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GRADIENT FLOW APPROACH TO THE CALCULATION OF

GROUND STATES ON NONLINEAR QUANTUM GRAPHS

CHRISTOPHE BESSE, ROMAIN DUBOSCQ, AND STEFAN LE COZ

Abstract. We introduce and implement a method to compute ground states

of nonlinear Schrödinger equations on metric graphs. Ground states are defined
as minimizers of the nonlinear Schrödinger energy at fixed mass. Our method

is based on a normalized gradient flow for the energy (i.e. a gradient flow

projected on a fixed mass sphere) adapted to the context of nonlinear quantum
graphs. We first prove that, at the continuous level, the normalized gradient

flow is well-posed, mass-preserving, energy diminishing and converges (at least

locally) toward the ground state. We then establish the link between the
continuous flow and its discretezed version. We conclude by conducting a series

of numerical experiments in model situations showing the good performance

of the discrete flow to compute the ground state. Further experiments as
well as detailled explananation of our numerical algorithm will be given in a

forthcoming companion paper.
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1. Introduction

Partial differential equations on (metric) graphs have a relatively recent history.
Recall that a metric graph G is a collection of vertices V and edges E with lengthes
le ∈ (0,∞] associated to each edge e ∈ E . One of the earliest account of a partial
differential equation set up on metric graphs is the work of Lumer [33] in 1980
on ramification spaces. Among the early milestone in the development of the the-
ory of partial differential equations on graphs, one find the work of Nicaise [36]
on propagation of nerves impulses. Since then, the theory has known considerable
developments, due in particular to the natural appearance of graphs in the mod-
elling of various physical situations. One may refer to the survey book [19] for a
broad introduction to the study of partial differential equations on networks, with
a special emphasis on control problems.

Among partial differential equations problems set on metric graphs, one has
become increasingly popular : quantum graphs. By quantum graphs, one usually
refers to a metric graph G = (V, E) equipped with a differential operator H often
refered to as the Hamiltonian. The most popular example of Hamiltonian is −∆
on the edges with Kirchoff conditions (conservation of charge and current) at the
vertices (see Section 2 for a precise definition), where ∆ is the Laplace operator.
The book of Berkolaiko and Kuchment [16] provides an excellent introduction to
the theory of quantum graphs.

Recently, another topic has gained an incredible momentum: nonlinear quantum
graphs. By this terminology, we refer to a metric graph G = (V, E) equipped with
a nonlinear evolution equation of Schrödinger type

i∂tu−Hu+ g(|u|2)u = 0,

where u = u(t, x) ∈ C is the unknown wave function, x denoting the position on
edges of G and t the time variable. Whereas the research on linear quantum graphs
is mainly focused on the spectral properties of the Hamiltonian, one of the main
area of investigation for nonlinear quantum graphs is the existence of ground states,
i.e. minimizers of the Schrödinger energy E on fixed mass M , where

E(u) =
1

2
〈Hu, u〉 − 1

2

∫
G
G(|u|2), G′ = g, M(u) = ‖u‖2L2(G).

Indeed, ground states are considered to be the building blocks of the dynamics for
the nonlinear Schrödinger equation, and being able to obtain them by a minimiza-
tion process guarantes in particular their (orbital) stability.

On the theoretical side, the literature concerning ground states on quantum
graphs is already too vast to be shortly summarized. A perfect introduction to
the topic is furnished by the survey paper of Noja [37] and we only present a few
relevant samples.

Among the model cases for graphs, the simplest ones may be star-graphs, i.e.
graphs with one vertex and a finite number of semi-infinite edges attached to the
vertex (see Fig. 1). For this type of graphs with an attractive Dirac type interac-
tion at the vertex, Adami, Cacciapuoti, Finco and Noja [4, 5] established under a
mass condition and for sub-critical nonlinearities the existence of a (local or global)
minimizer of the energy at fixed mass, with an explicit formula for the minimizer
(see Section 2 for more details and explanations). For more general nonlinear
quantum graphs, Adami, Serra and Tilli [9, 10, 11] have focused on the case of
Kirchoff-Neuman boundary conditions for non-compact connected metric graphs
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Figure 1. Star-graph with N = 6 edges

with a finite number of edges and vertices. In particular, they obtained a topologi-
cal condition (see Assumption 2.4 (H)) under which no ground state exists. On the
other hand, in some cases metric properties of the graph and the value of the mass
constraint influence the existence or non-existence of the ground state [10, 11].

Another particularly interesting study is presented in the work of Marzuola and
Pelinovsky [35] for the dumbbell graph. As its name indicates, the dumbbell graph
is made of two circles linked by a straight edge (see Fig. 2). It is shown in [35]
that for small fixed mass, the minimizer of the energy is a constant. As the mass
increases, several bifurcations for the ground state occur, in particular a symmetric
(main part located on the central edge) and an asymmetric one (main part located
on one of the circles). Numerical experiments (based on Newton’s iteration scheme)
complement the theoretical study in [35].

• •

Figure 2. Dumbbell graph

Among the many other interesting recent results on nonlinear quantum graphs,
we mention the flower graphs studied in [31], graphs with generals operators and
nonlinearities [29], periodic graphs [38], etc.

On the numerical side, however, the literature devoted to nonlinear quantum
graphs is very sparse, and, to our knowledge, the work [35] is one of the rare work
containing numerical computation of nonlinear ground states on graphs.

Our goal in this paper is to develop numerical tools for the calculation of the
minimizer of the energy at fixed mass m > 0 in the setting of generic finite graphs
with non necessarily Kirchhoff vertex boundary conditions.

The numerical method that we have implemented corresponds to a normalized
gradient flow: at each step of time, we evolve in the direction of the gradient of the
energy and renormalize the mass of the outcome. Such scheme is popular in the
physics literature under the name “imaginary time method”. One of the earliest
mathematical analysis was performed by Bao and Du [15]. More recently, in the
specific case of the nonlinear Schrödinger equation on the line R with focusing cubic
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nonlinearity, Faou and Jezequel [23] performed a theoretical analysis of the various
level of discretization of the method, from the continuous one to the fully discrete
scheme.

At the continuous level, by considering a function ψ(t, x) on G, the gradient flow
is given by

∂tψ = −E′(ψ) +
1

M(ψ)
〈E′(ψ), ψ〉 , (CNGF)

and we establish in Section 3 the main properties of the flow. This is our first main
result, which can be stated in the following informal way

Main result 1.1 (see Theorem 3.2). Under Assumptions 2.1 and 3.1, the contin-
uous normalized gradient flow is well-posed, mass preserving, energy diminishing,
and converges locally towards the ground state.

Having established the adequate properties of the flow at the continuous level,
we turn to the discretization process. As is explained in Section 4, several time-
discretizations are possible, but the so-called Gradient Flow with Discrete Normal-
ization has proven to be very efficient. It consists into the following process to go
from ψn (an approximation of ψ(tn, ·) at discrete time tn) to ψn+1:

ϕn+1 − ψn
tn+1 − tn

= −Hϕn+1 + g(|ψn|2)ϕn+1,

ψn+1 =
√
m

ϕn+1

‖ϕn+1‖L2

.

(GFDN)

The space discretization can be performed using second order finite differences
inside the egdes. The values at the vertices are obtained by approximating by finite
differences the boundary conditions at the vertices.

Our second main result is to establish the link between the continuous normalized
gradient flow and its space-time discretization.

Main result 1.2 (see Section 4). The Gradient Flow with Discrete Normaliza-
tion (GFDN) is a time-discretization of the continuous normalized gradient flow
(CNGF). Its space discretization can be obtained by finite differences with a special
treatment at the vertices.

Finally, we illustrate by numerical experiments the efficiency of our technique.
We use as test case the 2-star graph with δ and δ′ boundary conditions at the
vertex connecting the two edges. This test case has been extensively studied from a
theoretical point of view (see [24, 25, 32] for earlier works and [1] and the reference
therein for more recent achievements). A sneak peek of the results presented in
Section 5 is offered in Fig. 3 where the almost perfect agreement between the
theoretical solution and the computed one is shown in the case of a 2-star graph
with attractive δ condition at the vertex. We also consider other possible types of
graphs. Further numerical experiments as well as a detailed presentation of our
numerical algorithm will be given in a forthcoming companion paper [17].

Main result 1.3 (see Section 5). The observed convergence of the discretized flow
is of order 2 in space. In the test case of a nonlinear Schrödinger equation on
a star graph with two edges and attractive δ or δ′ interactions at the vertex, the
discretized flow converges towards the explicitly known ground state. Applicability
of the method to generic graphs is illustrated on the sign-post graph and the tower
of bubbles graph.
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Figure 3. Comparison of numerical solution to ground state for
δ interaction.

The rest of this paper is organized in the following way. In Section 2, we present
in details the setting in which we work and give theoretical preliminaries. In Section
3, we prove that the continuous normalized gradient flow is well-posed, energy
diminishing and converges (locally) towards a ground state. In Section 4, we present
the space-time discretization process of the continuous flow. Finally, numerical
experiments in a test case and in more elaborate settings are presented in Section
5.

2. Preliminaries

We start with a few preliminaries to give the precise setting in which we would
like to work.

2.1. Linear quantum graphs. Let G be a metric graph, i.e. a collection of edges
E and vertices V. We assume that G is finite (i.e. has a finite number of edges)
and connected. Two vertices might be connected by several edges and one edge can
link a vertex to itself. Each of the edges e ∈ E will be identified with a segment
Ie = [0, le] if le ∈ (0,∞) or Ie = [0,∞) if le =∞, where le is the (finite or infinite)
length of the edge.

A (complex valued) function ψ : G → C is a collection of one dimensional maps
defined for each edge e ∈ E :

ψe : Ie → C.
We define Lp(G) and Hk(G) by

Lp(G) =
⊕
e∈E

Lp(Ie), Hk(G) =
⊕
e∈E

Hk(Ie).

The corresponding norms will be given by

‖ψ‖pLp =
∑
e∈E
‖ψe‖pLp(Ie)

, ‖ψ‖2Hk =
∑
e∈E
‖ψe‖2Hk(Ie)

.

The scalar product on L2(G) will be given by

(φ, ψ)L2 =
∑
e∈E
Re
∫
Ie

φeψ̄edx.
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To denote the duality product between H1(G) and its dual we will use the angle
brackets:

〈·, ·〉 = 〈·, ·〉H−1,H1 .

Note that is common to include in the definition of H1(G) a continuity condition
at the vertices. In order to consider more general situations, we do not make
this restriction here and we will later instead introduce the space H1

D(G), which
corresponds to the Dirichlet part of the compatibility conditions at the vertices
(see (3)).

Given u ∈ H2(G) and a vertex v ∈ V of degree dv, define u(v) ∈ Rdv as the
column vector

u(v) = (ue(v))e∼v

where e ∼ v denotes the edges incident to the vertex v and ue(v) is the correspond-
ing limit value of ue. The boundary conditions at the vertex v will be described
by

Avu(v) +Bvu
′(v) = 0,

where Av and Bv are dv×dv matrices and u′(v) is formed with the derivatives along
the edges in the outgoing directions. Consider for example the classical Kirchhoff-
Neumann boundary conditions at the vertex v: we require the conservation of
charge, i.e. for all e and e′ incident to the same vertex v

ue(v) = ue′(v),

and the conservation of current, i.e.∑
e∼v

u′e(v) = 0.

These conditions are expressed in terms of Av and Bv by

Av =


1 −1 (0)

1 −1
. . .

. . .

1 −1
(0) 0

 , Bv =


0 . . . 0
...

...
0 . . . 0
1 . . . 1

 . (1)

For the sake of conciseness, we use the notation

u(V) = (u(v))v∈V ,

for the column vector of all values at the end of the edges and the corresponding
boundary conditions matrices are given by

AV =

Av1 (0)
. . .

(0) AvV

 , BV =

Bv1 (0)
. . .

(0) BvV

 .

The boundary conditions considered are local at the vertices, we refrain here
from taking into account more general boundary conditions.

We now define on the graph a second order unbounded operator H by

H : D(H) ⊂ L2(G)→ L2(G)

where the domain of H is given by

D(H) := {u ∈ H2(G) : Au(V) +Bu′(V) = 0}
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and the action of H on u ∈ D(H) is given by

(Hu)e = −∂xxue
for every edge e ∈ E . We restrict ourselves to self-adjoint operators, which is known
to be equivalent for H (see e.g. [16, Theorem 1.4.4]) to request that at each vertex v
the dv×2dv matrix (Av|Bv) has maximal rank and the matrix AvB

∗
v is symmetric.

In that case, for each vertex v there exist three orthogonal and mutually orthogonal
operators PD,v (Dirichlet part), PN,v (Neumann part) and PR,v = Id−PD,v−PN,v
(Robin part), acting on Cdv and an invertible self-adjoint operator Λv acting on
the subspace PR,vCdv such that the boundary values of u ∈ D(H) at the vertex v
verify

PD,vu(v) = PN,vu
′(v) = PR,vu

′(v)− ΛvPR,vu(v) = 0.

Using this expression of the boundary conditions, we can express (see e.g. [16,
Theorem 1.4.11]) the quadratic form corresponding to H, which we denote by Q
and is given by

Q(u) =
1

2
‖u′‖2L2 +

1

2

∑
v∈V

(ΛvPR,vu, PR,vu)Cdv . (2)

The domain of Q is given by all functions u ∈ H1(G) such that at each vertex
PD,vu = 0. We denote it by

H1
D(G) = {u ∈ H1(G) : ∀v ∈ V, PD,vu = 0}. (3)

We now consider two examples of boundary conditions: Kirchhoff-Neumann
and δ-type. We already recalled what the classical Kirchhoff-Neumann boundary
conditions (1) are. In terms of the projection operator, the Dirichlet part PD,v in
the Kirchhoff-Neumann case is simply the projection on the kernel of Bv, given by

PD,v =
1

dv



dv − 1 −1 · · · · · · −1

−1 dv − 1
...

...
. . .

...
... dv − 1 −1
−1 · · · · · · −1 dv − 1


.

The Neumann part is given by I − PD,v, precisely

PN,v =
1

dv

1 · · · 1
...

...
1 · · · 1

 ,

and there is no Robin part.
We consider now a vertex with a δ-type condition of strength αv ∈ R at the

vertex v, which is defined for u ∈ H2(G) as follows:

u is continuous at v,
∑
e∼v

u′e(v) = αvu(v).

This vertex condition is analogous to the jump condition apparing in the domain
of the operator for the celebrated Schrödinger operator with Dirac potential (see
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e.g. the reference book [13] and Section 2.2.1). In terms of Av and Bv matrices,
the condition takes the form

Av =



1 −1 (0)
0 1 −1
...

. . .
. . .

. . .

0
. . . 1 −1

−αv 0 · · · 0 0

 , Bv =


0 . . . 0
...

...
0 . . . 0
1 . . . 1

 .

When αv = 0, we recovert the classical Kirchoff-Neumann boundary conditions.
When αv 6= 0, the Dirichlet, Neumann and Robin projectors are given as follows.
The Dirichlet projector PD,v is (as when αv = 0) the projection on the kernel of
Bv. There is no Neumann part and the Robin part is given by I−PD,v (which was
the Neumann part for α = 0). The operator Λv = B−1v Av on the range of PR,v is
the multiplication by αv

dv
. Assuming that we have δ-type conditions on the whole

graph, the domain H1
D(G) of the quadratic form Q associated with H is the space

of functions of H1(G) continuous at each vertex, and we thus may write u(v) for the
unique scalar value of u ∈ H1

D(G) at each vertex. The quadratic form associated
with H then becomes

Q(u) =
1

2
‖u′‖2L2 +

1

2

∑
v∈V

αv|u(v)|2.

2.2. Nonlinear quantum graphs. Having established the necessary preliminar-
ies on linear quantum graph in the previous section, we now turn to nonlinear quan-
tum graph. Given a quantum graph (G, H), we consider the nonlinear Schrödinger
equation on the graph G given by

i∂tu−Hu+ f(u) = 0, (4)

where u = u(t, ·) ∈ L2(G) is the unknown wave function, t the time variable, and f
is a nonlinearity satisfying the following requirements.

Assumption 2.1. The nonlinearity f : C→ C verifies the following assumptions.

(A0) Gauge invariance: there exists g : [0,∞)→ R such that f(z) = g(|z|2)z for
any z ∈ C.

(A1) g ∈ C0([0,+∞),R) ∩ C1((0,+∞),R), g(0) = 0 and lims→0 sg
′(s) = 0.

(A2) There exist C > 0 and 1 < p < 1 + 4
d−2 if d > 3, 1 < p < +∞ if d = 1, 2

such that |s2g′(s2)| 6 Csp−1 for s > 1.

Typical examples for f are power type or double power type nonlinearities

f(u) = ±|u|p−1u, f(u) = |u|p−1u− |u|q−1u,
where 1 < p, q <∞. We will use the real form of the anti-derivative of f , which is
given for every z ∈ C by

F (z) =

∫ |z|
0

f(s)ds.

Observe that f is a function defined on C. It differential df at z ∈ C might be
expressed for h ∈ C by

df(z)h = 2g(|z|2)zRe(zh̄) + g(|z|2)h.
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The functions on which f will be evaluated in the next sections will mostly be
real-valued and for simplicity we will use the following notation when the argument
of f is real: for s ∈ R we define

f ′(s) = 2g(s2)s2 + g(s2).

Formally, (4) is a Hamiltonian system in the form

i∂tu = E′(u),

where the Hamiltonian, or the energy E is a conserved quantity defined for any
u ∈ H1

D(G) by

E(u) = Q(u)−
∫
G
F (u)dx.

It is a C2 functional on H1
D(G) and its derivative is given by

E′(u) = Hu− f(u), (5)

with the slight abuse of notation that H here denotes the corresponding operator
from H1(G) to its dual.

From Noether’s theorem, the gauge symmetry of (4) yields another conserved
quantity (see e.g. [20]), the mass, given by

M(u) = ‖u‖2L2(G).

We are interested in this paper in the standing waves solutions for the nonlinear
Schrödinger equation set on the graph. By definition, a standing wave is a solution
u of (4) given for all e ∈ E by

ue(t, ·) = eiωtφe(·),
where ω ∈ R and the profile φ ∈ H1(G) is independant of time. Substituting into
(4) leads to the equation of the profile φ, given by

Hφ+ ωφ− f(φ) = 0. (6)

Therefore, φ is a critical point of the action functional

E +
ω

2
M.

Observe that there is a natural smoothing for φ: since, with our assumptions,
(ωφ− f(φ)) ∈ L2(G), we have φ ∈ D(H).

Strategies abound to find critical points of the action. One particularly interest-
ing strategy is to minimize the energy on fixed mass, as the obtained minimizer will
be (following the method established by Cazenave and Lions [18]) the profile of an
orbitally stable standing wave of (4) (provided minimizing sequences are compact,
which is usually a key step of the proof). More precisely, given m > 0, we will be
looking for φ ∈ H1

D(G) such that

M(φ) = m, E(φ) = min{E(ψ) : ψ ∈ H1
D(G), M(ψ) = m}. (7)

The theoretical existence of minimizers for the problem (7) has attracted a lot of
attention in the past decade and we will not attempt to give an exhaustive overview
of the existing literature. Some exemples of the existing have already been shortly
mentioned in Section 1. In what follows, we give a few more details on the case of
star graphs with two or more edges, and on the topological assumption preventing
the existence of ground states.
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2.2.1. Star graphs with two or more edges. One of the simplest nontrivial graph is
given by two semi-finite half-lines connected at a vertex, with δ type condition on
the vertex. In this case, the operator H is equivalent to the second order derivative
on R with point interaction at 0. In this setting, existence and stability of standing
waves for a focusing power-type nonlinearity was treated by Fukuizumi and co.
[24, 25, 32], using techniques based on Grillakis-Shatah-Strauss stability theory
(see [26, 27] for the original papers and [20, 21] for recent developments).

Various generalizations have been obtained, e.g. for a generic point interaction
[6, 7, 8] (δ or δ′ boundary conditions) or in the case of non-vanishing boundary
conditions at infinity [30]. In particular, the following results have been obtained
in [8].

Proposition 2.2. Assume that G is formed by two semi-infinite edges connected
{e1, e2} connected at the vertex v. Let H : D(H) ⊂ L2(G)→ L2(G) be the operator
−∂xx with one of the following conditions to be satisfied at the vertex.

• Attractive δ conditions:

ϕe1(v) = ϕe2(v), ϕ′e1(v) + ϕ′e2(v) = αϕ(v), α < 0.

• Attractive δ′ conditions:

ϕe1(v)− ϕe2(v) = βϕ′e2(v), β < 0, ϕ′e1(v) + ϕ′e2(v) = 0.

• Dipole conditions: for τ ∈ R, we have

ϕe1(v) + τϕe2(v) = 0, ϕ′e1(v) + τϕ′e2(v) = 0.

Let D(Q) = H1
D(G) be the domain of the quadratic form associated to H, and define

for ϕ ∈ D(Q) the energy

E(ϕ) = Q(ϕ)− 1

p+ 1
‖ϕ‖p+1

Lp+1 ,

where 1 < p < 5. Then for any m > 0 there exists up to phase shift and translation
a unique minimizer to

min{E(ϕ) : ϕ ∈ D(Q), M(ϕ) = m}.
A detailed review of these results as well as announcment of new results can be

found in [1].
A somewhat more elaborate setting is provided by star-graphs (graphs with

one vertex connecting semi-infinite edges) with δ interaction at the vertex. The
following result has been obtained in [4] for global minimization and [5] for local
minimization.

Proposition 2.3. Let N ∈ N and let G be a star-graph with N half-lines. Let
H : D(H) ⊂ L2(G) → L2(G) be the operator −∂xx with δ condition of strength
α < 0 at the vertex, i.e. for ϕ ∈ H2(G) we have

ϕe(v) = ϕ′e(v), ∀e, e′ ∼ v,
∑
e∼v

ϕ′e(v) = αϕe(v).

Let D(Q) = H1
D(G) be the domain of the quadratic form associated to H, and define

for ϕ ∈ D(Q) the energy

E(ϕ) = Q(ϕ)− 1

p+ 1
‖ϕ‖p+1

Lp+1 ,
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where 1 < p < 5. Define

m∗ =
4

p− 1

(
p− 1

2

)− p−3
p−1

∫ 1

0

(1− t2)
2

p−1−1dt.

Let m > 0 and define φ on each edge by

φe(x) = Φω(|x|+ a),

where a and Φω are given by

a =
2

(p− 1)
√
ω

arctan

(
α

(N
√
ω

)
, Φω(x) =

(√
(p+ 1)ω

2
sech

(
p− 1

2

√
ωx

)) 2
p−1

and ω is implicitely defined so that the mass constraint

M(φ) = m

is satisfied. Consider the minimization problem

min{E(ϕ) : ϕ ∈ D(Q), M(ϕ) = m}, (8)

The following assertions hold.

• If 0 < m < m∗, then φe is the unique (up to phase shift and translation)
global minimizer to the minimation problem (8),
• For any m > 0, φe is a local minimizer for the minimization problem (8).

Note that when the number of edges N of the star graph verifies N > 3, then
the N -tail profile φ is not a minimizer (global or local) any more and is in fact
unstable (see [2]).

2.2.2. General non-compact graph with Kirchoff condition. The existence of ground
states with prescribed mass for the focusing nonlinear Schrödinger equation (4) on
non-compact graphs G equipped with Kirchoff boundary condition is linked to the
topology of the graph. Actually, a topological hypothesis, usually refered to as
Assumption (H) can prevent a graph from having ground states for every value of
the mass (see [12] for a review). For the sake of clarity, we recall that a trail is
graph is a path made of adjacent edges, in which every edge is run through exactly
once. In a trail vertices can be run through more than once. The Assumption (H)
has many formulations ([12]) but we give here only the following one.

Assumption 2.4 (Assumption (H)). Every x ∈ G lies in a trail that contains two
halflines.

Let us consider for example a general N -edges star-graph G (see Fig. 1). The N
star-graph with N > 2 verifies Assumption 2.4 (H), so there are no ground states
in this case without adding any more constraints. An other example satisfying
Assumption 2.4 (H) is the triple bridge B3 (represented in Fig. 4). However,

∞ ∞• •

Figure 4. The 3-bridge B3

we are actually interested in this paper by the computation of ground states and
we consider graphs violating Assumption 2.4 (H) (or adding assumptions on the
solutions), for example the signpost graph or a line with a tower of bubbles (Fig. 5).
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∞ ∞•

•

∞ ∞•

•

Figure 5. Line with a signpost graph (left) and with a tower of
bubbles (right)

3. Continuous normalized gradient flow

We want here to show that, when the standing wave profile φ is a strict local
minimizer for the energy on fixed mass, the corresponding continuous normalized
gradient flow (i.e. the gradient flow of the energy projected on the mass contraint)
converges toward φ.

The continuous normalized gradient flow is defined by

∂tψ = −E′(ψ) +

〈
E′(ψ),

ψ

‖ψ‖L2

〉
ψ

‖ψ‖L2

, ψ(t = 0) = ψ0, (9)

where ψ = ψ(t, ·). It is the projection of the usual gradient flow

∂tψ = −E′(ψ)

on the L2 sphere

Sψ0
= {u ∈ H1

D(G) : ‖u‖L2 = ‖ψ0‖L2}.
Let φ ∈ H1

D(G) be a solution of (6). We define the linearized action operator L+

around φ by

L+ : D(H) ⊂ L2(G)→ L2(G),

u 7→ Hu+ ωu− f ′(φ)u.
(10)

We will assume that the bound state φ is a strict local minimizer of the energy on
fixed L2-norm, which translates for L+ into the following assumption.

Assumption 3.1. There exists κ > 0 such that for any ϕ ∈ D(H) verifying

(ϕ, φ)L2 = 0,

we have

(L+ϕ,ϕ)L2 > κ‖ϕ‖2H1 .

Since the pioneering work of Weinstein [39], this assumption is well know to hold
(if one removes translations and phase shifts) in the classical case of Schrödinger
equations on Rd with subcritical power-nonlinearities (f(ϕ) = |ϕ|p−1ϕ, 1 < p <
1 + 4/d). It is has also been established in many different cases, for example in
[30, 32] in the case of the 2 branches star graph with δ conditions on the vertex
(which is equivalent to the line with a Dirac potential) or in [28] in the case of
a 1-loop graph with Kirchoff conditions at the vertex (which is equivalent to an
interval with periodic boundary conditions).

Our main result in this section is the following.

Theorem 3.2. Let the nonlinearity f and the bound state φ be such that Assump-
tion 2.1 and Assumption 3.1 hold. Then for every 0 < µ < κ (where κ is the
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coercivity constant of Assumption 3.1) there exist ε > 0 and C > 0 such that for
every ψ0 ∈ H1

D(G) such that

‖ψ0 − φ‖H1 < ε

the unique solution ψ ∈ C([0, T ), H1
D(G)) of (9) is global (i.e. T =∞) and converges

to φ exponentially fast: for every t ∈ [0,∞) we have

‖ψ(t)− φ‖H1 < Ce−µt‖ψ0 − φ‖H1 .

Remark 3.3. In Theorem 3.2, we may choose any µ > 0 such that µ < κ, where κ
is the coercivity constraint in Assumption 3.1. Hence the convergence rate toward
the profile φ depends on the steepness of the energy well around φ.

The proof of the theorem is divided into three parts. This is the subject of the
next three subsections.

3.1. Local well-posedness of the continuous normalized gradient flow. Be-
fore proving Theorem 3.2, we establish the following local well-posedness result for
the continuous normalized gradient flow (9).

Proposition 3.4. Assume that the nonlinearity f verifies Assumption 2.1. Then,
for any ψ0 ∈ H1

D(G), there exists a unique maximal solution

ψ ∈ C([0, Tmax), H1
D(G)) ∩ C((0, Tmax), D(H)) ∩ C1((0, Tmax), L2(G))

of the continuous normalized gradient flow (9) with Tmax ∈ (0,+∞] . Moreover,
the mass of the solution is preserved and its energy is diminishing, i.e. for all
t ∈ [0, Tmax) we have

‖ψ(t)‖L2 = ‖ψ0‖L2 , ∂tE(ψ(t)) = −‖∂tψ‖2L2 6 0.

Proof of Proposition 3.4. Let ψ0 ∈ H1
D(G). We first show the second part of the

statement: preservation of the mass. Let ψ be a solution of (9) as in the first part
of the statement of Proposition 3.4. We have

1

2
∂t‖ψ‖2L2 = (∂tψ,ψ)L2 =

〈
−E′(ψ) +

〈
E′(ψ),

ψ

‖ψ‖L2

〉
ψ

‖ψ‖L2

, ψ

〉
= 〈−E′(ψ), ψ〉+

1

‖ψ‖2L2

〈E′(ψ), ψ〉 (ψ,ψ)L2 = 0.

The mass is therefore preserved for (9). Set

α = ‖ψ0‖L2 .

We now prove the first part of the statement (existence and uniqueness of a
solution). We first consider the intermediate problem

∂tψ = −E′(ψ) +
1

α2
〈E′(ψ), ψ〉ψ. (11)

The intermediate problem (11) can be written more explicitly (using the expression
(5) of E′(ψ)) as

∂tψ = −Hψ + F (ψ), F (ψ) = f(ψ) +
1

α2

(
Q(ψ)−

∫
G
f(ψ)ψdx

)
ψ,

where Q is the quadratic form associated with H and was defined in (2). Recall
that the operator H : D(H) ⊂ L2(G) → L2(G) is self-adjoint. Moreover, there
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exists λ > 0 such that H > −λ (this might be seen from the expression of Q given
in (2) and the injection of H1(G) into L∞(G)).

Moreover, since f verifies Assumption 2.1, the nonlinearity F : H1
D(G)→ H1

D(G)
is continuous, and, as a function F : H1

D(G)→ L2(G), it is Lipschitz continuous on
bounded sets. Indeed, for any z1, z2 ∈ C we have

|f(z1)− f(z2)| 6 (1 + |z1|p−1 + |z2|p−1)|z1 − z2|.
Therefore, for any M > 0 and for any ψ1, ψ2 ∈ H1

D(G) such that ‖ψ1‖H1 +‖ψ2‖H1 <
M , we have

‖f(ψ1)− f(ψ2)‖L2 6 C(M)‖ψ1 − ψ2‖H1 ,

and a similar estimate holds for F .
The existence of the desired solution then follows from classical results in the

theory of semilinear parabolic problems (see e.g. [34, Chapter 7]). More precisely,
there exists a unique

ψ ∈ C([0, Tmax), H1
D(G)) ∩ C((0, Tmax), D(H)) ∩ C1((0, Tmax), L2(G))

solution of (11) with ψ(0) = ψ0.
Given ψ, we now go back to the continuous normalized gradient flow (9) by

proving that t→ ‖ψ‖L2 is constant along the evolution in time. We have by direct
calculations on (17)

1

2
∂t‖ψ‖2L2 = (∂tψ,ψ)L2 = 〈−E′(ψ), ψ〉+

1

α2
〈E′(ψ), ψ〉 ‖ψ‖2L2

=
1

α2
〈E′(ψ), ψ〉

(
‖ψ‖2L2 − α2

)
.

This is a first order linear ordinary differential equation in ‖ψ‖2L2 which may be
solved explicitly:

‖ψ(t)‖2L2 = α2 +
(
‖ψ(0)‖2L2 − α2

)
exp

(
2

α2

∫ t

0

〈E′(ψ(s)), ψ(s)〉 ds
)
.

Since ‖ψ0‖L2 = α, this indeed gives

‖ψ(t)‖2L2 = α2

for any t ∈ [0, Tmax). Therefore ψ is also a solution of (9). Uniqueness of such a
solution is a direct consequence of the uniqueness for (11) and the preservation of
the mass.

Finally, we establish the energy diminishing property. Using (9) to replace E′(ψ),
we have

∂tE(ψ(t)) = 〈E′(ψ), ∂tψ〉 = −〈∂tψ, ∂tψ〉 −
1

‖ψ‖2L2

〈E′(ψ), ψ〉 〈ψ, ∂tψ〉

= −‖∂tψ‖2L2 6 0,

where we have used the conservation of the mass in the form 〈ψ, ∂tψ〉 = 0 to obtain
the last equality. This concludes the proof. �

Having established local well posedness of the continuous normalized gradient
flow (9), we turn our attention to the evolution for initial data in the vicinity of
the bound state φ.
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3.2. The normal part of the continuous normalized gradient flow. Given
the bound state φ ∈ H1

D(G), we define a Hilbert subspace W of H1
D(G) by

W := {w ∈ H1
D(G) : (w, φ)L2 = 0}.

We define the coordinates-to-data map χ : R×W → H1
D(G) by

χ(r, w) = (1 + r)φ+ w.

The map χ is smooth and has bounded derivatives. Its inverse is the data-to-
coordinates map χ−1 : H1

D(G)→ R×W which is explicitly given by

χ−1(ψ) = (r(ψ), w(ψ)) =

(
(ψ, φ)L2

‖φ‖2L2

− 1, ψ − (ψ, φ)L2

‖φ‖2L2

φ

)
. (12)

As χ, the map χ−1 is smooth and has bounded derivatives.
The second step of the proof of Theorem 3.2 is to decompose the continuous

normalized gradient flow (9) by projecting it on W and φ, as is done in the following
proposition.

Proposition 3.5. Let T > 0 and ψ ∈ C((0, T ), D(H))∩C1((0, T ), L2(G)) be a solu-
tion of (9) such that ‖ψ‖L2 = ‖φ‖L2 and decompose ψ using the data-to-coordinates
map χ−1(ψ(t)) = (r(t), w(t)) ∈ R×D(H) given by (12):

ψ(t) = (1 + r(t))φ+ w(t).

Then we have

∂tw = −L+w + o(w), in W ′, and r = O(‖w‖2L2),

where W ′ is the dual of W and L+ was defined in (10).

The proof of Proposition 3.5 is divided into three steps. In the first step we will
consider the orthogonal decomposition of the flow along φ and W . In the second
step we will project this orthogonal decomposition on the L2-sphere. The third and
last step will make the link between the projected normalized energy derivative and
the linearized action operator L+.

3.2.1. Step 1: Orthogonal Decomposition. We first consider the orthogonal decom-
position of the energy.

Consider the functional ERW : R×W → R defined for (r, w) ∈ R×W by

ERW (r, w) = (E ◦ χ)(r, w) = E(χ(r, w)).

Lemma 3.6 (Orthogonal decomposition of the energy). The functional ERW is
differentiable and we have the following estimates

DrERW (r, w) = −ω‖φ‖2L2 − (w, f(φ)− f ′(φ)φ)L2 +O(r) + o(‖w‖L2),

DwERW (r, w) = Hw − f ′(φ)w +O(r) + o(w).

Remark 3.7. DwERW (r, w) is an operator acting on W ⊂ H1
D(G). For any element

h ∈ W , we will note indifferently DwERW (r, w)h or 〈DwERW (r, w), h〉 the image
of h by DwERW (r, w).

Proof. Since E and χ are differentiable, the functional ERW is also differentiable
and we have

DrERW (r, w) = E′(χ(r, w)) ◦Drχ(r, w) = 〈E′(χ(r, w)), φ〉 , (13)

DwERW (r, w) = E′(χ(r, w)) ◦Dwχ(r, w) = 〈E′(χ(r, w)), IdW (·)〉 . (14)
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We now recall that φ ∈ H1
D(G) satisfies (6). Given r ∈ R and w ∈W , using (5), we

have

E′(χ(r, w)) = Hχ(r, w)− f(χ(r, w))

= (1 + r)Hφ+Hw − f(φ)− f ′(φ)(rφ+ w) + o(rφ+ w)

= (1 + r)(f(φ)− ωφ)− f(φ) +Hw − f ′(φ)w − rf ′(φ)φ+ o(rφ+ w)

= −ωφ+Hw − f ′(φ)w +O(r) + o(w).

We have used here the fact that f ∈ C1 for the Taylor expansion, and that φ is
bounded. We may now use this estimate in (13) to obtain

DrERW (r, w) = 〈E′(χ(r, w)), φ〉 = −ω‖φ‖2L2 +〈Hw − f ′(φ)w, φ〉+O(r)+o(‖w‖L2).

The operator H − f ′(φ) is self-adjoint and Hφ − f ′(φ)φ = −ωφ + f(φ) − f ′(φ)φ.
Using w ∈W (i.e. (w, φ)L2 = 0) we obtain

DrERW (r, w) = −ω‖φ‖2L2 − (w, f(φ)− f ′(φ)φ)L2 +O(r) + o(‖w‖L2),

which proves the first part of the statement.
From (14), for h ∈W we get

DwERW (r, w)h = 〈E′(χ(r, w)), h〉
= −ω 〈φ, h〉+ 〈Hw − f ′(φ)w, h〉+ 〈O(r) + o(w), h〉

= 〈Hw − f ′(φ)w, h〉+ 〈O(r) + o(w), h〉 ,
where to get the last line we have used that h ∈W and thus 〈φ, h〉 = (φ, h)L2 = 0.
This proves the second part of the statement. �

3.2.2. Step 2: Projection on the L2-sphere. We now make the link between the
orthogonal decomposition and the mass normalization constraint.

We denote the L2 sphere of radius ‖φ‖L2 by

Sφ = {v ∈ H1
D(G) : ‖v‖L2 = ‖φ‖L2}.

Consider the open subset of W given by

OW = {w ∈W : ‖w‖L2 < ‖φ‖L2}.
We define the functional rW : OW → R for any w ∈ OW by the implicit relation

‖χ(rW (w), w)‖L2 = ‖φ‖L2 .

The functional rW can be made explicit by a direct calculation on the above equality
and is given for w ∈ OW by

rW (w) = −1 +

√
1−

(‖w‖L2

‖φ‖L2

)2

.

In particular, rW is well defined and smooth. Moreover, we have in the open set
OW the estimate

|rW (w)| 6
(‖w‖L2

‖φ‖L2

)2

. (15)

Thus, we have a local parametrization of Sφ around φ given by

OW 7→ Sφ,
w → χ(rW (w), w).
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Introduce the functional EW : OW → R defined by

EW (w) = ERW (rW (w), w) = E(χ(rW (w), w)) = E((1 + rW (w))φ+ w).

This functional can be used to describe the dynamics of the projected part of the
normalized flow, as is done in the following lemma.

Lemma 3.8 (Gradient flow in local variables). Let w be as in Proposition 3.5.
Then w is a solution of

∂tw = −DwEW (w) +
〈DwEW (w), w〉

‖φ‖2L2

w, in W ′. (16)

Proof. Observe first that rW and EW are differentiable on OW . Their differentials
are given, for w ∈ OW and h ∈W such that w + h ∈ OW , by

〈r′W (w), h〉 = − (w, h)L2

‖φ‖2L2

(
1−

(‖w‖2L2

‖φ‖L2

)2
)− 1

2

= − (w, h)L2

‖φ‖2L2

1

1 + rW (w)
,

and

〈DwEW (w), h〉 = 〈E′(χ(rW (w), w)), h〉+ 〈r′W (w), h〉 〈E′(χ(rW (w), w)), φ〉 .
Using the derivatives of ERW (given in (13)-(14)) and r, we might expressDwEW (w)
in the following way:

DwEW (w) = (DwERW )(rW (w), w)− (DrERW )(rW (w), w)

‖φ‖2L2

1

1 + rW (w)
w. (17)

Recall that ψ ∈ C([0, T ], H1
D(G)) ∩ C1((0, T ), L2(G)) is a solution of the continuous

normalized gradient flow (9) such that ‖ψ‖L2 = ‖φ‖L2 and that ψ is decomposed
using the data-to-coordinates map χ−1(ψ(t)) = (r(t), w(t)) ∈ R×W given by (12)
in the following way:

ψ(t) = (1 + r(t))φ+ w(t).

Since r(t) = (ψ(t), φ)L2 − 1 = rW (w), the function r of t is C1. The regularity of w
is the same as the regularity of ψ. We have

‖ψ(t)‖2L2 = (1 + r(t))2‖φ‖2L2 + ‖w(t)‖2L2 ,

which, by conservation of the L2-norm for ψ implies that for all t ∈ [0, T ] we have

−1 6 r(t) 6 0 and ‖w(t)‖2L2 6 ‖ψ‖2L2 .

We want to convert the continuous normalized gradient flow (9) in ψ into a closed
equation for w (r can be directly deduced from w by preservation of the L2 norm).
Observe first that

∂tψ = φ∂tr + ∂tw.

To obtain the evolution equation for w, we take h ∈W and compute:

〈∂tw, h〉 = 〈∂tψ − φ∂tr, h〉 = 〈∂tψ, h〉 .
Since ψ is a solution of the normalized gradient flow (9), we get

〈∂tψ, h〉 = 〈−E′(ψ), h〉+
〈E′(ψ), ψ〉
‖ψ‖2L2

〈ψ, h〉 .

Since h ∈W , we have

〈−E′(ψ), h〉 = −DwERW (r, w)h.
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We also have

〈E′(ψ), ψ〉 = (1 + r) 〈E′(ψ), φ〉+ 〈E′(ψ), w〉
= (1 + r)DrERW (r, w) + 〈DwERW (r, w), w〉 .

Using 〈ψ, h〉 = 〈w, h〉, we get the following equation:

〈∂tw, h〉 =−DwERW (r, w)h+

1

‖φ‖2L2

(
(1 + r)DrERW (r, w) + 〈DwERW (r, w), w〉

)
〈w, h〉 .

Since the previous equation holds for any h ∈W , it can be rewritten as

∂tw = −DwERW (r, w)+
1

‖φ‖2L2

(
(1+r)DrERW (r, w)+〈DwERW (r, w), w〉

)
w, in W ′.

By conservation of the L2-norm in the normalized gradient flow (9), r might be
infered from w and we have for w the following closed equation

∂tw = −(DwERW )(rW (w), w)

+
1

‖φ‖2L2

(
(1 + rW (w))(DrERW )(rW (w), w) + 〈(DwERW )(rW (w), w), w〉

)
w.

(18)

Using (17) to replace (DwERW )(rW (w), w) in (18), we obtain

∂tw = −DwEW (w)− (DrERW )(rW (w), w)

‖φ‖2L2

1

1 + rW (w)
w

+
1

‖φ‖2L2

(1 + rW (w))(DrERW )(rW (w), w)w

+
1

‖φ‖2L2

〈
DwEW (w) +

(DrERW )(rW (w), w)

‖φ‖2L2

1

1 + rW (w)
w,w

〉
w

= −DwEW (w) +
1

‖φ‖2L2

〈DwEW (w), w〉 w

+
(DrERW )(rW (w), w)

‖φ‖2L2

[
− 1

1 + rW (w)
w + (1 + rW (w))w

+
1

1 + rW (w)

‖w‖2L2

‖φ‖2L2

w

]
= −DwEW (w) +

〈DwEW (w), w〉
‖φ‖2L2

w,

where to get the last line we have used the expression of ‖w‖2L2 in terms of rW (w),
i.e.

‖w‖2L2 = ‖φ‖2L2

(
1− (1 + rW (w))2

)
.

This concludes the proof. �

3.2.3. Step 3: Link with the linearized action. To conclude the proof of Proposition
3.5, it remains to make the link between DwEW (w) and L+.

Lemma 3.9. The differential DwEW (w) can be approximated in the following way:

DwEW (w) = L+w + o(w),

where L+ has been defined in (10).
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Proof. We already have obtained in (17) the identity

DwEW (w) = (DwERW )(rW (w), w)− (DrERW )(rW (w), w)

‖φ‖2L2

1

1 + rW (w)
w.

From the estimates on (DwERW )(rW (w), w) and (DrERW )(rW (w), w) given in
Lemma 3.6, we have

− (DrERW )(rW (w), w)

‖φ‖2L2

1

1 + rW (w)
w = ωw +O(r) + o(‖w‖L2),

where we have used the classical power series expansion 1
1+r = 1− r+ · · ·. Finally,

we obtain

DwEW (w) = Hw + ωw − f ′(φ)w +O(r) + o(w) = L+ + o(w)

(since from (15), we have r = O(‖w‖2L2)). This concludes the proof. �

Proposition 3.5 is a direct consequence of Lemmas 3.6, 3.8 and 3.9.

3.3. Convergence of the normal part of the continuous normalized gradi-
ent flow. The second step of the proof of Theorem 3.2 is to prove convergence to
0 of the projected part w of the solution ψ of the continuous normalized gradient
flow (9), provided ‖w0‖H1 is small (i.e. ψ0 is close enough to the bound state φ).
This is the object of the following proposition.

Proposition 3.10 (Convergence of the flow). For every 0 < µ < κ (where κ is the
coercivity constant of Assumption 3.1) there exist ε > 0 and C > 0 such that for
any w0 ∈ W such that ‖w0‖H1 < ε the associated solution w of (16) is global and
for all t ∈ [0,∞) verifies

‖w(t)‖H1 6 Ce−µt.

Since |r(w)| 6 C‖w‖2L2 (see (15)), Theorem 3.2 is a direct consequence of Propo-
sitions 3.5 and 3.10.

Proof of Proposition 3.10. Denote

R(w) = DwEW (w)− 〈DwEW (w), w〉
‖φ‖2L2

w − L+w = o(w). (19)

We remark that, for any t ∈ (0, T ),

(φ,w(t))L2 = 0 ⇒ (φ, ∂tw(t))L2 = 0.

Thus, by denoting PW the orthogonal projector on W , since L+ is self-adjoint and
∂tw ∈W verifies (16), we have

∂

∂t
〈L+w(t), w(t)〉= 2 〈L+w(t), PW∂tw(t)〉 = 2 〈PWL+w(t), ∂tw(t)〉

= −2 〈L+w(t), L+w(t)〉+ 2 〈R(w(t)), w(t)〉 , (20)

where R is given by (19). By the coercivity estimate in Assumption 3.1 and Cauchy-
Schwartz inequality, we have

κ‖w‖2H1 6 〈L+w,w〉 6 ‖L+w‖L2‖w‖L2 ,

which implies in particular that

κ‖w‖H1 6 ‖L+w‖L2 .
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Coming back to (20), we get

∂

∂t
〈L+w(t), w(t)〉 6 −2κ2‖w(t)‖2L2 + 2‖R(w(t))‖L2‖w(t)‖L2

6 −2κ2‖w(t)‖2L2 + o(‖w(t)‖2L2). (21)

Assume that ‖w0‖H1 < ε where ε > 0 is chosen such that

−2κ2‖w0‖2L2 + o(‖w0‖2L2) < −2κµ‖w0‖2L2 ,

(recall that 0 < µ < κ)). Since w is continuous, there exists T0 > 0 such that for
any t ∈ [0, T0], we have

− 2κ2‖w(t)‖2L2 + o(‖w(t)‖2L2) < −2κµ‖w(t)‖2L2 . (22)

For t ∈ [0, T0] we integrate (21) in time from 0 to t and use (22) to obtain

〈L+w(t), w(t)〉 − 〈L+w0, w0〉 6 −2κµ

∫ t

0

‖w(s)‖2H1ds.

Defining the constant C0 = 〈L+w0, w0〉 /κ and using again the coercivity estimate
of Assumption 3.1, we get

‖w(t)‖2H1 6 C0 − 2µ

∫ t

0

‖w(s)‖2H1ds,

which by Gronwall inequality gives

‖w(t)‖2H1 6 C0e
−2µt

and therefore

‖w(t)‖H1 6
√
C0e

−µt.

Since ‖w0‖H1 < ε, there exists C > 0 depending only on ε such that C >
√
C0.

This concludes the proof. �

4. Space-time discretization of the normalized gradient flow

4.1. Time discretization. The discretization scheme of the continuous normal-
ized gradient flow (9) must provide a numerical method to obtain a0 minimizer
of (7). We first consider the semi-discretization in time. The time step δt > 0 is
chosen to be fixed and the discrete times tn are defined as tn = nδt, n > 0. The
semi-discrete approximation of any unknown function ψ(·, x), x ∈ G, at time tn is
denoted by ψn(x). In order to present the numerical schemes, we recall that the
nonlinearity verifies Assumption 2.1 and that it is of the form

f(ψ) = g(|ψ|2)ψ,

where g is continuous. We also introduce the variable µm, usually refered to as the
chemical potential,

µm(ψ) =
1

m
〈E′(ψ), ψ〉 , m = ‖ψ‖2L2 . (23)

Dropping the dependance on (t, x) ∈ [0,+∞) × G and using (5), the continuous
normalized gradient flow (9) can therefore be rewritten as

∂tψ = −(H − g(|ψ|2))ψ + µm(ψ)ψ, ψ(t = 0) = ψ0, (24)

where ‖ψ0‖2L2 = m.



21

Several numerical methods can be considered for discretizing (23). For example,
if the nonlinearity is f(ψ) = |ψ|2ψ, a standard Crank-Nicolson scheme would consist
in

ψn+1 − ψn
δt

=

(
−H +

|ψn+1|2 + |ψn|2
2

+ µ
n+ 1

2
m

)
ψn+

1
2 ,

where the intermediate values à tn+ 1
2

are given by

ψn+
1
2 =

ψn+1 + ψn

2
, µ

n+ 1
2

m =
Dn+ 1

2

‖ψn+ 1
2 ‖2L2

,

Dn+ 1
2 = 2Q(ψn+

1
2 )− 1

2
(‖|ψn+1|ψn+ 1

2 ‖2L2 + ‖|ψn|ψn+ 1
2 ‖2L2).

This method can be proved to be energy diminishing. However, in the above
discretization, we need to solve a fully nonlinear system at every time step, which
is time- and resource-consuming in practical computation.

Bao and Du introducted in [15] a more efficient solution: the Gradient Flow with
Discrete Normalization (GFDN) method, which consists into one step of classical
gradient flow followed by a mass normalization step. By setting ψ0 = ψ0, it is given
by 

ϕn+1 − ψn
δt

= −Hϕn+1 + g(|ψn|2)ϕn+1,

ψn+1 =
√
m

ϕn+1

‖ϕn+1‖L2

.

(25)

It is not clear at first sight that (25) is indeed a discretization of (24), but we indeed
have the following result.

Proposition 4.1. The GFDN method (25) is a time-discretization of the contin-
uous normalized gradient flow (24).

Some arguments are given in [14, 15] for m = 1, we provide here a proof with
additional details and extend the result for any m > 0.

Proof of Proposition 4.1. The starting point is to apply a first order splitting, also
known as Lie splitting, to (24). Assuming that the approximation ψn of ψ at time
tn, of mass ‖ψn‖2L2 = m, is known, the steps of the splitting scheme are as follows.

Step 1: Solve {
∂tv = −Hv + g(|v|2)v, tn 6 t 6 tn+1,

v(tn) = ψn.
(26)

Step 2: Solve {
∂tw = µm(w)w, tn 6 t 6 tn+1,

w(tn) = v(tn+1).
(27)

After the two steps, we simply define ψn+1 = w(tn+1).
Step 1 requires to solve a nonlinear parabolic type partial differential equation.

Following [15], we approximate (26) by a semi-implicit time discretization:

vn+1 − ψn
δt

= −Hvn+1 + g(|ψn|2)vn+1. (28)

So, we have ϕn+1 = vn+1. The interest in having a semi-implicit scheme stems
from its stability property.
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The equation involved in Step 2 is an ordinary differential equation. In [15], its
solution is approximated by

wn+1 =
√
m

ϕn+1

‖ϕn+1‖L2

. (29)

The coupling of (28) and (29) leads to the GFDN method. It is not totally
obvious that (29) is actually an approximation of the solution w(tn+1) to (27).
The normalization part (29) is actually equivalent to solve the ordinary differential
equation {

∂tρ = νn,m(δt)ρ, tn < t < tn+1,

ρ(tn) = ϕn+1,
(30)

where

νn,m(δt) =
ln(m)− ln

(
‖ϕn+1‖2L2

)
2δt

. (31)

We define the piecewise function

µ̃m(t, δt) =

N−1∑
n=0

νn,m(δt)1[tn,tn+1)(t).

With this definition, the gradient flow with discrete normalization method (25) is
an approximation of{

∂tϕ = −Hϕ+ g(|ϕ|2)ϕ, ϕ(tn) = ψ(tn), tn < t < tn+1,

∂tρ = νn,m(δt)ρ, ρ(tn) = ϕ(tn+1), tn < t < tn+1,
(32)

with ‖ψ(tn)‖2L2 = m. Actually, the system (32) has to be read as the Lie splitting
approximation of

∂tΥ = −HΥ + g(|Υ|2)Υ + µ̃m(t, δt)Υ, Υ(t = 0) = ψ0, (33)

and ‖ψ0‖2L2 = m. Thus, it remains to make the link between (33) and (24) by
determining the limit of µ̃m(t, δt) when δt goes to 0. Let us define t∗ = tn that
remains constant when δt→ 0 and n→∞. For t∗ 6 t < t∗ + δt, we have

µ̃m(t, δt) = −1

2

ln‖ϕ(t∗ + δt)‖2L2 − ln(m)

δt

= −1

2

ln‖ϕ(t∗ + δt)‖2L2 − ln‖ϕ(t∗)‖2L2

δt
.

= −1

2

d

ds

(
‖ϕ(t∗ + s)‖2L2

)
|s=0

‖ϕ(t∗)‖2L2

+O(δt).

Since s 7→ ϕ(t∗ + s) is solution to ∂sϕ = −E′(ϕ), for 0 < s < δt we have

d

ds
‖ϕ(t∗ + s)‖2L2 = −2 〈E′(ϕ(t∗ + s)), ϕ(t∗ + s)〉 .
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Consequently, for t∗ 6 t < t∗ + δt, we have

µ̃m(t, δt) =
〈E′(ϕ(t∗)), ϕ(t∗)〉
‖ϕ(t∗)‖2L2

+O(δt)

=
〈E′(ψ(t∗)), ψ(t∗)〉

m
+O(δt)

= µm(ψ) +O(δt).

Thus, we conclude that (33) is an approximation of (24). This finishes the proof. �

The complete Gradient Flow with Discrete Normalization algorithm is therefore

ψ0 = ψ0, such that ‖ψ0‖2L2 = m
for n = 0, . . . , N∣∣∣∣∣∣

Solve
(
Id + δt

(
H − g

(
|ψn|2

)))
ϕn+1 = ψn,

ψn+1 =
√
m

ϕn+1

‖ϕn+1‖L2

,

(34)

where N denotes the last step of the algorithm and Id is the identity map.

Remark 4.2. Since we use a splitting scheme to discretize the continuous normalized
gradient flow (9), it is no longer guaranteed that (34) is energy diminishing. We
will show in numerical experiments that it is actually “almost” the case.

Remark 4.3. Since the solution of the continuous normalized gradient flow (9) is
asymptotically equal to the ground state, the final step N in (34) is a priori not
known. It is natural to modify the loop “for n = 0, . . . , N” by a test statement

n = −1
Repeat until convergence

n = n+ 1

The usual convergence test consists in verifying that the solution is stagnating
meaning that one tests that

‖ψn+1 − ψn‖L2 < tol

where tol is a tolerance value. It the test is not statified, the iteration process is
extended

Remark 4.4. It is possible to modify the algorithm (34) to deal with mass one
unknowns. Indeed, let us consider

ψ̃ =
ψ

‖ψ‖L2

=
ψ√
m
.

Then, the algorithm (34) becomes

ψ̃0 = ψ0/
√
m, such that ‖ψ0‖2L2 = m

for n = 0, . . . , N∣∣∣∣∣ Solve
(
Id + δt

(
H − g

(
m|ψn|2

)))
ϕn+1 = ψ̃n,

ψ̃n+1 = ϕn+1/‖ϕn+1‖L2 ,

ψN+1 =
√
mψ̃N+1.

(35)
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4.2. Space discretization. We obtained the discretization in time of the normal-
ized gradient flow in the previous section. To complete the discretization of the
flow, we now proceed to the space discretization of the operator H. We recall that
H is defined as a Laplace operator on each edge e ∈ E with boundary conditions,
for each vertex v connected to e,

Avψ(v) +Bvψ
′(v) = 0,

where ψ(v) = (ψr(v))r∼v, ψ
′(v) = (∂xψr(v))r∼v are vectors, with ∂xψr(v) the

outgoing derivative on r at v, and (Av, Bv) are matrices (see Section 2).
For each edge e ∈ E , we consider Ne ∈ N∗ the number of interior points and

{xe,k}16k6Ne
a uniform discretization of the length Ie = [0, le], i.e.

xe,0 := 0 < xe,1 < . . . < xe,Ne
< xe,Ne+1 := le,

with xe,k+1−xe,k = le/(Ne+ 1) := δxe for 0 6 k 6 Ne. We denote v1 the vertex at
xe,0, v2 the one at xe,Ne+1 and, for any ψ ∈ H1

D(G), for all e ∈ E and 1 6 k 6 Ne,

ψe,k := ψe(xe,k),

as well as ψe,v := ψe(yv) for v ∈ {v1, v2}, where yv1 = xe,0 and yv2 = xe,Ne+1.

×
v1

×
v2

xe,0 xe,1 xe,2 xe,Ne+1

• • • • • • •

Figure 6. Discretization mesh of an edge e ∈ E

We now assume that Ne > 3. For any 2 6 k 6 Ne − 1, the second order
approximation of the Laplace operator by finite differences on e is given by

∆ψ(xe,k) ≈ ψe,k−1 − 2ψe,k + ψe,k+1

δxe
2 .

For the case k = 1 and k = Ne, the approximation requires ψe,v1 and ψe,v2 and
we have to use the boundary conditions in order to evaluate them. We use second
order finite differences to approximate them as well. For −2 6 j 6 0, we denote

ψe,v1,j = ψe(xe,|j|) and ψe,v2,j = ψe(xe,Ne+j).

We have the approximation of the outgoing derivative from e at v ∈ {v1, v2}

ψ′e(xe,v) ≈
3ψe,v,0 − 4ψe,v,−1 + ψe,v,−2

2δxe
.

Assuming that δx = δxe for every edge e ∈ E to simplify the presentation, this
leads to the approximation of the boundary conditions

Avψv,0 +Bv

(
3ψv,0 − 4ψv,−1 + ψv,−2

2δx

)
= 0,

where ψv,j = (ψe,v,j)e∼v. Assuming that 2δxAv+3Bv is invertible, this is equivalent
to

ψv,0 = (2δxAv + 3Bv)
−1
Bv (4ψv,−1 − ψv,−2) . (36)

Thus, we can explicitly express the value of ψe,v1 (resp. ψe,v2) : it depends linearly
on the vectors ψv1,−1 and ψv1,−2 (resp. ψv2,−1 and ψv2,−2). It is then possible to
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deduce an approximation of the Laplace operator at xe,1 and xe,Ne
. That is, there

exists (αe,v)e∼v ⊂ R, for v ∈ {v1, v2}, such that

∆ψ(xe,1) ≈
ψe,2 − 2ψe,1 +

∑
e∼v1

αe,v1(4ψe,v1,−1 − ψe,v1,−2)

δx2
,

and

∆ψ(xe,Ne
) ≈

ψe,Ne−1 − 2ψe,Ne
+
∑
e∼v2

αe,v2(4ψe,v2,−1 − ψe,v2,−2)

δx2
.

Since (ψe,v,j)−26j60,v∈{v1,v2} are interior mesh points from the other edges, we limit
our discretization to the interior mesh points of the graph. The approximated values
of ψ at each vertex are computed using (36). We denote ψ = (ψe,k)16k6Ne,e∈E
the vector in RNT , with NT =

∑
e∈E Ne, representing the values of ψ at each

interior mesh point of each edge of G. We introduce the matrix [H] ∈ RNT×NT

corresponding to the discretization of H on the interior of each edge of the graph,
which yields the approximation

Hψ ≈ [H]ψ.

4.3. Space-time discretization. Finally, we obtain the Backward Euler Finite
Difference (BEFD) scheme approximating (25). Let ψ0 ∈ RNT . We compute the
sequence (ψn)n>0 ⊂ RNT given by

ϕn+1 = ψn − δt
(
[H]ϕn+1 − [g(|ψn|2)]ϕn+1

)
,

ψn+1 =
√
m

ϕn+1

‖ϕn+1‖`2
,

(37)

where [g(|ψn|2)] ∈ RNT×NT is a diagonal matrix whose diagonal is the vector
g(|ψn|2) and ‖ϕn+1‖`2 is the usual `2-norm on the graphe G of ϕn+1. This scheme
has been studied on rectangular domains (with an additional potential operator)
and Dirichlet boundary conditions [15] and is known to be unconditionally stable.
Since it is implicit, the computation of ϕn+1 involves the inversion of a linear system
whose matrix is

[Mn] = [Id] + δt
(
[H]− [g(|ψn|2)]

)
,

where [Id] is the identity matrix, and right-hand-side is ψn. Using the matrix [H],
we may also compute the energy. For instance, in the case where g(z) = z, by using
the standard `2 inner product by on the graph, we obtain

E(ψn) =
1

2
([H]ψn,ψn)`2 −

1

4

(
(ψn)2, (ψn)2

)
`2
. (38)

To illustrate our methodology, we give below an example of a star-graph with 3
edges. The operator H is given with Dirichlet boundary conditions for the exterior
vertices and Kirchoff-Neumann conditions for the central vertex. We can see on
Figure 7 (b) the positions of the non zero coefficient of the corresponding matrix
[H] when the discretization is such that Ne = 10, for each e ∈ E . The coefficients
accounting for the Kirchoff boundary condition are the ones not belonging to the
tridiagonal component of the matrix.
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• •

•

•

(a) Star-graph with 3 edges.

0 5 10 15 20 25
0

5

10

15

20

25

(b) Matrix representation of H.

Figure 7. An example for a star-graph.

5. Numerical experiments

We present here various numerical computations of ground states using the Back-
ward Euler Finite Difference scheme (37). Even though the (BEFD) method was
built for a general nonlinearity, we focus in this section on the computations of
the ground states of the focusing cubic nonlinear Schrödinger (NLS) equation on a
graph G, that reads

i∂tψ = Hψ − |ψ|2ψ. (39)

Explicit exact solutions are available for (NLS) on various graphs, in particular star
graphs. We use the two-edges star graph in Section 5.1 to validate our implemen-
tation of the (BEFD) method and to show its efficiency to compute ground states.
Finally, we present in Section 5.2 some numerical results for non compact graphs
for which no explicit solutions are available. More examples will be available in a
forthcoming companion paper [17].

5.1. Two-edges star-graph. The two-edges star-graph is one of the most simple
graph. We identify the graph G = G2 as the collection of two-half lines connected
to a central vertex A. Each edge is refered to with index i = 1, 2 (see Fig. 8). The
coordinate of vertex A is therefore both x1 = 0 and x2 = 0. Consequently, the
unknown ψ of (39) can be thought as the collection

ψ = (ψ1, ψ2)T ,

each function ψi living respectively on edge i.

•
Ax1 x2

Figure 8. Two star-graph

5.1.1. Kirchhoff condition. The ground state of the cubic nonlinear Schrödinger
equation (39) on the real line is known to be the soliton. To compute it on a
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two-edges star-graph, we identify the real line R to the graph G2 with Kirchhoff
condition at the vertex located at x = 0 (see [2]). The Kirchhoff condition on R is

ψ(0−) = ψ(0+), ψ′(0−) = ψ′(0+), (40)

with ψ′ denoting the usual forward derivative, whereas on G2, it is

ψ1(0) = ψ2(0), ψ′1(0) + ψ′2(0) = 0. (41)

The energy is

ENLS(ψ) =
1

2
‖ψ′‖2L2(R) −

1

4
‖ψ‖4L4(R), ψ ∈ H1(R),

or similarly

ENLS(ψ) =

2∑
i=1

(
1

2
‖ψ′i‖2L2(Rxi

) −
1

4
‖ψi‖4L4(Rxi

)

)
, ψ ∈ H1(G2).

The minimum of the functional ENLS on the functions in H1(R) with squared
L2-norm equal to m > 0 is given (up to phase and translation) by

φm(x) =
m

2
√

2

1

cosh(mx/4)
, (42)

and

ENLS(φm) = −m
3

96
. (43)

In order to simulate the two semi-infinite edges originated from the central vertex,
we consider two finite edges of length 40. The graph is presented on Fig. 9 (left).

-40 -30 -20 -10 0 10 20 30 40

AB C

x

−40 −20
0

20
40

y
0.00

0.0
0.1
0.2
0.3
0.4

0.5

0.6

0.7

A

B

C

Figure 9. Two-edges graph (left) and the exact solution φm(x)
for m = 2 (right)

We discretize each edge with Ne = 4000 nodes and set homogeneous Dirichlet
boundary conditions at the external vertices (B and C on Fig. 9). The time step is
δt = 10−2. The mass is m = 2. The exact solution is plotted on Fig. 9 (right).The
initial datum is chosen as a Gaussian of mass m/2 on each edge, namely

ψ0(x) =

√
10m√

5π
e−10x

2

.
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We plot on Fig. 10 both the exact solution φm (42) and the numerical one φm,num
obtained after 3000 iterations (left), as well as the error |φm − φm,num| (right). We

−40 −30 −20 −10 0 10 20 30 40
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Num. sol.

Exact sol.

−40 −30 −20 −10 0 10 20 30 40
x

10−9

10−7

10−5

10−3

10−1

φm and φm,num |φm − φm,num|

Figure 10. Comparison between φm and φm,num

obtain a very close numerical solution.
The (BEFD) method allows to compute the exact energy and show that the

scheme is energy diminishing. We plot in Figure 11 the evolution of the numerical
energy using (38) and the comparison with the exact energy. The scheme is clearly
energy diminishing and we obtain very good agreement with the exact energy.

0 500 1000 1500 2000 2500 3000
iteration number

0

1

2

3

4

5

6 Energy num.

Exact energy

Figure 11. Evolution of the energy when computing the ground
state of (39) for x ∈ R compared to ENLS.

5.1.2. δ-condition. We consider now a δ-condition at the central vertex A of graph
G2.The unknown ψδ = (ψδ,1, ψδ,2)T is the collection of ψδ,i living on each edge.
Recall that the boundary conditions at A are

ψδ,1(0) = ψδ,2(0), ψ′δ,1(0) + ψ′δ,2(0) = αψδ,1(0). (44)
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The parameter α is interpreted as the strength of the δ potential and we focus on
the attractive case (α < 0). The mass and energy are

M(ψδ) =

2∑
i=1

∫
Rxi

|ψδ,i(xi)|2 dxi,

and

Eδ(ψδ) =

2∑
i=1

(∫
Rxi

|ψ′δ,i(xi)|2
2

− |ψδ,i(xi)|
4

4
dxi +

α

4
|ψδ,i(0)|2

)
.

Explicit ground state solutions are provided in [3], see also [8] and recalled in
Proposition 2.3. Define a by

a =
1√
ω

arctanh

( |α|
2
√
ω

)
,

and define the function φδ = (φδ,1, φδ,2) by

φδ,i(xi) =

√
2ω

cosh

(√
ω

(
xi −

α

|α|a
)) .

The mass of φδ is explicitely given by

mδ = M(φδ) = 4
√
ω + 2α,

and the function φδ has been constructed so that it is the minimizer of Eδ(ψδ) with
constrained mass mδ. The energy might be explicitly calculated :

Eδ(φδ) = −2

3
ω

3
2 − α3

12
.

Like in the previous section, we apply the (BEFD) method to compute the ground
state. We take the same numerical parameters concerning the mesh size and the
approximation graph of Fig. 9 (left). The numerical solution compared to the
exact one with ω = 1, α = −1 and therefore mass mδ = 2 is presented on Fig.

12 (left). The initial data are Gaussian on both edges equal to ψ0(xi) = ρie
−10x2

i ,
i = 1, 2, with ρi > 0 such that M(ψ0) = mδ. In order to focus close to the
vertex A, we choose to plot these solutions on [−10, 10]. Once again, the numerical
solution is very close to the exact ground state. A closer look on the error function
|φδ − φδ,num| in logarithmic scale (see Fig. 12, right) confirms the accuracy of the
numerical solution. Finally, we plot the evolution of the energy on Fig. 13. We
restrict ourselves to 1000 iterations on the horizontal axis since the convergence is
really fast. The agreement with the exact energy is notable.
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Figure 12. Comparison of φδ and φδ,num for δ interaction, ω = 1
and α = −1.
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Figure 13. Evolution of the energy when computing the ground
state of (39) with δ condition compared to Eδ.

Using the exact solutions when considering Kirchhoff and δ conditions, we are
able to evaluate the order of the numerical scheme with respect to the spatial mesh
size. As it was described in Section 4.2, the scheme should be of second order in
space. To confirm this, we make various simulations for different mesh size δx and
present the results in Fig. 14 for both Kirchhoff and δ conditions. In the two cases,
the order of convergence is 2, as expected.

5.1.3. δ′-condition. The δ′-condition on star graph is usually defined by interchang-
ing functions and their derivatives in the definition of the δ-condition (see e.g. [16]).
We prefer here to use the concept of δ′ on the graph corresponding to the δ′ inter-
action on the line, and give a precise definition in what follows. As in the previous
section, the unknown ψδ′ = (ψδ′,1, ψδ′,2)T is the collection of ψδ′,i living on each
edge. The boundary conditions at A are

ψδ′,1(0) = ψδ′,2(0) + βψ′δ′,2(0), ψ′δ′,1(0) + ψ′δ′,2(0) = 0, (45)
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Figure 14. Convergence curves for Kirchhoff (left) and δ (right)
conditions.

with β > 0. The mass and energy are

M(ψδ′) =

2∑
i=1

∫
Rxi

|ψδ′,i(xi)|2 dxi

and

Eδ′(ψδ′) =

2∑
i=1

∫
Rxi

(
|ψ′δ,i(xi)|2

2
− |ψδ′,i(xi)|

4

4

)
dxi −

1

2β
|ψδ′,2(0)− ψδ′,1(0)|.

Explicit ground state solutions are provided in [8]. Let us consider the transcen-
dental system

tanh (
√
ωx+)

cosh (
√
ωx+)

+
tanh (

√
ωx−)

cosh (
√
ωx−)

= 0,

1

cosh (
√
ωx+)

+
1

cosh (
√
ωx−)

= β
√
ω

tanh (
√
ωx+)

cosh (
√
ωx+)

.
(46)

We are looking for real solutions such that

x− < 0 < x+.

When 4/β2 < ω 6 8/β2, there exists a unique couple (−x̄, x̄) solution to (46),
where x̄ is given by

x̄ =
1√
ω

arctanh

(
2

β
√
ω

)
.

When 8/β2 < ω < +∞, in addition to the symetric couple (−x̄, x̄) previously given,
and we have another, asymetric, not explicit, unique, couple (x̃−, x̃+) ∈ R2 such
that

x̃− < 0 < x̃+ < |x̃−|.
For the brevity in notation, we define

(x−, x+) =

{
(−x̄, x̄) if 4/β2 < ω 6 8/β2,

(x̃−, x̃+) if 8/β2 < ω < +∞.
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The ground state in both cases is given (up to a phase factor) by

φδ′(x) =

{
−
√

2ω/cosh(
√
ω(x1 + x−)), x1 ∈ [0,+∞),√

2ω/cosh(
√
ω(x2 + x+)), x2 ∈ [0,+∞).

(47)

When 4/β2 < ω 6 8/β2, the ground state of (39) with boundary condition
(45) minimizing the energy Eδ′ with fixed mass M(φδ′) is an odd function. When
8/β2 < ω < +∞, the ground state is asymmetric.

When 4/β2 < ω 6 8/β2, since x̄ = |x±|, the mass and energy are equal to

M(φδ′) = 4
√
ω − 8

β
, Eδ′(φδ′) =

2

3

(
8

β3
− ω3/2

)
.

If 8/β2 < ω < +∞, the mass and energy are less explicit and are equal to

Mδ′(φδ′) = 2
√
ω
(
2 + tanh(

√
ωx−)− tanh(

√
ωx+)

)
,

and

Eδ′(φδ′) =
ω3/2

3

(
− 2− 3(tanh(

√
ωx−)− tanh(

√
ωx+))

+2(tanh3(
√
ωx−)− tanh3(

√
ωx+))

)
−ω
β

(
1

cosh(
√
ωx−)

+
1

cosh(
√
ωx+)

)2

.

The parameters for the numerical simulations are β = 1, δt = 10−2 and we keep
4000 nodes per edges to discretize the two-edges graph (see Fig. 9, left). The initial
data are Gaussian on both edges but contrary to δ-condition, we select a different
sign for the two edges (to increase the convergence speed). Namely, ψ0(x1) =

−ρ1e−10x
2
1 and ψ0(x2) = ρ1e

−10x2
2 , with ρi > 0 such that Mδ(ψ0) = Mδ′(φδ′). In

order to simulate both odd and asymmetric ground states, we select respectively
ω = 6 and ω = 16. The exact and numerical solutions are plotted in Fig. 15. When
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Figure 15. Comparison of numerical solutions to ground states
for δ′ interaction, β = 1

looking to the comparison in logarithmic scale (see Fig. 16), we see that we obtain
a very good agreement with the exact solutions. We note that the evolution of the
energy (see Fig. 17) during the minimization process for the asymmetric case is not
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Figure 16. Comparison in logarithmic scale of numerical solu-
tions to ground states for δ′ interaction, β = 1

stricly monotone. After a first plateau, the algorithm allows to obtain the global
minimum (second plateau).
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Figure 17. Evolution of the energy when computing the ground
state of (39) with δ′ condition compared to Eδ′(φδ′).

5.2. General non-compact graphs with Kirchhoff condition. We consider
the computation of ground states on non-compact graphs satisfying Assumption
2.4 (H). We focus on the signpost and tower of bubbles graphs. Beside the fact
that they exist, very little is known about minimizers. Our numerical algorithm
is an easy to use tool to provide conjectures on the qualitative behavior of ground
states on metric graphs.

5.2.1. Signpost graph. We now consider a signpost graph (see Fig. 5). We wish to
compute a stationary state of the NLS equation (39). The graph has the following
dimensions: the line segment is equal to 2 and the perimeter of the loop is 4. The
initial mass is taken to be 1. Concerning the length of the main line (supposedly
very large), it is set to 100. On the discretization side, we set the total number
of grid points to 5000. Furthermore, the time step is fixed to 10−2 with a total
number of iteration equal to 5000.
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The resulting stationary state is shown in Fig. 18. We can see that it is localized
in the loop and the line segment and decreases slowly along the main line.
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Figure 18. The numerical ground state on the signpost graph
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Figure 19. Zoom of the numerical ground state on the signpost graph

5.2.2. Tower of bubbles graph. Finally, we have computed a stationary state for the
tower of bubbles graph, with 2 bubbles. The graph is characterized by the following
dimensions: the top bubble has a perimeter of 8 and the one of the bottom loop
is set to 4. The main line, which is suppose to be very large, has a length of 100.
The initial mass is taken to be 1. The space discretization is set by fixing a total
number of grid points to 10000 and, for the time discretization, we have the time
step set to 10−2 for a total number of iterations of 10000.

We obtain the stationary state depicted in Fig. 20. It is clear that, has for
the signpost graph, the ground state is localized in the two bubbles and decreases
slowly along the main line.
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[20] S. De Bièvre, F. Genoud, and S. Rota Nodari. Orbital stability: analysis meets geometry.
In Nonlinear optical and atomic systems, volume 2146 of Lecture Notes in Math., pages

147–273. Springer, Cham, 2015.
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