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Hierarchical robust aggregation of sales forecasts at
aggregated levels in e-commerce, based on exponential

smoothing and Holt’s linear trend method

Malo Huard∗,† — Rémy Garnier‡,§ — Gilles Stoltz∗,¶

June 5, 2020

Abstract

We revisit the interest of classical statistical techniques for sales forecasting like exponential
smoothing and extensions thereof (as Holt’s linear trend method). We do so by considering ensemble
forecasts, given by several instances of these classical techniques tuned with different (sets of)
parameters, and by forming convex combinations of the elements of ensemble forecasts over time,
in a robust and sequential manner. The machine-learning theory behind this is called “robust online
aggregation”, or “prediction with expert advice”, or “prediction of individual sequences” (see Cesa-
Bianchi and Lugosi, 2006). We apply this methodology to a hierarchical data set of sales provided by
the e-commerce company Cdiscount and output forecasts at the levels of subsubfamilies, subfamilies
and families of items sold, for various forecasting horizons (up to 6–week-ahead). The performance
achieved is better than what would be obtained by optimally tuning the classical techniques on a
train set and using their forecasts on the test set. The performance is also good from an intrinsic
point of view (in terms of mean absolute percentage of error). While getting these better forecasts
of sales at the levels of subsubfamilies, subfamilies and families is interesting per se, we also suggest
to use them as additional features when forecasting demand at the item level.

Keywords: ensemble forecasts, prediction with expert advice, exponential smoothing, Holt’s linear
trend method, e-commerce data.

1. Introduction and Literature Review

Sales data in e-commerce are highly dynamic and volatile: reactive methods are required (and these
methods are often sophisticated). We provide a detailed discussion of these newer methods in Sec-
tion 1.6; they stem from the machine learning toolbox. On the other hand, in retail merchandising,
classical statistical techniques for sales forecasting like exponential smoothing and extensions thereof
(as Holt’s linear trend method) are effective and have been widely used since the 1950s (see Gardner,
1985, 2006 and Hyndman et al., 2008). Other such classical techniques include autoregressive models
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like ARIMA and its variants (Box et al., 1970 and 1994). A review of the use of these classical tech-
niques may be found in the monograph by Chatfield [2000], and a recent application to the forecasting
of intraday arrivals at a call center was proposed by Taylor [2008].

The aim of this article is to forecast sales in e-commerce based on exponential smoothing and
extensions thereof. By “based on”, we mean that two layers will be considered in our methodology:
the first layer is to build several instances of exponential smoothing and Holt’s linear trend method
(tuned with different parameters). They will be called elementary predictors. The forecasts of these
elementary predictors are then combined, prediction step after prediction step, via a so-called aggre-
gation algorithm (see Cesa-Bianchi and Lugosi, 2006 for an introduction to the field of robust online
aggregation). The aggregation algorithms considered output convex weights, that evolve over time in
a reactive way depending on performance, and the aggregated forecasts are simply given by convex
combinations of the forecasts issued by the elementary predictors.

Since we are dealing with e-commerce data, the items considered are grouped into a hierarchy
(of subsubfamilies, subfamilies, and families of products). We only forecast sales at these aggregated
levels (not for individual items), which, admittedly, is an easier forecasting task (see Mentzer and Cox,
1984). We do so by aggregating the forecasts of elementary predictors separately at each node of the
hierarchy and by reconciling the thus obtained aggregated forecasts through a projection. Cross-series
information is thus shared through the hierarchical constraints. Our methodology is fully automated,
scalable, and robust—three key requirements stated by Seeger et al. [2016].

Sales forecasting at these aggregated levels may be considered interesting per se, but we also see
it as a way to obtain extra features for demand forecasting at the item level; these extra features
(sales forecasts for all items of the same subsubfamily) can then be provided as an extra input to the
sophisticated and reactive machine-learning methods currently constructed (see Section 1.6 for a more
detailed literature review).

1.1. Presentation of the Problem of Hierarchical Forecasting and of the Data Set

What follows is detailed in Sections 2.1 and 3.1. Our data was provided by the e-commerce company
Cdiscount and spans from July 2014 to December 2017—a period of 182 weeks. We use July 2014
to December 2016 as a training period (containing 130 weeks), and January 2017 – December 2017
(containing 52 weeks) as a test period; the test period thus features all major commercial events (sales,
Black Friday and Christmas shopping, etc.). The data set features the daily sales of 620,749 items
hierarchically ordered in 3,004 subsubfamilies, 570 subfamilies and 53 families. We add up daily sales
to get weekly sales. Many time series of weekly sales thus created are intermittent (but as will get
clearer in the sequel, we do not apply any specific trick or tool to deal with intermittent demand).

Our notion of a hierarchy means that we organize the subsubfamilies, subfamilies and families into
a tree Γ, whose root node consists of total sales. The sales (numbers of units sold, or money value)
achieved at a node γ (i.e., for a given subsubfamily, subfamily or family) during week t are denoted
by st,γ . Summation constraints are considered: e.g., if γ ∈ Γ is some (sub)family and C(γ) denotes
the (sub)subfamilies that belong to it, we have

st,γ =
∑

c∈C(γ)
st,c .

An arbitrary collection of forecasts f̂t+h,γ of the sales at an horizon of h weeks, where γ spans the tree
Γ, may be transformed into a collection f̃t+h,γ of such forecasts abiding by the summation constraints
indicated by Γ by a projection onto a suitable vector space. We further detail this in Section 2.4. Such
a projection actually shares information between related subsubfamilies, subfamilies and families.

Related literature on hierarchical forecasting. We provide hierarchical predictions but in a
simple manner, actually in the simplest possible manner: by independently computing forecasts at
each node of the hierarchy and by reconciling them by a projection step. For a description of fancier
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approaches to hierarchical forecasting, we refer to the specific literature review provided in the intro-
duction of Brégère and Huard [2020].

1.2. Robust Aggregation
(a.k.a. Prediction with Expert Advice, Prediction of Individual Sequences)

The methodology discussed in this section is described in detail in Sections 2.2 and 2.3. It aims at
providing node-by-node forecasts (series of forecasts for each given node γ ∈ Γ of the hierarchy).

Our methodology relies on ensemble forecasts (Section 2.2): several elementary predictors are
considered, all of them but a few given by instances of exponential smoothing or Holt’s linear trend
method, with different sets of parameters. As the series of sales all exhibit some seasonality, but with
different cycles depending on the considered node γ, as some have a linear trend and some others do
not, as some are highly regular while some others exhibit a more erratic behavior, it is clear that no
single instance of exponential smoothing or Holt’s linear trend method can be simultaneously suited
for all series. This is why we consider several such instances (J instances), which gives rise to a
collection

ŝ
(j)
t+h,γ , j ∈ {1, . . . , J} ,

of elementary forecasts for the value st+h,γ . A typical way to deal with this issue is to tune instead
the parameters on a train set and use the thus-tuned method on the test set; i.e., to select one given
elementary predictor among the J ones considered. We show that typical methodology is consistently
inferior on our data set to aggregating (combining) the forecasts of all the elementary predictors, as
described below.

There are actually various techniques to aggregate forecasts via machine-learning or statistical
methods. Some of these aggregation techniques deal with stochastic data: the observations to be
forecast are modeled by some stochastic process. On the contrary, other techniques work on determin-
istic data and come with theoretical guarantees of performance even when the observations cannot be
modeled by a stochastic process. Examples of popular aggregation methods include Bayesian model
averaging (see Hoeting et al., 1999 for a tutorial and Raftery et al., 2005 for an application to en-
semble forecasts) and random forests (introduced by Breiman, 2001), both of them being stochastic
approaches, as well as robust online aggregation, which is a deterministic approach. We are inter-
ested in the latter approach, given the erratic nature of the series of sales in e-commerce (they are
notoriously difficult to model).

Robust online aggregation is also known as prediction of individual sequences, or prediction with
expert advice (see the monograph by Cesa-Bianchi and Lugosi, 2006 and references therein, see also
the numerous references provided in Section 2.3). This sequential aggregation technique, developed
in the 1990s, provides a robust framework to make forecasts on a regular (e.g., weekly) basis. It does
not rely on any specific assumption or need for stochastic modeling; it may handle any (bounded)
time series, possibly extremely erratic. At each time step, a weighted average of the forecasts of the
elementary predictors is issued, where the (convex) weights w(1)

t+h,γ , . . . , w
(J)
t+h,γ used are picked based

on the past performance of the elementary predictors:

f̂t+h,γ =
J∑
j=1

w
(j)
t+h,γ ŝ

(j)
t+h,γ .

These weights thus change over time, which guarantees that the aggregation algorithm may quickly
adapt to changes in the environment, a key feature for e-commerce that batch forecasting methods (the
methods that use a train set) do not possess. In a nutshell, the robust online aggregation algorithms
considered are online and adaptive by nature, which is an advantage over batch methods that are less
often updated.

These robust online aggregation algorithms also come with strong theoretical guarantees of per-
formance: they almost achieve or outperform the performance of the best elementary predictor (and
in some cases, the best constant convex combination of elementary predictors). We note that the
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algorithms we relied on are recent and effective aggregation algorithms—much more effective than,
e.g., the one (Vovk’s “Aggregation Algorithm”) considered by Levina et al. [2009] to learn demand
characteristics while simultaneously pricing items.

Previous successful applications of robust aggregation in other fields. They are detailed in
Section 1.6.

1.3. What We Do and What We Don’t

What we don’t do. Our data set did not include key features like the real-time evolution of the
price of the items nor their availability in stock. We therefore do not consider sales forecasting in
relationship with the prices offered, which is a vast field of research; see Hu et al. [2019], Ferreira
et al. [2016] and Cheung et al. [2017] for the use of price experiments as a demand learning tool, as
well as Levina et al. [2009] again (and the numerous references cited in these three articles). Neither
do we couple sales forecasting with anything else (Aviv, 2003 couples them with adaptive inventory
policies). Also, we rather use the terminology “sales forecasting” instead of “demand forecasting” as
we are unable to tag null sales as potential lost sales.

What we do. We provide a general methodology for the hierarchical forecasting of time series
(any time series: not necessarily sales), which is widely applicable to any problem where univariate
time series methods would be suited; e.g., the forecasting of intraday arrivals at a call center as
proposed by Taylor [2008]. We use modern and effective robust online aggregation algorithms to do
so (more modern algorithms than in Levina et al., 2009). Finally, we demonstrate the success of our
methodology on a real data set provided by the e-commerce company Cdiscount. We actually started
from the business practice—this data set—to build our methodology.

1.4. Brief Summary of the Numerical Results Obtained

The numerical results obtained are discussed in detail in Section 3. We illustrate the good performance
of our forecasting methodology in two manners.

First, we provide a study of relative performance and show that the aggregation algorithms con-
sidered consistently outperform the natural benchmark given by the best locally predictors on the
train set (i.e., what is achieved by selecting, for each node, the best elementary predictor on the train
set, and by using it on the test set), by about 5%. This observation holds in mean absolute error
[MAE] and in root mean square error [RMSE], for various forecasting horizons (from 1–week-ahead
to 6–week-ahead). We note that the performance of the aggregation algorithms does not vary much
by the algorithm.

Second, we study the absolute (intrinsic) performance achieved, by reporting mean absolute per-
centages of errors. Aggregation algorithms obtain a global MAPE of about 20% (again, this is valid
for different forecasting horizons). This MAPE can be broken down by the level: it equals about 30%
for subsubfamilies. These values correspond to the consideration of aggregated levels; we recall that
we do not work at the item level.

Finally, we provide some graphical evolutions of convex weights picked over time, for different
families and for total sales. In general, these weights change much over time, which illustrates the
flexibility and reactivity of the aggregation algorithms over time.

1.5. Outline of the Article

The article is organized as follows. Section 1.6 reviews the literature on sales and demand forecasting,
including the approaches specific to e-commerce. Section 2 presents the methodology followed while
Section 3 discusses the results obtained on our data set.
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More precisely, Section 2 starts with a statement of our setting of hierarchical prediction of sales
(Section 2.1). It then describes the elementary predictors considered, based on exponential smooth-
ing or on Holt’s linear trend method (Section 2.2). The aggregation methodology briefly hinted at
above is described in details in Section 2.3.1 and three specific aggregation algorithms are stated, and
adapted where needed, in Section 2.3.2 (and a general trick to boost their performance is provided
in Section 2.3.3). However, Section 2.3 is only concerned with node-by-node aggregation and this is
why Section 2.4 explains how the node-by-node aggregation results may be extended for the entire
hierarchy of nodes.

Then, Section 3 first provides a detailed description of the real data set considered and of its
division into a train set and a test set (Section 3.1), and discusses the performance of the elementary
predictors at various forecasting horizons (Section 3.2). The main results consist of a tabulation of the
performance achieved by the three aggregation algorithms studied, in MAE and RMSE (Section 3.3)
and in MAPE (Section 3.4). Two complementary studies are finally provided: on the distributions
of errors (Section 3.5) and on the evolution of the weights put on each elementary predictor by the
aggregation algorithms (Section 3.6).

1.6. Additional Literature Review

We provide additional references on two topics: on the applications of robust online aggregation and
on sales and demand forecasting.

1.6.1. On the Applications of Robust Online Aggregation

As the methodology of robust online aggregation hinted at in Section 1.2 does not rely on any spe-
cific assumption or need for stochastic modeling, and is therefore extremely general, it was already
successfully applied on different applications. The R package Opera written by Gaillard and Goude
[2020] is now a popular tool to use this methodology and it is difficult to cite all applications already
performed. However, among them, we may cite the forecasting of air quality (Mauricette et al., 2009),
of electricity load (Devaine et al., 2013, Gaillard and Goude, 2015, Brégère and Huard, 2020), of
exchange rates (Amat et al., 2018), of oil and gas production (Deswarte et al., 2019).

However, while the methodology is general, the application to each specific domain is still challeng-
ing: some theoretical adaptations might be needed (in the present case, dealing with a hierarchy), and
more importantly, proper elementary predictors need to be designed. The ones used for the forecast-
ing of electricity load are actually quite fancy (see a specific discussion below, in Section 1.6.2), and
the same can be said for air quality (complex PDE models with different data inputs, see Mauricette
et al., 2009) and oil and gas production (complex numerical solvers were used to model the production
fields, see Deswarte et al., 2019). In the present article, we want to show that classical and simple time
series methods like exponential smoothing and Holt’s linear trend method can be useful elementary
predictors. Of course, more complex forecasting models (using more side information) could be used
as elementary predictors.

Also, in most references of this paragraph, aggregation algorithms outputting linear weights were
considered (e.g., ridge regression), while we restrict our attention to convex weights (to get safer
predictions: within the range of forecasts issued by elementary predictors).

1.6.2. On Sales and Demand Forecasting

So far, we only discussed general references on time-series predictions (for exponential smoothing,
Holt’s linear trend method, ARIMA models) and on ensemble methods, and in particular, on robust
aggregation (also known as prediction with expert advice or prediction of individual sequences, see
Section 1.2). This is because our approach is designed to be general and independent of the specific
context of application. However, we now provide a literature review focused on the goal of the
present contribution, namely, sales and demand forecasting, and even more precisely, sales and demand
forecasting for e-commerce.

Huard, Garnier, Stoltz 5
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Demand forecasting tackles the prediction of the level of demand for a product or a service in the
future. This demand may not match the exact number of sales for a product for different reasons (stock
shortage, change of prices). Demand forecasts has various applications, among others: electric load
forecasting (see Alfares and Nazeeruddin, 2002 for a survey, see also the aforementioned contributions
by Devaine et al., 2013, Gaillard and Goude, 2015, Brégère and Huard, 2020); urban water demand
forecasts (see Donkor et al., 2014 for a survey); and sales forecasting. General surveys on sales
forecasting (not centered on e-commerce) were written by Karimi et al. [2015] and Carbonneau et al.
[2008]. These applications differ on a number of criteria. First, the demand variable may be continuous
(case of electric load) or discrete (case of sales in retail business), with different aggregated times step
(daily, weekly, monthly). In some cases, the demand variable may also be intermittent (see Xu et al.,
2012 and Seeger et al., 2016 for examples and details). Second, the forecasting horizons differ between
the considered applications, from short-term prediction to longer-term horizons. The exact definition
of short- and long-term may differ with applications, but a prediction horizon of more than two week
is a long-term horizon for most applications. The issue is that the generally best method for a given
problem may differ for long-term and short-term predictions (see discussions by Donkor et al., 2014).
Third, the dimensions of the demand variables may differ. In the simplest case, a unique value for a
given time step is to be predicted; however, in more complex cases, several values are to be predicted,
for exemple, levels of sales of multiple items at a given or at various time steps. These multiple items
may be organized in a hierarchy of products (as we do) or in related groups (see Chapados, 2014).
This is why each of these applications presents some specific challenges to tackle. We now detail two
popular applications: electricity load forecasting and sales forecasting for e-commerce.

Electricity load forecasting. Traditional time series methods (based on exponential smoothing
or autoregressive models, and their extensions like Holt’s linear trend method or ARIMA models)
have of course been extensively used and tailored to the needs of this application. For instance, a
lot of attention was put to add seasonality to this kind of models (see Taylor, 2003, 2010 for recent
examples).

Other modern machine statistical methods have been introduced to overcome the limitation of
traditional times series methods. We cite two of them. First, generalized additive models [GAMs],
used in a autoregressive way (with past load values as features) and with additional covariates (e.g.,
meteorological variables), are now a standard and efficient method to forecast the electricity load,
at least for short-term horizons; see Pierrot and Goude [2011] and Wijaya et al. [2015], as well as
their use by Devaine et al. [2013] combined with robust aggregation. Such GAM models rely on a
discretization of the load into a sequence of values within a day by considering aggregated time steps,
typically, half hours. On the contrary, a second family of statistical models directly predicts load
curves; see Antoniadis et al. [2006] and the discussions therein. Of course, other methods, from the
machine learning community, that may suffer from a lack of interpretability, were also considered, like
random forests: see Dudek [2015].

We may now provide a detailed comparison to the study by Brégère and Huard [2020], as promised
in Section 1.1. The focus therein is the short-term forecasting (one day ahead) of electricity load.
Customers are grouped into a hierarchy (created by clustering) so that the elementary predictors
considered for each cluster (based on sophisticated GAM models or on random forests) can be better
adjusted. Predictions are then formed cluster by cluster through robust aggregation algorithms and
reconciled through a projection step, exactly as in the present article. Actually, the present article
was initiated before and inspired the study by Brégère and Huard [2020]. More importantly, our focus
here is to consider elementary predictors that are truly elementary and general—and so are predictors
based on exponential smoothing and Holt’s linear trend method, while GAM models or random forest
are not. The latter are powerful methods that are already efficient per se. Finally, the hierarchies
considered by Brégère and Huard [2020] were small and limited, while in the present article, we deal
with a different scale (three layers and several thousands of nodes and leaves).
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Sales forecasting for e-commerce. This special case of demand forecasting comes with the fol-
lowing specific difficulties. First, the number of items in e-commerce is generally large (much larger
than in traditional retail); these items are organized in a hierarchy of (subsub)families, as described
in Section 1.1. Second, modern considerations in logistics and supply chain tend to limit supplies and
emphasizes just-on-time resupply. This implies that e-commerce companies generally need medium-
term prediction for their sales, typically around 1-month (or 1-month-and-a-half) ahead. However,
most of the existing predictive models for supply chain were linear and were not able to deal with the
more erratic behaviour of real-world sales data in e-commerce. Moreover, they were not able to exploit
cross-product information. This is why virtually all of the forecasting methods for sales in e-commerce
rely on sophisticated techniques stemming from the machine-learning community. To name just a few,
let us recall that a Bayesian modeling relying on a hierarchical state-space model was proposed for
sales data by Chapados [2014] (and it allows to share information between products). Neural network
models have also been widely used, e.g., Bandara et al. [2019] used a recurrent neural network for
e-commerce sales data. Finally, Amazon developed a probabilistic neural network for demand forecast
called DeepAR, described by Salinas et al., 2019. All these sophisticated methods are difficult to tune
and maintain because they rely on a large number of parameters; in contrast, our methodology is
simple, computationally efficient, and fully automated (once the elementary predictors are chosen).

Huard, Garnier, Stoltz 7
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2. Setting

In this section we first describe the aim of the forecasting task (Section 2.1), the elementary predictors
considered, including Holt’s linear trend predictors (Section 2.2), and the aggregation methodology
followed. The latter first takes place node by node (Section 2.3) and then is extended to hold for
the entire hierarchy of nodes (Section 2.4). The description of the node-by-node aggregation will be
broken down into a general presentation of the concept of aggregation (Section 2.3.1), the statement
of three specific aggregation algorithms considered in the sequel (Section 2.3.2), and the description of
the “gradient trick” (Section 2.3.3), which is a general trick to boost the performance of aggregation
algorithms.

2.1. Aim: Hierarchical Prediction of Sales

The products sold are grouped in a hierarchical way, given by a tree Γ; nodes of the tree will be
indexed by γ. The root of Γ gathers all products. The children of the root are called families, and are
further broken down into subfamilies, and then subsubfamilies. The leaves of the tree correspond to
the products. A product corresponds to a unique subsubfamily, which itself corresponds to a unique
subfamily, which itself corresponds to a unique family.

We consider weekly sales, where weeks are indexed by t ∈ {1, 2, . . . }. We denote by st,γ the sales
achieved for family γ during week t. They can be measured in units or in total value. The aim is to
predict sales at all nodes of the hierarchy Γ, at a given horizon h > 1; that is, to issue forecasts of the
future quantities

st+h,γ , γ ∈ Γ .

This aim was expressed to predict the sales during n = 1 week, but we may possibly group n > 2
weeks, with n 6 h, and forecast the quantities

yt+h,γ = 1
n

t+h∑
τ=t+h−n+1

sτ,γ , γ ∈ Γ ,

which correspond to average sales over a period of n weeks ending at the horizon of h weeks. Put
differently, the goal is to forecast h − n–week-ahead a group of n weeks (the group of n weeks starts
at week t+ h− n+ 1 after h− n complete weeks have passed after the current week t).

The y and the s are equal in case n = 1, and this is why, with no loss of generality, we only discuss
below the forecast of the y. We defined the y as averages for them to all share the same order of
magnitude, independently of the value of n > 1. Typical values for n are in {1, 2, 3, 4}.

Summation constraints. The sales achieved at a given node are the sum of the sales achieved at
its children nodes. More formally, denoting by C(γ) the children of a given node γ ∈ Γ, we have,
whenever C(γ) is not the empty set:

yt+h,γ =
∑

c∈C(γ)
yt+h,c .

It is thus natural to expect that the forecasts ŷ of the y satisfy the same summation constraints: for
all γ ∈ Γ with non-empty set C(γ) of children nodes,

ŷt+h,γ =
∑

c∈C(γ)
ŷt+h,c .

2.2. Elementary Predictors / Node by Node

In this section, we fix a given node γ ∈ Γ and describe the elementary forecasting methods considered.

8 Huard, Garnier, Stoltz
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We introduce three sets or families of elementary forecasting methods (or elementary predictors):
simple exponential smoothing, with an additive or a multiplicative treatment of seasonality, relying
on a parameter α ∈ [0, 1]; Holt’s linear trend method, with an additive or a multiplicative treatment
of seasonality, relying on parameters α ∈ [0, 1] and β ∈ [0, 1]; other elementary forecasts, provided by
benchmarks. Simple exponential smoothing and Holt’s linear trend methods are popular methods for
demand forecasting in e–commerce (see Bandara et al., 2019).

Note that valid forecasts for the yt+h,γ quantities must rely only on present and past sales, i.e., on
sales sτ,γ with τ 6 t. In particular, present and past average sales yτ,γ , with τ 6 t, may be used.

Other elementary forecasts. They consist of
– the sales achieved one year (52 weeks) ago, ŷt+h,γ = yt+h−52,γ ;

– the sales currently achieved, ŷt+h,γ = yt,γ ;

– the null sales, ŷt+h,γ = 0, given that a significant number of pairs of subsubfamilies and weeks
have no sales (most time series of sales are sparse, i.e., the demand of the corresponding is
intermittent; see the sparsity statistics provided in Section 3.1).

Here, and at all subsequent places, the value 52 weeks for a year could be replaced by 53 weeks, which
works equally well. To alleviate notation, we did not set a parameter Tyear for this value but could
have done so, of course.

Simple exponential smoothing with an additive treatment of seasonality. We use simple
exponential smoothing to forecast the difference dt+h,γ between the quantity of interest, yt+h,γ , and
its value one year ago, yt+h−52,γ . This is a first (additive) way for taking seasonality into account.
Each instance of simple exponential smoothing is parameterized by a number α ∈ [0, 1].

More precisely, given the needed history, forecasts can only be issued after week t0 (whose value
is indicated below) and are provided by

d̂t0+h,γ = dt0,γ and for t > t0 + 1, d̂t+h,γ = αdt,γ + (1− α) d̂t−1+h,γ ;

that is, ŷt0+h,γ = yt0+h−52,γ + (yt0,γ − yt0−52,γ) and more generally, for t > t0,

ŷt+h,γ = yt+h−52,γ +
t−t0−1∑
j=0

α(1− α)j
(
yt−j,γ − yt−j−52,γ

)
+ (1− α)t−t0

(
yt0,γ − yt0−52,γ

)
.

The threshold t0 is such that the y with the smallest time index above, that is, yt0−52, is well defined;
it is defined as an average of n weekly sales starting at time t0 − 52 − n + 1, which must be at least
1. Thus, t0 = 52 + n.

Simple exponential smoothing with a multiplicative treatment of seasonality. A second
(multiplicative) way for handling seasonality is to replace the difference dt+h,γ = yt+h,γ − yt+h−52,γ by
the ratio yt+h,γ/yt+h−52,γ . We actually consider a variant of this ratio, given by

zt+h,γ = yt+h,γ/rt+h−52,γ , where rτ,γ = yτ,γ
25∑

j=−26
yτ+j,γ

denotes, for τ large enough, the ratio between the sales yτ,γ for a given week τ and yearly sales centered
at this week. Simple exponential smoothing is then used to forecast the z quantities.

More precisely, given the needed history, forecasts can only be issued after a given week t′0 (whose
value is indicated below) and are given by

ẑt′0+h,γ = zt′0,γ and, for t > t′0 + 1, ẑt+h,γ = α zt,γ + (1− α)ẑt−1+h,γ .
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(We skip the closed-form expressions that could be derived for the ẑt+h,γ .) The forecasts of the
quantities of interest are then provided, for t > t′0, by

ŷt+h,γ = rt+h−52,γ ẑt+h,γ .

The threshold t′0 after which forecasts ŷt′0+h can be issued is such that ẑt+h,γ = zt′0,γ and rt′0+h−52,γ are
well defined. It is necessary and sufficient to that end that rt′0−52,γ be well defined. The latter is an
average of values yτ starting at the index t′0− 52− 26; the starting value yt′0−52−26 is itself an average
of n weekly sales starting at time t′0−52−26−n+1, which must be at least 1. Thus, t′0 = 52+26+n.

Holt’s linear trend method with a multiplicative treatment of seasonality. We extend and
generalize the approach followed in the previous paragraph by allowing for a trend. Two parameters
α ∈ [0, 1] and β ∈ [0, 1] are set. The forecasting equations are, for t > t′0 + 2 (where t′0 was defined in
the previous paragraph):

[level] `t+h,γ = α zt,γ + (1− α)(`t−1+h,γ + bt−1+h,γ)
[trend] bt+h,γ = β(`t+h,γ − `t−1+h,γ) + (1− β)bt−1+h,γ

with an initialization consisting of

`t′0+1+h,γ = zt′0+1,γ and bt′0+1+h,γ = zt′0+1,γ − zt′0,γ .

The forecasts of the quantities of interest are then provided, for t > t′0 + 1, by

ŷt+h,γ = rt+h−52,γ
(
`t+h,γ + h bt+h,γ

)
.

Remark. The choice β = 0 with the initialization bt′0+1+h,γ = 0 (so that all b values are null)
corresponds to simple exponential smoothing.

Holt’s linear trend method with an additive treatment of seasonality. We finally extend
simple exponential smoothing with an additive treatment of seasonality by also allowing for a trend;
we use again the time t0 = 52 + n defined therein. The forecasting equations are, for t > t0 + 2,

[level] `t+h,γ = α(yt,γ − yt−52,γ) + (1− α)(`t−1+h,γ + bt−1+h,γ)
[trend] bt+h,γ = β(`t+h,γ − `t−1+h,γ) + (1− β)bt−1+h,γ

with an initialization consisting of

`t0+1+h,γ = yt0+1,γ − yt0+1−52,γ and bt0+1+h,γ = (yt0+1,γ − yt0+1−52,γ)− (yt0,γ − yt0−52,γ) .

The forecasts of the quantities of interest are then provided, for t > t0 + 1, by

ŷt+h,γ = yt+h−52,γ +
(
`t+h,γ + h bt+h,γ

)
.

Remark. The choice β = 0 with the initialization bt0+1+h,γ = 0 (so that all b values are null)
corresponds to simple exponential smoothing.

2.3. Tuning Issue: Aggregating Rather Than Selecting Forecasts / Node by Node

In this section, we describe the concept of robust aggregation of predictors at a given node γ. The
next section (Section 2.4) will explain how to extend this concept to predictions at all nodes of the
hierarchy considered.
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Tuning issue. When only one set of forecasts (e.g., Holt’s linear trend method with a multiplicative
treatment of seasonality) is considered, it suffices to tune the two parameters α and β. This may
typically be performed via cross-validation, on a training set. This may be performed locally (the
parameters αγ and βγ picked depend on the node γ) or globally (the same parameters α and β are
used at all nodes). However, in our case, several (sets of) elementary forecasts are available, which
is more realistic. It may indeed be difficult to determine beforehand whether seasonality should be
addressed in an additive or a multiplicative way. Also, the simple forecasts like the null sales may
be particularly efficient for some subsubfamilies with rare sales. This is why we rather resort to
aggregation of elementary forecasts coming from various models instead of selecting one particular
forecasting method. This methodology was developed in the machine learning community in the
1990s and in the 2000s, see the monograph by Cesa-Bianchi and Lugosi [2006]. Its first application
was to construct portfolios to invest in the stock market (Cover, 1991) and it has since then been
successfully applied to a number of fields (see the end of Section 1.2 for a detailed list).

To further describe the concept of aggregation of forecasts we discuss first the evaluation of the
forecasts issued.

Evaluating the quality of forecasts. We recall that sales y may be evaluated in units or in total
value (we will pick the latter measure in our experiments). Two metrics are classically considered in
logistics: the mean absolute error [MAE] and the root mean square error [RMSE].

Consider a sequence y1+h,γ , . . . , yT+h,γ of sales that were to be predicted for a node γ, and as-
sume that forecasts ŷ1+h,γ , . . . , ŷT+h,γ were issued. The MAE and the RMSE of these forecasts are
respectively defined by

mae = 1
T

T∑
t=1

∣∣yt+h,γ − ŷt+h,γ∣∣ and rmse =

√√√√ 1
T

T∑
t=1

(
yt+h,γ − ŷt+h,γ

)2
.

2.3.1. Aggregation Methods: Principle and Guarantees

Since several elementary forecasting methods (possibly tuned with different sets of parameters), say
J methods, we index their forecasts by a superscript j ∈ {1, . . . , J}: they provide the forecasts ŷ(j)

t+h,γ .
At each prediction step, these elementary forecasts are combined in a convex way: convex weights
w

(1)
t+h,γ , . . . , w

(J)
t+h,γ are picked, i.e., non-negative numbers summing up to 1, and the aggregated forecast

f̂t+h,γ =
J∑
j=1

w
(j)
t+h,γ ŷ

(j)
t+h,γ .

Specific algorithms for picking these convex weights are described in Section 2.3.2. Weights will be
picked node by node.

The associated guarantees are typically of the following form: at each node, the aggregated forecasts
are at least almost as good as the best individual elementary forecasting method, in MAE or in RMSE,
while the aggregation algorithms do not know in advance which elementary forecasting method is the
most efficient. In addition, no stochastic assumptions on the generating processes of the sales or of
the elementary forecasts are required.

More precisely, we denote by [0, Yγ ] the range for the sales and forecasts of sales for node γ.
The MAE guarantees read: for all sequences of sales yt+h,γ ∈ [0, Yγ ] and all sequences of elementary
forecasts ŷ(j)

t+h,γ ∈ [0, Yγ ],

1
T

T∑
t=1

∣∣yt+h,γ − f̂t+h,γ∣∣ 6 εT,γ + min
j=1,...,J

1
T

T∑
t=1

∣∣∣yt+h,γ − ŷ(j)
t+h,γ

∣∣∣ , where εT,γ → 0 . (1)

The bounds εT,γ only depend on Yγ and on T , they are uniform over the sequences considered.
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Similary, the RMSE guarantees read√√√√ 1
T

T∑
t=1

(
yt+h,γ − f̂t+h,γ

)2
6 ε′T,γ + min

j=1,...,J

√√√√ 1
T

T∑
t=1

(
yt+h,γ − ŷ

(j)
t+h,γ

)2
(2)

where the ε′T,γ only depend on Yγ and on T and satisfy ε′T,γ → 0.
We now state the aggregation algorithms considered and hint at their associated guarantees, i.e.,

their associated values for the bounds εT,γ or ε′T,γ .

2.3.2. Aggregation Methods: Three Examples

Three specific and popular aggregation algorithms are considered: first, the polynomially weighted av-
erage forecaster with multiple learning rates [ML-Poly] and the Prod forecaster with multiple learning
rates [ML-Prod], both introduced by Gaillard et al. [2014]; second, the Bernstein Online Aggregation
[BOA] of Wintenberger [2017]. Their statements in our context can be found in Algorithms 1, 3, and 5.
The implementation of these algorithms depends on the guarantees (1) or (2) to be achieved. Indeed,
as can be seen from their statements, they require a loss function: this should be the absolute loss
`(y, f) = |y−f | in case the MAE guarantee (1) is targeted, and the quadratic loss `(y, f) = (y−f)2 for
the RMSE guarantee (2). Given our specific context, several adaptations with respect to the original
statements of these algorithms had to be performed, which are detailed below. We first provide some
intuition on what the various quantities maintained in the statements of the algorithms stand for, and
explain why we picked these algorithms.

Why these three algorithms? / What the various quantities maintained stand for. Both
ML-Prod and BOA are variants of an alma matter aggregation algorithm called Hedge or the ex-
ponentially weighted average [EWA] predictor, and introduced by Vovk [1990] and Littlestone and
Warmuth [1994]. It relies on a learning rate η > 0 and picks weights (when adapted to our setting)

w
(j)
t+h,γ =

exp
(
−η

t∑
τ=1

`
(
yτ,γ , ŷ

(j)
τ,γ

))
J∑
k=1

exp
(
−η

t∑
τ=1

`
(
yτ,γ , ŷ

(k)
τ,γ

)) =
exp

(
η

t∑
τ=1

(
J∑
i=1
w

(i)
t,γ `

(
yt,γ , ŷ

(i)
t,γ

)
− `
(
yτ,γ , ŷ

(j)
τ,γ

)))
J∑
k=1

exp
(
η

t∑
τ=1

(
J∑
i=1
w

(i)
t,γ `

(
yt,γ , ŷ

(i)
t,γ

)
− `
(
yτ,γ , ŷ

(k)
τ,γ

)))

ML-Prod is an adaptation of the second formulation of EWA on two main elements. First, the
learning rate η depends on each elementary predictor k and is tuned over time: its value is given by
f(S(k)

t,γ , S
(k)
t,γ ). Second, the exponential reweighting through the exp(−ηx) function is replaced by a

multiplicative update by 1− ηx, which is a first-order approximation of the exponent. Similarly, BOA
is an adaptation of the first formulation of EWA, where, in particular, prediction errors

`
(
yτ,γ , ŷ

(j)
τ,γ

)
are replaced by `

(
yτ,γ , ŷ

(j)
τ,γ

)(
1 + η`

(
yτ,γ , ŷ

(j)
τ,γ

))
,

which are only slightly larger quantities (as the learning rates are expected not to be too large). ML-
Prod and BOA were both designed based on EWA and carefully adapted to get better theoretical
guarantees and to not depend on any learning parameter (they are tuned automatically). They are
also known for exhibiting better performance in general than EWA (see, e.g., discussions in the PhD
thesis of Gaillard, 2015 and private feedback collected from the users of the Opera package by Gaillard
and Goude, 2020).

As for ML-Poly, it is an adaptation of the polynomially weighted average [PWA] predictor (see
Cesa-Bianchi and Lugosi, 2003), which uses weights based on a polynomial reweighting scheme of the
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form

w
(j)
t+h,γ =

max
{

0,
t∑

τ=1

(
J∑
i=1
w

(i)
t,γ `

(
yt,γ , ŷ

(i)
t,γ

)
− `
(
yτ,γ , ŷ

(j)
τ,γ

))}p−1

J∑
k=1

max
{

0,
t∑

τ=1

(
J∑
i=1
w

(i)
t,γ `

(
yt,γ , ŷ

(i)
t,γ

)
− `
(
yτ,γ , ŷ

(k)
τ,γ

))}p−1 ,

for some p > 2. ML-Poly corresponds to p = 2 and will further reweight the nonnegative sums above
(known as the cumulative regret of each elementary predictor) by quantities denoted by B(j)

t,γ +S
(j)
t,γ in

Algorithm 1.
The three algorithms discussed above are implemented “from the book” except for the needed

adaptations described below.

Adaptations needed. First, the range of the prediction errors (i.e., of the loss functions) was
assumed to be known in the original references, while in our case, this range strongly depends on the
numerous (subsub)families considered; there is no reason for knowing the orders of magnitude of the
sales, thus of the prediction errors, for each (subsub)family. To cope for that, we maintain estimations
B

(j)
t,γ of the prediction errors (for BOA) or squared excess prediction errors (for ML-Poly and ML-Prod)

and use these estimates in lieu of the known bounds of the original formulations of the algorithms.
Second, these algorithms were initially designed to forecast the next value of a time series, i.e., at

time instance t, they issue forecasts of yt+1. This corresponds, with our notation, to the case h = n = 1.
For other cases, we performed the adaptations relative to (i) the information available at round t when
forecasting sales (ii) at an horizon h. For (i), we note that the grouped sales yτ,γ involve averages over
n weeks, so that they are only defined for τ > n; for rounds τ 6 n, the algorithms get no input and
pick uniform aggregations of the elementary forecasts. This is why time steps t ∈ {1, . . . , n − 1} are
handled separately. For (ii), we use the value of the weights at round t to aggregate the elementary
forecasts for the sales yt+h,γ ; this is in contrast with the original versions of the algorithms where such
a combination is performed to forecast the next element, not the next h–th element of the time series.

Third, in the case of ML-Prod, the weight update

W
(j)
t,γ =

(
W

(j)
t−1,γ

)f(B(j)
t,γ ,S

(j)
t,γ )/f(B(j)

t−1,γ ,S
(j)
t−1,γ)(

1 + f
(
B

(j)
t,γ , S

(j)
t,γ

)
e

(j)
t,γ

)
that may be read in Algorithm 3 slightly differs from the one that would have been obtained “from
the book”, namely,

W
(j)
t,γ =

(
W

(j)
t−1,γ

(
1 + f

(
B

(j)
t−1,γ , S

(j)
t−1,γ

)
e

(j)
t,γ

))f(B(j)
t,γ ,S

(j)
t,γ )/f(B(j)

t−1,γ ,S
(j)
t−1,γ)

;

the former is a first-order approximation of the latter, and ensures that weights are well-defined: by
definition of all quantities maintained in the algorithm,∣∣∣f(B(j)

t,γ , S
(j)
t,γ

)
e

(j)
t,γ

∣∣∣ 6 1
2B(j)

t,γ

e
(j)
t,γ 6

1
2e(j)
t,γ

e
(j)
t,γ 6

1
2 ,

while no specific guarantee holds on f
(
B

(j)
t−1,γ , S

(j)
t−1,γ

)
e

(j)
t,γ , which could be smaller than −1 if e(j)

t,γ is a
large negative number.

Without these adaptations, the three algorithms ensure theoretical guarantees (1) and (2) of re-
spective orders 1/

√
T for εT,γ and T−1/4 for ε′T,γ . Such guarantees should still hold under the two

adaptations performed (estimated range and larger horizons h > 2). The T−1/4 rate for the RMSE is
obtained through an initial bound on the mean square errors of the form

1
T

T∑
t=1

(
yt+h,γ − f̂t+h,γ

)2
6
(
ε′T,γ

)2 + min
j=1,...,J

1
T

T∑
t=1

(
yt+h,γ − ŷ

(j)
t+h,γ

)2
(3)

Huard, Garnier, Stoltz 13



Hierarchical robust aggregation of sales forecasts in e-commerce

with
(
ε′T,γ

)2 of the order of 1/
√
T , combined with the inequality

√
a+ b 6

√
a+
√
b for all non-negative

numbers a, b.

2.3.3. Comparison to the Best Convex Combination of Elementary Predictors
(= the Gradient Trick)

The guarantees (1) and (2) can be strengthened, so that the performance of the aggregation algorithm
is almost as good as that of the best constant convex combination of the elementary forecasts, i.e.,
the target

min
(q1,...,qJ )∈X

1
T

T∑
t=1

∣∣∣∣∣∣yt+h,γ −
J∑
j=1

qj ŷ
(j)
t+h,γ

∣∣∣∣∣∣ 6 min
j=1,...,J

1
T

T∑
t=1

∣∣∣yt+h,γ − ŷ(j)
t+h,γ

∣∣∣
is considered for MAE (and a similar target for RMSE), where X denotes the set of all convex
combinations, i.e., of all vectors (q1, . . . , qJ) such that qj > 0 for all j and q1 + . . . + qJ = 1. Put
differently, uniform bounds of the form

1
T

T∑
t=1

∣∣yt+h,γ − f̂t+h,γ∣∣ 6 εT,γ + min
(q1,...,qJ )∈X

1
T

T∑
t=1

∣∣∣∣∣∣yt+h,γ −
J∑
j=1

qj ŷ
(j)
t+h,γ

∣∣∣∣∣∣ , where εT,γ → 0 ,

and

√√√√ 1
T

T∑
t=1

(
yt+h,γ − f̂t+h,γ

)2
6 ε′T,γ + min

(q1,...,qJ )∈X

√√√√√ 1
T

T∑
t=1

yt+h,γ − J∑
j=1

qj ŷ
(j)
t+h,γ

2

,

where ε′T,γ → 0 ,

may be achieved, where the orders of magnitude of the εT,γ and ε′T,γ are still 1/
√
T and T−1/4.

To do so, the so-called “gradient trick” is applied (see, e.g., Cesa-Bianchi and Lugosi, 2006, Sec-
tion 2.5 and references therein, in particular, Kivinen and Warmuth, 1997 and Cesa-Bianchi, 1999). It
basically consists in replacing prediction errors by their gradients. More precisely, the three algorithms
stated above are modified as follows. In each statement, only the line defining e(j)

t,γ based on the losses
`
(
yt,γ , ŷ

(k)
t,γ

)
needs to be changed. These losses are replaced by ψ

(
f̂t,γ − yt,γ

)
ŷ

(j)
t,γ , where ψ : R → R is

defined as follows. For the quadratic loss `(y, f) = (y − f)2, we define ψ(x) = 2x. For the absolute
loss `(y, f) = |y − f |, we define ψ(x) = sgn(x), the sign of x, that is,

sgn(x) =


+1 if x > 0

0 if x = 0
−1 if x < 0

For the sake of clarity, the modified algorithms are stated below the original algorithms; see Algo-
rithms 2, 4 and 6.

2.4. Providing Aggregated Forecasts for the Entire Hierarchy

So far, we discussed the node-by-node prediction of sales, independently for each (subsub)family, thus
discarding for the time being the summation constraints indicated in Section 2.1. We now focus our
attention on reconciling these independent predictions.

Overall performance discarding the summation constraints. To that end, we first define the
MAE and the RMSE of a family of sequences of forecasts over time (similarly to what we did in Sec-
tion 2.3 for a single sequence of forecasts over time). Consider a family of sequences y1+h,γ , . . . , yT+h,γ
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Algorithm 1 Polynomially weighted average forecaster with multiple learning rates [ML-Poly],
plain version

Parameters
Node γ, prediction horizon h, and week span n with 1 6 n 6 h− 1
Loss function ` (absolute loss or quadratic loss)

Initialization
Set R(j)

n−1,γ = 0, and B
(j)
n−1,γ = 0, and S

(j)
n−1,γ = 0 for all j ∈ {1, . . . , J}

for t = 1, . . . , n− 1 do
Observe the elementary forecasts ŷ(j)

t+h,γ , where j ∈ {1, . . . , J}

Combine them uniformly, i.e., pick w(j)
t+h,γ = 1/J and form f̂t+h,γ = 1

J

J∑
j=1

ŷ
(j)
t+h,γ

end for

for t = n, n+ 1, . . . do
Observe the sales yt,γ
for j ∈ {1, . . . , J} do // For each elementary predictor j

Set e(j)
t,γ =

(
J∑
k=1

w
(k)
t,γ `

(
yt,γ , ŷ

(k)
t,γ

))
− `
(
yt,γ , ŷ

(j)
t,γ

)
// Excess prediction error at t

Set R(j)
t,γ = R

(j)
t−1,γ + e

(j)
t,γ // Cumulated excess prediction error

Set B(j)
t,γ = max

{
B

(j)
t−1,γ ,

(
e

(j)
t,γ

)2} // Bound on squared excess errors

Set S(j)
t,γ = S

(j)
t−1,γ +

(
e

(j)
t,γ

)2 // Sum of squared excess errors
Observe the elementary forecast ŷ(j)

t+h,γ
end for
Choose weights

w
(j)
t+h,γ =

max
{

0, R(j)
t,γ/

(
B

(j)
t,γ + S

(j)
t,γ

)}
J∑
k=1

max
{

0, R(k)
t,γ /

(
B

(k)
t,γ + S

(k)
t,γ

)}

Form the aggregated forecast f̂t+h,γ =
J∑
j=1

w
(j)
t+h,γ ŷ

(j)
t+h,γ

end for

Algorithm 2 ML-Poly, version with the gradient trick
Same as above, except for the line defining e(j)

t,γ , which should be replaced by

Set e(j)
t,γ = ψ

(
f̂t,γ − yt,γ

) (
f̂t,γ − ŷ(j)

t,γ

)
where ψ(x) = 2x for the quadratic loss ` and ψ(x) = sgn(x) for the absolute loss `
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Algorithm 3 Prod forecaster with multiple learning rates [ML-Prod], plain version
Parameters

Node γ, prediction horizon h, and week span n with 1 6 n 6 h− 1
Loss function ` (absolute loss or quadratic loss)

Notation

For x, y > 0, we define f(x, y) = min
{

1
2x,

√
ln J
x2 + y

}
Initialization

Set W (j)
n−1,γ = 0, and B

(j)
n−1,γ = 0, and S

(j)
n−1,γ = 0 for all j ∈ {1, . . . , J}

for t = 1, . . . , n− 1 do
Observe the elementary forecasts ŷ(j)

t+h,γ , where j ∈ {1, . . . , J}

Combine them uniformly, i.e., pick w(j)
t+h,γ = 1/J and form f̂t+h,γ = 1

J

J∑
j=1

ŷ
(j)
t+h,γ

end for

for t = n, n+ 1, . . . do
Observe the sales yt,γ
for j ∈ {1, . . . , J} do // For each elementary predictor j

Set e(j)
t,γ =

(
J∑
k=1

w
(k)
t,γ `

(
yt,γ , ŷ

(k)
t,γ

))
− `
(
yt,γ , ŷ

(j)
t,γ

)
// Excess prediction error at t

Set B(j)
t,γ = max

{
B

(j)
t−1,γ ,

∣∣e(j)
t,γ

∣∣} // Bound on excess errors

Set S(j)
t,γ = S

(j)
t−1,γ +

(
e

(j)
t,γ

)2 // Cumulated excess prediction error

Set W (j)
t,γ =

(
W

(j)
t−1,γ

)f(B(j)
t,γ ,S

(j)
t,γ )/f(B(j)

t−1,γ ,S
(j)
t−1,γ)(

1 + f
(
B

(j)
t,γ , S

(j)
t,γ

)
e

(j)
t,γ

)
// Multiplicative update of the weight maintained for predictor j

Observe the elementary forecast ŷ(j)
t+h,γ

end for
Choose weights

w
(j)
t+h,γ =

f(B(j)
t,γ , S

(j)
t,γ )W (j)

t,γ

J∑
k=1

f(S(k)
t,γ , S

(k)
t,γ )W (k)

t,γ

Form the aggregated forecast f̂t+h,γ =
J∑
j=1

w
(j)
t+h,γ ŷ

(j)
t+h,γ

end for

Algorithm 4 ML-Prod, version with the gradient trick
Same as above, except for the line defining e(j)

t,γ , which should be replaced by

Set e(j)
t,γ = ψ

(
f̂t,γ − yt,γ

) (
f̂t,γ − ŷ(j)

t,γ

)
where ψ(x) = 2x for the quadratic loss ` and ψ(x) = sgn(x) for the absolute loss `
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Algorithm 5 Bernstein Online Aggregation [BOA], plain version
Parameters

Node γ, prediction horizon h, and week span n with 1 6 n 6 h− 1
Loss function ` (absolute loss or quadratic loss)

Notation

For x, y > 0, we define f(x, y) = min
{

1
2x,

√
ln J
y

}
Initialization

Set L(j)
n−1,γ = 0, and B

(j)
n−1,γ = 0, and S

(j)
n−1,γ = 0, and η

(j)
n−1,γ = 0 for all j ∈ {1, . . . , J}

for t = 1, . . . , n− 1 do
Observe the elementary forecasts ŷ(j)

t+h,γ , where j ∈ {1, . . . , J}

Combine them uniformly, i.e., pick w(j)
t+h,γ = 1/J and form f̂t+h,γ = 1

J

J∑
j=1

ŷ
(j)
t+h,γ

end for

for t = n, n+ 1, . . . do
Observe the sales yt,γ
for j ∈ {1, . . . , J} do // For each elementary predictor j

Set e(j)
t,γ = `

(
yt,γ , ŷ

(j)
t,γ

)
// Prediction error at t

Set L(j)
t,γ = L

(j)
t−1,γ + e

(j)
t,γ

(
1 + η

(j)
t−1,γe

(j)
t,γ

)
// Cumulated (slightly enlarged) prediction errors

Set B(j)
t,γ = max

{
B

(j)
t−1,γ , e

(j)
t,γ

}
// Bound on prediction errors

Set S(j)
t,γ = S

(j)
t−1,γ +

(
e

(j)
t,γ

)2 // Cumulative squared prediction errors
Set η(j)

t,γ = f
(
B

(j)
t,γ , S

(j)
t,γ

)
// Weighting factor

Observe the elementary forecast ŷ(j)
t+h,γ

end for
Choose weights

w
(j)
t+h,γ =

η
(j)
t,γ exp

(
−η(j)

t,γL
(j)
t,γ

)
J∑
k=1

η
(k)
t,γ exp

(
−η(k)

t,γ L
(k)
t,γ

)

Form the aggregated forecast f̂t+h,γ =
J∑
j=1

w
(j)
t+h,γ ŷ

(j)
t+h,γ

end for

Algorithm 6 BOA, version with the gradient trick
Same as above, except for the line defining e(j)

t,γ , which should be replaced by

Set e(j)
t,γ = ψ

(
f̂t,γ − yt,γ

)
ŷ

(j)
t,γ

where ψ(x) = 2x for the quadratic loss ` and ψ(x) = sgn(x) for the absolute loss `
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of sales that were to be predicted for a hierarchy of nodes γ ∈ Γ, and assume that families of se-
quences of forecasts ŷ1+h,γ , . . . , ŷT+h,γ , γ ∈ Γ, were issued. The MAE and the RMSE of these families
of sequences of forecasts are respectively defined by

mae = 1
T |Γ|

T∑
t=1

∑
γ∈Γ

∣∣yt+h,γ − ŷt+h,γ∣∣ and rmse =

√√√√√ 1
T |Γ|

T∑
t=1

∑
γ∈Γ

(
yt+h,γ − ŷt+h,γ

)2
,

where |Γ| denotes the cardinality of Γ.
When the guarantees (1) and (2) hold for all γ ∈ Γ, the overall performance achieved is almost as

good as that of the best local elementary forecasting methods; that is, by summing prediction errors
along the hierarchy Γ, the following is guaranteed: uniformly over sequences of sales and of elementary
forecasts,

1
T |Γ|

T∑
t=1

∑
γ∈Γ

∣∣yt+h,γ − f̂t+h,γ∣∣ 6 εT + 1
|Γ|

∑
γ∈Γ

min
j=1,...,J

1
T

T∑
t=1

∣∣∣yt+h,γ − ŷ(j)
t+h,γ

∣∣∣ , where εT → 0 , (4)

and√√√√√ 1
T |Γ|

T∑
t=1

∑
γ∈Γ

(
yt+h,γ − f̂t+h,γ

)2
6 ε′T+

√√√√√ 1
|Γ|

∑
γ∈Γ

min
j=1,...,J

1
T

T∑
t=1

(
yt+h,γ − ŷ

(j)
t+h,γ

)2
, where ε′T → 0 .

(5)
(The bound in RMSE is obtained by first summing the initial bounds described in (3) and then
taking square roots.) The performance achieved by the best local elementary forecasting methods
(the performance reported in the right-hand sides above) will be called the oracle performance in the
sequel.

Projections to abide by the summation constraints. Now, there is no reason for the aggregated
forecasts f̂t+h,γ picked node by node as discussed in Section 2.3 to abide by the summation constraints
indicated in Section 2.1. This situation is similar to the one where a given elementary forecasting
method (e.g., Holt’s linear trend method with a multiplicative treatment of seasonality) is tuned
node by node (e.g., by independent cross-validations), for the sake of efficiency: possibly different
parameters α̂γ , β̂γ are picked for each node γ and the elementary forecasts issued do not abide by the
summation constraints, in general.

A simple patch is however to project a vector of forecasts not abiding by the summation constraints
onto the vector space H of those abiding by them; formally, we define H as the vector space of vectors
(fγ)γ∈Γ such that for all nodes γ ∈ Γ with non-empty set C(γ) of children nodes,

fγ =
∑

c∈C(γ)
fc .

The projection may take place in Euclidean norm or in absolute norm. Let us denote by
(
f̃t+h,γ

)
γ∈Γ

the projection of
(
f̂t+h,γ

)
γ∈Γ onto H in some norm and let us review the theoretical guarantees, or

lack thereof, associated with each norm.

Euclidean norm: theoretical guarantees. The theoretical guarantee that follows is already
mentioned by Brégère and Huard [2020]. When the projection is in Euclidean norm, the Pythagorean
theorem ensures that√√√√√ 1

T |Γ|

T∑
t=1

∑
γ∈Γ

(
yt+h,γ − f̃t+h,γ

)2
6

√√√√√ 1
T |Γ|

T∑
t=1

∑
γ∈Γ

(
yt+h,γ − f̂t+h,γ

)2
.
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Thus, whenever the guarantees (4) and (5) are satisfied for aggregated forecasts, they are also sat-
isfied for their Euclidean projections. The latter may only improve performance and ensure that
the summation constraints are satisfied, i.e., the forecasts issued are consistent with the hierarchy
considered.

We implement the Euclidean projection ΠH as follows. We introduce the set L(Γ) of leaves of Γ
and a matrix S indexed by Γ× L(Γ), where for all γ ∈ Γ and γ′ ∈ L(Γ),

Sγ,γ′ =


1 if γ = γ′,

1 if γ is the parent node of γ′,
0 otherwise.

The image of S is exactly H. Since S is injective and its image is H, it may be shown that the
Euclidean projection onto H is given by the matrix

ΠH = S(STS)−1ST .

Absolute norm: no theoretical guarantee. The projection
(
f̃t+h,γ

)
γ∈Γ of

(
f̂t+h,γ

)
γ∈Γ onto H in

absolute norm is defined as:

(
f̃t+h,γ

)
γ∈Γ ∈ arg min

(zγ)γ∈Γ∈H

1
T |Γ|

T∑
t=1

∑
γ∈Γ

∣∣zγ − f̂t+h,γ∣∣
There are no theoretical guarantees on the performance of the projected forecasts, as no Pythagorean-
type theorem is able to relate

1
T |Γ|

T∑
t=1

∑
γ∈Γ

∣∣yt+h,γ − f̃t+h,γ∣∣ to 1
T |Γ|

T∑
t=1

∑
γ∈Γ

∣∣yt+h,γ − f̂t+h,γ∣∣ .
Even worse, numerical results discussed in Section 3.3 show that the projection in absolute norm may
even increase the prediction error.
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3. Numerical Results

We now apply the forecasting methodology described in the previous section to our data set and more
particularly, we consider the three algorithms described therein (ML-Poly, ML-Prod and BOA) under
the various implementations possible: with a loss function given by the absolute loss or the quadratic
loss, with or without the gradient trick, with or without a Euclidean or absolute-norm projection step
after all local forecasts were issued (to meet the hierarchical constraints).

We compare the various implementations of these algorithms at different time horizons (h, n). We
recall that n denotes the number of weeks of sales considered in the forecasts and h the forecasting
horizon, i.e., after the week considered, there are h − 1 weeks, and then starts the group of n weeks
to forecast; the first week of this group is in h weeks. Put differently, the group of weeks to forecast
is h− 1–week-ahead.

Outline of the empirical study. We first provide a description of the real data set provided by the
company Cdiscount and how we divided it into a train set and a test set (Section 3.1). We then tab-
ulate and graphically illustrate the performance of the elementary predictors considered (Section 3.2)
depending on the cases (h, n) considered; the case (h, n) = (7, 1) is a challenging case, which is also
representative of a typical case from a business viewpoint.

We may then compare the three algorithms and their various implementations on the case where
(h, n) = (7, 1). We illustrate that the performance varies only slightly with the algorithm picked
and its specific implementation (loss function, gradient trick, projection) and improves the locally
best elementary predictors picked on the train set, the natural benchmark, by a about 5%. This
observation generalizes to all pairs (h, n) considered (Section 3.3). So far, performance is studied only
in terms of MAE or RMSE. We then move (Section 3.4) to an evaluation in terms of mean absolute
percentage of error [MAPE], to get a better grasp of the forecasting performance (Section 3.4). Again,
aggregation methods improve by about 5% the performance of natural benchmarks like the locally
best elementary predictors picked on the train set, achieving a MAPE of about 20%. This global
MAPE is then broken down by the levels of the hierarchy, and as expected, is larger for subsubfamilies
(about 32%) than for subfamilies and families (about 22% and 18%) or for the total node (only about
12%).

Two complementary studies are finally provided. As all results previously discussed were on av-
erage only, we check that the better average performance obtained was so through a shift of the
distributions of errors towards zero (Section 3.5). We also give an idea of how the weights put on each
elementary predictor evolve, on families: they are far from converging to anything and they show that
the aggregation methods are reactive to changes (Section 3.6).

3.1. Description of the Data Set

Our data set is a real data set provided by the e-commerce company Cdiscount. Our data spans
from July 2014 to December 2017—a period of 182 weeks. It features the daily sales of 620,749
products gathered in 3,004 subsubfamilies, 570 subfamilies and 53 families; that is, the cardinality of
the hierarchy Γ is 3,004 + 570 + 53 + 1 = 3,628 nodes, including the leaves (subsubfamilies) and the
root node (the total sales). We added up daily sales to get weekly sales.

Figure 1 depicts some series of weekly sales: the total sales (top left picture) and series associated
with two families, two subfamilies and one subsubfamily. These series all exhibit some seasonality, but
with different cycles. Some have a linear trend. Some are highly regular, some others exhibit a more
erratic behavior. It is clear that no single elementary predictor of Section 2.2 can be simultaneously
suited for all series.

Table 1 provides some descriptive statistics (minimum and maximum, median and means) on the
weekly sales, by levels of the hierarchy of products. This table also shows that many weekly-sales data
points are null: 45.3% of the 3,004×182 weekly sales for subsubfamilies, 48.3% of the 570×182 weekly
sales for subfamilies, and even 38.1% of the 53×182 weekly sales for families. Part of these null values
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corresponds to intermittent demand, but it turns out that some nodes of the hierarchy encounter null
sales during the entire period considered. More precisely, for 133 (out of 3,004) subsubfamilies, 37
(out of 570) subfamilies, and 6 (out of 53) families, there are absolutely no sales during the 182 weeks
considered. These high sparsity rates observed (on this data set and on other similar data sets of
e-commerce data) explain why the null elementary predictor defined in Section 2.2 was considered.

Train set, test set

We recall that our data spans from July 2014 to December 2017 (and features 182 weeks in total).
We use July 2014 to December 2016 as a training period (containing 130 weeks), and January 2017
– December 2017 (containing 52 weeks) as a test period. The test period thus features all major
commercial events (sales, Black Friday and Christmas shopping, etc.). More precisely, after week
52 + 26 + n 6 80 (given the values n 6 4 considered below), all elementary forecasting methods of
Section 2.2 provide predictions and are aggregated via the algorithms described in Section 2.3, for
the remaining part of the train period and also during the test period. The performance obtained
is however computed only on the test period, in MAE or RMSE, as explained at the beginning of
Section 2.3.

Table 1: Some descriptive statistics on the weekly sales (units: thousands of euros [k€]) for the
182 weeks considered, by hierarchy level: subsubfamilies, subfamilies, families, and the root node
(“Total”). The numbers of nodes (“Count”) available for each level are recalled in the top part of the
table. Classical descriptive statistics (minimum and maximum, mean and median) are provided in
the middle part of the table. Specific descriptive statistics pertaining to the sparsity of the sequences
of weekly sales are given in the bottom part of the table: the fraction of data points that are null
(“Global sparsity rate”) among all data points of this level, and counts of entire sequences of weekly
sales that are null (“Null series: count”) among the sequences of this level (there are “Count” of them).

Subsubfamilies Subfamilies Families Total
Count 3,004 570 53 1

Maximum 5.6×106 9.4×106 17.5×106 88.6×106

Mean 10.1×103 53.4×103 574.6×103 30.5×106

Median 18.4 7.1 246.8 26.0×106

Minimum 0 0 0 18.6×103

Global sparsity rate 45.3% 48.3% 38.1% 0%
Null series: count 133 37 6 0
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Total JEUX/JOUETS
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2015 Jan
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JEUX/JOUETS INSTRUMENTS DE MUSIQUE
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JEUX/JOUETS INSTRUMENTS DE MUSIQUE Guitares

JARDIN

Jan
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Figure 1: Weekly sales (y–values) over time (x–axes) at some nodes of the hierarchy. The scales of
the y–axes vary by graphs and are hidden for confidentiality reasons.
The top four graphs correspond to a given path in the hierarchy, corresponding to the subsubfamily
of kids’ guitars (red plot), which is a part of the subfamily of kids’ music instruments (green plot),
which itself belong to the family of toys (orange plot). The evolution of the total sales at the root
node is also provided (blue plot). This path reads in French (see the legends on each graph): Total >
Jeux/Jouets > Instruments de musique > Guitares.
The bottom two graphs feature the sales for the subsubfamily (green plot, legend “Sport - Sportswear
Accessoires”) of sportswear accessories and the family of garden products (orange plot, legend
“Jardin”), respectively.
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3.2. Performance of the Elementary Forecasting Methods

We introduced three groups of elementary predictors in Section 2.2. The first group features the null
predictor, the predictor picking the sales achieved exactly one year ago, and the predictor picking the
current value of sales. The second group features simple exponential smoothing (which relies on a
tuning parameter α ∈ [0, 1]), with an additive or a multiplicative treatment of seasonality, while the
third group is made of Holt’s linear trend method (which relies on two tuning parameters α, β ∈ [0, 1]),
again with an additive or a multiplicative treatment of seasonality. We pick a finite number of possible
values for α and β for our numerical experiments, namely:

α ∈
{
2−6, 2−5, 2−4, 2−3, 2−2, 1/2, 1

}
and β ∈

{
2−4, 2−3, 2−2, 1/2

}
(as the case β = 1 essentially corresponds to simple exponential smoothing). As illustrated by Figure 2,
this leads to 73 elementary predictors: 3 predictors in the first group, 2×7 predictors based on simple
exponential smoothing, and 2× (7× 4) predictors based on Holt’s linear trend method.

Definition of three meta-predictors. Based on these elementary predictors, we define three
meta-predictors: one legal meta-predictor and two forward-looking ones (they “cheat” and use future
data to pick among the elementary predictors).

The legal meta-predictor is to use at each node of the hierarchy on the test set the elementary
predictor that obtained the best performance on the train set. We call this meta-predictor the locally
best elementary predictors on the train set; this is maybe the most natural meta-predictor in the eyes
of practitioners.

A first forward-looking meta-predictor called the oracle prediction was already defined in Sec-
tion 2.4: it picks the locally best elementary predictors on the test set, that is, with the notation of
Section 2.4, it achieves a performance in terms of

1
|Γ|

∑
γ∈Γ

min
j=1,...,J

1
T

T∑
t=1

`
(
yt+h,γ , ŷ

(j)
t+h,γ

)
, (6)

where ` is the loss function (absolute loss or squared loss) at hand.
Finally, we define a second forward-looking meta-predictor given by the globally best elementary

predictor on the test set, that is, the elementary predictor that obtains the best performance on the
test set when used on all nodes of the hierarchy; it achieves a performance in terms of

min
j=1,...,J

1
|Γ|

∑
γ∈Γ

1
T

T∑
t=1

`
(
yt+h,γ , ŷ

(j)
t+h,γ

)
, (7)

The notion of “best” depends on the underlying metric: MAE or RMSE. The globally best ele-
mentary predictor on the test set may differ for each metric; the same can be said for locally best
elementary predictors on the train or test set.

Figure 2: Graphical comparison of these elementary predictors and meta-predictors.
Figure 2 reports the performance of the elementary predictors and meta-predictors recalled or defined
above, in MAE and RMSE, for the case (h, n) = (7, 1), that is, for 6–week-ahead forecasts relative to 1
week of sales. The four most interesting performance to read therein are, in order: the predictor picking
the sales achieved exactly one year ago (worst performance), the locally best elementary predictors on
the train set, the globally best elementary predictor on the test set, and the oracle (i.e., the locally
best elementary predictors on the test set; best performance). The best two such [meta-]predictors are
forward-looking ones. The gap between the locally best elementary predictors on the train set (the
best legal meta-predictor) and the globally best elementary predictor on the test set (a forward-looking
meta-predictor) is much larger in the case of RMSE than for MAE; it is almost null in the case of
MAE.
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As we show in the next sections, the performance of the aggregation algorithms considered will be
close to (but usually slightly larger than) the one of the globally best elementary predictor on the test
set, and in any case, significantly better than the one of the locally best elementary predictors on the
train set.

Table 2: Numerical comparison of these elementary predictors and meta-predictors.
The considerations above and the graphical comparison offered by Figure 2 for the case (h, n) = (7, 1)
show that our main indicators are given by the performance of three meta-predictors: the locally
best elementary predictors on the train set (the legal meta-predictor), the globally best elementary
predictor on the test set (the first forward-looking meta-predictor), and the oracle (i.e., the locally best
elementary predictors on the test set; the second forward-looking meta-predictor). Table 2 reports
these indicators in MAE and RMSE, for various pairs (h, n) of forecasting horizon h− n and number
n of weeks to be forecast.

The main lessons are first that as expected, the farther away the horizon h−n, the more important
the average errors (in MAE or RMSE), and the larger the number n of weeks to be forecast, the smaller
the average errors (a law-of-large-number probably smoothes out sales when they are averaged over
n > 2 weeks). The number n of weeks to forecast seems to have a greater impact on the average
errors than the horizon h − n, both for MAEs and RMSEs (actually, the RMSEs seem to be almost
independent of the horizon h− n).

Second, with one exception out of 18 cases of metric and (h, n) pair considered, the meta-predictors
are consistently ranked, in terms of average errors, as discussed above: the worst performance is
achieved by the legal meta-predictor (the locally best elementary predictors on the train set) and the
best performance is obtained by the oracle (the locally best elementary predictors on the test set),
with the other forward-looking meta-predictor (the globally best elementary predictor on the test
set) lying between them. The exception corresponds to the case of MAE and (h, n) = (5, 1). This
ranking may look surprising: the globally best elementary predictor on the test set picks the same
predictor at each node of the hierarchy and is less flexible than the legal meta-predictor, that pick
independently the elementary predictors at each node (based on their performance on the train set).
This probably means that the train set is much different from the test set, which is probably due to
highly non-stationary nature of e-commerce data. This is why more flexible methods are welcome,
like the online aggregation methods used in this article.

Discussion on the two metrics considered: MAE and RMSE. We add a final note on the
orders of magnitude between MAEs and RMSEs. They differ by a factor of 10 to 15, with the RMSEs
being roughly 10 to 15 times larger than the MAEs. This is because RMSEs are extremely sensitive
to extreme values. These extreme values may correspond, in e-commerce, to external interferences
(sales periods, disruptions in supply of some products, launches of new products, crises: financial,
sanitary, social crises). The impact of such external interferences needs to be forecast separately,
with ad hoc models and methods. The scope of the present article is therefore rather on forecasting
sales in stationary regimes, that is, for “ordinary” or routine circumstances. And in such regimes and
circumstances, extreme values are rare and less important in the eyes of the decision-makers than
typical values. This is why, in the sequel, while reporting both MAEs and RMSEs, we will be more
interested in the performance in MAE.
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Figure 2: Performance [y–axis, nominal scale] of the elementary forecasting methods to forecast sales 6-week-
ahead for 1 week (i.e., for h = 7 and n = 1), in MAE [top figure] and RMSE [bottom figure], depending on
a tuning parameter α [x–axis, logarithmic scale]. The acronym SES stands for simple exponential smoothing,
which can be implemented in a Multiplicative or an Additive treatment of seasonality. Holt’s linear trend
method can also be implemented with a Multiplicative or an Additive treatment of seasonality and depends
on a second parameter β: this is why Holt elementary forecasting methods are instantiated for several values
of β.
The Null, Current and One year ago elementary forecasting methods are the first three ones described in Sec-
tion 2.2 and do not depend on α. The same can be said for the Oracle performance described in Equation (5)
as well as for the locally Best on train set predictor introduced in the beginning of Section 3.2. The perfor-
mance of One year ago, Best on train set, and Oracle are therefore depicted by horizontal lines, while the
one of Null and Current can be found above the legend.
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Table 2: Average errors (MAEs or RMSEs) in k€ for three meta-predictors (columns 5, 6, 7) depending
on the metric considered (column 1) as well as the horizon and number of weeks to be forecast
(columns 2, 3, 4, where we recall that the horizon is given by h − n) The three meta-predictors
considered were introduced in the beginning of Section 3.2: the locally best elementary predictors on
the train set (“Locally best on train set”, column 5), the globally best elementary predictor on the
test set (“Globally best on test set”, column 6), and the oracle (which corresponds to the locally best
elementary predictors on the test set, abbreviated as “Locally best on test set”, column 7). .

Metric Horizon Group Pair (h, n) Locally best Globally best Locally best
in k€ on train set on test set on test set

(= Oracle)
MAE 6-week-ahead for 1 week (7, 1) 8.39 8.30 6.79
MAE 6-week-ahead for 2 weeks (8, 2) 7.39 7.34 5.70
MAE 6-week-ahead for 4 weeks (10, 4) 6.80 6.59 4.85
RMSE 6-week-ahead for 1 week (7, 1) 125.68 119.24 115.59
RMSE 6-week-ahead for 2 weeks (8, 2) 97.26 90.94 85.78
RMSE 6-week-ahead for 4 weeks (10, 4) 82.36 73.92 68.23
MAE 4-week-ahead for 1 week (5, 1) 8.18 8.20 6.78
MAE 4-week-ahead for 2 weeks (6, 2) 7.27 7.13 5.66
MAE 4-week-ahead for 4 weeks (8, 4) 6.58 6.34 4.77
RMSE 4-week-ahead for 1 week (5, 1) 126.04 119.94 117.12
RMSE 4-week-ahead for 2 weeks (6, 2) 98.31 90.79 85.84
RMSE 4-week-ahead for 4 weeks (8, 4) 79.69 72.82 67.67
MAE 1-week-ahead for 1 week (2, 1) 7.63 7.42 6.42
MAE 1-week-ahead for 2 weeks (3, 2) 6.69 6.48 5.42
MAE 1-week-ahead for 4 weeks (5, 4) 6.18 5.90 4.60
RMSE 1-week-ahead for 1 week (2, 1) 124.36 118.17 115.23
RMSE 1-week-ahead for 2 weeks (3, 2) 95.48 89.37 85.11
RMSE 1-week-ahead for 4 weeks (5, 4) 78.86 71.35 66.90
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3.3. Average Performance of the Aggregation Algorithms: MAE, RMSE

Now that we identified some benchmark performance, we may compare the performance of the aggre-
gation algorithms considered to this performance. We proceed in two steps: first, we tabulate the per-
formance of these algorithms under their various specifications on a given case, namely, (h, n) = (7, 1)
corresponding to 6-week-ahead forecasting of 1 week of sales. We show that they all achieve a rather
similar performance. For the second part of the study, we thus set (somewhat arbitrarily) a given
algorithm with given specifications, namely, ML-Poly with absolute loss, without the gradient trick
and with projection, and tabulate its performance depending on (h, n), that is, depending on the
forecasting horizon h− n and the number n of weeks to be forecast.

First part: Little impact of the algorithm picked and of its specifications. As explained
above and as is summarized in Table 3, we consider three algorithms under 2 × 2 × 3 = 12 possible
specifications (given by choices made for the loss function, gradient trick, and projection step). We
report the performance of each specification in MAE and RMSE for the case (h, n) = (7, 1).

In terms of RMSEs, the various algorithms and specifications thereof (with one exception) are
virtually undistinguishable, with RMSEs all around 120 k€ when the gradient trick is not applied
(and slightly larger, up to 125.4 k€ when it is applied). The Euclidean projection barely improves
the RMSE (Section 2.4 recalls why this projection must improve the RMSE). The exception to the
virtually undistinguishable performance is ML-Prod without the gradient trick, which fares much
worse than ML-Prod with the gradient trick or the various specifications of ML-Poly and BOA.

A summary of the same kind may be written for MAEs: many of the algorithms and specifications
thereof have MAEs around 8 k€ (slightly larger values are suffered when the Euclidean projection is
applied). The projection in absolute norm slightly worsens the results (Section 2.4 recalls why this
projection came with no positive guarantee on its impact on the MAE). The loss function ` and the
gradient trick have little impact, though the absolute loss seems a slightly better choice than the
square loss, and though it seems better not to resort to the gradient trick.

The conclusion from this study is that the choice of the specific aggregation algorithm and of its
specification is not of utmost importance. For the rest of the study, we will fix an algorithm (namely,
ML-Poly) with the simplest specification: no gradient trick, no projection, and absolute loss (which
is in line with our focus on MAE). The BOA algorithm under this simplest specification gets a better
performance on the case (h, n) = (7, 1) but we have a personal preference for ML-Poly, which was
designed by one of the co-authors of this article.

Second part: Relative performance compared to the meta-predictors. Table 4 studies the
performance of a given algorithm under a given specification, namely, ML-Poly with absolute loss, no
gradient trick, no projection, as concluded from the paragraphs above. It compares its performance
to the one of the three meta-predictors discussed in Section 3.2. Two main benchmarks were outlined
in the latter section: the locally best predictors on the train set (which is a legal meta-predictor) and
the globally best predictor on the test set (which is a forward-looking meta-predictor).

The aggregation algorithm consistently outperforms the locally best predictors on the train set,
for all cases (h, n) of horizon h− n and number n of weeks to be forecast, both in MAE and RMSE.
The improvement is typically around 5% (it ranges from a minimal 3.6% to a maximal 7.1% relative
improvement). We recall that the the locally best predictors on the train set actually depend on the
underlying metric: MAE or RMSE.

The situation is two-fold for the comparison of the aggregation algorithm to the globally best
predictor on the test set: the former consistently outperforms the latter in our favorite metric, namely,
MAE, with relative improvements in the range 2.0%–4.5%. On the opposite, the aggregation algorithm
is consistently outperformed by the globally best predictor on the test set in RMSE, within a 0.5%–
5.3% range.

Table 5 studies the performance of the same algorithm, ML-Poly, under a slightly different specifi-
cation: still without a gradient trick and without projection, but with square loss instead of absolute
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loss. This should favor RMSE performance. The picture is about the same: consistent improvement in
performance over the locally best predictors on the train set (with range 2.3%–8.3%); mixed pictures
for the comparison to the globally best predictor on the test set, and indeed, the RMSE performance
is globally improved.

However, given that our aim is to predict “ordinary” (and not extreme) values, we are more
interested in the MAE performance. For MAE performance, the aggregation algorithm considered
in Table 4 is consistently better than the forward-looking meta-predictor picking the globally best
predictor on the test set (on all 9 cases). For the one of Table 5 (for which we changed the loss
function into square loss), the improvement holds for 7 out of 9 cases (and for the 2 other ones, the
difference in performance is negligible, smaller than 0.4%).

Table 3: Average errors in k€ (in MAE, columns 4–6, and in RMSE, columns 7–9) for the case
(h, n) = (7, 1), that is, for 6-week-ahead forecasts of 1 week of sales, for the three algorithms considered
(ML-Poly, rows 1–4; BOA, rows 5–8; ML-Prod, rows 9–12), under various specifications thereof: loss
function used (see Section 2.3.2), either the absolute loss | · | or the square loss ( · )2, as indicated in
column 3; whether the gradient trick (see Section 2.3.3) is applied or not (column 2, “yes” or ”no”);
whether a projection step (see Section 2.4) is added or not (“no proj.”, columns 4 and 7), and if so,
whether a projection in Euclidean norm (“L2–proj.”, columns 5 and 8) or in absolute norm (“L1–proj.”,
columns 6 and 9) is used.

Case (h, n) = (7, 1), i.e., 6-week-ahead forecasts for 1 week
Algor. Gradient Loss MAE in k€ RMSE in k€

trick ` no proj. L2–proj. L1–proj. no proj. L2–proj. L1–proj.
ML-Poly no | · | 7.97 8.80 8.07 120.39 120.31 120.03
ML-Poly no ( · )2 8.04 8.85 8.10 119.79 119.71 119.39
ML-Poly yes | · | 8.05 8.79 8.11 121.90 121.79 121.25
ML-Poly yes ( · )2 8.26 8.91 8.35 125.40 125.31 124.90
ML-Prod no | · | 13.28 16.26 13.06 278.45 278.04 226.17
ML-Prod no ( · )2 12.99 16.39 12.62 277.51 276.98 215.62
ML-Prod yes | · | 7.94 8.49 8.01 120.54 120.48 120.32
ML-Prod yes ( · )2 8.10 8.64 8.14 120.17 120.12 119.98
BOA no | · | 7.93 8.72 8.07 120.39 120.30 120.94
BOA no ( · )2 8.06 8.68 8.17 120.44 120.37 120.89
BOA yes | · | 7.97 8.79 8.04 121.73 121.61 121.45
BOA yes ( · )2 8.12 8.70 8.21 122.60 122.53 122.64
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Table 4: Average errors in k€ (columns 3–6) and relative differences in errors (columns 7–8) for a
given aggregation algorithm under a given specification (namely, ML-Poly with the absolute loss `,
no gradient trick, no projection), depending on the pairs (h, n) and on the metrics (MAE or RMSE)
considered (see columns 1–2). The same cases and meta-predictors as in Table 2 are tabulated:
columns 1–4 and 6 are exactly equal to the corresponding columns in Table 2. Column 5 reports
the absolute performance of the aggregation algorithm considered (“Aggregation”, with short-hand
“Aggreg”). Columns 7 and 8 report the relative performance of the aggregation algorithm considered,
compared either to the locally best predictors on the train set (short-hand “Loc-Train”, column 7) or to
the globally best predictor on the test set (short-hand “Glob-Test”, column 8). Negative (respectively,
positive) numbers in columns 7 and 8 indicate that the performance of the aggregation algorithm is
better (respectively, worse) than to the meta-predictor it is compared with. The line titled “Legal
meta-predictor” recalls which meta-predictors are legal (i.e., only rely on information available at the
time they issues their forecasts, “Yes”) and which of them are using future data (“No”).

Algorithm ML-Poly, with specifications: ` is the absolute loss, no gradient trick, no projection
Metric Pair Locally best Globally best Aggregation Locally best Aggreg. Aggreg.
in k€ (h, n) on train set on test set on test set vs. vs.

(= Loc-Train) (= Glob-Test) (= Aggreg) (= Oracle) Loc-Train Glob-Test
Legal meta-predictor Yes No Yes No
MAE (7, 1) 8.39 8.30 7.97 6.79 −5.1% −4.0%
MAE (8, 2) 7.39 7.34 7.12 5.70 −3.6% −3.1%
MAE (10, 4) 6.80 6.59 6.42 4.85 −5.5% −2.5%
RMSE (7, 1) 125.68 119.24 120.39 115.59 −4.2% +1.0%
RMSE (8, 2) 97.26 90.94 93.62 85.78 −3.7% +3.0%
RMSE (10, 4) 82.36 73.92 78.02 68.23 −5.3% +5.3%
MAE (5, 1) 8.18 8.20 7.83 6.78 −4.4% −4.5%
MAE (6, 2) 7.27 7.13 6.83 5.66 −6.0% −4.2%
MAE (8, 4) 6.58 6.34 6.21 4.77 −5.6% −2.0%
RMSE (5, 1) 126.04 119.94 120.84 117.12 −4.1% +0.8%
RMSE (6, 2) 98.31 90.79 92.46 85.84 −6.0% +1.8%
RMSE (8, 4) 79.69 72.82 75.60 67.67 −5.1% +3.8%
MAE (2, 1) 7.63 7.42 7.11 6.42 −6.8% −4.2%
MAE (3, 2) 6.69 6.48 6.30 5.42 −5.8% −2.8%
MAE (5, 4) 6.18 5.90 5.74 4.60 −7.1% −2.7%
RMSE (2, 1) 124.36 118.17 118.71 115.23 −4.6% +0.5%
RMSE (3, 2) 95.48 89.37 90.17 85.11 −5.6% +0.9%
RMSE (5, 4) 78.86 71.35 73.82 66.90 −6.4% +3.5%
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Table 5: Same content as in Table 4, still with ML-Poly as an aggregation algorithm, but under a
slightly different specification: no gradient trick, no projection (as in Table 4), but with the square
loss ` (instead of the absolute loss as in Table 4). Only the values of columns 5, 7, 8 differ from the
ones of Table 4.

Algorithm ML-Poly, with specifications: ` is the square loss, no gradient trick, no projection
Metric Pair Locally best Globally best Aggregation Locally best Aggreg. Aggreg.
in k€ (h, n) on train set on test set on test set vs. vs.

(= Loc-Train) (= Glob-Test) (= Aggreg) (= Oracle) Loc-Train Glob-Test
Legal meta-predictor Yes No Yes No
MAE (7, 1) 8.39 8.30 8.04 6.79 −4.2% −3.2%
MAE (8, 2) 7.39 7.34 7.22 5.70 −2.3% −1.7%
MAE (10, 4) 6.80 6.59 6.61 4.85 −2.8% +0.4%
RMSE (7, 1) 125.68 119.24 119.79 115.59 −4.7% +0.5%
RMSE (8, 2) 97.26 90.94 93.23 85.78 −4.1% +2.5%
RMSE (10, 4) 82.36 73.92 77.44 68.23 −6.0% +4.8%
MAE (5, 1) 8.18 8.20 7.90 6.78 −3.5% −3.7%
MAE (6, 2) 7.27 7.13 6.86 5.66 −5.7% −3.9%
MAE (8, 4) 6.58 6.34 6.36 4.77 −3.3% +0.3%
RMSE (5, 1) 126.04 119.94 121.55 117.12 −3.6% +1.3%
RMSE (6, 2) 98.31 90.79 91.53 85.84 −6.9% +0.8%
RMSE (8, 4) 79.69 72.82 75.62 67.67 −5.1% +3.8%
MAE (2, 1) 7.63 7.42 7.18 6.42 −5.9% −3.2%
MAE (3, 2) 6.69 6.48 6.28 5.42 −6.2% −3.2%
MAE (5, 4) 6.18 5.90 5.79 4.60 −6.2% −1.8%
RMSE (2, 1) 124.36 118.17 118.93 115.23 −4.4% +0.6%
RMSE (3, 2) 95.48 89.37 89.17 85.11 −6.6% −0.2%
RMSE (5, 4) 78.86 71.35 72.33 66.90 −8.3% +1.4%
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3.4. An Intrinsic Evaluation of Performance: Mean Percentages of Error

So far, we have been discussing performance in MAE or RMSE and needed benchmarks to assess
the quality of the forecasts issued by the aggregation algorithms (and the latter outperformed these
benchmarks: the locally best predictors on the train set and the globally best predictor on the test
set). Put differently, we were only discussing relative performance. We now want to move to a more
intrinsic evaluation of the performance of the aggregation algorithms (and of the meta-predictors). To
that end, we use a mean absolute percentage of error [MAPE] as our criterion. The latter is not so
easy to define, as many sales yt,γ are null (see Section 3.1), and therefore, the classical definition

�������������1
T

T∑
t=1

∑
γ∈Γ

∣∣yt+h,γ − ŷt+h,γ∣∣
yt+h,γ

fails. This is why we adapt this classical definition of MAPE to our needs, as follows. We provide this
adaptation for a given a subset Γsub ⊆ Γ of nodes (sometimes Γsub will be the set Γ of all nodes, and
sometimes a strict subset, e.g., given by all subsubfamilies):

mape = 1
T

T∑
t=1

∑
γ∈Γsub

∣∣yt+h,γ − ŷt+h,γ∣∣∑
γ∈Γsub

yt+h,γ

When the subset Γsub is large enough (whenever it contains a significant number of nodes), the
denominator is positive and the MAPE is well defined in this way.

3.4.1. On the Entire Hierarchy Γ

We first discuss global performance, on the entire hierarchy of nodes Γ. Figure 3 and Table 6 are
counterparts of similar figures and a similar table in the case of MAE and RMSE. They display
graphically (Figure 3) the performance in MAPE of the elementary predictors and meta-predictors
introduced in Section 3.2, as well as the one of a given aggregation algorithm, namely, ML-Poly with
the absolute loss, no gradient trick, no projection (just as in Section 3.3 above). Of course, all meta-
predictors defined in terms of a “best predictor” or “best predictors” as in (6) or (7)are defined with
respect to the loss function

`
(
yt+h,γ , ŷ

(j)
t+h,γ

)
=

∣∣∣yt+h,γ − ŷ(j)
t+h,γ

∣∣∣∑
g∈Γ

yt+h,g
. (8)

(We should actually add arguments to `, as the loss computed depends on all observations yt+h,g, not
just the one at the node γ.)

In terms of relative performance, Figure 3 and Table 6 for MAPE show a similar ranking as Figure 2
and Table 4 for MAE: the aggregation algorithm consistently outperforms the locally best predictors
on the train set and the globally best predictor on the test set.

We are more interested in an intrinsic evaluation of the performance, which is why we considered
MAPE in the first place. The MAPEs of the aggregation algorithm lie between 15.24% and 21.08%
(these MAPEs are larger when the horizon is farther away and/or the number of weeks to be forecast
is smaller). This is a nice performance, but we break it down by levels of the hierarchy before issuing
any deeper comments.

3.4.2. Level by Level

We now explore MAPE performance by levels of the hierarchy: by taking subsets Γsub given by all
subsubfamilies, or by all subfamilies, or by all families. We also report the MAPE for predicting the
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Figure 3: Performance in MAPE [y–axis, in %] of the elementary forecasting methods, of some
meta-predictors, and of a given aggregation algorithm to forecast sales 6-week-ahead for 1 week (i.e.,
for h = 7 and n = 1), depending on a tuning parameter α [x–axis, logarithmic scale]. The same
acronyms are used as in Figure 2, with the addition of an Aggregation algorithm, namely, ML-Poly
with the absolute value, no gradient trick and no projection; its performance is independent of α and
is therefore depicted by an horizontal line.

Table 6: Performance in MAPE (columns 3–6) and relative differences in MAPE (columns 7–8) for
a given aggregation algorithm under a given specification (namely, ML-Poly with the absolute loss `,
no gradient trick, no projection), depending on the pairs (h, n). The same structure and conventions
are used as for Table 4.

Algorithm ML-Poly, with specifications: ` is the absolute loss, no gradient trick, no projection
Metric Pair Locally best Globally best Aggregation Locally best Aggreg. Aggreg.

(h, n) on train set on test set on test set vs. vs.
(= Loc-Train) (= Glob-Test) (= Aggreg) (= Oracle) Loc-Train Glob-Test

Legal meta-predictor Yes No Yes No
MAPE (7, 1) 22.15 21.74 21.08 17.67 −4.9% −3.0%
MAPE (8, 2) 19.46 19.04 18.74 14.69 −3.7% −1.6%
MAPE (10, 4) 18.21 17.46 17.19 12.86 −5.6% −1.6%
MAPE (5, 1) 21.43 21.34 20.50 17.56 −4.3% −3.9%
MAPE (6, 2) 18.94 18.47 17.89 14.53 −5.6% −3.1%
MAPE (8, 4) 17.57 16.75 16.66 12.59 −5.2% −0.5%
MAPE (2, 1) 19.76 19.33 18.45 16.63 −6.7% −4.6%
MAPE (3, 2) 17.53 16.76 16.32 13.90 −6.9% −2.7%
MAPE (5, 4) 16.53 15.57 15.24 12.09 −7.8% −2.1%
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total sales, i.e., Γsub is the root-node singleton: Γsub = {root}. When considering a “best predictor”
or “best predictors” for our meta-predictors, similarly to the definition given by (8), by updating the
summation in the denominator of the latter, we resort to the loss function

`
(
yt+h,γ , ŷ

(j)
t+h,γ

)
=

∣∣∣yt+h,γ − ŷ(j)
t+h,γ

∣∣∣∑
g∈Γsub

yt+h,g
. (9)

Put differently, “best” is now in terms of MAPE and of the considered level of the hierarchy.
Results are reported in Table 7. We first discuss the intrinsic performance of the aggregation

algorithm: it obtains an MAPE of about 32% on the case of all subsubfamilies, which is the most
important case to consider. Indeed, the volumes of sales at this level are then broken down into specific
products, either existing ones or new products to be launched. The forecasts at this level support and
drive the decision-making. This 32% MAPE is comparable to MAPEs observed for the forecasting of
sales in retail distribution.

The MAPE performance of course improves as we go up in the hierarchy: it equals about 22% for
all subfamilies, 18% for all families, and 12% for the root note. We recall that the MAPE performance
for the entire hierarchy (i.e., putting together all levels) equals about 21%.

Now, in terms of relative performance (i.e., when the aggregation algorithm is compared to
meta-predictors), we observe that the aggregation algorithm consistently outperforms the legal meta-
predictor given by the locally best predictors on the train set, while it outperforms the forward-looking
meta-predictor given the globally best predictor on the test set on the two cases that are of most in-
terest for us: all subsubfamilies, and the entire hierarchy; it is outperformed by that forward-looking
meta-predictor on the three other cases: root node (also known as total node), all families, all sub-
families (very slightly).

Table 7: Performance in MAPE (columns 2–5) and relative differences in MAPE (columns 6–7) for
a given aggregation algorithm under a given specification (namely, ML-Poly with the absolute loss
`, no gradient trick, no projection), depending on the hierarchy level(s) considered. The line “Entire
hierarchy” corresponds to taking Γsub = Γ, while the four other lines correspond each to an element
of a partition of Γ by levels: Γsub = {root} for the line “Total node”, Γsub the subsets of all families,
subfamilies, subsubfamilies, respectively. A similar structure of the results as for Table 4 is used.

MAPE; case (h, n) = (7, 1); algorithm ML-Poly, with specifications:
` is the absolute loss, no gradient trick, no projection

Locally best Globally best Aggregation Locally best Aggreg. Aggreg.
Level on train set on test set on test set vs. vs.

(= Loc-Train) (= Glob-Test) (= Aggreg) (= Oracle) Loc-Train Glob-Test
Legal Yes No Yes No
Entire hierarchy 22.15% 21.74% 21.08% 17.67% −4.9% −3.0%
Total node 12.46% 11.34% 11.71% 11.34% −6.0% +3.3%
Families 18.70% 16.96% 18.32% 15.56% −2.0% +8.0%
Subfamilies 23.46% 22.11% 22.20% 18.49% −5.4% +0.4%
Subsubfamilies 33.99% 36.00% 32.09% 25.29% −5.6% −10.9%
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3.5. Beyond Average Performance

We go beyond average performance measures in this section and illustrate that the performance of the
aggregation algorithms is not only better on average but everywhere, compared to, e.g., the natural
benchmark given by the locally best predictors on the train set. To do so, we consider the absolute
errors suffered for predicting the sales of each of the 3,004 subsubfamilies on each of the 52 weeks of
the test set, which leads to 52× 3,004 = 156,208 absolute errors. We do so for the case (h, n) = (7, 1),
i.e., for 6-week-ahead-forecasting of 1 week of sales.

Figure 4 explains where differences in performance between the locally best predictors on the train
set, the globally best predictor on the test set, and the aggregation algorithm lie: not on small absolute
errors (less than 90 k€, say), but half on medium-sized errors (between 90 and 700 k€, say) and half
on large errors (more than 700 k€, say).

Figure 5 shows that there are not many errors that are larger then 700 k€ out of the 156,208
errors considered: fewer than 40 or so. Yet, they account for a significant part of the difference in
performance. The aggregation algorithm considered (still ML-Poly with the absolute loss, no gradient
trick, no projection) gets fewer of these large errors, and the maximal error it suffers equals about 2
M€, while the maximal error for the locally best predictors on the train set and for the globally best
predictor on the test set equal about 4 M€ and 5 M€, respectively.

Figure 6 depicts the histograms of the small absolute errors (smaller than 75 k€). These histograms
are, first, virtually indistinguishable, and second, account for most of the errors: they contain almost
all of the 156,208 absolute errors considered. Yet, this is not where differences in performance mostly
take place.
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Figure 4: Cumulative absolute errors (y–axis, units: M€) according to absolute errors (x–axis, units: k€), for
three meta-predictors (the locally best predictors on the train set, the globally best predictor on the test set,
and the oracle, which corresponds to the locally best predictors on the train set) and an aggregation algorithm
(ML-Poly with the absolute loss, no gradient trick, no projection), for the case (h, n) = (7, 1), i.e., for 6-week-
ahead-forecasting of 1 week of sales. The dotted vertical lines indicate for each curve the preimages of 50% and
80% of the total cumulative errors; e.g., for the oracle, 50% (respectively, 80%) of the total error is suffered
with individual errors smaller than 86 k€ (respectively, 362 k€).
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Figure 5: Histogram count of large absolute errors (larger than 600 k€, see x–axis) for two meta-predictors
(the locally best predictors on the train set and the globally best predictor on the test set) and an aggregation
algorithm (ML-Poly with the absolute loss, no gradient trick, no projection), for the case (h, n) = (7, 1), i.e.,
for 6-week-ahead-forecasting of 1 week of sales.
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Figure 6: Histogram counts of small absolute errors (smaller than 75 k€, see x–axis) for three meta-predictors
(the locally best predictors on the train set, the globally best predictor on the test set, and the oracle, which
corresponds to the locally best predictors on the train set) and an aggregation algorithm (ML-Poly with the
absolute loss, no gradient trick, no projection), for the case (h, n) = (7, 1), i.e., for 6-week-ahead-forecasting of
1 week of sales.
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3.6. Evolution of the Weights Issued by the Aggregation Algorithms

The aggregation algorithms considered in Section 2.3 issue convex weights: at each prediction step,
the forecast ŷ(j)

t+h,γ of the j–th elementary predictor is assigned a weight w(j)
t+h,γ and an aggregated

forecast is formed according to
J∑
j=1

w
(j)
t+h,γ ŷ

(j)
t+h,γ .

The vectors wt+h,γ =
(
w

(j)
t+h,γ

)
16j6J are convex weight vectors: their elements are nonnegative and

sum up to 1. A natural question is: do they have any particular structure? Do they converge, e.g., to
a Dirac mass on a given elementary predictor?

Section 2.2 defined J = 73 elementary predictors. Figure 7 depicts the evolutions of the weight
vectors picked over time ML-Poly (with the absolute loss, no gradient trick, and no projection step) for
the root note (the total sales) and 6 families, which form a representative subset of the 53 families. The
main observation is that weights never converge to a Dirac mass on a given elementary predictor. For
all cases depicted, at least 5 or 6 elementary predictors, and typically rather 10–15 of them, are used.
We see that weights evolve significantly over time, sometimes in a smooth way, sometimes in a more
radical way. Only one picture depicts no evolution at all (weights remain uniform): it corresponds
to the family “deals”, which is one of the 6 families for which the entire series of sales are null (see
Table 1).

The evolutions depicted on Figure 7 illustrate that aggregation algorithms are reactive to changes
and may reallocate the weights put on elementary predictors when needed. This is in contrast with
a meta-predictor like the locally best predictors on the train set, which would need to be recomputed
periodically from scratch to accommodate changes.
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Figure 7: Evolution of the convex weights put on each elementary predictor over time (from the point
in time when all elementary predictors are defined: end of year 2015 to end of year 2017) by ML-Poly
(with the absolute loss, no gradient trick, and no projection step), for the prediction of total sales
(first line) and the sales of a representative subset of families (lines 2, 3 and 4); namely, from left to
right and from top to bottom: DIY–supplies (“bricolage”), wine (“vin”), equipment for professionals
(“pro”), toys (“jeux–jouets”), gift cards (‘carte-cadeau”), special offers (“deals”, for which the entire
series of sales is null). The weights for each of the 73 elementary predictors are associated with a given
color on a given graph and sum up to 1.
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