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Representativeness of Short Data Sets
G. Bernoux1 and V. Maget1
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Abstract One of the main goals when studying Space Weather is to characterize extreme events
occurrences and related characteristics. To do so, dedicated statistical methods from the so‐called extreme
value analysis (EVA) field have been developed. In this study we used Ca index, derived from aa, in order to
characterize geoeffectiveness from the radiation belts point of view with a 150‐year‐long data set. The
analysis performed in this study thus focuses on this newsworthy index to provide clues on the reliability of
EVA methods. The first main result we present here is that the 1‐in‐10‐, 1‐in‐50‐, and 1‐in‐100‐year events,
respectively, match Ca values of 100.39, 131.39, and 142.84 nT. Consequently, the only 1‐in‐100 event
observed during the Space Era would be the “Halloween Storm” in 2003 that reached a Ca value of 147.6 nT.
The second main result highlighted in this work is that performing the same analysis with shorter subsets
(20 years long) can give significantly different results for two reasons. The first reason is that some short
time periods do not display the same distribution of events as the full period. The second reason is that the
choice of the correct threshold (when using a Peaks Over Threshold approach) is made difficult with a
short data set and leads to inaccurate results. This is a strong result as for accurate estimation of the induced
effects of extreme events in radiation belts, we may only rely on short flux data sets from one or another
mission (mostly shorter than 20 years).

1. Introduction

The Sun‐Earth connection is a complex system, which is composed of multiple interactions transferring
energy from their source locations to the Earth's magnetosphere. This transfer of energy is very difficult to
quantify. Many authors have tried to identify key parameters (Akasofu, 1981; Alves et al., 2006; Borovsky
& Denton, 2006; Tenfjord & Østgaard, 2013), but the mechanisms remain so complex that a simple law
cannot fully describe the effects of the solar activity on the different parts of the magnetosphere. In
particular, these effects become even more complex in one of the most internal regions of the
magnetosphere, which are the radiation belts.

These interactions are strong and may vary (in terms of frequency of occurrence and intensity)
independently. Therefore, the observed effects on the vicinity of the Earth also vary greatly and it can be
difficult to accurately determine the origin and the extent of an event. The solar wind is the main medium
of energy transfer from the Sun to the Earth. Strong dynamical fluctuations of its characteristics are mostly
induced by active regions and coronal holes located at the Sun chromosphere from which plasmas are
accelerated and propelled in the interplanetary medium. They are the so‐called coronal mass ejections
(CMEs) and high‐speed streams (HSS). These large structures of solar wind may impact the Earth's
magnetosphere, consequently inducing direct effects on the near Earth's space (at satellites altitudes) and
fluctuations in the Earth's magnetic field strength as measured on ground, from which geomagnetic activity
indices are defined (Menvielle et al., 2011). To illustrate the complexity of the Sun‐Earth connection, Reeves
et al. (2011) showed that the relationship between the solar wind speed and the 1.8‐ to 3.5‐MeV electron
fluxes at geosynchronous orbit is hardly described by a linear correlation but is instead considerably more
complex and shows that high‐velocity solar wind does not always drive high electron fluxes the way it could
be expected to.

The core of the Earth's magnetosphere is filled by radiation belts containing trapped energetic particles
(mostly high‐energy protons and electrons from a few keV up to hundreds of MeV for protons and few
MeV for electrons) due to its intense magnetic field. Since the advent of the Space Era, the study and
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knowledge of these belts has become of prime importance, since their energetic population has dynamic var-
iations in accordance with the current state of the magnetosphere, occasionally having dramatic impact on
inflight space hardware (Bourdarie & Maget, 2012; Horne et al., 2013).

The geomagnetic activity and the magnetospheric currents can be described with many different indices that
can be based on different data sets. Today, the most commonly used, Kp index, is built from experimental
ground‐based data since 1932 by 12 stations located in near subauroral zones. It is, more precisely, the aver-
age of the geomagnetic disturbances on a logarithmic scale between 0 and 9. It provides the planetary level of
disturbance caused by the horizontal component of the geomagnetic field (Bartels et al., 1939). Other
indices, such as Cp, C9 are basically based on the same database, but themathematical formula varies as well
as the stations used (Mayaud, 1980). In parallel, solar indices (directly linked to the Sun's surface activity),
such as the sunspot number (SSN) and F10.7 (measure of the solar radio flux per unit frequency at a wave-
length of 10.7 cm), have also been defined to monitor and anticipate the effects of solar activity. Taking into
account indices from the same kind will usually show a strong correlation between them. However, the cor-
relation between indices representing the activity of the magnetosphere and those related to the Sun activity
show a rather weak correlation, hence constituting a first obstacle for forecasting the activity in themagneto-
sphere. Indeed, the quantity of energy transferred from the solar wind to the inner part of themagnetosphere
rarely exceeds 5% to 10% (Sauvaud, 2002).

The disturbances induced on the magnetosphere vary daily and even hourly. Because of the intense solar
activity, magnetic storms can occur and induce brutal and intense variations in the terrestrial magneto-
sphere. For example, during typical geomagnetic storms, as observed from commonly used satellites' orbits,
changes in the particles flux levels may increase by 2 to 3 orders of magnitude in a few hours only (Reeves
et al., 2003). Induced effects on satellites equipment can consequently be critical. Extreme events are events
that can reach very high levels of disturbances. The most famous one is the “Carrington event”: from 28
August to 4 September 1859, extremely bright auroras were observed even in near‐equatorial zones, high
magnetic disturbances were denoted and the intense solar activity was remarked. The related Dst index
(another measure of disturbances) has been evaluated to −900 nT (Siscoe et al., 2006). A geomagnetic storm
is considered as strong when Dst index reaches −200 nT. Similar intense events happened since then,
especially during the Space Era, having harmful impact on both ground and orbital hardware, particularly
inflight satellites flying through radiation belts. Among these storms, one can mention the “Halloween
Storm” of October 2003, the storm of July 2004 or the storm of April 2010 that caused electrostatic
discharges on Galaxy‐15 satellite (Odenwald, 2015). While the Space Era is now barely in its seventh
decade, questions arise: Have we already encountered 1‐in‐10‐, 1‐in‐50‐, and 1‐in‐100‐year events during
this time period, for which in situ measurements are available? How can we define extreme geomagnetic
events?

This research intends to analyze extreme events by using statistical methods adapted to the study of
extreme values for Space Weather purposes and determine up to which confidence level we can trust
them. These extreme value analysis (EVA) methods are described as solutions to estimate typical return
levels such as 1‐in‐10 years or 1‐in‐100 years on limited time ranged data sets. Definition and character-
ization of what is an extreme event is required to drive these statistical methods (even standard and
straightforward ones like direct statistical analysis). This definition has (1) to be based on historical data
and (2) to focus on the human and industrial needs perspective. The aim is here to quantify and qualify
the occurrence and return levels of extreme events and to be able to describe them statistically. A discus-
sion on the suitability of applying such methods to geomagnetic data and particle fluxes information is
the following objective.

In this paper we base our EVA on 150 years of geomagnetic data in order to assess the 1‐in‐N‐year events.
To achieve this and to avoid any bias and clustering, we propose to rely on a new physics‐based definition of
a radiation belt event to drive our statistical analysis. Section 2 introduces the geomagnetic indices and
parameters used in this study. In section 3 we perform a first basic analysis and suggest a definition of a
geomagnetic event that may suit our EVA. Then elements of extreme value theory are given in section 4,
and the EVA is detailed in section 5. A further discussion on the confidence levels one can have on perform-
ing such methods with shorter geomagnetic data is led in section 6. In section 7 the reader will find the
conclusions.
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2. How to Characterize Geomagnetic Storms Intensity From the Radiation Belts
Point of View
2.1. A Dedicated Time‐Integrated Geomagnetic Index

Following Rochel et al. (2016), we based our study on the aa index and its related time‐integrated geomag-
netic storm index Ca (see below for details). Ca has been designed to quantify the geoeffectiveness of solar
wind structures impacting the magnetosphere from the radiation belts point of view. We will compare this
integrated index to the typical reaction time of the radiation belts in the next section.

The aa index is a 3‐hr K‐based index that was first introduced by (Mayaud, 1971), with its first values for the
1868–1968 period being published in (Mayaud, 1972). The aa index is computed with data from two subaur-
oral opposite observatories, the first one being in the United Kingdom and the second one in Australia. The
point in using aa was to have an index that could go back to 1868. Despite its wide data range (from 1868
onward), this index is considered as very homogenous and stands as a simple and easy mean of monitoring
the planetary geomagnetic activity (Mayaud, 1980). The aa index ranges from 0 onward and its unit is the
nanotesla (nT). The higher the aa value is, the stronger the disturbance of the magnetosphere would be.
The aa index is made available on the ISGI—International Service of Geomagnetic Indices website. The user
is referred to Mayaud (1980) and Menvielle et al. (2011) for more details.

The relaxation characteristic time in the radiation belts for high‐energy electrons (order of magnitude of
100 keV and above) after a strong magnetospheric disturbance is of the order of 4 days (Meredith et al., 2006;
Rochel et al., 2016). Using this statement, it is possible to convolute it with themagnetic activity (represented
by the index aa) to define a new index named Ca:

Ca tð Þ ¼ 1
τ
∫
∞
0 aa t − t′ð Þexp −

t′
τ

� �
dt′

where aa is the magnetic index and τ the relaxation characteristic time (Rochel et al., 2016).

Ca appears to be a very convenient index for our study. Indeed, since Ca is based on aa, data are available
from 1868 onward, which is the longest available data set for any index. For the purpose of EVA, having a
very wide data range is significant. In this paper we use 150 years of data from 1868 to 2017, which offers
an interesting opportunity to gauge evolved and complex EVA methods against usual statistics in determin-
ing typical return levels from such a long data set.

Defining such an index is also interesting because it can take into account both multiple close events and
energy accumulation, which could explain some extreme events (Benacquista et al., 2017; Lugaz et al., 2015).
Besides, it has been shown in Rochel et al. (2016) and more detailed in the next paragraph that Ca is well
correlated to energetic particle fluxes (the highest correlations being found at L* ≈ 4). Hence using Ca as
the main index in our study is adequate in order to perform an EVA on the planetary geomagnetic activity
and in order to establish a link between this analysis and the dynamics of relativistic electron fluxes in
Earth's radiation belts.

In order for the reader to have a more precise idea of the typical behavior of Ca during corotating interaction
region (CIR)‐induced and CME‐induced storms, Figures 1 and 2 show the dynamics of the geomagnetic
indices Kp, aa, and Ca with two solar wind parameters (plasma bulk speed and flow pressure), and the fluxes
of electrons in the radiation belts for three ranges of energies (0.309 < E < 0.379 MeV,
1.539 < E < 1.995 MeV, and 3.299 < E < 3.969 MeV) measured by the instrument MagEIS aboard the
Radiation Belt Storm Probe A (RBSP A) spacecraft (Blake et al., 2013) between 15 April and 15 May 2017
(Figure 1) and between 28 September and 28 October 2013 (Figure 2). Kp index and the solar wind para-
meters are obtained from the hourly OMNIWeb database (King & Papitashvili, 2005). The CIR‐induced
event (Figure 1) is particularly characterized by the arrival of a high‐speed solar wind and the filling of
the radiation belts at all energy ranges, in particular with very high energy electrons (3.299–3.969 MeV).
The (triple) CME‐induced event (Figure 2) is characterized by a spontaneous high increase of the flow pres-
sure along with a moderate increase in the solar wind speed, while the radiation belts are filled mostly with
electrons in the energy range 0.309 < E < 0.379 MeV, no increase being observed in the fluxes of very high
energy electrons (3.299–3.969 MeV). Whereas the CIR‐induced event is the one that fills the most the radia-
tion belts at all energy ranges and demonstrates the highest energy accumulation, the geomagnetic indices
aa and Kp show higher peaks for the CME‐induced event. One can see however that Ca increases and
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decreases more slowly than aa, but it reaches higher values (above 37.5 nT) in the first case than in the
second one (below 25 nT), showing a better consistency with the geoeffectiveness from the radiation belts
point of view than aa and Kp indices.

2.2. Geoeffectiveness From the Radiation Belts Point of View

As mentioned in the previous paragraph, Ca index has been defined to characterize geoeffectiveness from
radiation belts perspectives. The time convolution, performed in the computation of Ca index, allows

Figure 1. Evolution of the geomagnetic indices Kp, aa, and Ca with two solar wind parameters (plasma bulk speed and
flow pressure) and the fluxes of electrons in the radiation belts for three ranges of energies (0.309 < E < 0.379 MeV,
1.539 < E < 1.995 MeV, and 3.299 < E < 3.969 MeV) measured by the instrument MagEIS aboard the Radiation Belt
Storm Probe A (RBSP A) spacecraft between 15 April and 15 May 2017 period, which displayed a CIR‐induced storm.
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taking into account the induced and not immediate reaction of the radiation belts system when an intense
disturbance impacts the magnetosphere. Wave‐particle‐induced energization is in particular well correlated
with this index. Thus, the global energy transfer from the solar wind‐magnetosphere‐radiation belts coupled
system is at first order well quantified. Figure 3 presents the direct correlation of aa and Ca index against
>100‐keV electrons fluxes as observed by NOAA‐POES15 satellite, between July 1998 and December
2015. This clearly shows the improvement in the correlation coefficient when using Ca index. In

Figure 2. Evolution of the geomagnetic indices Kp, aa, and Ca with two solar wind parameters (plasma bulk speed and
flow pressure) and the fluxes of electrons in the radiation belts for three ranges of energies (0.309 < E < 0.379 MeV,
1.539 < E < 1.995 MeV, and 3.299 < E < 3.969 MeV) measured by the instrument MagEIS aboard the Radiation Belt
Storm Probe A (RBSP A) spacecraft between 28 September and 28 October 2013 period, which displayed a CME‐induced
storm.
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particular, this improvement is nicely observed at any L values inside the radiation belts domain. To go
further, we plotted in Figure 4 the correlation coefficients between Ca, and the convolved flux Cf (using
the same formula as Ca index for construction) for different energies. We see that the correlation
coefficient is even closer to one, highlighting the benefit of Ca to quantify the global energy transfer to the
radiation belts.

These simple correlation estimations are very interesting and show the ability of such an index to better clas-
sify events as a function of the quantity of energy transferred to the radiation belts. Of course, as any simple
index, it cannot totally quantify this complex process. Some limitations are of course observable. In particu-
lar, as energy increases, the correlation coefficient tends to decrease, as it can be observed for >900‐keV con-
volved flux in Figure 2. This is mainly due to the fact that the characteristic time of 4 days used for the
convolution has been chosen to best fit the observations for any L values and energies. As a consequence,

Figure 3. Correlation coefficients as a function of L parameter computed between E > 100‐keV electrons fluxes (f)
measured by NOAA‐POES15‐MEPED instrument and aa on one side and Ca on the other side. Different combinations
have been tested. The time period used to compute these correlations extends from July 1998 to December 2015.

Figure 4. Correlation coefficients as a function of L parameter computed between convolved electrons fluxes (Cf, as
for Ca) measured by NOAA‐POES15‐MEPED instrument for different energies and Ca index. The time period used to
compute these correlations extends from July 1998 to December 2015.
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on both extremes this Ca index will less correlate to observations. However, this can be easily adapted
according to which energy and/or effects analysis is focused on. Finally, it can be seen that at GEO orbit,
close to L equal 6, the correlation tends to decrease for any energies. This highlights the differences in the
radiation belts dynamics between this particular orbit, close to the outer boundary of the radiation belts,
and other smaller L values, deep inside the heart of the radiation belts. The predominant processes are
not the same, and the dynamics is not driven in the same way. As a consequence, we will see in the following
that our conclusions may differ significantly from (Meredith et al., 2015), which focused only for E > 2 MeV
on the GEO orbit.

3. Data Analysis and Event Definition
3.1. A First Statistical Approach

Definitive aa values are available from 1868 to 2017. It is calculated on a
3‐hr basis, and hence, 438,296 values are available for this period. The glo-
bal average of aa during the whole period is 19.36 nT, and the global one of
related Ca is 19.66 nT. However, the annual average of Ca may vary
greatly from year to year. The year with the highest annual mean is
2003 with an annual average of 36.81 nT, and the year with the lowest
average is 1901 with 6.18 nT. The evolution of the annual averages of aa
and Ca is given in Figure 5. This figure also displays the evolution of
13‐month smoothed monthly total SSN between 1868 and 2017, which
is representative of the solar cycle modulation. One can note in this figure
that the solar cycle modulation and the weakness of the last 10 years are
also observable in the curves of the annual averages of aa and Ca. In par-
ticular, year 2009 has a quite low annual average Ca value (8.80 nT).

Extreme events can be defined as periods when the geomagnetic activity is
very intense. Therefore, extreme events correspond to high values of Ca.
Such events are hence displayed in the tail of the distributions of Ca.
The cumulative distribution of the Ca values is plotted (as a probability
of exceedance curve) in Figure 6. With this long data set, it is possible to
directly infer on the intensity of extreme disturbances periods. Looking
at the tail of the Ca distribution, we can note that Ca seems to converge
and not exceed a value of about 165 nT. This first guess would denote
the existence of a threshold, which could not be overpassed.

Figure 5. Evolution of the annual means of aa and Ca between 1868 and 2017 along with their global means over the full
period. The 13‐month smoothed monthly total sunspot number is also plotted for a better visualization of the solar cycle
modulation.

Figure 6. Probability of exceedance plot of (a) all the Ca values between
1868 and 2017 (as dark blue crosses) and (b) the geomagnetic events
following their maximum Ca value between 1868 and 2017 (as yellow
asterisks). The red (resp. green and blue) line represents the value of the
empirical 1‐in‐10‐year (resp. 1‐in‐50‐ and 1‐in‐100‐year) event.
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However, this is a first assumption only made on instantaneous Ca data.
To well analyze extreme time periods, we have to first define what an
event is and then carefully analyze its distribution. Thanks to this
long‐duration data set, we will then be able to determine the typical return
levels and quantify the intensity of extreme disturbances based on usual
statistics. Besides, these long‐duration data sets are a perfect test bed to
analyze the efficiency of EVA methods and get the most of them, as we
are to present further on in this study.

3.2. Event Definition

It is necessary in our study to define a geomagnetic event from a mathe-
matical point of view. A simple way to define an event is to consider that
an event starts when the value of Ca exceeds a given threshold and the
event ends when the value of Ca falls below this threshold. Then, the char-
acteristic value of the event is chosen as the event maximum. However,
the choice of such a threshold is not straightforward.

A first guess would be to take the global mean of Ca. However, this
appears not to be always adequate. For example, using this method
for the strongly disturbed year of 2003 would show an extremely long

event (longer than half the year), as only 6.68% of Ca values were below 19.66 nT. Thus, we decided to
use an annual threshold also depending on the annual mean, which could resolve at least partially this
kind of issue without introducing a bias in our statistics. Indeed, as we only focus on extreme values, this
adaptive threshold (as long as it does not reach extreme values itself) will not modify the tail of the
distribution.

For the years that have annual Ca mean higher than the global Ca mean, the annual threshold is defined as
the average between the global and the annual Camean values. For the other years, the threshold is forced to
be equal to the global mean, in order to avoid taking into account very small values of Ca that cannot phy-
sically be considered as events. In case there is an event overlapping over 2 years, the value of the threshold is
updated only after the end of this event. This new choice leads to a threshold of 28.23 nT in 2003 (24.97% of
the values stay below the threshold) and a much better accuracy in terms of events selection. However, this
definition is poorer from the physics point of view, since the same event could be or could not be taken into
account according to its year of occurrence. We justify our choice by the fact that, doing it this way, we can
stabilize our statistical pedestal, without modifying its high values tail. It prevents us also from taking into
account unrealistically long events as it was the case before in 2003. The forced minimum value of the
threshold finally prevents us from introducing bias in the pedestal of the statistical distribution, which
may lead to inaccurate fitting of the high values tail.

Moreover, the fact that we are using the index Ca, which is an integrated version of aa (as seen above) gives
us a smoother index that does not display the short‐term variability of aa. That is why we define the end of
the event as the time when the Ca value falls below the threshold without other condition (e.g., over the
duration for which the Ca value must remain below this threshold). Finally, each event is characterized
by the maximum value of Ca during it, thus, preventing bias to be introduced by the sliding‐year threshold
criteria.

Using this definition, it is possible to list the most extreme events since 1868. This list is given in Table 1. As
we can see, with this classification, the most intense event is November 1882, followed by Halloween Storm.
March 1989 is the fourth and, for example, July 2004, a triple CME‐induced event, is not in the top 10. This
classification indeed fosters extreme events, which impact the whole radiation belts region and are
sufficiently long to induce long‐term changes in the electrons radiation belts, especially in the 3 < L* < 5
region. The particular case of the triple CME of July 2004 is difficult to classify. For instance, when consider-
ing only the E > 2MeV electrons at geostationary, (Meredith et al., 2015) showed that it can be considered as
a 1‐in‐50‐year event. This may indicate a limitation in our methodology as our study relies on the aa index,
which is, although the longest ground‐based time series we have, an index that is possibly not well adapted
to quantify the disturbances at each orbit, in particular the geostationary one. However, the Ca index was

Table 1
List of the 15 Most Extreme Events Since 1868 With Their Dates, Intensities,
and Empirical Return Period

Date Ca (nT) Empirical return period (years)

20/11/1882 160.9 150
31/10/2003 147.6 75
16/05/1921 135.1 50
14/03/1989 134.5 37.5
19/09/1941 126.4 30
28/03/1946 123.4 25
31/03/1940 112.1 21.4
16/11/1960 111.6 18.8
18/10/1872 110.3 16.7
26/01/1938 108.3 15.0
02/04/1960 107.8 13.6
18/07/1959 105.2 12.5
10/11/2004 104.5 11.5
23/09/1946 102.6 10.7
07/10/1960 102.2 10

Note. Dates are formatted as DD/MM/YYYY.
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defined to promote the events allowing intensification of the electrons flux inside the radiation belts, that is,
when there was time for energization due to wave‐particle interaction. Our classification is therefore com-
plementary from both Meredith et al. (2015) as we focus on the global intensification of the electron radia-
tion belts region and also from Meredith et al. (2016), a paper that includes an analysis of POES E > 30,
E > 100, and E > 300‐keV electrons, since we focus on an independent ground‐based index aiming at cover-
ing the intensification of a large range of the energy band of trapped electrons. The cumulative distribution
of the geomagnetic events (defined using the yearly sliding threshold methodology) ranked according to
their maximum Ca value is also given in Figure 6. The tail of this distribution clearly shows the extreme
events classification. Compared to the probability of exceedance curve of all Ca values, one can note that
the maximal value of Ca is conserved, that is, 160.9 nT. However, the classification in terms of events
(and one point by event) allows deskewing the distribution, which thus becomes usable. In addition, one
can note that using this definition of the events allows for a declustering of our data set since we keep only
the highest Ca value for a given event and discard all the intermediary values that were observed in the
ascending and descending phase of the event, that may be very high themselves. With such a long data
set, we are directly able to estimate the typical return levels as highlighted in Figure 6 and the return periods
given in Table 1. With this empirical methodology, we could now assert that November 1882 is a 1‐in‐150‐
year event, Halloween Storm a 1‐in‐75 one, March 1989 a 1‐in‐37.5 one, and July 2004 only a 1‐in‐6.25‐year
event. However, this direct statistic cannot be performed on a data set shorter than at least the return level
we want to estimate, and it is not possible to infer whether a saturation of extreme events exists or not. We
show in the next sections that EVAmethods are designed to answer such questions, and we will give insights
on their accuracy and limitations.

4. EVA Methodology

In order to perform an efficient analysis of the extreme geomagnetic events, we use a set of specific methods
developed for the analysis of extreme values. EVA is widely used in many different research fields such as
hydrology (Tramblay et al., 2013), climate study (Cooley, 2009), or finance (Embrechts et al., 1997). Some
Space Weather studies apply extreme value theory in order to analyze energetic electron fluxes in radiation
belts (Koons, 2001) or in order to model geomagnetic activity, either from the magnetic indices point of view
(Siscoe, 1976) or directly from raw ground‐based magnetic data (Thomson et al., 2011). We adopt in this
study the magnetic indices point of view for the reasons detailed in sections 1 and 2.

Coles (2001) details EVA methods and highlights two principal techniques. The first method is based on a
blocks maxima approach and fits the data set to a generalized extreme value (GEV) distribution, as done
in Koons (2001). This approach is adapted to situations where blocks of data can be clearly defined or when
only maximum values for a fixed period are available.

The second method fits a generalized Pareto distribution (GPD) to points above a predefined threshold
(Pickands, 1975). It appears that this Peaks Over Threshold (POT) approach is more adequate to our study
since it can take into account multiple extreme events that occurred the same year, and in return, the model
does not take into account the periods when no geomagnetic storm occurred. For example, Meredith
et al. (2015) used this method to discuss on extreme events at GEO altitude, using NOAA‐GOES electron flux
data. Let Z be a random variable following a GPD. Let us denote G as the GPD. For a value z above a high
threshold u, the GPD can be written as follows:

G zð Þ ¼ P Z > zð j z > uÞ ¼ 1 − 1þK
z−u
S

� �h i−1
K

where K and S are the shape and scale parameters, respectively. According to Coles (2001), the shape para-
meter is physically meaningful: If K < 0, the distribution has an upper limit, whereas if K ≥ 0 the distri-
bution does not have an upper limit. The first step to use the POT method is to estimate accurately these
parameters. To do so, the maximum of likelihood method (Piera‐Martinez, 2008) is used and confidence
intervals are also provided using the deviance statistic (Nelder & Wedderburn, 1972).

To drive and ensure their accurate estimation, we followed Coles (2001) who suggested to use different plots
described below. Let k be the number of exceedances above the threshold u. The discrimination plots are as
follows:
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1. The “Probability Plot” that consists in the points G zið Þ; i
k þ 1

� �
; i ¼ 1; …; k

� �
, the zi being the data

values above the threshold ordered in ascending order. If the model is adequate, then the points should
be close to the identity map.

2. The “Quantile Plot” that consists in the points G−1 i
k þ 1

� �
; zi

� �
; i ¼ 1;…; k

� �
, where G−1is the inverse

function of the GPD and the zi are the data values above the threshold ordered in ascending order. If the
model is adequate, then the points should be close to the identity map.

3. The “Density plot,” which compares the density estimate with the normalized histogram of the data.
4. The “Return level plot,” which plots the estimated return levels against the return periods and displays

the empirical estimates of the return levels. This plot also gives information of interest since we are inter-
ested in estimating the 1 in 10‐, 1 in 50‐, and 1 in 100‐year events. The return level zN associated with a
return period N (in years) is given by the formula:

zN ¼ uþ S
K

Nnyζu
� 	K

− 1
h i

; if K ≠ 0

zN ¼ uþ S * log Nnyζu
� 	

; if K ¼ 0

where ny is the number of observations per year and ζu is the probability that an individual observation

exceeds the threshold u. Still according to Coles (2001), ζu has a natural estimator: bζu ¼ k
n
, where bζ u is

the estimate of ζu and n is the total number of observations.

The last step to tune the POT method is to choose the right threshold for our specific problem. If the thresh-
old is too high, there will not be enough data and the variance will be too high. If the threshold is too low,
there will be too much bias (Roth et al., 2015). Mean Residual Life (MRL) plots and Hill plots were used in
this study to drive this estimation. The MRL plot consists in the points

u;
1
nu

∑
nu

i¼1
zi − uð Þ

� �
; u<zmax

� �

where zmax is the highest empirical value, u is a threshold and nu is the corresponding number of empiri-
cal values above the threshold.

The Hill plot consists in two plots. The first one displays the points u;K′uð Þ; u<zmaxf g, where K′u is the esti-

mated shape parameterwith a given threshold u. The second plot consists in the points u; bS′u� �
; u<zmax

n o
,

where bS′u is the estimated scale parameter that has been modified following bS′u ¼ S′u − K′u * u in order to
eliminate the scale's parameter linear dependence in u.

A valid choice of threshold is found when

1. the MRL plot becomes approximatively linear,
and

2. the Hill plot becomes approximatively constant.

However, the interpretation of these plots can sometimes be rather complex (see Coles, 2001;
Piera‐Martinez, 2008, for details) and we took great care in analyzing our choices. In order to use the POT
approach, the data sample should ideally be statistically independent and stationary. Since extreme values
tend to cluster during a single event (Charras‐Garrido & Lezaud, 2013), declustering is often necessary.
The fact that we have already separated our data into physical events as explained in section 3 ensures this
declustering, which is furthermore physics based, and not only mathematically based. Even though under-
lying solar cycles does not allow our data to meet the stationarity condition, no detrending method was used
in this paper.

5. Extreme Events Characterization Using the 150 Years of Data

We have first applied the EVA to all the geomagnetic events observed between 1868 and 2017. During this
150‐year period, 438,296 values of Ca were available. The number of events observed is 3,672. The
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selected POT threshold, estimated with the methods mentioned in section 4, is u = 67 nT. The MRL plot and
the Hill plot are given in Figures 7 and 8, respectively. This situation illustrates the fact that the threshold
selection can be rather difficult, since there is no clear evidence of linearity in the MRL plot, and the Hill
plot is not perfectly constant for u > 67 nT. However, 67 nT is already a high value for Ca, and choosing
this value as the POT threshold should ensure us that only extreme events are being taken into account.
Sixty‐two events are above the threshold (it corresponds to the 99.986th percentile of the whole data set).

Figure 7. Mean Residual Life plot for geomagnetic events data displayed with the 95% confidence interval.

Figure 8. Hill plot for the geomagnetic events data displayed with the 95% confidence interval (computed with the
standard deviation‐based method).
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The maximum likelihood estimate of the shape parameter K is −0.13, and its 95% confidence interval is
[−0.33, 0.18]. The maximum likelihood estimate of the scale parameter S is 25.80, and its 95% confidence
interval is [17.9, 36.3]. The negative value of K indicates that the distribution has an upper limit denoted zinf
and given by

zinf ¼ u −
S
K
:

Here, zinf equals 261.9 nT, which indicates that, considering the most likely values of K and S, an event could
not exceed a Ca value of 261.9 nT. This shows that, as expected from the physics point of view, the existence
of an upper bound is most likely, even if this value is still very far from what has been observed over the last
150 years. However, taking into account the 95% confidence intervals of K and S, we obtain a 95% confidence
interval of zinf estimates spreading from 168.1 nT to infinity (when K equals positive values). Hence, we can-
not state with a 95% confidence level that the distribution of Ca events has an upper limit. The highest con-
fidence level that gives us an interval containing only negative values for the shape parameter is 64%, with a
confidence interval ranging from −0.23 to −0.01.The diagnostic plots are given in Figure 9. The Probability
Plot (Figure 9a) and Quantile plot (Figure 9b) are very close to linear (with both coefficients of determination

Figure 9. Diagnostic plots for extreme value analysis on the 150‐year long geomagnetic events data set. (a) Probability
plot, (b) Quantile plot, (c) Return level plot, and (d) Density plot.
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higher than 0.99) and to the unit diagonal and hence do provide some con-
fidence that the POT approach is relevant in this situation. The Return
level plot (Figure 9c) provides a satisfactory representation of the empiri-
cal estimates. The probability density estimate in (Figure 9d) seems to fit
well the histogram of the data. Therefore, the diagnostic plots tend to con-
firm that the generalized Paretomodel is adequate to our EVAwhen using
the whole available data set.

Using this model, it becomes possible to determine estimates of the 1‐in‐
10‐, 1‐in‐50‐, 1‐in‐100‐, and 1‐in‐200‐year events. The results, along with
their 95% confidence intervals are given in Table 2.

This first analysis gives rather accurate estimates for all the 1‐in‐N‐year events. The fact that we used a very
long range of homogenous data allows for a high confidence in these results. We can compare these results
with the straightforward statistical analysis conducted in previous section. These values have also been
reported in Table 2 and show very good agreement, thus validating the POT approach. According to these
results, the “Halloween Storm” of 31 October 2003 would be close to a 1‐in‐130‐year event. The storm of
14 March 1989 that caused many damages in Quebec would be close to a 1‐in‐50‐year event. The storm of
10 November 2004 would have not only been a 1‐in‐10‐year event but also the last 1‐in‐10‐year event to have
occurred from late 2017. This shows that since the advent of the Space Era we have already witnessed
extreme events of the highest intensity, but that these events are not equally distributed among the years.

Finally, as the data set covers 150 years, the 1‐in‐100‐year return level should be better estimated using the
POT approach than the straightforward analysis as the data set duration becomes comparable to the return
level looking for (at best one or two events of this strength are observed during this time period). This shows
the benefits of such an evolved method compared to standard ones. Nevertheless, the question remains the
same: What is the real confidence we can have in this method?

6. Influence of the Time Period and Time Range of Data Used on the
EVA Results
6.1. EVA on Shorter Subsets

The heterogeneity discussed in the previous section can be explained by the discrepancies in terms of geo-
magnetic activity that can be observed within and between two different solar cycles. This constitutes a first
indicator that all time periods are not equally representative regarding extreme geomagnetic events.

For instance, the highest event that has been observed between 2010 and 2017 reached a maximum Ca level
of 53.63 nT on 19 March 2015. According to our analysis, this barely matches a 1‐in‐1.5‐year event. Hence,
this period does not even contain a single event that could be considered as extreme. Performing an extreme
event analysis on only such a short and nonrepresentative period would consist in fitting a distribution to
irrelevant data, since the tail of the distribution of the events would be truncated when compared to the
full‐range data set or another subset that contains extreme events.

The problem here is that most space missions that collect measurements of electron and proton fluxes in the
radiation belts are usually not designed to last a very long time (usually between 2 and 10 years) and they
effectively last at most two decades. Hence, data collected from a single mission (e.g., the Van Allen
Probes, launched on 30 August 2012) are only representative of the time range covered by the mission,
and in the given example, it is a nonrepresentative time period from the extreme events point of view, as
we have just exposed.

To illustrate this fact with figures, we performed an EVA on data from the 2010–2017 subset of Ca‐based
events as if we were “blind” regarding the rest of the full data set. The first difficulty arises for the choice
of the threshold. Here, the interpretation using the MRL plot (given in Figure 10) is not straightforward.
We chose to use a threshold u = 35 nT, which gives 21 events above the threshold to fit the distribution.
The results are that the estimated 1‐in‐10‐year event is 52.08 nT and the 1‐in‐100‐year event is 54.04 nT. It
appears immediately that these results are very far from those obtained with the full data set. In addition,
the diagnostic plots in Figure 11 are very poor, which indicates that the results from this analysis should
not be considered as definitive values.

Table 2
Return Level Estimates With the POT Approach for the 1868–2017
Yearlong Period

Return
period

Level
estimate

95% confidence
interval

Empirical
estimate

10 years 100.39 nT [93.1, 109.2] nT 102.2 nT
50 years 131.39 nT [119.7, 156.1] nT 135.0 nT
100 years 142.84 nT [128.9, 182.0] nT 147.6 nT
200 years 153.28 nT [136.6, 211.6] nT ≥160.9 nT
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Figure 10. Mean Residual Life plot for geomagnetic events between 2010 and 2017 alone displayed with the 95%
confidence interval.

Figure 11. Diagnostic plots for extreme value analysis on the 2010–2017 (included) geomagnetic events data.
(a) Probability plot, (b) Quantile plot, (c) Return level plot, and (d) Density plot.
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Conversely, other periods contain more numerous extreme events than
the average. As an example, nine intense events (events above the thresh-
old u = 67 nT) were observed between 1957 and 1964, which equals an
average of 1.125 event per year, while for the whole period (1868–2017)
this average is 0.41 event per year. Whereas this could be considered good
news if one were to study the extreme events using data including this per-
iod, this could also introduce a bias if data from this period alone were to
be used in such a study, since the distribution of the events in this sole per-
iod does not seem to match the overall distribution. To illustrate the non-
uniformity of the distribution of the events, Figure 12 shows all the events
stronger than 67 nT between 1868 and 2017 and highlight those whose
maximum Ca value reached at least 93 nT (which is the 95% confidence
lower boundary to the estimated 1‐in‐10‐year event) between 1868 and
2017. In this figure it becomes clear that some periods (e.g., around
1960) contained many very intense events, whereas other periods
(e.g., circa 1900–1910) contained very few.

Therefore, performing an accurate EVA on shorter data sets appears to be
a challenge, not only because a shorter data set contains less numerous
values as a longer data set but also because all subsets are not equally
representative of the full range of the Ca‐based events that could be
observed. That is why in the next subpart we attempt to assess a first esti-
mation of the representativeness of shorter data sets.

6.2. Estimating the Representativeness of Short Data Sets

As mentioned above, the first benefit of EVA methods is to be able to accurately estimate return levels for
time scales larger than the duration of the used data set itself. This is also one of the mains reasons that in
the following we assert the representativeness of short data sets using EVA return levels and not empirical
ones. The point is that for Space Weather investigation, it is important to be able to quantify such extreme
events, from the flux point of view. However, missions measuring radiation flux never exceed 20 years of
continuous data, nor do they cover the whole radiation belts region. For the aforementioned reasons and
in order to be able to draw a comparison with studies such as Meredith et al. (2015), which perform extreme
value analyses on relativistic electron fluxes and thus only use less than 20 years of data, we here per-
form multiple EVAs using a 20‐year‐long sliding window included in the full 150‐year‐long data set
(e.g., 1868–1887 and 1869–1888). We try to determine if there exists any 20‐year period that is representa-
tive of the 1868–2017 full period in terms of extreme geomagnetic events. Before doing so, let us simply note
that, as shown in Figure 4, the linear correlation between Ca and Cf for energies E > 900 keV at L = 6.6 is
close to 0, and therefore, no conclusion on the validity of the results of Meredith et al. (2015) can be directly
drawn from the results using Ca.

We must first give a more precise definition of a representative period. A representative period is a period
that displays a distribution of Ca‐based events very similar to the distribution of the events during the whole
150‐year period. Therefore, performing an EVA on a representative period should lead to the fitting of a simi-
lar Pareto distribution as the one fitted with the full data set. From this assertion we extracted two quantifi-
able criteria to determine whether a 20‐year period is representative or not:

1. When using the same threshold as the one usedwith the full period, themaximum‐likelihood estimates of
the shape parameter, the scale parameter (and hence of the 1‐in‐10‐year and the 1‐in‐100‐year events)
must fall within the 95% confidence interval obtainedwith the full data set.When using a different thresh-
old, the shape and scale parameters are necessarily changed. In this case, the criterion becomes that all the
estimated 1‐in‐N‐year event must fall within their 95% confidence interval obtained with the full data set.

2. The Pareto distribution must have been fitted with more than six points (i.e., there must be more than six
events above the threshold u).

The first criterion seems straightforward, since if a 20‐year period is representative, then the results of the
EVA should be very close to the results obtained in section 5. The second criterion means that a

Figure 12. Events that displayed a maximum Ca index stronger than 67 nT
(in blue) and 93 nT (in red) over time.
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distribution fitted on only a few data points is not as reliable as a fit using multiple data points. The threshold
of six points means that there must be at least 0.3 event‐above‐the‐threshold per year during the 20‐year
window (there is 0.41 event above the threshold u = 67 nT per year during the full 1868–2017 period).
One could argue that six points is a very low number to fit a distribution. This uncertainty should
translate in very large confidence intervals after doing the EVA.

The first difficulty arises from the choice of the threshold. Indeed, since all 20‐year‐long periods are not equal
in terms of geomagnetic activity, some periods do not contain many, if not any, very intense events. By plot-
ting the MRL and Hill plots for many subsets it appears that a suitable value for the threshold is always com-
prised between 35 and 50 nT. Hence, we decide to use a fixed threshold u = 45 nT for all EVA analyses
performed here.

The results of the multiple EVAs are presented in Figure 13, which shows the estimated 1‐in‐10‐year, 1‐in‐
50‐year, and the 1‐in‐100‐year events along with the number of events above the threshold for all 20‐year
subsets. The subsets whose results match all the criteria of representativeness are highlighted as a red aster-
isk. We have not displayed all the 1‐in‐N‐year estimated events for clarity and evident lack of place, but all
the subsets for which the estimated 1‐in‐10‐, 1‐in‐50‐, and 1‐in‐100‐year events matched the criteria also had
well estimated 1‐in‐N‐year event for N between 3 and 200. According to these results, 25 subsets (among
which 19 subsets started during the Space Era) are as representative as the whole 150‐year‐long data set
in terms of extreme events. However, to correctly analyze these results, one shall keep in mind that the

Figure 13. Estimation of the 1‐in‐10‐, 1‐in‐50‐, and 1‐in‐100‐year events for all 20‐year‐long subsets comprised between
1868 and 2017 using a threshold u = 45 nT. The 95% confidence intervals obtained with the full 150‐year‐long data set
and a threshold set at 67 nT are given in dashed lines. The number of events above the threshold is given in the last
subplot. The representative subsets obtained with this method are displayed as a red asterisk.
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threshold chosen here for the POT analyses (45 nT) is lower than the one chosen previously for the whole
data set (67 nT). Yet the threshold also conveys a specific mathematical and physical meaning. Indeed,
mathematically this threshold quantifies the value above which the tail of the distribution of the Ca
events displays a different behavior as the rest of the distribution. Physically, it also gives a value above
which an event could be considered as extreme. Hence, if we want to be able to draw a good comparison
we should always use the same threshold.

That is why we perform again multiple EVAs on the same multiple 20‐year‐long sliding window, but this
time with the threshold u = 67 nT. The results of this experiment are given in Figure 14. This time it appears
that 27 subsets can be considered representative of the whole data set, among which 22 subsets started dur-
ing the Space Era. Nine subsets that previously seemed to give us good results do not match all the criteria
anymore (e.g., the subsets starting in 1930 and 1960). Conversely, 11 subsets now match all the criteria,
including all the subsets that started after 1993 included.

The 1930–1949 subset that previously gave us good results is not as satisfying anymore. These results can be
considered with a higher trust than the results obtained with the threshold set at 45 nT since we are now
using a threshold that has a true physical and mathematical meaning, even though it is not a threshold that
we would have used if we only had knowledge of the given 20‐year‐long subsets. In particular, the period

Figure 14. Estimation of the Shape and Scale parameters as well as the 1‐in‐10‐ and 1‐in‐100‐year events for all 20‐year‐
long subsets comprised between 1868 and 2017 using a threshold u = 67 nT. The 95% confidence intervals obtained with
the full 150‐year‐long data set and a threshold set at 67 nT are given in dashed lines. The number of events above the
threshold is given in the last subplot. The representative subsets obtained with this method are displayed as a red asterisk.
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encompassing the years 2003 and 2004 are good candidates. We can consequently have good characteriza-
tions of extreme events using observed fluxes during such periods. However, if we refine our sliding window
again and, for example, keep only last solar cycle observations such as the valuable Van Allen Probes ones,
we see that the time period is not representative for such analysis.

The main lesson learnt here is that there are 20‐year‐long subsets that are representative of the full data set
given the right threshold. The main obstacle to performing an accurate EVA on such a short but represen-
tative data set is that, quite often, the analyst will probably not chose the right threshold using the usual
methods for threshold selection, which will give misleading estimates such as the ones we obtained with ele-
ven subsets when the threshold was set to a lower value (45 nT).

7. Conclusions and Perspectives

We have performed an EVA on a 150‐year‐long data set using an index derived from the aa index, which is
considered to be homogenous in time. Therefore, the following results can be trusted with a high confidence
level. Prior to the EVA itself we had to define what a geomagnetic event is. Our definition is probably not
perfect but accurate for computing the EVA. By using the POT method with the threshold carefully set to
67 nT, it appears that the estimated 1‐in‐10‐, 1‐in‐50‐, and 1‐in‐100‐year events, respectively, reached a Ca
value of 100.39, 131.39, and 142.84 nT.

Moreover, our results show that we cannot assert with a 95% confidence level that the distribution of Ca
events has an upper limit, even if the estimated (most likely) shape parameter suggests so. Finding either
there is an upper limit to the particle fluxes in the radiation belts is an important topic in Space Weather
research. For instance, in Meredith et al. (2017) the authors conduct an EVA on relativistic electron fluxes
(for 0.69 < E < 2.05 MeV) in the Earth's outer radiation belt. In particular, they find that there is most prob-
ably an upper bound to the flux of relativistic electrons in the region 4 < L* < 6 but that further out it is not
possible to reach a final conclusion since the shape parameter is close to 0, with confidence boundaries over-
lapping positive values. In this context, let us simply note that even if Ca is, by construction and as we have
shown, a good indicator of the general state of disturbance of the radiation belts, we cannot consider Ca as a
direct proxy for the particle fluxes saturation since Ca contains an integrated part of temporal information.
Thus, the existence of an upper limit on Ca is a different problem from the existence of upper limits on par-
ticle fluxes in radiation belts. That being said, our study shows that even with a data set overlapping an
extended time period such as ours, the problem of the existence of an upper limit to a distribution of an index
representing extreme geomagnetic storms is not easily solvable, which echoes one of the conclusions in
(Meredith et al., 2017).

Indeed, while Ca index is accurate for monitoring the global geomagnetic activity on a planetary scale, it may
not always be representative of the local situation for a given altitude or orbit. Moreover, Ca value, as defined
here with a 4 days characteristic time, will not be perfectly correlated with the dynamics of electrons at any
energy. For such purposes, other data sets and measures have to be used, which leads to a great problem
regarding EVA: Such data sets are usually much shorter in time. Using shorter (20‐year‐long) data sets
may lead to misleading results when conducting an EVA for two main reasons. The first one is that all per-
iods do not always contain a similar distribution of events. The second reason is that, even for 20‐year‐long
time periods that are quite as representative as the full 150‐year‐long data set, it is not always straightforward
to choose the right threshold for performing a POT analysis, and choosing a different threshold may give
altered results. This is why in this study we give time periods that could be more representative than others,
based on first order Ca index and our definition of events.

It is interesting to compare the results of this study to, for example, Meredith et al. (2015, 2016), bearing in
mind the precautions outlined in section 6.2 above. In Meredith et al. (2015), an EVA is performed on elec-
tron fluxes with energy greater than 2 MeV measured by GOES fleet from 1995 to mid‐2014. It is found that
the distribution of extreme events does not have an upper bound in this particular study. We find the same
result when using the data covering the 1998–2017 period with the most likely scale parameter and a thresh-
old set at 45 nT, but not when using a threshold set at 67 nT (which we have shown to be more accurate),
neither with the whole 150‐year‐long data set. Moreover, according to the conclusions of Meredith
et al. (2015), the strong magnetic storm of July 2004 is considered as a 1‐in‐50‐year event, while it is barely
a 1‐in‐10‐year event in our study. Conversely, the storm of October 2003 that is seen as a 1‐in‐130‐year event
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in our study when using the whole data set is not even a 1‐in‐10‐year event when considering GOES > 2‐
MeV electron fluxes. On the other hand, the conclusions form our study echo some of the results from
Meredith et al. (2016), where it is found in particular that the fluxes of E > 30‐keV electrons as observed
by the POES satellites from 1998 to 2014 tend to a limiting value. This highlights once again the complexity
of the Earth's magnetospheric system and that Ca index is a global proxy for the whole energy band and
region of the electron radiation belt.

These differences could be explained in different ways. The fact that the distribution does not have an upper
bound when considering GOES electron fluxes might be only a consequence of the short data set used in that
study, since we observe the same consequence in our one when shortening the data set and using a lower
threshold. The difference of the return levels is most probably mainly a consequence of the data set used
in each study. In (Meredith et al., 2015), the data concerns only electrons with an energy greater than
2 MeV and the data are made at the geostationary orbit. Therefore, the data are not representative of the
whole situation at each altitude, and in this case, the values of Ca present a lower correlation with the
GOES data. Indeed, the geostationary orbit experienced strong and rapid disturbances during storms, in
the contrary of other more intern orbits. As for example, we can mention, especially for the 2‐MeV fluxes,
that during magnetic storms dropouts are very effective on that orbit, which induce rapid and strong losses
above a few hundreds of keV (see Herrera et al., 2016, for more details). Such dropouts are driven by both
solar wind parameters and geomagnetic activity. Therefore, Ca index may be less representative of what is
occurring at geostationary orbit.

In this first work, we have demonstrated the interest of long‐term data sets for extreme geomagnetic events
analysis, in particular in using dedicated but complex statistical methods. Most of all, we show the limita-
tions and caveats to take care about in such analysis. Finally, an idea to go further would be to take into
account solar cycle modulation in such an analysis, as well as discriminating the type of event, especially
between CIRs and CMEs. The existence of a solar cycle breaks the stationarity assumption necessary for per-
forming EVA. However, each cycle is different from the others, which makes it difficult to include a trend in
our model. But taking a data set of 150 years allows us to take into account almost 14 different cycles. Among
these cycles, some were very intense in the late twentieth century, other were rather weak in the late nine-
teenth century and the early twentieth century, as well as the current one. Therefore, using the whole data
set is more representative than using a restricted data set that barely represents two cycles.

Another idea that would constitute futureworks would be to further quantify the accuracy of a restricted data
set (in particular a given mission) to estimate 1‐in‐N‐year events for other given types of particle flux or
expected effects. This would help in addressing Space Weather recommendations (Millan et al., 2019) and
in particular, the issue of assessing a worst‐case scenario, which is complex with a single index or data set.
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