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Biological membranes are highly dynamic in their ability to orchestrate vital mechanisms
including cellular protection, organelle compartmentalization, cellular biomechanics,
nutrient transport, molecular/enzymatic recognition, and membrane fusion. Controlling
lipid composition of different membranes allows cells to regulate their membrane
characteristics, thus modifying their physical properties to permit specific protein
interactions and drive structural function (membrane deformation facilitates vesicle
budding and fusion) and signal transduction. Yet, how lipids control protein structure and
function is still poorly understood and needs systematic investigation. In this review, we
explore different in vitro membrane models and summarize our current understanding
of the interplay between membrane biophysical properties and lipid–protein interaction,
taken as example few proteins involved in muscular activity (dystrophin), digestion and
Legionella pneumophila effector protein DrrA. The monolayer model with its movable
barriers aims to mimic any membrane deformation while surface pressure modulation
imitates lipid packing and membrane curvature changes. It is frequently used to
investigate peripheral protein binding to the lipid headgroups. Examples of how lipid
lateral pressure modifies protein interaction and organization within the membrane
are presented using various biophysical techniques. Interestingly, the shear elasticity
and surface viscosity of the monolayer will increase upon specific protein(s) binding,
supporting the importance of such mechanical link for membrane stability. The lipid
bilayer models such as vesicles are not only used to investigate direct protein binding
based on the lipid nature, but more importantly to assess how local membrane curvature
(vesicles with different size) influence the binding properties of a protein. Also, supported
lipid bilayer model has been used widely to characterize diffusion law of lipids within
the bilayer and/or protein/biomolecule binding and diffusion on the membrane. These
membrane models continue to elucidate important advances regarding the dynamic
properties harmonizing lipid–protein interaction.

Keywords: cell membrane, lipid–protein interactions, bioengineering, in vitro models, membrane biophysics,
binding kinetics
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INTRODUCTION

Biological membranes are fundamental elements for cellular
organization. They provide cellular entities and are responsible
for the compartmentalization of cytoplasmic space into
functionally specialized organelles as well as controlled exchanges
between the interior of the cell and the extracellular environment.
These membranes are far from being inert envelopes. The “fluid
mosaic” model was introduced by Singer and Nicolson (1972),
analogous to a two-dimensional oriented solution of integral
proteins (or lipoproteins) in the viscous phospholipid bilayer
solvent. Biological membranes described as consisting of a
double layer of phospholipids, in which the hydrophobic chains
face each other, traversed by membrane proteins. The lipids are
in a perpetual movement of lateral diffusion, via the Brownian
motion (Lipowsky and Sackmann, 1995), and the membrane
proteins also move, but more slowly than the lipids which
surround them. With this enormous complexity and huge
diversity of lipids; not only between species but also in different
membranes in one cell; it is clear that in order to understand the
key parameters in the lipid–protein interactions, we are tempted
to simplify our experimental conditions, thus the appearance
of basic membrane models. Using such reductionist approach,
it is possible to retrieve information about the physical rules
which regulate the phase behavior of the membranes and the
interplay between protein and lipids. The most well-known
and common biomimetic system used for such purposes are
discussed here: lipid monolayer, lipid vesicles, and supported
lipid bilayers (SLB) with a brief example of bicelles. While each
of these systems exhibits advantages and disadvantages, it is
clear that the exploitation of various model systems and different
investigation techniques offers a better understanding of the
complex lipid/protein interactions which might be relevant to
accomplish membrane functions. Note that proteins that are
used here, mainly dystrophin and DrrA, are discussed in depth
only to emphasize different examples where lipid biophysical
properties modulate lipid–protein interaction.

LIPID MONOLAYER MODELS

The understanding of monolayer formation at the liquid/air
interface has been forged over the last few centuries by the
experiments carried out by B. Franklin in the 18th century (1774),
followed by Rayleigh, Pockels, and Gibbs in the 19th century
(Rayleigh, 1890), but it is I. Langmuir (Langmuir, 1917) Nobel
Prize winner in 1932 who developed the technique to control
the formation of monolayers and their thermodynamic studies.
Together with K. Blodgett, they develop a technique to transfer
monomolecular films to a solid support in order to expand
analytical techniques (Blodgett, 1935).

The interest of biologists in monolayers appeared after a
remarkable study by Gorter and Grendel (1925) who based
the hypothesis of the structure of biological membranes
as the combination of two monolayers after spreading a
chromocyte lipid extract on a Langmuir trough. Thus, the
spontaneous formation of lipid monomolecular film at the

interface makes it possible to mimic one of the leaflets
of the biological membrane. The choice of lipids will be
guided by the type of leaflet to be studied. Thus, a mixture
of phosphatidylcholine (PC), sphingomyelin (SM), cholesterol
(CHOL), will be representative of the outer leaflet of the
biological membrane. The replacement of sphingomyelin by an
anionic lipid as phosphatidylserine (PS) or phosphatidylglycerol
(PG) will represent the inner leaflet (Devaux and Zachowski,
1994). To mimic the bacteria membranes, the major component
of the plasmic eukaryotic membrane phosphaditylcholine is
usually replaced by phosphatidylethanolamine (PE) and the use
of extracted lipopolysaccharides from bacteria will represent the
external membrane in antimicrobial activity studies (Lugtenberg
and Peters, 1976; Epand et al., 2007; Legrand et al., 2011;
Derde et al., 2015a,b). Recently, the molecular mechanism of
amphotericin B antimicrobial activity was characterized using
monolayer (Wang et al., 2020) and showed the importance of
amphotericin B interaction with sterol by increasing monolayer
fluidity. Another exciting usage of lipid monolayer models is to
investigate lung surfactant monolayer and how it interacts with
drugs related to lung diseases (Hu et al., 2019). When inhaling
Ketoprofen, the molecule hinders the formation of liquid-
condensed films and affect the property of the membrane during
breathing. In a different lung model study, two air pollutants
(Stachowicz-Kuśnierz et al., 2020) was shown to adsorb and
accumulate in the hydrophobic part of the monolayer.

Langmuir Trough
Langmuir trough equipped with mobile barriers has been widely
used to study the thermodynamic behavior and 2D phase
diagrams of purified lipids or in binary mixtures (Vié et al.,
2000). Ternary mixtures have also been examined including the
effect of cholesterol which is an essential element of biological
membranes by modifying rheological properties (Brown and
Brockman, 2007; Guyomarc’h et al., 2014).

In this part of the review, Langmuir trough will be
presented in the context of protein/membrane interactions while
manipulating surface pressure measured through the Wilhelmy
plate by controlling barriers movements. Here, we will not discuss
the interactions that lead to lipid degradation as in the context of
enzymatic activity (Verger and De Haas, 1973). In these studies,
the authors often use a zero order trough, which consists of
two compartments connected by a channel that maintains both
surface pressure and area constant during the degradation and
solubilization of reaction products (Sias et al., 2004).

Due to the structure of the interface, the proteins studied
are essentially part of peripheral proteins in the domain of
animal or vegetal (Bottier et al., 2008; Chièze et al., 2011;
Sarkis et al., 2014) or proteins with membranotropic activity
such as antimicrobial activity (Legrand et al., 2011; Derde
et al., 2015a,b). The Langmuir trough is associated with surface
pressure measurement system but over the years this technique
has been associated with many other techniques, notably based
on the properties of the reflection of light (ellipsometry, Brewster
angle microscopy, infrared spectroscopy) or neutron and X ray
(Berge and Renault, 1993; Estrela-Lopis et al., 2001; Miller et al.,
2005; Bello et al., 2016).
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It is through two examples, a study of the interactions between
dystrophin-lipids and an investigation of mechanism of gastric
milk fat globule digestion that we will describe the use of the
methods developed around the Langmuir trough to highlight the
different types of interaction.

Impact of the Lateral Lipid Pressure on
Lipid–Protein Interactions
The power of lipid monolayer relays on understanding the
physico-chemical properties of biomembrane, where packing and
compressibility of the lipid could be controlled by monitoring
the surface per area per lipid molecule. Recently, Pinto and
Disalvo (2019) proposed a novel monolayer model as an open
system based on thermodynamics of irreversible process. Some
new investigations listed here will emphasize the usage of such
model to characterize molecular mechanisms and the importance
of lateral lipid pressure after protein binding. The impact of ions
(such as calcium) on lipid–protein interactions was crucial in
stabilizing the complex formation at the membrane as shown
by Krajewska et al. (2020). Moreover, Shiga toxin binding to
its cellular receptor (glycolipid) will initiate narrow membrane
bending due to lipid compression and long-range membrane
reorganization (Watkins et al., 2019).

Adsorption experiments at lipid/liquid fluid interfaces are
used to characterize protein–lipid interactions. Lipids are
spread to the liquid surface using a high precision syringe.
The lipids are usually diluted in chloroform/methanol. The
lipids are compressed at the desired surface pressure, initial
surface pressure (πi). Protein is then injected in the subphase
at the chosen concentration. Biological membrane are in
a fluid state and its inner leaflet carried out negative
charges, therefore, 1:1 molar ratio of dioleoylphosphatidylcholine
(DOPC) and dioleoylphosphatidylserine (DOPS) are chosen
(Fiehn et al., 1971; Devaux and Zachowski, 1994). The presence of
unsaturation on the hydrocarbon chains allows remaining in the
expanded liquid state whatever the lateral pressure. The surface
pressure is directly related to the lateral cohesion of molecules
and initial interfacial pressure values are related to the lateral
packing of the lipids before protein interactions. Low surface
pressure will promote insertion of amphiphilic proteins through
access to the hydrophobic parts of the lipids, so electrostatic
and hydrophobic forces can be brought into play in the surface
pressure range between 10 and 20 mN/m. When lateral pressure
increases, the polar head-groups come close together and as
a result the access of hydrophobic parts decreases, limiting
the protein insertion. Electrostatic interactions can persist, and
proteins will mainly interact with polar head-groups. The graph
in Figure 1A shows the surface pressure variation (1π) induced
by protein/lipid interaction versus the initial pressure (πi) of the
monolayer for three purified fragments of the central dystrophin
domain, DYS R4-9, DYS R11-15, DYS R16-21 (Sarkis et al.,
2011; Ameziane-Le Hir et al., 2014). Indeed, the dystrophin is
the most important muscular protein essential for maintaining
the integrity of the muscular cell during elongation/contraction
cycles (Koenig et al., 1988). We studied possible interactions
between this central domain constituted by 24 spectrin-like

repeats noted R and the plasma membrane. As expected, the
insertion decreases as the initial surface pressure increases. Curve
analysis of 1π values vs. πi will identify three parameters related
to the binding of each fragment as described by Calvez et al.
(2011) and Boisselier et al. (2012): 1π0, synergy factor, and
maximal insertion pressure (MIP). 1π0, value determined by
extrapolation for πi equal to 0, is the theoretical pressure increase
at the lipid-free interface (πinitial = 0 mN/m). The synergy factor
(a) is obtained by addition of 1 to the slope of the linear regression
and is related to the protein affinity for the lipid monolayer. MIP
is the curve extrapolation intercept with x-axis; it identifies the
lipid monolayer initial surface pressure for which the dystrophin
fragment injection does not induce increase in surface pressure.

Linear regression for the three fragments (R2 comprises
between 0.98 and 0.99), and the parameters deduced from these
equations are presented in Table 1. Surface pressures measured
at the lipid free interface (pe) are also reported for these three
fragments. For all samples, 1π0 are around 15 mN/m, DYS R16-
21 presents a lower value than DYS R11-15 and DYS R4-9. Values
are smaller than the adsorption of these dystrophin fragments
at the lipid free interface (air/liquid) at the same subphase
concentration (Table 1) indicating the presence of lipid limits the
interface accessibility of the protein, probably by steric hindrance.

Nevertheless, when values are positive, the synergy factor
shows the presence of attractive interactions between lipid and
protein, in addition of the protein surface activity, since its
insertion into the lipid occurs even at initial surface pressure
higher than 1π0 or than pe. Values close to 0.5 are the range of
values reported in the literature for strong protein/phospholipid
interactions with cumulative effect of the electrostatic and
hydrophobic forces.

The MIP discriminates in the same way the three fragments.
DYS R11-15 and DYS R4-9 have values higher than DYS R16-
21. Moreover, these values are greater than the surface pressure
supposed of natural membrane systems in eukaryotic cells which
is around 30 mN/m (Marsh, 1996). These experiments highlight
differences of protein behavior against a lipid monolayer in
the dystrophin central domain. The less efficient binding
of R16-21/lipids could be attributed to the hinge location
between R19 and R20 reducing the anchorage of this fragment
in the membrane.

Atomic force microscopy (AFM) visualization of monolayers
provides complementary information about the molecular
protein organization in lipid films, and how this organization
is affected by the initial surface pressure. For imaging at the
molecular resolution, the monolayer was transferred using the
Langmuir-Blodgett method described in Figure 1B. Usually, and
especially for biological samples, the mica substrate is selected
because its atomic flat surface does not affect the topography.
The color scale on the images is related to the height variations.
Thanks to the size differences between lipids and proteins, the
protrusions are credited to the existence of the proteins or lipid-
protein complexes. DYS R11-15 organization in DOPC:DOPS
monolayers has been described depending on the lipid initial
surface pressure (Sarkis et al., 2011). As observed in the images
presented in Figure 1C, at low πi (16 mN/m), the proteins are
dispersed as diluted in the lipid film while the high πi (20 mN/m
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FIGURE 1 | (A) Insertion of dystrophin fragments, R4-9 (?) R11-15 (•) R16-21 (x), increases surface pressure of lipid monolayer and is modulated by the lipid initial
surface pressure (πi). The maximal insertion pressure (MIP) and the theoretical pressure increase at the lipid-free interface (1π0) are indicated by arrows. Adapted
and modified from Sarkis et al. (2011) and Ameziane-Le Hir et al. (2014). (B) Schematic representation of the Langmuir-Blodgett transfer of the interfacial protein/lipid
film on solid support (such as mica). Scale of protein and lipid size in this illustration is not respected. Adapted from Vié et al. (2018). (C) AFM images of the
R11-15/DOPC:DOPS monolayers transferred at the end of the protein adsorption on lipid monolayer at different initial surface pressure, 16 mN/m, 20 mN/m, and
30 mN/m. Adapted from Sarkis (2012).

TABLE 1 | Interaction of protein with monolayer at different surface pressure: summary of the values of 1π0, synergy factor and MPI of 3 different fragments of
dystrophin.

R4-9 R11-15 R16-21

Lipid/liquid interface Linear regression y = −0.51x + 15.47 y = −0.46x + 14.9 y = −0.54x + 14.29

Theoretical 1π0 (mN/m) 15.47 14.9 14.29

Synergy factor 0.48 0.54 0.45

MIP (mN/m) 30.0 32.3 26.3

Air/liquid interface πe (mN/m) 19.1 20.4 21

and 30 mN/m) favor the protein/protein interactions to form
a homogeneous network. The protein network height increases
with the initial surface pressure, from 1.1 nm to 1.8 nm, showing
that even though the protein insertion is lower at 30 mN/m, the
proteins are stabilized beneath the interface by interactions with
the lipid headgroups.

To test the presence of molecules interacting essentially with
the headgroup when the surface pressure is slightly affected or
even decreases, a very useful tool is the ellipsometry in “null
ellipsometer” configuration which gives the ellipsometric angle
noted D (◦) (Berge and Renault, 1993). The polarized beam
probes an area of 1 mm2 with 1 µm depth. D is relative
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FIGURE 2 | (A) Illustration of Langmuir trough associated with Wilhelmy plate and the ellipsometry setup. Adapted from Vié et al. (2018). (B) Interfacial rheological
setup used to measure lipid monolayer rheological properties when interacting with dystrophin fragment and actin filaments. Adapted from Sarkis (2012).

to both the reflectivity index and the thickness of the film
(Figure 2A). In association with AFM imaging, the value of
D can discriminate between different interfacial mechanisms:
none protein/lipid interaction, a lipid reorganization inducing
a surface pressure decrease or the protein accumulation under
the lipid films. A study focused on the interaction between
a gastric lipase (recombinant dog gastric lipase, rDGL) and
lipid monolayers mimicking the surface of milk fat globules
was described in Bourlieu et al. (2016). Different lipid mixtures
were used to highlight the impact of the lipid nature on the
rDGL adsorption. For the same initial surface pressure, the
lipid packing was modulated changing the head-group nature
as phosphatidylethanolamine (PE), phosphatidylcholine (PC)
and phosphatidylserine (PS), this latter lipid being anionic. In
addition, the mixture of saturated (DPPC) and unsaturated
(DOPC) lipids leads to phase coexistence called liquid expanded
(DOPC) and liquid condensed (DPPC) at 20 mN/m. Thus, the
mechanisms of rDGL adsorption had been described, first a
preferential insertion into the expanded liquid phase allowing
the protein anchorage; second in all lipid mixture the values of
D increased from 3 to 18◦ and the surface pressure variation
between 0 and 5.4 mN/m, indicating a strong accumulation of the
protein under the film. In addition, the higher values of D and p
variations were obtained in presence of anionic lipids suggesting
that the electrostatic forces are involved in the adsorption process.
As conclusion, the large number of lipase enzyme located just
below the lipid interface is related to the physiological digestive
process favoring a rapid fat hydrolysis of the milk throughout
neonatal digestion. Moreover, it was shown that the lipid phase
impacts the insertion of rDGL. Indeed, comparison between
lipid membrane of fat milk globules of human and bovine
highlights the positive effect of the presence of polyunsaturated
lipid chains on the lipase stabilization and organization in the
lipid interface resulting of an enhanced lateral compressibility
(Bourlieu et al., 2020).

Membrane Rheology and Lipid–Protein
Interaction
The lipid monolayer is studied to understand the possible
mechanism of protein anchorage in the membrane. Nevertheless,
in some cases, proteins can interact simultaneously with other

cytoplasmic structures forming a bridge or linker with the
membrane. To demonstrate the presence of these multiple
interactions, the shear elastic constant and surface viscosity can
be measured using home-made interfacial rheometer (Figure 2B)
(Vénien-Bryan et al., 1998). Different techniques to investigate
the interface of lipid monolayer or protein films were described
in the literature (Walder et al., 2008; Krägel and Derkatch, 2010;
Le Floch-Fouéré et al., 2010).

The dystrophin fragment DYS R11-15 interacts strongly with
the membrane as describe above, nevertheless, this fragment
was described to bind actin filament (F-actin) (Rybakova, 1996;
Amann et al., 1998). So, the two questions came to mind: is it
possible for DYS R11-15 to establish interaction simultaneously
with the lipid monolayer and the F-actin? And how rheological
properties could be affected? For this purpose, we measured the
shear elastic constant and the viscosity using the setup presented
in the Figure 2B. Two Helmoltz coils are used to apply a torque
on the magnet placed in a float on the lipid monolayer interface.
The amplitude of rotation of the float depends of the rheological
properties of the monolayer. We applied the model of Kelvin-
Voight solid to calculate shear elastic constant (µ, mN/m) and
surface viscosity (η, N·s/m). Different conditions were tested: two
lipid mixtures (DOPC:DOPS and DOPC:DOPE), three subphase
DYS R11-15 concentrations, injection of G-actin versus F-actin
(Sarkis et al., 2013). For the DOPC:DOPS mixture, the µ values
increased slightly with the lipid initial surface pressure between
20 mN/m and 27 mN/m(from 3 to 4 mN/m) and decreased
to zero at 30 mN/m (close to the MIP) in accordance with
the amount of protein inserted. DYS R11-15 doesn’t interact
with G actin but addition of ATP + Mg2+ inducing actin
polymerization triggers a significant increase of the elastic
constant and surface viscosity.

These studies showing that DYS R11-15 plays the role
of a linker between the membrane and the F-actin bring
new insight on the essential function of the dystrophin in
maintaining the integrity of muscle fiber membranes during
contraction/elongation cycle.

Experiments on Langmuir trough mimicking one membrane
leaflet seems to be too simplistic model relative to the complexity
of a biological membrane, whereas the second leaflet is neglected,
and the proteins studied are limited to the peripheral proteins.
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Nevertheless, by controlling the physico-chemical parameters, it
is possible to understand interactions, identify and quantify them
and elaborate scenarios of processes involved in vivo.

LIPID BILAYER MODELS

Biomimetic systems ease the interpretation of the measurements
that generally prove challenging with the complex composition
of in vivo membranes. Though simplification is the goal,
building these models still requires multiple steps. The most
used membrane bilayer models are lipid vesicles such as small
unilamellar vesicles (SUV also known as liposomes with a size
range of 30–50 nm), large unilamellar vesicles (LUV with a size
range 100–500 nm) and giant unilamellar vesicles (GUV with a
size higher than 1 µm) as well as SLB on a solid substrate.

There are also other membrane models called bicelle or
nanodisc. The mixture of long-chain and short-chain lipid or
amphiphiles or proteins allows self-assembled discoidal lipid
bilayers called bicelle (Lin et al., 1991; Sanders and Landis, 1995;
Van Dam et al., 2004; Dürr et al., 2013; Dos Santos Morais et al.,
2017) or nanodics (Bayburt et al., 2002; Schuler et al., 2012;
Rouck et al., 2017). The morphology and size are very sensible
to the ratio long/short chain, called q, temperature and dilution
as described in the literature (Raffard et al., 2000; Glover et al.,
2001; Harroun et al., 2005). Widely used in NMR (solid and
liquid) thanks to their ability to align in a magnetic field, they have
made it possible to obtain the structure of membrane proteins in
their lipid environment, such as that of cytochrome b5, or that
of a protein of the HIV virus envelope (Dürr et al., 2007; Dev
et al., 2016). While the membrane proteins are embedded in the
bilayer (flat part of the bicelle), structural information can be
obtained on peripheral proteins when it interacts either with the
flat part (Loudet et al., 2005) or with the curved part (Dos Santos
Morais et al., 2018). When investigating the bicelle to vesicle
transition using coarse-grained molecular dynamics simulations,
the local lipid composition is the key factor determining the
success of vesicle formation (Koshiyama et al., 2019). Nanodics
were used to solve mechanism of membrane fusion mediate by
membrane fusion protein (Shi et al., 2013) or of Ca2+ transport
through membrane protein (Conrard and Tyteca, 2019). Such
systems are mainly dedicated to the structural protein or peptide
studies, therefore, we focused in this review on vesicles and
supported bilayers.

Lipid Vesicles and Curvature Effect on
Protein Binding
Vesicle formation starts with combining a mixture of lipids
in chloroform/methanol followed by a dehydration step under
vacuum or other inert gas such as nitrogen or argon to remove
the bulk organic solvent, avoiding oxidation and a lipid film is
formed on the surface of the glass tube. Resuspension of the dried
film in buffer generate a multilamellar vesicles (MLV) solution.

SUVs are obtained by sonication of an MLV suspension
or by filtration through a very small filter. The strong
curvature imposed on the membrane implies an external surface
significantly greater than the surface of the inner monolayer and

therefore a higher number of lipids in this outer monolayer. The
small size of SUVs favors their use in optical spectroscopy.

LUVs are obtained by extruding an MLV solution through
filters with calibrated pore sizes. LUVs, like SUVs, can be
produced in a saline medium and in particular physiological.
Phase reversal evaporation is another technique for preparing
LUVs (Rigaud et al., 1983). This method employs forcing the
emulsion by sonication between an ether phase (lipid solvent)
and an aqueous phase. The ether is then removed slowly by
evaporation under partial vacuum. The curvature of a large
vesicle is closer to physiological reality. These are much more
diffuse objects than SUVs.

GUVs have a size ranging from 1 µm to more than 100 µm
in diameter. They are formed in a non-ionic medium by
electroformation (Angelova and Dimitrov, 1986) or by gentle
hydration in an ionic medium (rehydration of lipids with or
without an electric field). A very good amount of unilamellar
vesicles are obtained by electroformation (80%), whereas a poor
yield of unilamellar vesicles is obtained by gentle hydration.
Only the formation of GUVs by gentle hydration can be
performed in a physiological medium (Rodriguez et al., 2005).
Other techniques for the preparation of GUV exist, specifically
by double emulsion: where a drop of aqueous solution passes
successively through two interfaces between an oil containing the
lipid and an aqueous solution (Stachowiak et al., 2008). GUVs
are mostly used to decrypt some membrane mechanisms such as
diffusion of membrane proteins, membrane deformations, lipid
raft formation, phase segregation.

The size and monodispersity of the vesicles are verified by
electron microscopy or light scattering. From a general point of
view, the vesicles (MLV, SUV, and LUVs) can be produced at high
concentrations of the order of 10 mg/mL and are very resistant.

When they form vesicles, the lipid bilayers limit the exchanges
between the internal compartments and the outside. Pure bilayers
are impervious to ions and large polar molecules, and only
partially permeable to water that can intrude between lipids
under the effect of osmotic pressure. This means that the
physiological functions of biological membranes cannot simply
rest on the bilayer but require the presence of other components
such as membrane proteins to allow controlled exchanges
between the intracellular and extracellular environments.

The interactions of DYS R11-15 with SUVs (anionic and
zwitterionic) (Sarkis, 2012) was investigated using surface
plasmon resonance (SPR). The first step was to fix liposomes
on the sensor chip. Streptavidin was previously immobilized,
and SUVs containing 0.1% biotinylated lipids were fixed on the
surface by the strong streptavidin-biotin interaction. Then, the
injection of DYS R11-15 in the microfluidic system makes it
possible to characterize the behavior of the protein binding to
the SUV as a function of time. When anionic SUVs (DOPC:
DOPS) are attached to the sensor chip, injection of DYS R11-
15 (5 µM) increases the signal significantly (from 0 to 300 RU)
showing that a protein-lipid interaction is formed (Figure 3Aa).
The more DYS R11-15 is injected at a higher concentration,
the greater the intensity of the response (Figure 3B). On
the other hand, the passage of DYS R11-15 (5 µM) on
zwitterionic SUVs (DOPC: DOPE) does not cause any significant
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FIGURE 3 | (A) Surface Plasmon Resonance traces showing the binding of DYS R11-15 to DOPC:DOPS (a) and to DOPC:DOPE (b) SUVs. (B) SPR traces of DYS
R11-15 binding to DOPC:DOPS SUVs in a dose dependent manner. (A,B) Figures are adapted from Sarkis (2012). (C) Fluorescence intensity of tryptophan residues
in DYS R11–15 (0.5 µM) after 2 h of incubation with different concentrations of DOPC/DOPS. SUV diameter was 30 nm and LUV of three different sizes: 100, 200,
and 400 nm. Modified from Sarkis et al. (2011). (D) Structure of DYS R12-14 (PyMol) obtained by sequence homology illustrating the protected zone from trypsin in
red, due to the direct binding to anionic SUV, the unprotected zone in shown in blue, which is more sensitive to trypsin digestion when vesicles are present. Residues
in yellow correspond to Tryptophan. Adapted from Sarkis et al. (2011). (E) Confocal microscopy images of different composition of GUV incubated with DrrA. GUVs
contains 20% DOPC, 15% DOPS, 35% DOPE, 30% cholesterol and 1% PI4P or PI(3,4)P2. Reproduced by J. S. from Schoebel et al. (2010); Del Campo et al.
(2014), and Sidm and Wang (2016).
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signal modification (Figure 3Ab). Under the same experimental
conditions, DYS R20-24 generates no signal; this protein has so
far been considered as non-interacting with SUVs (Legardinier
et al., 2008). This highlights the lipid binding specificity we
observed with DYS R11-15.

Vesicle and tubule budding allows different cell compartments
to communicate with each other (Heuser and Evans, 1980; Sciaky
et al., 1997; Bright et al., 2005). Lipid molecules are able to
diffuse freely in each of the bilayer leaflets thanks to the fluidity
of the cellular membranes (Singer and Nicolson, 1972). The
choice of the model system, and mainly the size of the vesicles
plays a determining role to characterize protein-membrane
interactions. By varying vesicle size, the curvature radius is
modified. High curvature can be found in many small vesicles
with a radius of 25 nm carrying proteins as well as in organelles
with complex structure such as endoplasmic reticulum (Shibata
et al., 2009). Lipid composition dictate bio-mechanical properties
impacting organelle shapes and modulating their deformation
(Antonny, 2011) and the actual shape of cellular membranes
thought to largely depends on proteins. An interesting paper
using dissipative particle dynamic simulations explored how
nanoparticles can adsorb and intake in a lipid bilayer (Burgess
et al., 2020). Much progress has been made to understand these
membrane deforming or membrane sensing proteins (Farsad
and De Camilli, 2003; McMahon and Gallop, 2005; Shibata
et al., 2009). Specific membrane regions with a particular arch
require a highly dynamical exchange between lipids and proteins
to sense, generate and/or stabilize membrane curvature. To
respect thermodynamic laws, very high membrane curvature
is limited to short period of time or has to be stabilized by
surrounding proteins. The elastic properties of lipid bilayers
allow cellular membrane to resist to spontaneous bending and
high curvature. Specific proteins domains or motifs that sense,
stabilize or generate membrane curvature will deliver support
and forces that levy tension on membranes while other proteins
act directly on the membrane by changing lipids (McMahon and
Boucrot, 2015). Membrane-bending mechanisms are based on
three parameters (Johannes et al., 2014): chirality (asymmetry of
lipid and protein material of the membrane), scaffolding (rigid
and arched proteins such BAR-domain that induce membrane
deformation after membrane binding; Frost et al., 2009; Mim
and Unger, 2012) and crowding (concentration of proteins on
a specific membrane domain inducing deformation; Stachowiak
et al., 2010, 2012). It has been shown that vesicle budding process
requires the presence of different coat proteins (such as Clathrin
and COPI/II) to stabilize membrane curvature; Kirchhaussen,
2000; McMahon and Boucrot, 2011). Coat proteins do not
interact directly with lipids and count on adaptor proteins (such
AP2) to link them to membranes. Caveolar vesicles are formed
by oligomerization of caveolin with a hairpin loop inserted
within the membrane thus enabling membrane deformation and
stabilization (Parton and Del Pozo, 2013). Other proteins, such
as dynamin, are able to polymerize into spirals and induce
membrane deformation (Ferguson and De Camilli, 2012), but
such process will require an pre-existing curvature (Morlot
and Roux, 2013). On the other hand, lipid nature is a key
in initiating membrane deformation process. One example is

the initiation of clathrin-mediated endocytosis where AP2 and
clathrin recruitment to the membrane require PI(4,5)P2 lipid
to initiate the process (Cocucci et al., 2012). Another example
highlighted how the presence of polyunsaturated phospholipids
increase the deformation and vesiculation of synthetic membrane
by dynamin and endophilin (Pinot et al., 2014). This is an
important mechanism in synaptic vesicles, where phospholipids
with polyunsaturated acyl chains are extremely abundant.

In vitro studies using membrane model can interrogate
the curvature effect on membrane–protein interactions. An
example presented here shows that lipid composition is not
the only driver for DYS R11-15 to interact with membrane,
but also the curvature. Increasing liposome concentration in
the presence of DYS R11-15 enabled steady-state tryptophan
fluorescence (Figure 3C). Increasing the concentration of anionic
SUV increase tryptophan fluorescence of DYS R11-15 until it
reached a plateau. On the contrary, anionic LUVs with different
size decreased tryptophan fluorescence (Figure 3C) and similar
observation were obtained with zwitterionic SUVs and LUVs
(Sarkis et al., 2011). In the case of DOPC: DOPE SUVs, no
significant response is obtained by Biacore, whereas a decrease
in tryptophan fluorescence was observed when the partners
are together in solution. The DYS R11-15-DOPC: DOPE SUVs
interaction therefore appears weak and undetectable by Biacore.
This method requires the existence of a continuous flow in the
microfluidic system. This flow may be sufficient to break low
interactions, which is likely the case here. On the other hand, the
dissociation kinetics of DYS R 11-15 in the presence of DOPC:
DOPS SUVs are slow and the signal did not reach base level.
The binding of the protein on these anionic vesicles is therefore
strong and not completely broken by the microfluidic flow.
We observed by fluorescence measurement that the tryptophan
residues of the protein are exposed to a much more hydrophobic
environment in the presence of anionic than zwitterionic SUVs,
and concluded that the interaction of DYS R11-15 with SUVs
is considerably stronger with anionic lipids as with zwitterionic
lipids (Sarkis et al., 2011). The analyzes by Biacore thus confirm
this conclusion.

The accessibility of Lysine and arginine in DYS R11-15
alone or when in contact with SUVs was further investigated.
LC/MS/MS of trypsinized peptides alone or in the presence
of lipid vesicles allowed the identification of a protein
protected zone from trypsin action when in contact with
anionic DOPC/DOPS vesicles (Figure 3D), validating the
changes observed in tryptophan fluorescence. Interestingly,
similar results are not observed when the protein was
in contact with zwitterionic DOPC/DOPE SUVs, validating
the importance of lipid nature and charge for an efficient
binding. Overall, these data are in a good agreement with
previous observations, demonstrating that dystrophin fragments
undergo structural rearrangement when binding to membranes
(Legardinier et al., 2009).

Lipid vesicles of various size with single lipid species can
undergo mechanical forces thus adopting different shapes.
Some insights on how the dynamic of GUV adsorption
and deformation/rupture mechanism onto silicone oil-water
interfaces and modified glass surface was discussed recently
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(Kataoka-Hamai and Kawakami, 2019). As GUV size allows
direct visualization under fluorescent microscope, it is a popular
membrane model to directly investigate protein binding or
to impose mechanical force thus deforming the membrane.
A microscopy setup that combines a micropipette and optical
tweezers are frequently used to manipulate GUV and impose
membrane deformation. GUV membrane tension is controlled
using the micropipette whereas optical tweezers is used to
pull out the membrane and form a tube while measuring
the required force to control the tube. Using such system
allowed to investigate the force required through dynamin
polymerization to efficiently deform membranes, and showed
that the polymer nucleation of dynamin depends on the
membrane curvature (Roux et al., 2010). Moreover, such model
is used to isolate the effect of membrane shape, for instance,
the KvAP (voltage-gated ion channel protein) was enriched in
curved membrane while AQP0 (major intrinsic protein of lens
fiber) was indistinguishably present in flat and curved membrane
(Aimon et al., 2014). Microaspiration (micropipette) provides
a useful tool to measure not only reconstituted bilayer model
but also cell membrane stiffness (Oh et al., 2012). Using this
technique, we can assess global measurements of membrane
deformability, unlike AFM, which gives more information on
local bilayer stiffness (Okajima, 2012). Nevertheless, tethering
the membrane of a cell into a nanotube using optical tweezers
can be used to better understand rheological and biophysical
properties generated by the interaction of a cell bilayer
with the cytoskeleton. Tethering cellular membrane can also
be achieved using AFM (Ou-Yang and Wei, 2010). GUV
reconstitution with membrane proteins were also widely used
to investigate functional transport or protein translocation
(Kedrov et al., 2013).

Phosphoinositides (PI) phospholipid family was shown to
be involved in many process such as membrane dynamic
and signal transduction (Di Paolo and De Camilli, 2006).
The binding with stereospecific protein recognition containing
modular domains to distinct headgroup of PI has been widely
studied, especially with Pleckstrin homology (PH) domain,
FYVE domain and PX domain (Moravcevic et al., 2012). More
recently, DrrA protein involved in Lung macrophage infection
by Legionella pneumophila, has been showed to binds specifically
to phosphatidylinositol 4-phosphate (PI4P) lipid.

Crystal structure of DrrA with PI4P and isothermal titration
calorimetry experiments revealed selectivity and unexpectedly
high affinity between the protein and the lipid (Schoebel
et al., 2010). Interestingly, using monolayer model, a biphasic
surface pressure responses of DrrA was observed, due to
the robust insertion of an hydrophobic helix of the protein
into the acyl chain of PI(4)P phospholipid present in the
film (Del Campo et al., 2014). We used GUV formed by
gentle hydration as described by Rodriguez et al. (2005),
where a Chloroform/Methanol mix of 20%DOPC, 15%DOPS,
35%DOPE, 30% Cholesterol, 0.1% DiIC18(3) with 1% PI4P
or PI(3,4)P2 was dried under Argon flow then rehydrated
with sucrose solution. As shown in Figure 3E, DrrA labeled
with Alexa Fluor 647 via sortase showed a strong and
specific binding to GUV containing 1% PI4P but such

strong binding was lost when switching the 1% PI4P to
1% PI(3,4)P2.

Supported Lipid Bilayers: Lipid and
Protein Diffusion
Supported lipid bilayer on a solid substrate is another biomimetic
model that have found widespread use to mimic cell membrane
and to study the physicochemical properties of lipids and the
interaction with proteins (Sackmann, 1996; Milhiet et al., 2002).
Only in recent years, structural details on SLB formation started
to develop from both experimental (Keller and Kasemo, 1998; Jass
et al., 2000; Reviakine and Brisson, 2000) as well as theoretical
(Seifert, 1997; Zhdanov et al., 1999) investigations, but details
on the forces required to drive the SLB process is still unclear
(Richter et al., 2006).

Usually, the bilayer is adsorbed on a solid hydrophilic
substrate by vesicle fusion or using a layer by layer deposition
(Langmuir-Blodget and Langmuir-Schaefer [LB + LS]), thus
allowing quantitative experiments with local techniques such
as AFM (Richter and Brisson, 2005), fluorescence correlation
spectroscopy (Zhang and Granick, 2005a), fluorescence recovery
(Tamm and McConnell, 1985), and others (Seantier et al., 2004;
Daillant et al., 2005). Such variety of techniques allowed to
access at the nanometer scale, spatiotemporal information and
dynamical organization of SLB formation, all emphasizing the
role of electrostatic interactions in the process. The nature
of the used substrate to form SLB control the membrane
properties, and understanding that is important before using
the membrane model for further investigation (Tanaka and
Sackmann, 2005). Most substrates used to form SLB are mica
and glass, and many studies identified the role of bivalent
cations such as calcium as well as the vesicle size effect on
rupture (Reviakine and Brisson, 2000; Reimhult et al., 2002)
but other details remain vague. Another important parameter
to be considered is the bilayer fluidity related to the lipid
lateral mobility, and this might be influenced not only by
lipid structure/nature (Wagner and Tamm, 2000), but also lipid
labeling (Tamm, 1988), substrate nature and cleaning procedure
(Seu et al., 2007). The interaction between the membrane
proximal leaflet and the substrate is thought to affect lipid
diffusion in the monolayer and could be different than the
distal leaflet (Tamm, 1988; Zhang and Granick, 2005b; Xing
and Faller, 2008), thus affecting the overall bilayer fluidity
(Schmitt et al., 2001; Przybylo et al., 2006). Lipid bilayers
are separated by a thin water gap from the substrate and
the thickness of that water layer depends on the material of
the substrate (∼1 nm when using hydrophilic glass). Many
researches aimed to suspend the bilayer on polymer or other
cushion to avoid such direct interaction or increase that thickness
by engineering a floating bilayer membrane (Su et al., 2020).
The first study investigating the lipid diffusion (Tamm and
McConnell, 1985) in a single SLB was performed using a
silicon substrate.

We investigated in detailed the same setup and
under identical conditions, the formation of DPPC
(1,2-dipalmitoyl-sn-glycero-3-phosphocholine) SLB using
LB + LS deposition on two different substrates, mica and
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FIGURE 4 | (A) Fluorescence Recovery After Patterned Photobleaching (FRAPP) used to probe phospholipid diffusion in SLB. Fluorescent SLB (a) was
photobleached in fringe pattern and the overall intensity decrease (b). Over time, lipids diffuse, and a recovery of the fluorescence is observed (c–e). Modified from
Harb et al. (2012). (B) Diffusion coefficient of DPPC membrane supported on glass (top) or mica (bottom) measured using FRAPP while varying the temperature of
the SLB from 20 to 55◦C. In the bottom graph, full symbols correspond to the distal leaflet and empty symbols correspond to the proximal leaflet due to its
interaction with the mica substrate. Slower diffusion is observed at low temperature and it increases with higher temperature until it reaches a plateau during the fluid
phase. Reproduced by J. S. with permission (Scomparin et al., 2009).

glass, and investigated lipid diffusion in these bilayer using
fluorescence recovery after patterned photobleaching (FRAPP)
(Davoust et al., 1982; Nkodo and Tinland, 2002; Jourdainne
et al., 2008) (Figure 4A). Similar design was used to investigate
the insertion of α-hemolysin protein into SLB and measuring
the pore complex diffusing freely in the membrane (Harb et al.,
2012). Other studies generated suspended lipid bilayers (on
microstructured Si/SiO2 chips or on polymer brush; Kusters
et al., 2014; Mashaghi and van Oijen, 2014) used to investigate
membrane transport or viral fusion (Kusters et al., 2014). Even
more complex in vitro model consists of using receptor and
ligand pair reconstituted in two different membrane model GUV
and SLB (Carbone et al., 2017).

Regarding the FRAPP measurement, briefly, the light beam of
an Ar laser was split into two equivalent fringe patterns (Davoust
et al., 1982; Scomparin et al., 2009; Harb et al., 2012). Labeled
bilayer was photobleached by increasing the laser to full intensity
for a short period of time (less then 1 s) in the illuminated fringes.
An optical fiber and a photomultiplier will measure the decrease
of the intensity of the bilayer after photobleaching as well as the
recovery over time (Figure 4A). Using the fringe patterns, small

diffusion deviations can be detected thus being a perfect tool to
investigate substrate effect and to decouple the dynamics of the
two leaflets in the bilayer.

DPPS bilayer [containing 0.1% of 16:0-12:0 NBD PC
(nitrobenzoxadiazole)] obtained by Langmuir-Blodget followed
by Langmuir-Schaefer (LB + LS) transfer (Girard-Egrot
and Blum, 2007) resulted in a homogeneous large domain.
Increasing temperature drive a gel to fluid transition and
consequently increase the diffusion coefficient (Figure 4B).
DPPC Bilayer interaction with glass substrate appears to be low
as FRAPP signals showed a mono-exponential fluorescence decay
indicating a uniform dynamic in both leaflets of the membrane
(Figure 4B, top graph). On the other hand, using mica showed
a biphasic response to photobleaching (Bi-exponential signal)
suggesting dynamical differences between proximal versus distal
leaflet, even though transition temperature is alike (Figure 4B,
bottom graph). Stronger interaction between membrane and
substrate is observed with mica due to its higher zeta potential
and its surface tropology (atomically flat) compared to glass
substrate, hence a slower diffusion in the proximal than
in the distal lipid leaflet. In comparable conditions, vesicle
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FIGURE 5 | (A) Supported lipid bilayer on glass formed by vesicle fusion of SUVs (78.9% DOPC, 20% DOPS, and 1% PI4P) in the presence of CaCl2.
Homogeneous fluorescent signal is detected due to 0.1% DiIC18(3) added to the lipid mix. Fluorescence photobleaching (white arrow) was performed using a
confocal microscope and the recovery of the intensity validate the lateral lipid diffusion and the quality of the SLB. Photobleaching occurs at t0. (B) TIRF images
acquired at different timepoint when injecting DrrA on SLB. Fluorescently labeled protein (DrrA sortase labeled with Alexa Fluor 647) was added at 100 pM on the top
of SLB containing 1% PI4P. The interaction of DrrA with membrane was observed using TIRF microscopy allowing higher resolution for single molecule tracking. The
white circles showed the arrival of DrrA molecule after injection and its diffusion on the surface of SLB. Images are 128 × 128 pixels. (C) Processed image shows
trajectory of individual protein diffusing on the membrane analyzed using MatLab. (D) Fluorescence traces over time of individual protein (raw signal on top, and
background processed signal at the bottom) showing the protein residency time (Binding or ON events) and the unbinding (OFF events). All reproduced by J. S. from
Schoebel et al. (2010); Del Campo et al. (2014), and Sidm and Wang (2016).

fusion was used to form SLB leading to more heterogenous
behaviors with similar effect of the solid substrate when using
DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer
(Scomparin et al., 2009).

The combination of membrane models and single-molecule
fluorescence microscopy became an exciting research area to
investigate binding and diffusion events of individual molecules
(Weiss, 1999; Michalet et al., 2003; Mashaghi and van Oijen,
2014; Cheney et al., 2017). Novel optics and cameras with high
signal to noise ratio made single molecule detection possible
under low molecule concentrations (Gell et al., 2006). These
conditions are optimal when using total internal reflection
fluorescence microscopy (TIRF), where an evanescent field
exponentially decaying near the coverslip is generated after
the incident laser beam being totally reflected at the interface

(glass-water). The great benefit of such system is the detection
of signal from molecules present only in the evanescence field
and within 100 nm from the glass surface, while the rest of
the molecules in solution above cannot be spotted (Gell et al.,
2006). With such high sensitivity, some experimental conditions
should be respected, especially related to the concentration of the
fluorescent analytes which should not pass couple of nM range.
This is crucial to make sure that the identified intensity in one
diffraction-limited pixel/volume is coming from one molecule
only (van Oijen, 2011). This powerful technique has been used
on live cells to follow the dynamic of proteins interacting with
cellular membrane, as well as on membrane models such as SLB
(Mashanov and Molloy, 2007; Fox et al., 2009; Cocucci et al.,
2012; Rozovsky et al., 2012). Biomolecular interactions are keys to
execute biological tasks (signaling, activation, inhibition. . .) and
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measuring binding has been widely studied using many different
assays. However, single molecule methods allow, not only to
assess binding rates with high precision, but more importantly
to observe heterogeneity in binding characteristics.

Using a microfluidic chip, SUVs containing 78.9% DOPC,
20% DOPS, 1% PI4P, and 0.1% DiIC18(3) were incubated on
a freshly cleaned and plasma treated glass slide in the presence
of calcium. Observing the SLB formation under the confocal
microscope shows the biding of the fluorescent SUV to the
glass and bursting into bilayer until a homogeneous signal was
obtain after 20 min. Moreover, the quality of the formed SLB was
validated by FRAP and a fast recovery of the fluorescence was
observed, indicating a homogeneous bilayer and the fluid state
of the membrane (Figure 5A). DrrA protein labeled with Alexa
Fluor 647 by Sortase injected on the surface of the SLB at very
low concentration (100pM). Similarly to GUV models, only the
presence of 1% of PI4P in the membrane allows DrrA protein to
bind and diffuse freely in 2 dimensions on the bilayer as shown
in Figure 5B. It was important to have low number of proteins
(very low concentration) to avoid having multiple protein in one
pixel and to decrease the collision between neighbor molecules
diffusing on the membrane thus making the single molecule
tracking more difficult. Each individual protein trajectory was
detected and tracked throughout its diffusion on the membrane
(Figure 5C) and traces showing the residency time of individual
DrrA when interacting and moving on the SLB can be quantified
(Figure 5D, top trace). The fluorescence intensity for each
object was corrected for background fluorescence (Figure 5D,
bottom trace), and fitting all ‘on events’ histogram allows
residency time quantification of the protein on the membrane,
hence its off rate.

Combining single molecule imaging and SLB is the
appropriate strategy to directly visualize binding kinetics
between proteins, peptides, nucleic acid, viral particles, etc. and
membrane. This is getting more interest from the scientific
community particularly to visualize proteins/molecules that have
low binding affinity to membrane when conditions are optimized
(fast camera chip and fluorophore stabilizing reagent).

CONCLUSION

To conclude, it is worth noting that this review is not
exhaustive and might not present the last advances on biomimetic
membranes, but it certainly provides an overview on main
membrane models used for lipid–protein interaction studies. In
many cases, multidisciplinary approaches are required to tease
apart obstacles and to understand biological process affected
by physico-chemical and mechanical properties. Ultimately,
progress using such models will continue to bring to the
field better understanding on biomolecular interactions and
membrane dynamics and help tackles biomedical problems
related to membrane-pathogenicity.
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