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In this supplement, we provide further details concerning the experimental measurements and
and the discrete simulations.

I. WIND-TUNNEL MEASUREMENTS

A. Sand feactures

We used quartz sand with a mean diameter d ≈ 190µm
(see Fig. 1). The values for d10 and d90 are 105 and
300µm, respectively. It is important to note that in the
discrete simulations we employ an uniform particle size
distribution with a much narrower width (i.e., d± 10 %).
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Figure 1: Cumulative particle size distribution of the
sand used in the experiments obtained by laser

diffractometry.

B. Tunnel dimensions

Our wind-tunnel is 6m long and has a 0.27m×0.27m
cross-section. The finite dimensions of the wind tunnel
can influence the boundary layer and the sand transport
features.

The first requirement is that the tunnel should be long
enough to achieve a steady and fully-developed state of
transport. In our experiments, we checked that from
Shields number up to S∗ = 0.3 (i.e., in the saltation
regime), the flow is steady and fully-developed after a
downstream distance less than 2m [1]. In the collisional

regime (i.e., for Shields number from 0.3 to 1), we do not
have any estimation of the length necessary to achieve
an equilibrium state of transport. It is likely that the
equilibrium length increases and becomes greater than
2m. However, we assume that the latter remains smaller
than 6m. The evolution of the equilibrium length with
the wind speed in these high Shields number regime is
definitively an interesting and open issue which would
deserve detailed experimental studies.
Another important requirement concerns the tunnel

height. We should take care that the tunnel is high
enough to prevent the particles from colliding with the
ceiling of the tunnel. In the saltation regime, the char-
acteristic height of the transport layer is constant and
of the order of 100 d, that is 2 cm which is much smaller
than tunnel height H = 27cm. In the collisional regime,
the latter increases with increasing wind speed. It is in-
creased by a factor 2 for the highest wind speed and
approaches 4 cm which remains again safely smaller than
the tunnel height.

C. Side-wall effects on the mass flow rate

We find it worthwhile to detail how the mass flow rate
is measured and corrected to get rid of the effect of side-
walls. The mass flow rate Q provided in the article corre-
sponds to the mass per unit mass and per unit width at
the center of the tunnel, where we are free from the in-
fluence of the side-walls. The measurements of the mass
flow rate Q at the center of the tunnel requires a selective
sand trap system [2] which is able to collect and sort the
grains according to their cross-wise position. In contrast,
the assessment of the mass flow rate over the whole width
of the tunnel is much simpler because it suffices to col-
lect all the grains that exit the tunnel without selection.
However, this measurement of the mass flow rate (called
hereafter < Q >) is biased by the side-wall effects and
is thus smaller than Q. There is therefore a correction
factor if we want to infer the unbiased mass flow rate Q
from the width-averaged mass flow rate < Q >. This
correction is dependent of the tunnel width. For wide
tunnels, the correction factor is expected to be close to
1 whereas for thin ones, the latter can be significantly
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Figure 2: Comparison between the mass flow rate
QPTV measured at the center of the tunnel by PTV
techniques and the width-averaged mass flux < Q >

estimated by sand trap. QPTV remains fairly
proportional to < Q > over the entire range of
investigated wind speed (5m/s < U∞ < 19m/s)

greater than 1. This is the case for our wind-tunnel which
has a relative small width W = 0.27m. We get a correc-
tion factor Q/ < Q >≈ 2.3 which is large but appears to
be independent of the Shields number. This correction
factor was determined up to Shields number S∗ = 0.2 (
U∞ ≈ 9m/s) [2] thanks to the selective sand trap sys-
tem mentioned above. At higher Shields number, this
device fails to capture efficiently the sand and an alter-
native method was employed to check the proportionality
between Q and < Q >. The latter is based on Particle
Tracking Velocimetry (PTV) techniques [3] and allowed
to confirm that the correction factor remains fairly con-
stant up to Shields number S∗ ≈ 1.2 (U∞ = 19m/s) (see
Fig. 2).

Importantly, the data of the mass flow rateQ presented
in Fig. 1 come from measurements of the width-averaged
mass flow rate < Q > on which we applied the correction
factor 2.3.

D. Experimental data

We provide here the tables displaying the experimen-
tal data from Figs. 1-4 of the paper, namely the mass
flux versus the Shields number, the air and grain veloc-
ity profiles as well as the mass flux density profiles (see
tables I-IV).

II. NUMERICAL SIMULATIONS

A. Implementation

We used the same approach as that developed by Du-
ran et al. [4]. We thus only provide the main lines of the

S∗ Q/(ρpd
√
gd)

0.056 1.26
0.163 4.07
0.203 5.98
0.274 9.40
0.325 13.60
0.368 20.28
0.498 34.15
0.633 53.82
0.930 91.74
1.234 129.90

Table I: Dimensionless mass flow rate data
(i.e.,Q/(ρpd

√
gd)) versus the Shields number.

U∞ = 5.1m/s U∞ = 7.2m/s U∞ = 9.2m/s U∞ = 11.0m/s
S∗ = 0.034 S∗ = 0.110 S∗ = 0.215 S∗ = 0.349
z U z U z U z U

(mm) (m/s) (mm) (m/s) (mm) (m/s) (mm) (m/s)
10.25 3.28 10.25 3.54 10.25 3.55 10.25 3.15
16. 3.77 16. 4.31 16. 4.66 16. 4.60
20. 4.05 20. 4.75 20. 5.29 20. 5.42
25. 4.24 25.25 4.88 25.25 5.48 25.25 5.75
29.75 4.38 29.75 5.12 30. 5.85 30 6.27
390. 4.75 392.5 5.74 39.25 6.68 39.25 7.38

U∞ = 12.9m/s U∞ = 14.7m/s U∞ = 16.7m/s U∞ = 18.6m/s
S∗ = 0.520 S∗ = 0.720 S∗ = 0.933 S∗ = 1.252
z U z U z U z U

(mm) (m/s) (mm) (m/s) (mm) (m/s) (mm) (m/s)
10.25 2.76 10.75 2.43 11. 2.01 11.25 1.92
16. 4.58 16.5 4.44 16.75 4.34 17.0 4.45
20.0 5.55 20.5 5.72 20.75 5.77 21.0 6.04
25.5 6.04 25.75 6.27 26.0 6.42 26.75 6.66
30.25 6.68 30.5 7.03 30.75 7.36 31.5 7.66
39.5 8.03 39.75 8.59 40.0 9.18 40.75 9.65

Table II: Air velocity profiles for various wind strengths.

S∗ 0.034 0.108 0.152 0.217 0.348 0.668 1.302
z u

(mm) (m/s)
1.14 0.49 0.61 0.69 0.90 1.14 1.61 2.02
9.14 1.34 1.56 1.69 1.85 2.11 2.75 3.28
17.14 1.91 2.37 2.59 2.85 3.18 3.98 4.57
25.14 2.24 2.98 3.29 3.66 4.07 5.13 5.92
33.14 2.49 3.53 3.84 4.39 4.84 6.13 7.21
41.14 3.90 4.31 4.95 5.54 7.08 8.40
49.14 4.02 4.62 5.46 6.11 7.92 9.48
57.14 4.78 5.82 6.63 8.68 10.45
65.14 4.86 6.06 7.03 9.36 11.32
73.14 7.36 9.94 12.09
81.14 7.49 10.45 12.81

Table III: Particle velocity profiles for various Shields
number S∗.
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S∗ 0.056 0.164 0.275 0.37 0.5 0.934 1.64
z q

(mm) (kg/m.s)
30 0.076 0.208 0.428 1.181 2.969 19.259
45 0.040 0.092 0.166 0.433 1.266 7.296 14.329
63 0.015 0.037 0.070 0.166 0.563 4.311 10.575
120 0.0006 0.0025 0.0056 0.012 0.074 0.659 3.104

Table IV: Flux density profiles for various Shields
number S∗.

strategy together with the underlying physical hypothe-
ses. The particle phase is described by a Lagrangian
approach and each particle obeys the following equations
in their dimensionless form:

d ~up

dt
= −~ez +

∑
q

~fp,qc + ~fpdrag (1)

I
d ~ωp

dt
= 1

2
∑
q

~np,q × ~fp,qc (2)

where ~fp,qc stands for the contact forces and ~fpdrag =
D [(U − up)~ex − vp~ez] is the air drag force with D =
(0.3

√
(U − up)2 + vp2+18/R)/σ (R = d

√
(1− 1/σ)gd/ν

is the particle Reynolds number and σ = ρp/ρair is the
particle to air density ratio). Note that lengths, veloci-
ties and forces have been made dimensionless by the di-
ameter d of the particle,

√
(1− 1/σ)gd and mg, respec-

tively. The fluid phase is solved by a continuum descrip-
tion based on Reynolds average Navier-Stokes equations:

(1−φ)Dt
~U = (1−φ)σ

(
−~∇p+ 1/(σ − 1)~g + ~∇ .¯̄τf

)
−σ ~F
(3)

with ~F (z) = φ〈
∑
p∈[z;z+dz]

~fpdrag〉/〈
∑
p∈[z;z+dz] 1〉 and

τf = (1/σ)
(
1/R+ l2|∂zU |

)
∂zU (where l is the Prandtl

turbulent mixing length). F represents the average vol-
ume force exerted by the particles on the fluid and τf
stands for the fluid shear stress. Note that as in [4], the
mixing turbulent length is calculated using a differential
equation that makes it vanish smoothly within the static
bed.

The simulated system is two-dimensional with a
stream-wise length L = 500 d and contains 8000 parti-
cles. Periodic boundary conditions are employed in the
stream-wise direction. We used spherical particles with a
polydispersity of ±10%. Importantly, the system is not
bounded in height.

The particle phase is modeled via discrete element
methods. The particles consist of nondeformable spheres.
Normal contact forces between interacting particles are
modeled via a visco-elastic approach: Fn = (knδ +
γnvn), where δ is the overlap between the nondeformable
spheres, vn the normal component of the relative transla-
tional grain velocities, kn the spring stiffness, and γn the
viscous damping coefficient. Normal relative velocities
before and after contact are related by a constant coeffi-
cient of normal restitution en. If the values of en and kn

Normal spring stiffness kn 2.105 (mg/d)
Normal restitution coefficient en 0.9
Normal damping coefficient γn 21.2 (m

√
g/d)

Tangential damping coefficient γt γn

Coulomb friction coefficient µ 0.5

Table V: Simulations parameters. The particles have a
mean diameter d = 0.2mm and a density

ρp = 2650 kg/m3.

are prescribed, γn is deduced from the following relation:
γn = m

√
2kn/m

1+π2/ ln(en)2 . The tangential force Ft is de-
scribed via a Coulomb friction model regularized through
a viscous damping: Ft = −min(µFn, γsvs)sign(vs),
where µ is the Coulomb friction coefficient, vs the rel-
ative slip velocity at contact and γs the viscous damping
coefficient. The values used for the parameters kn, γn,
γs and µ are reported in the table V

B. Bed surface and depth-averaged quantities

To assess quantities at the bed surface, it is necessary
to define it. There is not a unique way to do it since the
boundary between the static bed and the mobile layer is
not a sharp interface. We define the bed surface as the
height at which the volume fraction is half the maximum
volume fraction φ = φmax/2 as done in [4]. We use this
definition to determine for example the mass flux density
q0 at the bed surface.
Depth-averaged quantities can be very sensitive to the

definition chosen for the bed surface. To circumvent this
difficulty, we employ depth-averaging procedure which
are independent of the bed surface definition. In particu-
lar, we define the depth-integrated particle concentration
M (called also the mass hold-up) and the depth-averaged
particle velocity < u > as done in [4]:

M =
(
∑
i ui)

2

A
∑
i u

2
i

(4)

< u > =
∑
i u

2
i∑

i ui
(5)

where A is the horizontal surface extent of the simulation
domain (i.e., 500d × 1d) and the sum is done over all
particles (static or mobile). With these definitions, the
mass flow rate is simply the product of the mass hold-up
and depth-averaged velocity: Q = M× < u >.
As an example, we show in Fig. 3 the evolution of the

mass hold-up with the Shields number.

C. Mean free path

We detail below the method we used to calculate the
mean free path. As the system is heterogeneous, the
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Figure 3: Dimensionless mass hold-up versus the
Shields number. In the saltation regime, M ∝ (S∗ − S∗s )

whereas in the collisional regime M ∝ S∗1.5.

mean free path is expected to vary with the particle ele-
vation. To calculate the mean free path, we do as follows.

We decompose the motion of all mobile particles into suc-
cessive hops and sort the hops into different subsets ac-
cording to their maximum elevation height zm within a
given tolerance ∆z = ±1d. For a given subset, we de-
termine the elevation at which they undergo a collision
both in the ascent and descent part of their trajectory (zai
and zdi respectively) and define a mean free path l(zm)
calculated as follows:

l(zm) = (1/n)
∑

subset i

[
(zm − zai ) + (zm − zdi )

]
. (6)

With this definition, the mean free path l(zm) is simply
related to the average elevation zc at which the particles
undergo a collision: zc = (< zai + zdi >)/2 = 2zm − l.
A mean free path equal to twice the maximum elevation
gives zc = 0 indicating that the particles collide with the
static bed. A smaller mean free path indicates a colli-
sion that occurs above the static bed. In the figure 8
of the paper, we provide the mean free path for two dif-
ferent subsets of particles corresponding to a maximum
elevation zm = 50d and 100d, respectively.
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