282

(see presentation in the next subsection). The households and the plants were sorted by degrees283

inside groups. Note that this structure of groups is generally unknown on real data set and has to284

be recovered by statistical inference techniques. In Figure 4, the incidence matrix was generated285

from i.i.d. Bernoulli random variables. Hence its row and column degrees follow binomial distri-286

butions. This corresponds to the null hypothesis of the test on the variance of degrees. The tests287

are non significant for this incidence matrix (see table 3). In Figure 4, some households were as-288

sumed to grow more plants than others and some plants assumed to be more popular. Therefore,289

as expected, the tests on the variance of degrees show clearly an over-dispersion for households290
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plants

ho
us

eh
ol

ds

Figure 4: Incidence matrix generated with heterogeneous distribution for different groups of
plants and households (see Figure 7 in next subsection for details). Some households grow more
plants than other and some plants are more popular.

plants

ho
us

eh
ol

ds

Figure 5: Incidence matrix generated with distribution implying particular association between
plants and households (see Figure 6 in next subsection for details). Two groups of plants are mainly
grown by corresponding subgroups of households.
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and plants. In Figure 5, there exist particular associations between some groups of households291

and some groups of plants. However, the degree is quite homogeneous for households. For plants,292

a heterogeneity appears since the groups of households are not of the same size.293

294

As illustrated on these three examples, the tests on the variance of degrees may detect het-295

erogeneity but some particular structure of association may be missed as in the case of Figure 5.296

Indeed, the tests are performed independently on households an on plants and thus are not able297

to detect patterns of association.298

4.3 Revealing data structure through latent block models299

4.3.1 Description of the latent block models300

In order to cluster the households and the plants simultaneously on the basis of the incidence301

matrix X, we propose to use a probabilistic model called Latent Block Model (Govaert and Nadif,302

2008; Keribin et al., 2014). It consists in assuming a mixture distribution both on the households303

and on the plants. According to this model, the network is generated according to latent blocks304

(also called clusters) of household and latent block of households. Conditioned to these latent305

blocks, the probability that a household i grows a plant j only depends on the block V (i ) to which306

household i belongs and the block W j to which plant j belongs. For all 1 ≤ i ≤ n, 1 ≤ j ≤ m,307

1 ≤ q ≤ Q, 1 ≤ l ≤ L, the probability that i belongs to block q , that j belongs to block l and the308

conditional probability of Xi j given the block Vi and W j are respectively denoted309

P(Vi = q) = αq ,

P(W j = l ) = βl ,

P(Xi j = 1|Vi = q,W j = l ) = πql ,

where θ = (α1, . . . ,αQ ,β1, . . . ,βL ,π11, . . . ,πQL) is the vector of unknown parameters to be estimated310

under the obvious constraints
∑

q αq = 1,
∑

l αl = 1. This model is quite flexible since it can account311
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not only for situation where there is modularity i.e. to each block of households is associated a312

unique block of plants and these households tend to grow mainly plants from this block and very313

few from other blocks but also situations where there are richer households (growing significantly314

more plants than others) and/or more popular plants (grown by significantly more households).315

316

The standard procedures to obtain maximum likelihood estimated when dealing with latent317

variables rely on the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). However,318

the computation of the conditional distribution of the latent variables with respect to the observed319

data is not tractable which makes the E step infeasible. Following Govaert and Nadif (2008), we320

use a variational approach to cope with this difficulty. The number of blocks of households Q and321

the number of blocks of plants L are chosen thanks to the integrated completed likelihood (ICL)322

criterion as proposed in Keribin et al. (2014). Once the parameters have been estimated, we obtain323

as a by-product the posterior probabilities P(Vi = q |X) and P(Wi = l |X) from which the true blocks324

are estimated. We can then provide a new representation of the incidence matrix X where the rows325

(households) and the columns (plants) have been reorganized in homogeneous blocks. We used326

the R package (Leger, 2015) to perform the estimations and the model selection.327

4.3.2 Application of LBM to a toy example328

Figures 6, 7 and 8 are illustrations of the block clustering provided by the LBM in three typical329

cases. The cases of Figure 6 and 7 are the same as those in Figures 5 and 4 respectively. The330

groups were considered as latent/unknown and the households and plants were clustered in ho-331

mogeneous blocks by using the inference procedure described above. This is illustrated in Figure332

6 where the same incidence matrix is plotted before and after re-organization according to the es-333

timated blocks. In Figure 6, the difference between the two groups of households comes from the334

two last groups of plants. The first group of plants is equally grown up by households of any group.335

On the contrary, the second group of plants is mainly grown up by the second group of households336

and the third group of plants is mainly grown up by the first group of households. In Figure 7, the337

households can be separated on the basis on the number of plants that they grown up, a group338

can be said to be rich and the other to be poor. Similarly, two groups are also found for plants, one339
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plants

ho
us

eh
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plants

ho
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Figure 6: Incidence matrix generated according to a LBM with 3 blocks of plants, 2 blocks of house-

holds and π =
(

0.5 0.1 0.6
0.5 0.6 0.1

)
. Left: observed incidence matrix. Right: same incidence matrix

re-organized and clustered in homogeneous blocks obtained by LBM inference.

plants

ho
us

eh
ol

ds

Figure 7: LBM clustering when the data are generated with 2 blocks of households (rich and poor

households), 2 blocks of plants (rare and frequent plants) and π=
(

0.7 0.3
0.4 0.2

)
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plants

ho
us

eh
ol

ds

Figure 8: LBM clustering when the data are generated with 1 block of households, 2 blocks of plants
(one block with only 3 plants) and π= (

0.9 0.3
)

compounded of frequent / common plants and the other of rare plants. In Figure 8, households340

are similar and three plants are much more common than the others. Since the difference is quite341

clear and there are three plants, the ICL criterion for the LBM advocates for creating a block with342

only three plants. However, if there is only one or two outlier(s) or if the difference is less clear, this343

criterion may not separate this(these) outlier(s). This criterion for model selection is not designed344

for detecting outliers.345

4.4 Uncovering outliers through principal component analysis346

4.4.1 Configuration model347

Fix the degree (Si )i=1,...,n of each farm and (F j ) j=1,...,m of all plants in X. The (bipartite) configu-348

ration model with parameters (Si ) and F j is the uniform distribution over all incidence matrices349

that leave the degrees Si and F j unchanged. In the ecological literature, this model is sometimes350

referred as the Fixed-Fixed null model (Ulrich and Gotelli, 2012; Connor and Simberloff, 1979; Za-351

man and Simberloff, 2002). In contrast to the LBM, the configuration model takes for given that352

some households might grow much more plants than others and that some plants are more com-353
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mon than others, but apart from that the incidence matrix is sampled uniformly.354

In order to simulate according to the configuration model, we use the tswap sequential algo-355

rithm (Miklós and Podani, 2004) implemented in the permatswap function of the R package vegan.356

The practitioner has to take a burnin and thinning parameters large enough so that the algorithm357

explores well the space of space of incidence matrices. Although the mixing time of tswap algo-358

rithm is unknown, the mixing properties of the sequence can be visually checked using the plot359

method of permatswap.360

4.4.2 Principal Component analysis (PCA) on residuals361

The expected incidence matrix under the configuration model with degrees (Si ) and (F j ) is de-362

noted E0[X|(Si ,F j )]. Alternatively, E0[X|(Si ,F j )] can be seen as the average over all permutations363

on the entries of X that keep the degree sequences for both plants and households unchanged.364

Then, the residual matrix R under the configuration model is the difference between the observed365

incidence matrix and its expectation under the configuration model366

Ri j = Xi j −E0[Xi j |(Si ,F j )] (4)

If the incidence matrix X was drawn according to the configuration model, then R would have no367

particular structure. In order to check the absence of structure, we apply a (non-standardized)368

principal component analysis (PCA) on R. As customary for PCA, the projection of the rows (i.e.369

the households) along the first principal directions allows (i) to uncover groups of households that370

effectively cultivate the same types of plants (ii) to detect outliers, that is households whose field371

plant composition is unusual when the effect of household richness has been removed. As an ex-372

ample, a household whose cultivated diversity is really high would not necessary be an outlier, but373

this household will be considered as an outlier if it does not grows some really common species.374

The projection of the columns of R along the first principal directions provides information on375

outlier species or groups of species.376
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4.4.3 Goodness-of-fit test of the configuration model377

Before going further into the interpretation of the PCA, we need to test its statistical significance.378

This is also equivalent to testing whether X has been drawn according to the configuration model.379

Denote λmax the largest singular value of R (i.e. the square-root of the largest eigenvalue of Rt R),380

we reject the null hypothesis when λmax is unusually large compared to the one of RP arising from381

permutations XP of X leaving the degree of each row and each column invariant. Equivalently, this382

test rejects the null hypothesis when the largest eigenvalue in the scree plot is unusually large.383

Under the null hypothesis, the matrix R is pure noise and all the singular values of R should be384

small. Under the presence of outliers or of a few groups of farms that preferentially cultivate some385

plants, the matrix R is expected to be the sum of a noisy component and a low-rank component386

measuring the deviance from the configuration model. As a consequence, the singular value of R387

should be higher under the alternative than under the null hypothesis.388

Although calibrated differently, the largest singular value statistic has been fruitfully applied to389

other problems of community detection (Bickel and Sarkar, 2013).390

4.4.4 A new representation of the incidence matrix391

Ordering the households according to the coordinate of their projection along the first principal392

direction, we denote σ1(i ) the farm index associated the i -th smallest coordinate. Similarly, σ2( j )393

stands for the reordering of the plants according to their projection on the first direction. These394

permutation (σ1,σ2) define a new representation Y of the incidence matrix:395

Yi j = Xσ1(i ),σ2( j ) (5)

This provides an alternative visualization of the incidence matrix to the LBM.396

4.4.5 Toy-examples397

Let us describe three typical examples to understand the behavior of the above statistics. In all398

these examples, the number n of households is set to 40 and the number m of plants is set to 60.399

First, we consider a model with degree heterogeneity. For each household i = 1, . . . ,n and each400
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plants j = 1, . . . ,m, we draw independent uniform random variable ai and b j in (0,1). Then, each401

entry Xi j is drawn according to a Bernoulli distribution with parameter min(2ai b j ,1). As a con-402

sequence, the incidence matrix X exhibits a large degree heterogeneity between households (resp.403

plants) with a low ai (resp. bi ) value and households (resp. plants) with a high ai (resp. bi ). It is404

therefore not unexpected that the LBM estimation procedure (Figure 9) recovers several groups of405

plants and household. The p-value of configuration model from Section 4.4.3 equals 0.39. Again,406

this is not surprising, since this incidence matrix has been sampled to a model similar to the con-407

figuration model. This implies that the block structure found by the LBM method only accounts408

for the degree heterogeneity. As the configuration model residuals are completely random here,409

both the PCA scree plot and the representation (eq. (5)) of the incidence matrix are uninformative.410

No household and no plants have outlier PCA coordinates (lower right panel).411

In the second example, we draw the incidence matrix X as above. Then, we replace each en-412

try of the first row by independent Bernoulli random variables with parameter 0.5. As a conse-413

quence, the first household is assumed to have a completely different behaviour from all the other414

household as it grows plants regardless of their scarcity (b j ) in the village. In Figure 10, the LBM415

representation is close to that of the first example. The p-value of the configuration test is smaller416

than 10−3. This is corroborated with the fact that the scree plot exhibits an unusually large first417

eigenvalue. The first household is detected as an outlier by the first coordinate representation418

(lower-right panel). Finally, the PCA-based representation (upper-right panel) highlights the un-419

usual behaviour of this household.420

In the last example, we draw random variables ai and b j as above. Then, the households421

are divided in two groups A1 and A2 of size n/2 and the plants are divided in two groups B1422

and B2 of size m/2. Then, the entry Xi j is drawn according to Bernoulli distribution with pa-423

rameter min(pi n2ai b j ,1) if (i , j ) ∈ A1 ×B1 or (i , j ) ∈ A2 ×B2 and parameter min(pout 2ai b j ,1) if424

(i , j ) ∈ A1 ×B2 or (i , j ) ∈ A1 ×B2 with pi n = 1.4 and pout = 0.6. Intuitively, the households from A1425

(resp. A2) preferentially grow plants from B1 (resp. B2), but the model also allows the degree of the426

household and each plant to be heterogeneous inside the blocks. As a consequence, this model,427

called degree-corrected is neither a LBM with 2×2 blocks nor a configuration models but a blend428
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Figure 9: First example. The upper-left panel is the LBM representation. The lower left panel is the
scree plot of the residuals PCA. The upper left panel is the representation of the incidence matrix
according to the PCA ordering (5). The boxplots of the PCA first coordinates are pictured in the
lower right panel.
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Figure 10: Second example. The upper-left panel is the LBM representation. The lower left panel
is the scree plot of the residuals PCA. The upper left panel is the representation of the incidence
matrix according to the PCA ordering (5). The boxplots of the PCA first coordinates are pictured in
the lower right panel.
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Figure 11: Third example. The upper-left panel is the LBM representation. The lower left panel
is the scree plot of the residuals PCA. The upper left panel is the representation of the incidence
matrix according to the PCA ordering (5). The boxplots of the PCA first coordinates are pictured in
the lower right panel.

of them. The LBM estimation method recovers too many blocks (Figure 11) by grouping farms or429

plants being in the same group and having similar degrees. The p-value for the configuration test430

is found to be smaller than 10−3 (see also the scree plot). Contrary to the previous example, this431

unusually large singular values is not due to outliers (see lower-right panel) but to the presence432

of a block structure. The PCA-based matrix representation highlights the presence of these two433

groups of households and plants.434
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4.5 Measuring originality of households’ contributions through diversity mea-435

sures436

We will now focus our attention on the distribution of cultivated plant diversity at the level of the437

sampled location (e.g. the village). As uncovered in the previous sections, some households might438

grow much more plant species than others (hence, the high variance in degree among households439

in the bipartite network). A question that remains unanswered is whether low-degree households440

contribute effectively more or less than high-degree households to the overall cultivated diversity -441

"effectively more" being understood as contributing more than expected if cultivated plants were442

chosen randomly from the pool of cultivated plants. In other words, the question is now whether443

low-degree households cultivate common plants only or contribute disproportionately to culti-444

vated diversity by focusing only on plants that are cultivated by very few households.445

4.5.1 Theoretical framework446

Further expanding the notations introduced in subsection 4.1, we note pi j the weight associated447

to the interaction between household i and plant j among all interactions of household i :448

pi j =
Xi j

Si
(6)

The proportion of all the connections in the network that are due to household i or plant j are449

respectively noted qi and h j :450

qi = Si

N
(7)

451

h j =
F j

N
(8)

We note Hi the diversity of plants cultivated by household i , as measured by Shannon entropy:452

453

Hi =−∑
j

pi j log pi j = logSi (9)
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The average diversity among households, weighted by their importance qi , is noted Hα:454

Hα =∑
i

qi Hi = 1

N

∑
i

Si logSi (10)

The diversity of plants cultivated by all households, when taken together and weighted by their455

importance qi , is noted HT and reads as:456

HT =−∑
j

[∑
i

qi pi j

]
log

[∑
i

qi pi j

]
=−∑

j
h j logh j = log N − 1

N

∑
j

F j logF j (11)

The difference between HT and Hα is the turnover in diversity among households or β diversity,457

noted Hβ:458

Hβ = HT −Hα = log N − 1

N

∑
j

F j logF j − 1

N

∑
i

Si logSi (12)

Hβ can be further decomposed into individual turnover components, Hi T :459

Hβ =
∑

i
qi Hi T (13)

where Hi T measures the "originality" of household i portfolio of plants when compared to the460

overall diversity of cultivated plants. An expression for Hi T can be found (Lande, 1996):461

Hi T =−∑
j

pi j log
Si F j

N
(14)

4.5.2 Measuring the diversity cultivated by plant-poor and plant-rich households462

We now focus on measuring the evenness of cultivated by a subset I of households. More specif-463

ically, because we are interested in the subset of the most plant-poor or plant-rich households,464

we will assume that the set I contains all households belonging to a certain quantile of the dis-465

tribution of Si . The evenness of plants cultivated by households in set I is noted E I and reads as466

467

E I =−
∑

j
[∑

i∈I qi ,I pi j
]

log
[∑

i∈I qi ,I pi j
]

log(m)
; qi ,I = Si∑

i∈I Si
. (15)
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The evenness E I is the diversity of plants cultivated by all households in set I divided by the loga-468

rithm of the total number m of type cultivated in the village. It measure the distribution’s equity of469

species cultivated by households in I .470

In order to assess whether the cultivated diversity is more even in plant-rich farms than plant-471

poor farms, we compare the value of ERi ch−EPoor to that of all realizations of the incidence matrix472

X under the configuration model (i.e. randomizing connections given degree sequences for both473

plants and households) by a permutation test.474

4.5.3 Measuring the impact of plant-poor and plant-rich households475

We now focus on measuring the β diversity Hβ,I due to the contribution of a subset I of house-476

holds. As previously, the set subset I is made of the most plant-poor or plant-rich households. We477

can give an explicit formula for Hβ,I (Lande, 1996):478

Hβ,I =
∑
i∈I

qi Hi T =−∑
i

qi log qi + 1

N

∑
j

[∑
i∈I

Xi j

]
log

(
1

F j

)
(16)

The first term in the right-hand side of equation 16 relies on the expression of the α diversity Hα,I479

due to households in subset I :480

Hα,I = 1

N

∑
i∈I

Si logSi = σI log N

N
+∑

i∈I
qi log qi (17)

where σI is the "volume" of interactions due to households belonging to subset I :481

σI =
∑
i∈I

Si (18)

The second term depend the correlation between a plant degree F j and the number of households482

within the set I who possess this plant, noted ϕ j ,I :483

ϕ j ,I =
∑
i∈I

Xi j (19)
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Plugging equations 17, 18 and 19 into equation 16 yields the following expression for Hβ,I :484

Hβ,I =
σI log N

N
−Hα,I − 1

N

∑
j
ϕ j ,I logF j (20)

The quantity D I = 1
N

∑
j ϕ j ,I logF j measures the deficit of originality displayed by the house-485

holds in subset I that is due to their cultivation of "common plants".486

Again, we assess the significance of Hβ,I by a permutation test based on the configuration487

model. As the set I contains all households belonging to a certain quantile of the distribution488

of Si , all realizations of the incidence matrix X under the configuration model preserve the set of489

Si values to be found in I . As a consequence, the quantity σI log N
N −Hα,I in the right-hand side of490

equation 16 is invariant with respect to the configuration model. The quantity D I in the right-hand491

side of equation 16, however, does not satisfy this invariance. Thus, large values of Hβ,I unusually492

large for the configuration model mean that households in subset I contribute more to cultivated493

biodiversity than expected by the number of types cultivated by households in I .494

4.5.4 Measuring originality of households’ contributions through diversity measures on toy495

examples496

Model of simulation : Two groups of households are considered: rich (40% of households) and497

poor (60% of households). The plants are divided into two groups with same size: rare and popular.498

The entries of the incidence matrix are generated independently as Bernoulli random variables499

with probability pi j (corresponding to household i and plant j ) given by:500

logit(pi j ) =µ+α(Ci )+β(K j )+γ(Ci : K j )
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Figure 12: Toy example with equal contribution to diversity for rich and poor households. µ=−3,
α(r i ch) = β(popul ar ) = 1.5, γ(r i ch, popul ar ) = 0. Left: probabilities for a household to grow a
plant. Right: Incidence matrix.

where logit is the function x 7→ log(x/(1− x)) , Ci indicates the group of household i , K j the group501

of plant j and parameters µ, αs, βs, γs are chosen to lead to contrasted situations and such that502

α(poor ) =β(r ar e) = γ(poor,r ar e) = γ(r i ch,r ar e) = γ(poor, popul ar ) = 0

α(r i ch) > 0,β(popul ar ) > 0,γ(r i ch, popul ar ) 6= 0

α(r i ch)+0.5 ·γ(r i ch, popul ar ) >α(poor ) = 0

β(popul ar )+0.40 ·γ(r i ch, popul ar ) >β(r ar e) = 0

to ensure identifiability and coherence with regard to the modeled situations. The interaction503

term γ(r i ch, popul ar ) will then drive the respective contribution to diversity of rich and poor504

households. Indeed, if it is zero, the effect of being rich for growing a rare or a popular variety will505

be the same.506

Three contrasted toy examples: Figures 12, 13 and 14 correspond respectively to the three fol-507

lowing cases:508

1. The rich and poor households have the same contribution to diversity with respect to their509

own richness. In the model of simulation, the interaction term γ(r i ch, popul ar ) was then510
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Figure 13: Toy example with greater contribution to diversity of poor households. µ = −3,
α(r i ch) =β(popul ar ) = γ(r i ch, popul ar ) = 1. Left: probabilities for a household to grow a plant.
Right: Incidence matrix.
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Figure 14: Toy example with greater contribution to diversity of rich households. µ=−3,α(r i ch) =
−γ(r i ch, popul ar ) = 1.5, β(popul ar ) = 2. Left: probabilities for a household to grow a plant.
Right: Incidence matrix.
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fixed to 0.511

2. The poor households have a greater contribution to diversity since they grow with nearly the512

same probability rare plants and popular plants while this probability of growing rare plants513

is clearly smaller than the probability of growing popular plants for rich households.514

3. The rich households have a greater contribution to diversity. They are richer since they have515

the same ability of growing rare and popular plants.516

Results in Table (P.: tableau sous odt ?) are coherent with what was expected when simulating.517

For the first case, nothing was found significant. For the two other cases, the tests on evenness518

and on the contribution to diversity of rich and poor households agreed. Indeed, for instance,519

in case of Figure 13, the rich households are found to contribute less than expected to diversity520

(null hypothesis rejected on left side), the poor households are found to contribute more than ex-521

pected to diversity (null hypothesis rejected on right side) and the difference of evenness is found522

significantly smaller than expected (null hypothesis rejected on left side).523

5 Patterns of local crop diversity: results of the meta-analysis524

The tests performed in the meta-analysis are summarized in Table 5 and 6 for species and infra-525

species diversity, respectively.526

5.1 Variability of households’ and plants’ degrees527

Two null hypotheses (H0) are tested in this section: 1)species and infra-species diversity is ran-528

domly distributed among households from the same village (homogeneity of the household de-529

grees); 2) crop richness is randomly distributed within the same village (homogeneity of the plant530

degrees). More specifically, the aim of this section is to detect the existence of over-dispersion (sig-531

nificant test on the right) or under-dispersion (significant test on the left) of degree distribution for532

households and plants, respectively.533
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Species diversity For households, H0 was rejected on the right side (16 times over the 18 tested534

datasets) for the variability of households’ degree (Table 3). There was only one case where the test535

was not significant on both sides (SC-M05) and one case where the test was rejected on the left536

side (CL-M01). These results indicate that the number of species grown per household from the537

same village is generally over dispersed with few households growing more species than expected.538

For the variability in degree of species, this pattern was even stronger, with a systematically over-539

dispersed degree distribution.540

Infra-species diversity For households at the infra-specific level, the pattern is completely dif-541

ferent as H0 is rejected on the right side only 3 times over the 32 tested datasets (ME-M01, SC-M04,542

SC-M07), and 11 times on the left side (Table 4). These results indicate an under-dispersion of the543

degree distribution when we consider the distribution of landraces at the village scale. For degree544

of landraces, H0 is mostly rejected on the right side with 29 times over the 32 data sets, indicating,545

as for the species level, an over-dispersion of the degree distribution.546

5.2 Structure detection through model-based clustering (LBM)547

This section aims at detecting the existence of a structure within inventory datasets at the village548

scale using LBM, a model-based clustering approach.549

Species diversity The clustering method applied on the different datasets detected from one to550

three clusters for the households and from two to three clusters for the species. These results are551

similar to the ’toy’ example illustrated in Figure 7. Therefore, the clustering seems mostly driven by552

the heterogeneity in degree of both households and species. Households were clustered together553

because they grow almost the same species. In the case of two clusters for households, we then554

define the ’plant-poor’ household cluster as the one with the lower density and the ’plant-rich’555

household cluster as the one with the higher density. In the case of two groups for the species, we556

define the ’rare species’ cluster as the one with the lower number of links and the frequent species557

cluster as the one with the higher number of links.558
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Infra-species diversity The clustering method detected from one to two clusters for the house-559

holds and from one to four clusters for landraces. For four datasets (DJ-M039a, DJ-M045b, DJ-560

M045c, DJ-M045d), only one cluster was detected both for households and landraces (Table 4).561

These results of low clustering are consistent with the low variability of the degrees both for the562

households and the landraces observed in section 5.1. Similarly, 26 additional data sets with an563

under-disperse had only one block for the households. These findings indicate that for landraces564

diversity, a lower heterogeneity is generally observed among households with almost the same565

landraces grown per household. Only three data sets showed two blocks for the households (ME-566

M01, SC-M04, SC-M07). Nevertheless it is still possible to distinguish between frequent and more567

rare landraces.568

5.3 Outlier detection through PCA569

We then used a Principal Component Analysis (PCA) to detect "outliers" in addition to the plant-570

poor and plant-rich households identified previously.571

Species diversity Using the test introduced in section 4.4.3, H0 was rejected 9 times over the572

18 datasets at the α = 0.05; rejecting H0 highlights the existence of outliers. These outliers are573

generally two or three per dataset and can be characterized as households that grow a different574

subset of species compared to other households with an equivalent degree, i.e. belonging to the575

same cluster.576

Infra-species diversity H0 was rejected for only four datasets over the 32 datasets (CL-M02, DJ-577

M018a, DJ-M018b, DJ-M030). These results indicate that in addition to growing almost the same578

number of landraces, households from the same village grow globally the same portefolio of lan-579

draces. Note that for these four datasets, only one cluster was detected with the LBM (CL-M02,580

DJ-M018a, DJ-M018b, DJ-M030). Therefore, in this case we have households growing a particular581

subset of landraces and having an equivalent degree.582
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5.4 Households’ contributions to local diversity583

In the analyses reported on in this section, households were arbitrarily separated into ’plant-rich’584

households and ’plant-poor’ households. Evenness (E) and contribution (Hβ) were computed for585

each of these two groups.586

Species diversity The tests on the difference between Er i ch and Epoor revealed that plant-rich587

households had a significantly higher evenness in five cases (CL-M01, OC-M04, OC-M07, OC-M11,588

OC-M12). The group of plant-poor households contributed significantly more than that of plant-589

rich households in only one case (EG-M08). H0 was not rejected in the other cases, indicating no590

significant difference in terms of contribution to the global diversity by the plant-rich group of591

households compared to the plant-poor group.592

Our findings on the difference between Er i ch and Epoor converge with the test of the contribu-593

tion of plant-rich and plant-poor households. Indeed, in five cases when the first test was signif-594

icant on the right side (i.e. a significantly higher contribution to the global diversity by the plant-595

rich households than the plant-poor households), we observed that some plant-rich group con-596

tributed significantly to the global diversity and that some plant-poor group contributed signifi-597

cantly less than expected in four times of the five cases (Table 3). Two additional datasets showed598

a significant contribution of the plant-rich households (OC-M14 and SC-M05) and one additional599

dataset showed that the plant-poor households contributed significantly less than expected (OC-600

M13). The plant-poor households contributed significantly more than expected in only two cases.601

In one of these cases (EG-M05), the result is consistent with that of the test on evenness. In the602

other case (EG-M08), plant-poor households only showed a significant contribution to global di-603

versity and not to evenness (EG-M08).604

Infra-species diversity The tests of the difference between Er i ch and Epoor households revealed605

that plant-rich households had a significantly higher evenness in six cases (DJ-M003a, DJ-M012a,606

DJ-M012b, DJ-M018a, DJ-M030, DJ-M036). H0 was not rejected in the other cases, indicating no607

significant difference in evenness between plant-rich and plant-poor households. These results608

were not always convergent with the results of the tests dealing with the contribution of the plant-609
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rich and plant-poor household groups to diversity at the village level. Indeed, these latter tests610

gave convergent results (a significant contribution of few plant-rich households to the global di-611

versity) in only two cases (DJ-M018a and DJ-M036) of the six in which the evenness difference612

was significant. In one additional dataset, few households from the plant-rich group contributed613

significantly less than expected (JW-M07). In one additional dataset, the plant-poor households614

contributed significantly more than expected (DJ-M012a). In three additional datasets, few house-615

holds from the plant-poor group contributed significantly less than expected (CV-M02, DJ-M030,616

JW-M08). Finally, in two datasets, the plant-poor households contributed significantly more than617

expected (DJ-M0015a, SC-M07).618

6 Discussion619

6.1 Contrasted patterns of local crop diversity at the species and infra-species620

levels621

Applying a set of network-based methods on a meta-data set of crop diversity reveals distinct622

sources of heterogeneity in terms of crop distribution at the local scale: 1. crop diversity among623

households is generally more heterogeneous at the specific level than at the infra-specific level;624

2. heterogeneity in households’ degrees is one explanation for this heterogeneity with blocks of low625

diversity households and of high diversity households (the same pattern is observed for species626

and landraces with blocks of common plants and blocks of rarer plants); 3. outliers households627

with original portfolios are another source of heterogeneity; 4. finally, depending on the circum-628

stances, either low diversity or high diversity households can contribute disproportionately to lo-629

cal diversity by growing rare varieties.630

These general results suggest two main explanations: heterogeneity in data collection meth-631

ods and a diversity of socio-ecological and environmental contexts. As datasets were collected632

following different protocols, differences in sampling effort could have an influence on the ob-633

served diversity (Perrault-Archambault and Coomes, 2008). Nevertheless, a subset of the data634

sets for landraces were collected in the context of a coordinated global partnership of researchers635
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in order to use the same protocol and the same sampling strategy during data collection (Jarvis636

et al., 2008), and datasets collected in this context also show different patterns (DJ-M012a, DJ-637

M012b, DJ-M015a, DJ-M015b, DJ-M018a, DJ-M018b, DJ-M030, DJ-M036, DJ-M039a, DJ-M045b,638

DJ-M045c, DJ-M045d). Consequently, variation in the agro-ecological and the socio-cultural con-639

texts, and in interactions between these contexts, is likely to strongly shape the distribution of local640

crop diversity.641

More precisely, we observe that the findings of over-dispersion of the degrees at the specific642

level and an under-dispersion at the infra-specific level is strengthened by the results of classifi-643

cation using LBM. Indeed, in the cases of over-dispersion, two or three blocks of households are644

detected whereas for cases of under-dispersion, only one block of households is detected. Con-645

vergence of the results between these two approaches indicates that the variability of the degree646

distribution is probably the main driver of block structure. It thus makes sense to use as null647

model a configuration model, controlling for degree, for the following tests because this would648

allow assessment of whether other structural drivers in addition to the degree overcome to shape649

the patterns of diversity. From an ethnobiological or agroecological point of view, the block de-650

tection means that households can be distinguished according to the level of diversity they grow.651

We identify high diversity and low diversity households. Similarly, for plants, we identify com-652

mon species/landraces (present in fields of most households) and rare species/landraces (grown653

by few households). Such patterns in terms of distribution of local crop diversity are quite com-654

mon in the literature and consistent with the findings of Jarvis et al. (2008), who find that growing655

area and landrace diversity are related.656

From an ethnobiological point of view, these findings reflect the fact that ways of managing657

diversity differ between the specific (crop species) and the infra-specific levels (landraces). Grow-658

ing numerous species is more complicated than growing numerous landraces, for several reasons.659

First, each species has its specific needs in terms of soil quality and preparation, sowing date,660

quantity of labour required and when it is required, and so on (Garine and Raimond, 2005). Among661

landraces of the same species, these needs are not so divergent. Households possessing a relatively662

large land holding area have more chance to encounter different soil types and quality among663

their fields. Also, larger households or those with an extensive social network can expect to have664
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an adequate labour supply (Abizaid et al., 2015) to grow a large portfolio of species (Garine and665

Raimond, 2005). Thus, farmers with more assets and labor tend to cultivate a larger field area and666

have greater crop diversity (Zimmerer, 1991; Coomes and Ban, 2004; Alvarez et al., 2005). Small-667

holder poverty may limit the diversity of crops that can be raised. Previous studies concluded that668

certain species are needed to meet basic needs (e.g., food, medicinal, etc.) and other species are669

more optional, reflected by higher levels of infra-specific diversity for food stables compared to670

other crops (Jarvis et al., 2008), especially under stressful abiotic conditions (Labeyrie et al., 2013).671

Another possible explanation of the lower heterogeneity for degrees for landraces is that several672

landraces of the main species may be grown to fill diverse needs driven by cultural and dietary673

preferences, shifts in market demand and labour availability (Brush and Meng, 1998; Gauchan674

et al., 2005; Johns et al., 2013), heterogeneity in soil and water resources (Bisht et al., 2007; Bellon675

and Taylor, 1993), biotic stresses (Finckh and Wolfe, 2006), and the need to enhance pollination676

levels via outcrossing (Kremen et al., 2002). Much infra-specific diversity is held at the community677

rather than within individual households (Mulumba et al., 2012; Brush et al., 2015; Fenzi et al.,678

ress). In addition, in agroecosystems where many species are grown, households maintaining col-679

lections of landraces will be few because less varietal diversity of the crop species is available to680

the farmer due to financial, social or policy constraints. Finally, the greater heterogeneity of crop681

diversity at the specific level compared to the infra-specific level may lie in the traits of the crop682

species considered in the analysis and their reproductive systems In their broad comparison of683

nomenclature systems Jarvis et al. (2008) showed that farmers use more detailed classifications for684

clonally reproduced crops than for inbreeders, partial outbreeders or outbreeders. This hypoth-685

esis was confirmed in our dataset. The only cases where over-distribution of household degree686

was observed at the infra-specific level (ME-M01, SC-M04, SC-M07) were all villages in which the687

staple food was provided by clonally propagated species (manioc, taro).688

We applied additional tests to detect more detailed patterns in crop diversity within the meta-689

data set and the sources of divergence in terms of crop portefolio composition. Our analysis of690

outliers identified certain households holding unique portefolios of species or landraces. In most691

cases, it is the high diversity households that mainly contribute to the global diversity. These find-692

ings are consistent with the hypothesis of nestednes and of a sink-source dynamics described in693
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Alvarez et al. (2005) and Coomes (2010), and frequently postulated importance, in the dynam-694

ics of local diversity, of one or a small number of experts or nodal farmers in a village (Perrault-695

Archambault and Coomes, 2008; Boster, 1983; Padoch and Jong, 1991; Peroni and Hanazaki, 2002;696

Salick et al., 1997; Subedi et al., 2003; Tapia, 2000).697

Nevertheless, it would be incorrect to say that it is a consistent tendency in the meta-data set.698

Indeed, we observed the opposite relationship in other data sets whereby low diversity households699

contributed significantly to the local diversity (EG-M05, EG-M08, DJ-M015a, SC-M07). In some700

case, one or a few farmers grow rarer species or landraces owing to curiosity, for aesthetic reasons,701

or to maintain a social status of expert at the local level (Elias et al., 2000; Meilleur, 1998; Hawkes,702

1983), or to have an object that the others do not have (Coomes and Ban, 2004). Possessing an in-703

frequent species or landrace might, for instance, allow a young farmer to distinguish himself from704

others in societies independently of economic capital. Having an object that others do not have,705

could increase the value of the eventual transfer to other members of the community. Cultivating706

rarity helps both to gain a social status within the village and to have highly valued objects to ex-707

change (Caillon and Lanouguère-Bruneau, 2005). Additional factors influence the distribution of708

local crop diversity, for instance, the role played by differences associated with gender and genera-709

tion, access to local seed markets, farmers’ food preferences, and the market value of crops. Verti-710

cal transmission of seeds and knowledge occurs between mothers-in-law and daughters-in-law in711

patrilinear societies with virilocal residence rules, and constituting another source of divergence712

in crop diversity between families in the same neighbourhood (Labeyrie et al., 2013).713

More generally, because these distinct patterns of crop diversity have been detected in different714

agro-ecological environments and socio-cultural contexts without controlling for other potential715

controlling factors (and without additional information about each village), it is not possible to716

assess how one particular agro-ecological environment and socio-cultural context shapes the dis-717

tribution of local crop diversity. Additional studies are needed in this direction to detect the local718

drivers influencing the observed distribution of crop diversity.719
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6.2 Relevance of the network-based methods720

The network-based methods introduced in this paper provide a set of useful tools to analyses the721

distribution of local diversity in crop species and varieties. Indeed, our framework allowed us to722

answer four key questions:723

1. whether households’ and plants’ degrees are more variable than expected under a null model724

proposing a homogeneous probability of interaction between potential partners;725

2. whether household-plant interactions are structured by blocks and, if so, what these blocks726

are;727

3. whether certain plants or certain households behave as obvious outliers in their pattern of728

interactions;729

4. whether low-degree and high-degree households contribute significantly more or less than730

expected under a null model (the configuration model) to the overall diversity of plants cul-731

tivated locally.732

The combination of these different indices, tests and metrics provides a realistic and complete pic-733

ture of the complex structure of crop diversity. For instance, this framework readily detected cases734

in which plant diversity is different in two different villages (through the latent-block models) and735

identified households – be they low-degree or high-degree households – as unique and important736

providers of plant diversity (through PCA outlier uncovering and measures of uniqueness).737

One strength of this framework is the use of a hierarchy of null models with increasing com-738

plexity. For instance, the most simple model for a bipartite network with variable degrees is the739

Erdős-Rényi G(N , p) model restricted to interaction between nodes from the two different cate-740

gories (each link has the same probability of occurring). Deviations from this null model allow741

assessment of degree heterogeneity or the presence of blocks (groups of households that prefer-742

entially cultivate a certain group of species). When looking for more elaborate structures in the743

network (and not only degree distributions), we relied on the configuration model, which ran-744

domizes interactions while keeping all degrees in the network fixed. Consequently, one can dis-745
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entangle whether the observed patterns, such as the block structure, are simply explained by the746

degree heterogeneity or are truly emergent properties.747

It is important to note that our approach can be extended to other datasets from other dis-748

ciplines, including ecology, to detect particular patterns in bipartite networks. In ecology, the749

tests could efficiently supplement metrics that are routinely used, such as modularity or nest-750

edness scores (Fortuna et al., 2010). Depending on the size of the dataset, latent-block models can751

be as informative (or more) as traditional modularity-computing techniques in finding underly-752

ing structures within bipartite datasets (Leger, 2015). Moreover, LBMs can also elucidate non-753

modular blocks such as quasi-partite structures (i.e., when such structures are not exactly bi- or754

multi-partite but quite close) within a network. Of course, the power of all such methods depends755

heavily on the number of nodes in the network, but the application to ecological questions of the756

set of methods proposed here could readily generate much more informative descriptions of eco-757

logical networks than connectance, modularity and nestedness scores alone.758

The approach used in this paper does not rely on a direct estimation of nestedness because759

the different methods available to compute nestedness do not converge (Supplementary material760

Fig 15). However, the set of methods designed here to uncover the uniqueness of contributions to761

diversity of plant-rich and plant-poor households actually provide complementary information762

on whether specialists interact preferentially with generalists or not, as assumed under a “nested”763

scenario in ecology. We thus suggest that this toolkit could be used as an alternative to the clas-764

sic methods of nestedness detection usually applied to ecological datasets (Podani and Schmera,765

2012).766

From a methodological point of view, the configuration model must be accompanied by sev-767

eral caveats. Most prominently, the fact that the degrees of all nodes are fixed makes the model768

highly constrained. Relaxing the requirement that all samples of the models reproduce exactly the769

desired degrees, Chung and Lu (2002a,b) developed a model that generated graphs with given ex-770

pected degrees; degrees of networks sampled from this model are allowed to vary slightly around771

a fixed expected value. Interestingly, the Chung-Lu model has recently been extended into the so-772

called degree-corrected stochastic block model (Karrer and Newman, 2011) incorporating both773

degree-heterogeneity parameters as in the Chung-Lu model and a block structure as in the LBM.774
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Such models would allow disentangling the households’ overall crop richness and plant rarity from775

the preferences of certain households for specific groups of species (block structure). Inference776

methods for this model have been recently developed (e.g. Lei et al., 2014). However, the complex-777

ity of these models makes the estimation (and the computation of p-values) unreliable for small778

networks such as those considered in this study. Nevertheless, the Chung-Lu model and degree-779

correcting stochastic block models are promising directions of research and analysis of larger-scale780

ecological networks.781

7 Conclusion782

In this paper we develop new network-based indicators and statistical tests to characterize pat-783

terns of crop diversity at local scales. We applied this methodological framework to a meta-data set784

from 10 countries containing inventory data at the specific or infra-specific level. Our results iden-785

tify different sources of heterogeneity local crop diversity: 1. diversity at the specific level is gen-786

erally much more heterogeneous among households compared to diversity at the infra-specific787

level; 2. two or more groups of households can be identified based on their unique crop richness;788

3. although diversity rich households often contribute most to global diversity, in some cases di-789

versity poor households contribute rare species and varieties. . This analysis reveals the absence790

of any general pattern of crop diversity independent of agro-ecological and socio-cultural con-791

texts, suggesting the need for further empirical research. Our methodological framework provides792

a useful approach and an informative overview of patterns in the distribution of diversity. The793

toolkit developed and applied in this study offers an alternative approach to the classic methods794

of nestedness detection in both ethnographic and ecological datasets.795
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Figure 15: Plot representing in X-axis the NODF P-values computed by re-sampling, and in Y-
axis the Temperature P-values computed by re-sampling. In the both cases, re-sampling was per-
formed using the configuration model: a) for data sets collected at the specific level, b) for data
sets collected at the infra-specific level.

Tables P.: ref.. present the proportion of rejection (in %) when the α level is set to 1% and981

5% for the different sizes of incidence matrices. The tests have globally the same power. When982

there are only n = 20 households or m = 20 plants, the power is quite low. For n = m = 50, the983

power is totally satisfactory. In the null model when there is no interaction between richness of984

the households and the status of plants, the p-values are nearly uniformly distributed on [0,1] as985

expected under a null model.986

Estimation of nestedness987

This section describes the nestedness results obtained on the meta-data set using two methods:988

the Temperature (Rodríguez-Gironés and Santamaría, 2006) and the NODF (Almeida-Neto et al.,989

2008). The figure 15 represents the P-values computed for each estimator after re-sampling using990

the configuration model introduce in section 4.4.1. Our results are consistent with Podani and991

Schmera (2012) because for the same meta-data set, tests performed with one or another index992

were inconsistent.993
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