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TAUTOLOGICAL CLASSES ON MODULI SPACES OF

HYPERKÄHLER MANIFOLDS

NICOLAS BERGERON AND ZHIYUAN LI

Abstract. We study algebraic cycles on moduli spaces Fh of h-polarized
hyperkähler manifolds. Following previous work of Marian, Oprea and
Pandharipande on the tautological conjecture on moduli spaces of K3
surfaces, we first define the tautological ring on Fh. We then study the
images of these tautological classes in the cohomology groups of Fh and
prove that most of them are linear combinations of Noether-Lefschetz
cycle classes. In particular, we prove the cohomological version of the
tautological conjecture on moduli space of K3[n]-type hyperkähler man-
ifolds with n ≤ 2. Secondly, we prove the cohomological generalized
Franchetta conjecture on universal family of these hyperkähler mani-
folds.

1. Introduction

The tautological ring of the moduli space Mg of genus g ≥ 2 curves,
originally studied by Mumford, is the subring of the Chow ring generated
by κ-classes, which are the ones that appear most naturally in geometry.
There has been substantial progress in understanding the tautological ring
of moduli spaces of curves in the past decade. In higher dimensional moduli
theory, little is known even regarding definitions. Recently, there have been
some developments towards the cycle theory on moduli spaces of K3 surfaces.
In this paper, we investigate the tautological class problem on moduli spaces
of K3 type varieties. In this introduction we specialize our results to the case
of moduli spaces of K3 surfaces and refer to the general, more technical,
theorems that deal with more general hyperkähler manifolds.

1.1. MOP conjecture and its generalization. Let Kg be the moduli
space of primitively polarized K3 surfaces of genus g. The cycle theory on
Kg appears to be much more complicated than on Mg because there are
many more classes in the Chow groups. First of all, there are so called NL-
cycles on Kg arising from the Noether-Lefschetz theory. For 1 ≤ r ≤ 19, the
r-th higher Noether-Lefschetz locus

N r(Kg) ⊆ Kg
parametrizing the K3 surfaces in Kg with Picard number greater than r, is
a countable union of subvarieties of codimension r. Each irreducible com-
ponent of N r(Kg) occurs as the moduli space of certain lattice-polarized K3
surfaces in Kg and a NL-cycle of codimension r is defined as some linear
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combination of such irreducible subvarieties. They play a very important
role in the cycle theory of Kg. It has been shown that the Picard group
PicQ(Kg) with rational coefficients is generated by NL-divisors, see [6]. This
motivates us to study the subring generated by all NL-cycles, denoted by
NL∗(Kg).

Secondly, in a similar way as in the case ofMg, one can associate natural
cycle classes to tautological bundles on the universal family. Let KΣ ⊂ Kg be
the r-th higher Noether-Lefschetz locus corresponding to some Picard lattice
Σ of rank r + 1. In [42], Marian, Oprea and Pandharipande (MOP) have
introduced κ-classes κBa0,...,ar;b

on KΣ, see Definition 4.2.1. The tautological

ring R∗(Kg) ⊆ CH∗Q(Kg) is the Q-subalgebra generated by the images of the
κ-classes on KΣ via pushforward maps. The tautological conjecture on Kg
states:

Conjecture 1 (MOP). Let R∗(Kg) be the subring of CH∗Q(Kg) generated by
all the images of the κ-classes on KΣ. Then NL∗(Kg) = R∗(Kg).

More generally, as polarized hyperkähler manifolds are higher-dimensional
generalizations of algebraic K3 surfaces and behave like K3 surfaces in many
ways (cf. §2), it is natural to study tautological rings on moduli spaces
of all polarized hyperkähler manifolds. Guided by the K3 case, we define
κ-classes on smooth families of hyperkähler manifolds as pushforwards of
“Beauville-Voisin classes” on the generic fiber. These classes are named in
reference to the work of Beauville and Voisin [4] on weak splitting properties
of algebraic hyperkähler manifolds. In this way, we define a tautological ring
on each moduli space of polarized hyperkähler manifolds. We then formulate
a generalization of Conjecture 1 for polarized hyperkähler manifolds. We will
refer to it as the hyperkähler tautological conjecture, see Conjecture 4 for the
details.

In this paper, we mainly consider the cohomological version of the hy-
perkähler tautological conjecture. We prove that the cohomological images
of most tautological classes are in the span of the Noether-Lefschetz classes.
Our main results are Theorems 4.3.1 and 8.3.1. When specialized to the
case of K3 surfaces, we obtain:

Theorem 1. Let R∗hom(Kg) ⊆ H∗(Kg,Q) be the image of R∗(Kg) in the
cohomology ring. Then, we have NL∗hom(Kg) = R∗hom(Kg).

Our approach is to show that all κ-classes on KΣ are in the span of
Noether-Lefschetz cycles on KΣ. However, this actually is not true when
r > 17 (see Remark 8.3.2). Fortunately, this is not in contradiction with
Theorem 1: we will prove that Rr

hom(Kg) = 0 for r > 17.
While we were writing this paper, the article [56] appeared on arXiv.

There Conjecture 1 is essentially proved. They use Gromov-Witten theory.
Beware however that they work with a slightly different (more canonical)
definition of κ-classes.
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1.2. Generalized Franchetta conjecture. Let K◦g denote the open and
dense subset of Kg that parametrizes the K3 surfaces with trivial automor-
phism groups. It carries a universal family π : U◦g → K◦g. Motivated by
Franchetta’s conjecture on the moduli spaces of curves, O’Grady raised the
following conjecture [52], referred to as the generalized Franchetta conjec-
ture.

Conjecture 2 (O’Grady). Given a class α ∈ CH2(U◦g ), the restriction α|S
to any closed fiber S is a multiple of the Beauville-Voisin class cS.

Here cS is a canonical class in CH0(S) represented by a point on a rational
curve of S, which satisfies the following properties:

(1) The intersection of two divisor classes on S lies in ZcS ⊂ CH0(S).
(2) The second Chern class c2(TS) equals 24cS ∈ CH0(S).

We should point out that, as the K3 surface does not have odd degree co-
homology, the famous Bloch-Beilinson conjecture predicts that Conjecture
2, with rational coefficients, holds if α is defined over Q̄. So Conjecture 2
can be viewed as a strengthening of the Bloch-Beilinson conjecture on the
universal K3 surface. It has been confirmed when α is spanned by the inter-
section of two divisors of U◦g (see [72]) or when g ≤ 12 (see [57]) but remains
open in general. Let Tπ be the relative tangent bundle of π. According
to [70, Theorem 10.19], over the rationals Conjecture 2 is equivalent to the
following

Conjecture 3. For any α ∈ CH2(U◦g ), there exists m ∈ Q such that α −
mc2(Tπ) is supported on a proper subvariety of K◦g.

Our second main result is a cohomological version of the generalized
Franchetta conjecture (cf. [72]).

Theorem 1.2.1. For any α ∈ CH2(U◦g ), there exists a rational number m

such that the class [α − mc2(Tπ)] ∈ H4(U◦g ,Q) is supported on Noether-
Lefschetz divisors. In particular, α−mc2(Tπ) is cohomologically equivalent
to zero on π−1(W ) for some open subset W ⊆ K◦g.

Again, Theorem 1.2.1 follows from a more general theorem concerning the
cohomological generalized Franchetta conjecture on hyperkähler manifolds,
see Theorem 8.1.1.

1.3. Organization of the paper. In Sections 2 and 3, we review the hy-
perkähler geometry, especially the cycle theory and the Torelli theorem. The
tautological ring on moduli spaces of polarized hyperkählers is defined in
Section 4. In Section 5 and Section 6, we recap the work of [7] and [6] about
surjectivity results on special cycles of Shimura varieties of orthogonal type.
Following [26], in Section 7 we construct a so-called Funke-Kudla-Millson
ring in the space of differential forms with coefficients. Section 8 is devoted
to the proof of the cohomological tautological conjecture and the generalized
Franchetta conjecture. In the last section, we discuss the properties of the
ring generated by special cycles on Shimura varieties.
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1.4. Notation and conventions. Throughout this paper, we write Ẑ for
the profinite completion of Z. We denote by A the adèle ring of Q and Af
the ring of finite adèles. If G is a semisimple classical group over Q, we let
L2(G(Q)\G(A)) be the space of square integrable functions on G(Q)\G(A)
and denote by A(G) (resp. Acusp(G)) the set of irreducible square integral
(resp. cuspidal) representations occuring discretely in L2(G(Q)\G(A)). For
a complex variety X, from now on we shall use CH∗(X) to denote the Chow
ring of X with rational coefficients and denote by DCH∗(X) ⊆ CH∗(X) the
subring generated by divisor classes.

1.5. Acknowledgements. We are very grateful to Brendan Hassett, Daniel
Huybrechts and Eyal Markman for many helpful discussions and useful sug-
gestions. The first named author would like to thank Claire Voisin. She
first told him about O’Grady’s generalized Franchetta conjecture and asked
if the methods of [6] could be used to prove the cohomological version of
it. He would also like to thank her for many explanations related to these
topics. The second named author would like to thank Pandharipande and
Yin for a lot of useful conversations during his stay in ETH. We are very
grateful to the referee’s useful comments and suggestions.

2. Hyperkähler manifolds and moduli

2.1. Basic theory of hyperkähler manifolds. A smooth complex com-
pact 2n-dimensional manifold X is an irreducible holomorphic symplectic or
hyperkähler manifold if it is simply connected and H0(X,Ω2

X) is spanned by
an everywhere nondegenerate holomorphic 2-form ωX . It carries an integral,
primitive quadratic form qX on H2(X,Z), called the Beauville-Bogomolov
(BB) form, which satisfies

(1) qX is non-degenerate and of signature (3, b2(X)− 3)
(2) There exists a positive rational number c, the Fujiki invariant, such

that qnX(α) = c
∫
X α

2n for all classes α ∈ H2(X,Z).

(3) The Hodge decomposition H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)
is orthogonal with respect to qX ⊗ C.

From (2), the BB-form qX is a deformation invariant and we will thus restrict
to compact hyperkähler manifolds of a fixed deformation class. In such a
class, the isomorphism type, say Λ of the lattice realized by the BB-form is
unique. We say an isometry ϕ : H2(X,Z) → Λ is a marking of X. If we
let R denote an abstract ring such that the cohomology ring H∗(X,Z) is
isomorphic to R, then we refer to a ring isomorphism

Φ : H∗(X,Z)
∼−→ R,

as a full marking of X. If X comes with an ample line bundle H, we say
that (X,H) is a polarized hyperkähler manifold.

There are few known constructions of such manifolds. The two well-
known series of examples, found by Beauville [3], are the Hilbert scheme of
points on K3 surfaces and the generalized Kummer varieties. The only other
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known examples were constructed by O’Grady [50, 51]. See the details in
Example 2.1.1 below.

Example 2.1.1. (i) For n > 0, the length n Hilbert scheme S[n] of a
K3 surface S is a hyperkähler manifold of dimension 2n. The second
cohomology H2(S[n],Z) under BB-form is an even lattice of signature
(3, 20) and it is isomorphic to

(2.1) Ln = U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−2(n− 1)〉

where U is the hyperbolic lattice of rank two and E8 is the positive
definite lattice associated to the Lie group of the same name. We
say that a hyperkähler manifold X is of K3[n]-type if it is deformation
equivalent to S[n]. In that case the Fujiki invariant is c = (2n)!/(n!2n).

(ii) If A is an abelian surface and s : A[n+1] → A is the morphism induced
by the additive structure of A, then the generalized Kummer variety
Kn(A) := s−1(0) is a projective hyperkähler manifold of dimension
2n. We say that X is of generalized Kummer type if it is deformation
equivalent to Kn(A). In this case, H2(X,Z) is isomorphic to

(2.2) LK,n = U⊕3 ⊕ 〈−2(n+ 1)〉 .

while the Fujiki invariant is c = (n+ 1)(2n)!/(n!2n).
(iii) (OG6) Let S be a K3 surface, and M the moduli space of stable rank

2 vector bundles on S, with Chern classes c1 = 0, c2 = 4. It admits a
natural compactification M , obtained by adding classes of semi-stable
torsion free sheaves. There is a desingularization X of M which is
a hyperkähler manifold of dimension 10. Its second cohomology is a
lattice of signature (3, 21). We say that a hyperkähler manifold is of
type OG6 if it is deformation equivalent to X.

(iv) (OG10) A similar construction can be done starting from rank 2 bun-
dles with c1 = 0, c2 = 2 on an abelian surface, giving hyperkähler
manifolds of dimension 6 as in (iii). Its second cohomology is a lattice
of signature (3, 5).

2.2. Automorphisms and monodromy group. Let X be a hyperkähler
manifold in the list above and dimension 2n. Let Aut(X) be the group of
automorphisms of X. Its action on the cohomology gives a morphism

(2.3) Aut(X)→ GL(H∗(X,Z))

which has finite kernel. We say that X is cohomologically rigidified if Aut(X)
acts faithfully on H∗(X,Z), i.e. (2.3) is injective. All the hyperkähler mani-
folds of Example 2.1.1 are known to be cohomologically rigidified except for
the examples of OG6 type for which it is still an open question (cf. [3, 55]).
In general, it remains open whether (2.3) is injective for all hyperkähler
manifolds.

The group of automorphisms Aut(X) moreover acts on H2(X,Z) preserv-
ing the BB-form. The projection map to the second cohomology therefore
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yields a morphism

(2.4) Aut(X)→ O(H2(X,Z)).

with finite kernel. According to [29], this kernel is deformation invariant.

It is trivial if X is of K3[n] or of OG10 type and it is nontrivial if X is of
generalized Kummer type or of OG6 type.

2.3. The monodromy group Mon(X) ⊆ GL(H∗(X,Z)) is defined as the
subgroup generated by the images of the monodromy representations of all
the connected families containing X. Let Mon2(X) be the image of the
monodromy group into GL(H2(X,Z)). Verbitsky [67] has shown that the
group Mon2(X) is an arithmetic subgroup of O(H2(X,Z)) and that there is
an exact sequence

(2.5) 1→ T → Mon(X)→ Mon2(X)→ 1

with T a finite group. Moreover, T is trivial if (2.4) is injective (cf. [67,
Corollary 7.3]).

Furthermore, given a polarized hyperkähler manifold (X,H), the polarized
monodromy group

Mon2(X,H) ⊆ Mon2(X)

is defined to be the stabilizer of c1(H). Then Mon2(X,H) is isomorphic
to an arithmetic subgroup of O(Λ) (cf. [67, Theorem 3.4]) via any given
marking. And it has been shown by Markman [44, Proposition 7.1] that the
image is independent of the marking.

2.4. Group actions on cohomology. Let GX be the Q-algebraic group
associated to SO(Λ). It acts naturally on H2(X,Q) through the standard
representation. As GX is a connected component of the Zariski closure of
Mon2(X) and Mon(X)→ Mon2(X) has finite kernel, the monodromy action
of Mon(X) gives rise to an action of GX on the whole cohomology ring
H∗(X,Q) of X via automorphisms (cf. [28, Proposition 4.1]) that extends
the natural action of GX on H2(X,Q).

This GX -action on H∗(X,Q) respects the Hodge structure. For instance,
the trivial summand inH∗(X,Q) consists of the Hodge classes. In particular,
the Chern classes ci(TX) of the tangent bundle lie in a trivial summand of
H2i(X,Q) and ci(TX) = 0 is zero when i is odd.

Remark 2.4.1. The theory of Lefschetz modules, developed by Verbitsky
[66] and Looijenga-Lunts [40], provides another action of the group

G̃X := Spin(H2(X,Q))

on H∗(X,Q). The action also preserves the ring structure and on the even
cohomology it factors through a representation

(2.6) ρ : GX → Aut(Heven(X,Q))
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that coincides with the standard representation on H2(X,Q). Therefore,
the two representation of Mon2(X) in GL(H∗(X,Q)) agree on a finite index
subgroup (cf. [43, §4.6]).

2.5. Beauville-Voisin classes. Recall the following theorem of Beauville
and Voisin on the Chow ring of K3 surfaces.

Theorem 2.5.1 (Beauville-Voisin [4]). Let X be a smooth projective K3
surface. Then there exists a canonical zero cycle cX ∈ CH0(X) of degree
one such that

• cX is represented by a point on a rational curve on X
• for any divisors D1, D2 ∈ Pic(X), the intersection D1 ·D2 is propor-

tional to cX in CH0(X).
• c2(TX) = 24cX .

In particular, the cohomology class map

(2.7) [·] : DCH∗(X)→ H∗(X,Q)

is injective.

Beauville has pointed out that this can be understood in a broader frame-
work of Bloch-Beilinson-Murre filtration, the so called weak splitting prop-
erty, and he has conjectured that this can be generalized to hyperkähler
manifolds, i.e. the map (2.7) is injective when X is hyperkähler. This
was later strengthened by Voisin [72] by involving the Chern classes of the
tangent bundle TX , i.e. replacing DCH∗(X) in (2.7) by the subalgebra
BV∗(X) ⊆ CH∗(X) generated by all divisor classes and the Chern classes
ci(TX). We will call the elements in BV∗(X) the Beauville-Voisin (BV)
classes of X.

The conjecture has been confirmed by Voisin [71] and Fu [23] when X
is a K3 surface, the Fano variety of lines of a cubic fourfold, a generalized
Kummer variety, or any S[n] if n ≤ 48 − 2ρ(S), where ρ(S) is the Picard
number of S. In all these cases, there exists a canonical zero cycle cX ∈
CH0(X) such that BVn(X) is spanned by cX . In general, the existence of
cX remains wide open. Note that if the canonical cycle cX exists, then the
top Chern class c2n(TX) is a multiple of cX .

3. Moduli space of hyperkähler manifolds

3.1. Moduli of polarized hyperkähler manifolds. In the sequel we will
always assume that a 2n-dimensional hyperkähler manifold X of type Λ has
a primitive polarization H, i.e. c1(H) ∈ H2(X,Z) is primitive. In order
to discuss the moduli space of polarized hyperkähler manifolds, we shall
choose a polarization type, i.e. the O(Λ)-orbit of a primitive vector h ∈ Λ.
We say that (X,H) is h-polarized if ϕ(c1(H)) = h for a given marking
ϕ : H2(X,Z) ∼= Λ.

Consider the moduli stack of h-polarized hyperkähler manifolds of di-
mension 2n and type Λ with a given Fujiki invariant, which associates to a
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scheme T (over C) the set of isomorphism classes of flat families of polarized
hyperkähler manifolds over T . This stack in general is disconnected with
only finitely many connected components. Let Fh be a connected component
of this stack. Then a standard result is

Proposition 3.1.1. Fh is a smooth Deligne-Mumford quotient stack and it
can be coarsely represented by a quasi-projective variety Fh.

Proof. The proof is the same as in the case of K3 surfaces. The quasi-
projectivity of Fh follows from the Torelli theorem for polarized hyperkähler
manifolds (cf. [44, 22]) and the standard result of Baily-Borel [2]. ♣

Remark 3.1.2. Here we work over the base field C only for simplicity. We
also refer to [1] for the results on the moduli space of hyperkähler varieties
over fields of characteristic 0.

3.2. Period map. Let us recall Verbitsky and Markman’s Hodge theoretic
Torelli theorem for hyperkähler manifolds. Given a polarization type vector
h ∈ Λ, the orthogonal complement Λh := h⊥ ⊆ Λ is a lattice of signature
(2, b2(X)− 3). The period domain D of h-polarized hyperkähler manifolds
of type Λ is a connected component of

(3.1) D± = {x ∈ P(Λh ⊗ C) | (x, x) = 0, (x, x̄) > 0},
seen as a Hermitian symmetric domain of type IV. Consider the connected
component of the coarse moduli space of marked hyperkähler manifolds

Nh = (X,H,ϕ)/ ∼
parametrizing marked h-polarized hyperkähler manifolds (X,H,ϕ) up to
equivalence. Then we have a period map

(3.2) P̃h : Nh → D

that maps (X,H,ϕ) to the line [ϕ(ωX)].

Remark 3.2.1. One can also consider the moduli (analytic) stack Ñh of

fully marked h-polarized hyperkähler manifolds and denote by Ñh its coarse

moduli space. This also defines a period map Ñh → D. See §3.3 for more
details.

Write Γh := Mon2(X,H): then Markman shows that the map (3.2) is a
Γh-equivariant open immersion (cf. [44]). To forget the marking, we quotient
(3.2) on both sides and get

Theorem 3.2.2. [44, Theorem 8.4] The period map (3.2) induces an open
immersion

(3.3) Ph : Fh ↪→ Γh\D.

The analytic orbifold Γh\D has an algebraic structure and it is a quasipro-
jective variety. In this paper, we shall sometimes also use Ph to denote the
map from the stack Fh to Γh\D.
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Remark 3.2.3. If we consider the coarse moduli space of quasipolarized
hyperkähler manifolds, i.e. the line bundle H is big and nef, the open
immersion (3.3) becomes an isomorphism, see [32].

3.3. There is an analytic construction of Fh via Teichmüller theory. As
the hyperkähler manifolds only differ by their complex structures, we can
write X as (M, I), where M is a hyperkähler manifold and I is a complex
structure on M . Then the moduli space Fh can be described as the orbifold

Teih(M)/MCG(M,h),

given as the quotient of a divisor Teih(M) in a connected component of the
Teichmüller space of M by a subgroup MCG(M,h) of the mapping class
group.

The space Teih(M) actually coarsely represents the moduli stack Ñh in
Remark 3.2.1 and the image of the group MCG(M,h) in GL(H∗(M,Z)) is
nothing but the polarized monodromy group Mon(X,H). In this way, most
of the results we discussed in this section can be found in [67] using the
language of Teichmüller spaces.

3.4. Level structures. We now introduce the level structures on polarized
hyperkähler manifolds to help rigidify our moduli problem. Just as the
case for moduli of curves with level structures, this can be viewed as the
quotient of Teih(M) by a finite index subgroup of MCG(M,h). For polarized
hyperkähler manifolds, there are two natural ways to add level structures
by taking the kernel of either the map

(3.4) MCG(M,h)→ GL(H∗prim(M,Z/`Z))

or the map

(3.5) MCG(M,h)→ O(H2
prim(M,Z/`Z)),

for ` > 0. In this paper, we shall be mainly concerned with the moduli
space of polarized hyperkähler manifolds with a level structure on the total
cohomology, i.e. the quotient of Teih(M) by the kernel of (3.4).

In the algebraic setting, we say that a full `-level structure on a h-polarized
hyperkähler (X,H) is an isomorphism

H∗(X,Z/`Z) ∼= H∗(M,Z)⊗ Z/`Z,
mapping the class c1(H) to h. We let F `h be the connected component
(associated to Fh) of the moduli stack of h-polarized hyperkähler manifold
with a full `-level structure. The forgetful map F `h → Fh is finite and étale.

Denote by

Mon`(X,H) ⊆ Mon(X,H)

the polarized monodromy group with a full `-level structure, which is the
image of the kernel of (3.4) in Mon(X,H). If ` is sufficiently large, the
projection to the second cohomology yields an isomorphism

(3.6) Mon`(X,H) ∼= Mon2
` (X,H)
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because of (2.5). We let Γ`h ⊆ Γh be the image of Mon2
` (X,H) via markings.

Then the coarse moduli space F `h of F `h is the quotient of the coarse moduli

space of fully marked h-polarized hyperkähler manifolds by Mon2
` (X,H) and

it admits an open immersion

(3.7) P` : F `h → Γ`h\D.

induced by the period map.
If the kernel of (2.3) is trivial, then F `h is represented by F `h for ` � 1

because any object in F `h has only trivial automorphisms (cf. [60, Lemma

1.5.12]). In this case, F `h carries a universal family in the category of vari-
eties. As mentioned in §2.2, this has been confirmed for all known examples
except OG6.

3.5. Let us make a few more remarks about the orthogonal group version
(3.5). Rizov [60] has dealt with the case of K3 surfaces in adelic language
(see also [46, 41]), but there is no difficulty to extend his construction to
hyperkähler manifolds, see e.g. [16, §3.3]. The resulting moduli space better
fits with our notions of Shimura varieties defined in Section 5.

Write G = SO(Λh) and let K ⊆ G(Af ) be an open compact subgroup.
Recall that there is an injective morphism

{g ∈ SO(Λ) | g(h) = h} → SO(Λh).

Following [60, 2.2], we say that K is admissible if every element of K can

be viewed as an isometry of Λ(Af ) fixing h and stabilizing Λh(Ẑ). In this
case, we define a K-level structure on a h-polarized hyperkähler (X,H) as
an element of the set

(3.8) K\{g ∈ Isometry(Λ(Ẑ), H2(X, Ẑ)(1)) | g(h) = c1(H)}.

As in [60, Definition 1.5.16], one can consider the moduli stack Fh,K of
primitively h-polarized hyperkähler manifolds with a K-level structure and
let Fh,K be the corresponding coarse moduli space. The period map gives
an open immersion

(3.9) Fh,K ↪→ Γh,K\D,

where Γh,K = Γh ∩K (cf. [60, Proposition 3.2.1]). Again, this follows from
Verbitsky-Markman’s Hodge theoretic Torelli theorem on hyperkähler man-
ifolds.

3.6. Descent of local systems. Let π : Uh → Fh be the universal family
of h-polarized hyperkähler manifolds over Fh. We denote by

Hπ := Rπ∗Q

the local system that fiberwise corresponds to the cohomology ring of the
fiber. As we explained in §2.3, the special orthogonal group SO(Λh) (up to
a finite covering) acts fiberwise on Hπ. As SO(Λh) acts naturally on D, our
goal is to show that the local system Hπ descends to an automorphic local
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system on Γh\D after taking a finite cover of Fh. We prove it by adding
level structures defined in §3.4.

Lemma 3.6.1. Consider the universal family

(3.10) π` : U `h → F `h
of h-polarized hyperkähler manifolds with a full `-level structure. When ` is
sufficiently large, the local system Hπ` := R(π`)∗Q descends to an automor-
phic local system H• on Γ`h\D via the period map (3.7).

Proof. We can consider the universal fibration π̃ : U → Ñh over Ñh. Let Hπ̃
be the associated local system. One can easily see that the local system Hπ̃
is a constant system on Ñh and it descends to the constant system

D ×H∗(M,Q)

on D via the period map (3.2) (cf. [45]).

For ` sufficiently large, the action of Γ`h
∼= Mon`(X,H) on Ñh naturally

lifts to an action on Hπ̃. After taking the quotient by Γ`h, it gives the locally

constant system Hπ on F `h. On the other hand, the map (3.7) is obtained by
passing to the quotient on both sides of (3.2). It follows that Hπ descends
to the automorphic bundle H• := Γ`\(D ×H∗(M,Q)) via (3.7). ♣

3.7. Moduli of lattice polarized hyperkähler. We have to introduce
the lattice polarized hyperkähler manifolds for later use. The moduli spaces
of lattice polarized hyperkähler manifolds are briefly studied by Camere in
[15, 14], which generalize the work of Dolgachev [20] for K3 surfaces. Here
we review the basic notions with certain modifications. Let

j : Σ ↪→ Λ

be a fixed primitive embedding of a lattice Σ with signature (1, r). An ample
Σ-polarized hyperkähler manifold (with respect to j) is a pair (X,φ), where
X is a hyperkähler manifold and

φ : Σ→ NS(X) ⊂ H2(X,Z)

is a primitive lattice embedding satisfying

• φ(Σ) contains an ample divisor class of X,
• there exists a marking ϕ such that ϕ ◦ φ = j.

If we fix an ample class h, we can define the so called h-ample Σ-polarized
hyperkähler manifold (with respect to j) as a triple (X,H, φ) satisfying that
(X,H) is h-polarized and φ(Σ) contains c1(H). Denote by FΣ,h a connected
component of the moduli stack of h-ample Σ-polarized hyperkähler mani-
folds. It comes with the natural forgetful map FΣ,h → Fh.

There is also a Hodge theoretic description of FΣ,h via the Torelli theorem.
Regard Σ as a sublattice of Λ. Let the restricted period domain DΣ ⊆ D be
defined as a connected component of

{x ∈ P(Σ⊥ ⊗ C) | (x, x) = 0, (x, x̄) > 0}.
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Let ΓΣ be the stabilizer of φ(Σ) in the monodromy group Mon2(X). It is
an arithmetic subgroup of O(Σ⊥). As before, let FΣ,h be the corresponding
coarse moduli space. Then the restriction of the period map on the moduli
space of marked polarized hyperkähler manifolds gives a map

PΣ : FΣ,h → ΓΣ\DΣ

which is an open immersion, and we have a commutative diagram

(3.11) FΣ,h
PΣ //

��

ΓΣ\DΣ

��

Fh
Ph // Γh\D.

Remark 3.7.1. In general, the definition of FΣ,h depends on the primitive
embedding j : Σ → Λ. In some cases, e.g. when Λ is unimodular, the
primitive embedding of Σ into Λ is unique up to isometry and FΣ,h is thus
independent of the choice of j.

Finally, one can easily see that the results in §3.4 and §3.6 naturally extend
to lattice polarized hyperkähler manifolds. We shall in particular denote by
F `Σ,h (resp. F `Σ,h) the moduli stack (resp. the coarse moduli space) of h-
ample Σ-polarized hyperkähler manifolds with a full `-level structure. Then
there is an open immersion

(3.12) P`Σ : F `Σ,h ↪→ Γ`Σ\DΣ,

for some finite index subgroup Γ`Σ ⊆ ΓΣ and the associated local systems on

F `Σ,h descend via P`Σ.

4. Cycle classes on moduli spaces of hyperkähler manifolds

As in the case of K3 surfaces, there exist natural cycle classes on Fh and
its universal family, which come from either Hodge theory or the geometry
of the generic fiber. In this section, we discuss the relations between these
cycles and define the tautological ring on the moduli space. Natural conjec-
tures are made, motived by the MOP conjecture and generalized Franchetta
conjecture.

4.1. Noether-Lefschetz cycles. We first recall the Noether-Lefschetz the-
ory for hyperkähler manifolds. Let π : U → F be a family of projective hy-
perkähler manifolds over F . When F is a quasiprojective variety, we define
the r-th Noether-Lefschetz locus on F (with respect to π) as

(4.1) N r(F) := {b ∈ F | rank(Pic(Ub)) ≥ r + ρ}.

where ρ is the Picard number of the generic fiber of π. We can also define the
Noether-Lefschetz loci with respect to the universal family π : Uh → Fh over
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the moduli stack Fh. The irreducible components of the Noether-Lefschetz
loci on Fh correspond to the proper maps

(4.2) FΣ,h → Fh,

associated to Lorentzian lattices Σ ↪→ Λ containing h. In all cases, we define

(4.3) NL∗π(F) ⊆ CH∗(F)

as the subalgebra generated by the Noether-Lefschetz locus on F (cf. [56]).
We may omit the subscript π when F is the moduli stack.

Proposition 4.1.1 (see [6]). The first Chern class of the Hodge line bundle
is in the span of NL-divisors. Moreover, let mΛ = rank Λ be the second Betti
number of hyperkähler manifolds in FΣ,h and assume that mΛ−rank(Σ) ≥ 5:
then

NL1(FΣ,h) = Pic(FΣ,h).

In particular, we have an inclusion DCH∗(FΣ,h) ⊆ NL∗(FΣ,h).

Let us roughly explain the proof. It actually relies on the study of Picard
groups on the coarse moduli space FΣ,h as we have Pic(FΣ,h) ∼= Pic(FΣ,h).
In [6, Theorem 1.5], we deal with orthogonal Shimura varieties whereas FΣ,h

is only an open subset of ΓΣ\DΣ. However the map

P∗Σ : Pic(ΓΣ\DΣ)→ Pic(FΣ,h)

is onto and we are easily reduced to ΓΣ\DΣ – see Proposition 5.3.4 below
for details. Then we can conclude the assertion by applying [6, Theorem
1.5] and the fact Pic(ΓΣ\DΣ) ∼= H1,1(Γ\DΣ) (cf. [30]). This is similar to
the proof of [6, Corollary 3.8]. Note that the assumption mΛ− rank(Σ) ≥ 5
is equivalent to dimDΣ ≥ 3; this is used to apply [6, Theorem 1.5].

4.2. Kappa classes and tautological ring. In this subsection, we con-
struct the κ-classes on FΣ,h by taking the pushforward of BV classes on
the generic fiber of universal families of hyperkähler manifolds of (complex)
dimension n. This idea was initiated in [42] in the case of K3 surfaces.
To work in greater generality, we first define κ-classes with respect to an
arbitrary smooth family.

Definition 4.2.1. Let π : U → F be a smooth projective family of hy-
perkähler manifolds over a smooth Deligne-Mumford stack. Let

B = {L0, . . . ,Lr} ⊆ Pic(U)

be a collection of line bundles whose image in Pic(U/F) form a basis. Then
we define the κ-classes

(4.4) κBa0,...,ar;b1,...,b2n = π∗(

r∏
i=0

c1(Li)ai
2n∏
j=1

cj(Tπ)bj ) ∈ CHm(F),
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where m =
r∑
i=0

ai +
2n∑
j=1

jbj − 2n. For simplicity, we may write

(4.5) κBa0,...,ar = κBa0,...,ar;0,...,0.

and refer to these as the special κ-classes.

In particular, we can define κ-classes and also special κ-classes on FΣ,h

as the κ-classes with respect to the universal family πΣ : UΣ → FΣ,h.

Definition 4.2.2. The tautological ring R∗(Fh) ⊆ CH∗(Fh) of Fh is defined
to be the subalgebra generated by the images of all κ-classes on FΣ,h via
the pushforward maps

(4.6) (iΣ)∗ : CHk(FΣ,h)→ CHk(Fh)

for all Σ. Instead, if we only use the images of the special κ-classes on FΣ,h

via (4.6), we obtain a subring DR∗(Fh) ⊆ R∗(Fh).

Clearly, we have natural inclusions

(4.7) NL∗(Fh) ⊆ DR∗(Fh) ⊆ R∗(Fh).

Note that we can vary the choices B of universal line bundles on UΣ. (These
choices differ by the pullback of line bundles on FΣ,h.) It follows that
DR∗(Fh) and hence R∗(Fh) contains all classes in DCH∗(FΣ,h) via (4.6).
Then we propose the following generalization of the MOP conjecture:

Conjecture 4 (Hyperkähler Tautological Conjecture).

NL∗(Fh) = R∗(Fh).

We can obviously generalize Conjecture 4 to moduli spaces with level
structures. One advantage of adding level structures is that usually we will
deal with a smooth variety.

4.3. Cohomological tautological conjecture. We shall mainly consider
a weak, or cohomological, version of the hyperkähler tautological conjecture
that we now describe. Let H∗(Fh,Q) denote the singular cohomology of Fh;
it is isomorphic to the singular cohomology of the coarse moduli space Fh
(cf. [5]). There is a cycle class map

(4.8) cl : CH∗(Fh)→ H∗(Fh,Q)

and we add subscript hom to denote the image of the corresponding ring
in H∗(Fh,Q) via the cycle class map. Then we have the cohomological
tautological conjecture (CTC).

Conjecture 5. NL∗hom(Fh) = R∗hom(Fh).

One of our main results is
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Theorem 4.3.1. Assume that the lattice Λ is of rank mΛ ≥ 6, or equiva-
lently that dimFh ≥ 3. Then we have

(4.9) NL∗hom(Fh) = DR∗hom(Fh).

Moreover, if n < mΛ−3
8 , then we have

(4.10) NL∗hom(Fh) = R∗hom(Fh).

In particular, Conjecture 5 holds when Λ is of K3[n]-type with n ≤ 2.

We prove Theorem 4.3.1 in Section 8. In fact, we prove a more general
result concerning κ-classes with respect to general families of hyperkähler
manifolds. Unfortunately, our results can not imply the full Conjecture 5 for
hyperkähler manifolds of generalized Kummer type, OG6, OG10, or K3[n]-
type with large n, because their second Betti number is too small. Instead,
we show that a large part of the tautological classes is lying in R∗hom(Fh).

4.4. Examples. As a complement to Theorem 4.3.1, we follow [65] to give
some examples of κ-classes on Fh with ai = 0 and bj 6= 0 lying in NL∗(Fh).
For simplicity, we may write

κ̃b1,...,b2n = κ0,...,0;b1,...;b2n .

Let Ωi
Uh/Fh be the relative sheaf of differential i-forms. We denote by λ =

c1(R0π∗Ω
2
Uh/Fh) the first Chern class of the line bundle on Fh that fiberwise

corresponds to the vector space spanned by the non-degenerate holomorphic
2-form of the fiber. By [6, Corollary 8.5], we know that λ ∈ NL∗(Fh). One
can easily get that

c1(R0π∗Ω
2i
Uh/Fh) = iλ ∈ NL∗(Fh).

Now, note that there is an isomorphism ∧i(R2π∗OUh) ∼= R2iπ∗OUh via cup
product and an isomorphism R2nπ∗OUh ∼= (R0π∗Ωπ)∨. This yields

c1(R2iπ∗OUh) = −iλ.

Using the Grothendieck-Riemann-Roch Theorem, we have

(4.11) ch(π!OUh) = e

n∑
i=0

(−iλ)

= π∗(Td(Ω∨Uh/Fh)).

Let tdi be the i-th Todd class of (Ω1
Uh/Fh)∨ = TUh/Fh . By definition, the

class

π∗(tdi) ∈ CHi−2n(Fh)

is a linear combination of κ̃b1...,bn and we find

(4.12) π∗(tdi+2n) =
n∑
j=0

(−jλ)i

i!
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by comparing terms in (4.11) of degree i. The first Chern class c1(Ω1
Uh/Fh)

is the pull back of a divisor class on Fh. By the projection formula, this
gives

(4.13) κ̃b1,...,b2n = 0

if
∑
j≥2

jbj < 2n or
∑
j≥2

jbj = 2n with some b2k+1 6= 0. When n = 1, the

relations in (4.12) and (4.13) suffice to show that all classes κ̃b1...,b2n lie in
the subalgebra Q 〈λ〉 of CH∗(Fh) generated by λ (cf. [65]). However, it seems
more complicated as n gets larger. For instance, let us compute the first few
terms of κ̃b1,...,b4 (i.e. n = 2). Using (4.12), we have

• i = 0, 1
720(3κ0,2,0,0 − κ0,0,0,1) = 3;

• i = 1, c1(Ω1
Uh/Fh) = 2π∗(λ);

• i = 2, 1
60480(κ̃0,3,0,0 − 9κ̃0,1,0,1 − 5κ̃2,0,0,1 + 11κ̃2,2,0,0) = 5λ2

2
...

Let χ = χ(X) be the Euler characteristic of X ∈ Fh, e.g. χ(S[2]) = 324.
It follows that

κ̃0,0,0,1 = χ, κ̃0,2,0,0 = 720 +
χ

3
, κ̃2,0,0,1 = 4χλ2, κ̃2,2,0,0 = (2880 +

4χ

3
)λ2;

and

κ̃0,3,0,0 − 9κ̃0,1,0,1 = (
42

84
+

11χ

45360
)λ2.

It would be interesting to know if all such classes lie in Q 〈λ〉.

4.5. Generalized Franchetta conjecture for hyperkählers. Assume
that general members in Fh have trivial group of automorphisms. Then
let F◦h ⊆ Fh denote the open subset that parametrizes the hyperkähler
manifolds with trivial automorphism groups. It carries a universal family

π◦ : U◦h → F◦h .

Motivated by O’Grady’s generalized Franchetta conjecture we formulate the
following conjecture for U◦h . We will referred to it also as the generalized
Franchetta conjecture.

Conjecture 6. Let Tπ◦ be the relative tangent bundle of π◦ : U◦h → F◦h.

Then given any class α ∈ CH2n(U◦h), there exists m ∈ Q such that α −
mc2n(Tπ◦) is supported on a proper subvariety of F◦h.

After our work, Fu, Laterveer, Vial and Shen have strengthened Conjec-
ture 2 to deal with relative Chow groups of U◦h → F◦h in all codimensions.

Conjecture 7. [24, Conjecture 1.3] For any α ∈ CHi(U◦h), then the restric-
tion of α to the very general fiber of U◦h → F◦h is rationally equivalent to zero
if and only it is homologus equivalent to zero.
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In [24], Conjecture 7 has been proved for some polarized K3[n]-type hy-
perähler manifolds. Their idea is similar as [57], which needs the concrete
projective models of hyperkähler manifolds. In general, the conjectures are
all widely open.

The conjecture can be stated for the moduli stack. Then the assumption
on the triviality of the automorphism group of the generic fiber of the uni-
versal family can be removed. In §8.1, we prove the cohomological version
of this conjecture for hyperkähler manifolds whose second Betti number is
sufficiently large (with respect to the dimension).

4.6. Tautological classes in Deligne-Beilinson Cohomology. It is ac-
tually more natural to consider these questions in the Deligne-Beilinson
cohomology of our moduli spaces. This is motivated by the theory of Bloch-
Beilinson. Let X be a smooth quasi-projective variety over Q̄ and let XC
be the corresponding complex variety. Let H•D(XC,Z(p)) be the Deligne-
Beilinson cohomology of a smooth variety XC; it is defined as the hyperco-
homology of the Deligne-Beilinson complex (cf. [21]). There is a composite
cycle class map

(4.14) clD : CHk(X)→ CHk(XC)→ H2k
D (XC,Z(k))⊗Q.

Then the Bloch-Beilinson Conjecture and the Hodge conjecture predict that
this map is injective (cf. [17, Proposition 3.2.6], see also [36, 37]). As both our
moduli spaces and our tautological classes are defined over number fields,
both Conjecture 4 and Conjecture 6 would follow from a proof of their
Deligne-Beilinson cohomological versions and the injectivity of (4.14). All
these conjectures remain wide open in general. In a sequel to this paper, we
plan to study the Deligne-Beilinson cohomological versions of Conjectures 4
and 6 for moduli spaces of K3 surfaces.

5. Shimura varieties of orthogonal type

In this section, we discuss Kudla-Millson’s construction of special cycles
on Shimura varieties of orthogonal type as well as its generalization by Funke
and Millson to special cycles with coefficients. We also discuss the connection
with Noether-Lefschetz cycles on moduli spaces of polarized hyperkähler
manifolds.

5.1. Shimura varieties of orthogonal type. Let V be a non-degenerate
quadratic space over Q of signature (2, b) and let G = SO(V ) be the cor-
responding special orthogonal group. The group G(R) of real points of G
is isomorphic to SO(2, b). We denote by G(R)+

∼= SO0(2, b) the component
of the identity; recall that it is precisely the kernel of the spinor norm. Let
KR ∼= SO(2) × SO(b) be a maximal compact subgroup of G(R)+ and let

D̂ = G(R)/KR. We denote by D the connected component of D̂ associ-
ated to G(R)+. We have D ∼= SO0(2, b)/SO(2) × SO(b), it is a Hermitian
symmetric domain of dimension b.
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Let G̃ be the general spin group GSpin(V ) associated to V . For any

compact open subgroup K ⊆ G(Af ), we set K̃ to be its preimage in G̃(Af )
and denote by XK the double coset space

G̃(Q)\D̂ × G̃(Af )/K̃.

Let G̃(Q)+ ⊆ G̃(Q) be the subgroup consisting of elements with totally

positive spinor norm, which can be viewed as the subgroup of G̃(Q) lying in

the identity component of the adjoint group of G̃(R). Write

G̃(Af ) =
∐
j

G̃(Q)+gjK̃.

The decomposition of XK into connected components is

XK =
∐
gj

Γgj\D,

where Γgj is the image of G̃(Q)+ ∩ gjK̃g−1
j in SO0(2, b). When gj = 1, we

denote by ΓK the arithmetic group Γ1 = K ∩ G(Q) and YK = ΓK\D the
connected component of XK .

5.2. Connected cycles with coefficients. Let U be a Q-subspace of V
with dimU = r and such that the quadratic form is negative definite when

restricted to U . Let D̂U ⊂ D̂ be the subset consisting of the 2-planes that

are perpendicular to U and let DU = D̂U ∩D.

For a fixed compact open subgroup K ⊆ G(Af ) and an element g ∈ G̃(Af )

we let Γg be the image of G̃(Q)+ ∩ gK̃g−1 in SO0(2, b). Denote by Γg,U the

image in SO0(2, b) of the pointwise stabilizer of U in G̃(Q)+ ∩ gK̃g−1. We
then have a map

(5.1) Γg,U\DU −→ Γg\D.

Following Kudla [34] we will denote this connected cycle (with trivial co-
efficients) by c(U, g,K); it is of codimension r. We let SCr(YK) ⊆ CHr(YK)
be the subgroup spanned by connected cycles c(U, 1,K) of codimension r
and set

SC∗(YK) ⊆ CH∗(YK)

to be the subalgebra generated by connected cycles of all codimensions. We
list some simple properties of connected cycles.

• Let K ′ ⊆ K be an open compact subgroup and let f : YK′ → YK be
the covering map. Then

(5.2) f(c(U, 1,K ′)) = c(U, 1,K) and f∗(SCr(YK)) ⊆ SCr(YK′).

• For the map ι : Γ1,U\DU → YK in (5.1), we have

(5.3) ι∗(SCk(Γ1,U\DU )) ⊆ SCk(YK).

Here we write SCk(X) := SCdimX−k(X).
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5.3. Now we give some description of the ring SC∗(YK). Firstly, besides
the connected cycles, there is the Hodge line bundle on YK . We denote by
λ its first Chern class in CH1(YK). It is preserved under the pullback via
(5.1).

Lemma 5.3.1. [6, Corollary 8.7] The class λ ∈ SC1(YK).

This yields the following

Theorem 5.3.2. SC∗(YK) =
⊕
r

SCr(YK).

Proof. We need to show that the image of the intersection product

SCr1(YK)× SCr2(YK)
∩−→ SC∗(YK)

lies in SCr1+r2(YK). Let us first consider the case when r1 = 1. For any
two connected cycles α = c(U1, 1,K) ∈ SCr1(YK) and β = c(U2, 1,K) ∈
SCr2(YK), there are two possibilities:

(1) If α and β intersect properly, then α · β is a linear combination of
connected cycles c(U, 1,K) where U is spanned by U2 and an element
in the ΓK-orbit of U1.

(2) If β is contained in α, then we have

α · β ∈ 〈−λ · β〉
via a standard computation of the normal bundle of a connected
cycle of codimension one (cf. [54, Lemma 1.2] [53]). By Lemma 5.3.1
and (5.3), we know that

−λ · β ∈ SC1+r2(YK).

It follows that α · β ∈ SC1+r2(YK).

This further gives

(5.4) α1 · α2 · · ·αr · γ ∈ SCr+r2(YK)

for any α1, . . . , αr ∈ SC1(YK) and γ ∈ SCr2(YK).
When r1 > 1, given a connected cycle c(U1, 1,K) of codimension r1 on

YK , an easy inductive argument shows that there exists an open compact
subgroup K ′ ⊆ K such that the connected cycle

c(U1, 1,K
′) ⊆ YK′

can be written as an intersection of r1 connected cycles of codimension one,
i.e.

(5.5) c(U1, 1,K
′) = c(W1, 1,K

′) · c(W2, 1,K
′) · · · c(Wr1 , 1,K

′),

for some subspaces Wj with dimWj = 1. If f : YK′ → YK is the covering
map, then

(5.6) c(U1, 1,K
′) · f∗(β) ∈ SCr1+r2(YK′), ∀β ∈ SCr2(YK)

by (5.2) and (5.4). As f(c(U1, 1,K
′)) = c(U1, 1,K), the projection formula

gives c(U1, 1,K) · β ∈ SCr1+r2(Yk).
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♣

Remark 5.3.3. Similar questions have been asked by Kudla in [34], where
one consider the ring generated by special cycles instead of connected cycles.
We believe our argument might still work.

To conclude this paragraph we relate connected cycles to Noether-Lefschetz
cycles via the period map Ph : Fh → Γh\D. The following proposition is
then straightforward.

Proposition 5.3.4. The irreducible Noether-Lefschetz cycles are the restric-
tion of connected cycles on Γh\D to Fh. In particular,

(5.7) NL∗(Fh) = P∗h(SC∗(Γh\D)).

More generally, one can easily see that (5.7) holds for the Noether-Lefschetz
ring on the moduli space of lattice polarized hyperkähler manifolds with level
structures.

5.4. Now following Funke and Millson [26] we promote the connected cy-
cles c(U, g,K) to cycles with non-trivial coefficients. First recall that given
any partition λ = (λ1, λ2, . . . , λk), with k =

[
b+2

2

]
, the harmonic Schur func-

tor associates to the quadratic space V a finite dimensional O(V )-module
S[λ](V ) which is irreducible of highest weight λ. As such it defines a fiber
bundle

(5.8) Γg\(D × S[λ](V ))→ Γg\D.
We will use E to denote the associated local system.

Now let x = (x1, . . . , xr) be a rational basis of U . The vectors x1, . . . , xn
are all fixed by Γg,U . Hence any tensor word in the xj ’s is also fixed by Γg,U .
Given a tableau T on λ we denote by xT the corresponding harmonic tensor
in S[λ](V ), see [25].1 It is fixed by Γg,U and therefore gives rise to a parallel
section of the restriction of E over the connected cycle c(U, g,K). We define
connected cycles with coefficients in E by setting

c(x, g,K)T = c(U, g,K)⊗ xT where U = span(x1, . . . , xn).

The scalar product on V induces an inner product on S[λ](V ). Composing
the wedge product with this inner product and integrating the result over
YK we define a pairing

(5.9) 〈 , 〉 : H2r(YK ,E)×H2(b−r)
c (YK ,E)→ C,

where H∗c (−) denotes the de Rham cohomology with compact support. It
follows from Poincaré duality that the pairing (5.9) is perfect. Now if η is a
compactly supported S[λ](V )-valued closed 2(b−r)-form on YK we can form
the period ∫

c(x,g,K)T

η =

∫
c(U,g,K)

(η,xT ).

1Beware that a tableau is called a semi standard filling in [26].
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Thus, corresponding to c(x, g,K)T (a connected cycle with coefficients) we

have a linear form on H
2(b−r)
c (YK ,E). Since the pairing (5.9) is perfect this

linear form in turn defines a class [c(x, g,K)T ] in H2r(YK ,E). We shall
refer to the corresponding map as the cycle class map (with coefficients).
We denote by SC∗hom(YK ,E) the subgroup of H∗(YK ,E) generated by the
cycle classes [c(x, g,K)T ] (as x and T vary).

Remark 5.4.1. When λ = 0 the representation S[λ](V ) is trivial and the
cycle class map is obtained by composing the inclusion map SCr(YK) ⊆
CHr(YK) with the usual cycle class map CHr(YK)→ H2r(YK).

If K ′ ⊆ K is a compact open normal subgroup, the finite covering group
ΓK/ΓK′ that acts on H2r(YK′ ,E) preserves the image SCr

hom(YK′ ,E) of the
cycle class map and, since the covering projection map YK′ → YK maps
connected cycles to connected cycles, we have:

(5.10) SCr
hom(YK′ ,E)ΓK/ΓK′ = SCr

hom(YK ,E).

5.5. Zucker’s conjecture and Hodge theory. As a key ingredient, we
shall explain the connection between the ordinary cohomology and L2-
cohomology of YK . As we will see later, the latter is well understood as
relative Lie algebra cohomology, which naturally links to representation the-
ory.

We assume that YK is smooth and fix a local system E as in the pre-
ceding paragraph. Let H i

(2)(YK ,E) be the i-th L2-cohomology of YK with

coefficients in E. By Hodge theory, the group H i
(2)(YK ,E) is isomorphic to

the space of L2-harmonic i-forms, which is a finite dimensional vector space

with a natural Hodge structure (see [9]). Let Y
bb
K be the Baily-Borel-Satake

compactification of YK . Zucker’s conjecture, proved by Looijenga [39] and
by Saper and Stern [62] states that

Theorem 5.5.1. There is an isomorphism

(5.11) Hk
(2)(YK ,E) ∼= IHk(Y

bb
K ,E),

where IH•(Y
bb
K ,E) is the intersection cohomology with middle perversity on

Y
bb
K .

For our purpose, we shall also consider the Hodge, or mixed Hodge, struc-
tures on these cohomology groups. Here, as the local system E underlies a

natural variation of Hodge structure over YK (cf. [74]), IHk(Y
bb
K ,E) carries

a mixed Hodge structure by Saito’s [61] mixed Hodge module theory. A
priori the two Hodge structures need not correspond under the isomorphism
but Harris and Zucker [27, Theorem 5.4] nevertheless prove:

Theorem 5.5.2. Let

(5.12) ξk : Hk
(2)(YK ,E)→ Hk(YK ,E)
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be the composition of the isomorphism Hk
(2)(YK ,E) ∼= IHk(Y

bb
K ,E) of The-

orem 5.5.1 with the natural map IHk(Y
bb
K ,E) → Hk(YK ,E). Then ξk is a

morphism of mixed Hodge structures.

The image of ξk is the lowest non-zero weight in the mixed Hodge struc-
ture of Hk(YK ,E) (see Remark 5.5 of [27]). In particular, the subspace
SCr

hom(YK ,E) lies in the image of ξ2r.

Corollary 5.5.3. We have

(5.13) Hk
(2)(YK ,E) ∼= Hk(YK ,E)

as a morphism of Hodge structure for all k < b− 1.

Proof. The isomorphism (5.13) holds because the boundary of Y
bb
K has di-

mension at most one. See [27, Remark 5.5] for the second statement. ♣

6. A surjectivity result for theta lifting

In this section, we recap the work in [6] on the surjectivity of global theta
lifting for cohomological automorphic representations with trivial coefficients
of orthogonal groups. We also explain how to extend to the case of nontrivial
coefficients.

6.1. Global theta correspondence. Here we briefly review Howe’s global
theta correspondence — see e.g. [31, 47] for more details. Let us first
fix some notations. Let V be a non-degenerate quadratic space over Q of
signature (2, b) and let W be a symplectic space over Q of dimension 2r.
We denote by G′ = Mp2r(W ) the symplectic group Sp(W ) if b is even and
the metaplectic double cover of Sp(W ) if b is odd.

Fix a nontrivial additive character ψ of A/Q. We denote by ωψ the
(automorphic) Weil representation of O(V )(A)×G′(A) realized in the space
S(V (A)r) of Schwartz-Bruhat functions on V (A)r — the so-called Schrödinger
model of the Weil representation. For each φ ∈ S(V (A)r) we form the theta
function on O(V )(A)×G′(A):

(6.1) θψ,φ(g, g′) =
∑

ξ∈V (Q)r

ωψ(g, g′)(φ)(ξ).

Given an irreducible cuspidal automorphic representation (τ,Hτ ) of G′(A)
which occurs as an irreducible subspace of L2(G′Q)\G′(A)) and given an
element f in that subspace, we can form the theta integral

(6.2) θfψ,φ(g) =

∫
G′(Q)\G′(A)

θψ,φ(g, g′)f(g′)dg′.

It is absolutely convergent and defines an automorphic function on O(V )(A),
called the global theta lift of f . We shall denote by θψ,V (τ) the space of the

automorphic representation generated by all the global theta lifts θfψ,φ as f
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and φ vary. We shall refer to the corresponding automorphic representation
of O(V )(A) as the global ψ-theta lift of τ to O(V ).

Definition 6.1.1. We say that an irreducible automorphic representation
π occurring discretely in L2(G(Q)\G(A)), i.e. π ∈ A(G), is in the image of
the cuspidal ψ-theta correspondence from a smaller symplectic group if there
exists a symplectic space W with dimW ≤ 2

[
b+2

2

]
and an extension π̃ of π

to O(V ) such that π̃ is the global ψ-theta lift of an irreducible cuspidal au-
tomorphic representation of G′ = Mp2r(W ), i.e. there exists τ ∈ Acusp(G′)
such that π̃ ↪→ θψ,V (τ).

6.2. Cohomological representations. Throughout this section, we let
E be a finite dimensional irreducible representation of G(R). Let KR ∼=
SO(2)× SO(b) be as above. Denote by θ the corresponding Cartan involu-
tion and let g0 = k0 ⊕ p0 be the associated Cartan decomposition of the Lie
algebra g0 of G(R). We fix a Cartan subalgebra t0 ⊂ k0. We shall denote by
a the complexification of a real Lie algebra a0.

A unitary representation πR of G(R) is cohomological (with respect to
E) if its associated (g,KR)-module π∞R has nonzero relative Lie algebra
cohomology, i.e.

(6.3) H•(g,KR;π∞R ⊗ E) 6= 0.

The unitary (g,KR)-modules with nonzero cohomology have been classi-
fied by Vogan and Zuckerman [69]. They are determined by θ-stable par-
abolic subalgebras q ⊂ g: then q = l ⊕ u, where l is the centralizer of an
element X ∈ it0 and u is the span of the positive roots of X in g. Then
the Lie algebra l is the complexification of l0 = l ∩ g0 and we let L be the
connected subgroup of G(R) with Lie algebra l0. Associated to q, there is a
well-defined, irreducible representation V (q) of KR that occurs with multi-
plicity one in ∧Rp where R = dim(u∩p). Now if (6.3) holds there exists some
q such that the Cartan product of V (q) and E∗ occurs with multiplicity one
in ∧Rp ⊗ E∗ and the (g,KR)-module π∞R is isomorphic to some irreducible
(g,KR)-module Aq(E) characterized by the following two properties:

(1) Aq(E) is unitary with the same infinitesimal character as E.
(2) The Cartan product of V (q) and E∗ occurs (with multiplicity one)

in Aq(E).

In our case KR = SO(2) × SO(b) acts on p = (C2)∗ ⊗ Cb through the
standard representation of SO(2) on C2 and the standard representation of
SO(b) on Cb. We denote by C+ and C− the C-span of the vectors e1 + ie2

and e1− ie2 in C2. The two lines C+ and C− are left stable by SO(2). This
yields a decomposition p = p+⊕p− which corresponds to the decomposition
given by the natural complex structure on p0. For each non-negative integer
p the KR-representation ∧pp = ∧p(p+ ⊕ p−) decomposes as the sum:

∧pp =
⊕
r+s=p

∧rp+ ⊗ ∧rp−.
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The KR-representations ∧rp+ ⊗ ∧sp− are not irreducible in general: there
is at least a further splitting given by the Lefschetz decomposition:

∧rp+ ⊗ ∧sp− =

min(r,s)⊕
k=0

τr−k,s−k.

One can check that for 2(r+s) < b each KR-representation τr,s is irreducible.
Moreover in the range 2(r + s) < b only those with r = s can occur as a
KR-type V (q) associated to a cohomological module. In the special case
r = s one can moreover check that each τr,r is irreducible as long as r < b;
it is isomorphic to some V (q) where the Levi subgroup L associated to q is
isomorphic to C × SO0(2, b− 2r) with C ⊂ KR.

It follows in particular that if πR is an irreducible unitary representation
of G(R) that satisfies

Hr,r(g,KR;π∞R ⊗ E) 6= 0

for some r < b then π∞R is isomorphic to the unique unitary (g,KR)-module
that has the same infinitesimal character as E and contains the Cartan
product of τr,r and E∗. We shall denote by Ar,r(E) this (g,KR)-module.
We have:

H i,j(g,KR;Ar,r(E)⊗ E) =

 C if r ≤ i = j ≤ b− r, 2i 6= b
C+ C if 2i = 2j = b
0 otherwise.

We refer to [7, §5.2 and 5.4] for more details.
Note that Ar,r(E) can only contribute to even degree cohomology. The

following vanishing result therefore follows from the above classification (and
Matsushima’s formula (6.4) below).

Proposition 6.2.1. For any odd degree i < b/2 and any local system E we
have

H i(YK ,E) = 0.

Proof. Since i < b/2 implies i < b − 1 we have H i(YK ,E) ∼= H i
(2)(YK ,E).

The proposition then follows from the fact that in the range r+ s < b/2 the
only KR-types τr,s that can occur in a cohomological representation are the
ones with r = s. ♣

6.3. Surjectivity of the theta lift. The following theorem is proved in [6,
Theorem 7.7] when E is the trivial representation. It was proved in [7] for
general E but under the hypothesis that π is cuspidal. To be able to deal
with residual representations as well was the main input of [6]. Though the
results of [6] only address the case where E is the trivial representation, the
proofs (see especially the key Proposition 6.2) only make use of the fact that
cohomological representations have integral regular infinitesimal characters,
which is still true for representations that are cohomological with respect to
E. We shall therefore not repeat the proof and simply refer to [6] for the
proof of:
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Theorem 6.3.1. Let π = ⊗πv ∈ A(G) be a square integrable automor-
phic representation of G. Suppose that the (g,KR)-module π∞R of the local
Archimedean component of π is isomorphic to some cohomological module
Ar,r(E) with 3r < b + 1. Then there exists a cuspidal representation τ of
Mp2r(A) such that π (up to a twist by a quadratic character) is in the image
of the theta lift of τ .

6.4. Theta classes in cohomology groups. We keep all notations as in
§5.1. We construct some special cohomology classes (with respect to the
local system E) on YK from the relative Lie algebra cohomology of (g,KR)-
modules. We write

π = πR ⊗ πf ∈ A2(G),

and let πKf be the finite dimensional subspaces of K-invariant vectors in πf .
According to Matsushima’s formula and Langlands spectral decomposition
(see [8], [6, §7.8]), we have

(6.4) H i
(2)(XK ,E) ∼=

⊕
π∈A(G)

m(π)H i(g,KR;π∞R ⊗ E)⊗ πKf

where π occurs discretely in L2(G(Q)\G(A)) with multiplicity m(π). Fol-
lowing [6], we define the space of theta classes

H i
θ(XK ,E) ⊆ H i(XK ,E)

as the subspace generated by the image of H i(g,KR;π∞R ⊗E) via (6.4) and
(5.12), where π varies among the irreducible representations in A(G) which
are in the image of the ψ-cuspidal theta correspondence from a smaller
symplectic group. The space H i

θ(YK ,E) of theta classes on YK is naturally
defined by restriction. The main result in [6] can be reformulated as:

Theorem 6.4.1. There is an inclusion

(6.5) H2r
θ (YK ,E) ⊆ SCr

hom(YK ,E).

Moreover, H2r
θ (YK ,E) = Hr,r(YK ,E) when r < b+1

3 or r > 2b−1
3 .

Proof. The inclusion (6.5) follows from (the proof of) [7, Proposition 11.3].2

The last assertion follows from Theorem 6.5, the decomposition (6.4) and
the fact that if πR is an irreducible unitary representation of G(R) that
satisfies

Hr,r(g,KR;π∞R ⊗ E) 6= 0

for some r < b then π∞R is isomorphic to Ar,r(E). Note that the fact that
H2r
θ (YK ,E) is contained in Hr,r(YK ,E) obviously follows from the inclusion

(6.5). It also follows from the fact that the only cohomological representa-
tions that are in the image of the local Archimedean theta correspondence
are the Ar,r(E), see [6, §7.2] and [38]. ♣

2Beware that our space SC∗ is a priori larger than the one defined in [7].
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Let H2k
alg(YK ,C) be the image of CHk(YK)⊗C in H2k(YK ,C) via the cycle

class map. Following [59], one can use Zucker’s conjecture and the hard
Lefschetz theorem on intersection cohomology to get the following result

Corollary 6.4.2. When b > 3, we have

(6.6) H2b−2
alg (YK ,C) = 0.

Proof. Let us quickly sketch the proof. Let λ be the Hodge line bundle on
YK . By [6] and Zucker’s conjecture (Theorem 5.5.1), we have that

(6.7) IH2(Y
bb
K ,C) ∼= H2(YK ,C)

is generated by connected cycles of codimension one. Next, as λ is ample,
the hard Lefschetz theorem for intersection cohomology implies that the
image of the map

(6.8) ξ2b−2 : IH2b−2(Y
bb
K ,C)→ H2b−2(YK ,C)

is spanned by the class of λb−2 ·c(U, g,K). By [65], the class λb−2 ·c(U, g,K)

is zero in H2b−2(YK ,C) when dim c(U, g,K) ≥ 3. Since H2b−2
alg (YK ,C) lies

in the image of ξ2b−2, this proves the assertion. ♣

Let us finally define theta classes in the cohomology groups of the moduli
spaces discussed in Section 3. Assume that E is a finite dimensional repre-
sentation of SO(ΛR). Recall that there is a period map PΣ : FΣ,h → ΓΣ\DΣ.
Let E = P∗Σ(E) be the pullback of E to FΣ,h. Then we define

(6.9) H•θ (FΣ,h,E) := P∗Σ(H•θ (ΓΣ\DΣ,E)).

as the subspace of theta classes on FΣ,h. It follows from Theorem 6.4.1 that:

Corollary 6.4.3. There is an inclusion

H2r
θ (FΣ,h,E) ⊆ P∗Σ(SCr

hom(ΓΣ\DΣ,E))

for all r.

7. The Funke-Kudla-Millson ring

In this section, we introduce special Schwartz forms at the Archimedean
place and Kudla-Millson’s special theta lift. Following [7] and [6], this estab-
lishes a connection between special cycle classes and theta classes as defined
in §5.3. More importantly for us, we show that this yields a so called Funke-
Kudla-Millson ring, or just FKM ring, in the space of differential forms
with coefficients, which plays the key role in our study of the cohomological
tautological conjecture.
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7.1. Special Schwartz forms. In this subsection we let V be a real qua-
dratic space of signature (b, 2) of dimension m = b + 2. We use signature
(b, 2) rather than signature (2, b) in order to follow the notations of the
works of Kudla-Millson and Funke-Millson; when applied to our geometric
situation we will reverse the variables.

Pick an oriented orthogonal basis {vi} of V such that (vα, vα) = 1 for
α = 1, . . . , b and (vµ, vµ) = −1 for µ = b + 1, b + 2. We shall use the
notations of [7].

Kudla and Millson [35] and then Funke and Millson [26] have constructed
special Schwartz forms ϕ in[

S(V r)⊗A2r(D)⊗ T `(V )
]O(V ) ∼= HomKR(∧2rp,S(V r)⊗ T `(V )).

By abuse of notations we also denote by T `(V ) the local system on D asso-
ciated to T `(V ). If x ∈ V r we then have ϕ(x) ∈ A2r(D,T `(V )).

We shall rather work with the polynomial Fock model for the dual pair
O(b, 2)×Sp2r(R), see [7, Section 7]. We denote by ι the intertwining operator
from the Schrödinger model to the Fock model, see [35, Section 6]. The map
ι maps the vectors of S(V r) that are finite under the action of a maximal
compact subgroup U(2rm) of the symplectic group Sp2rm containing the
dual pair onto the space of polynomials

P(Cmr) ∼= C[z1,j , . . . , zm,j : j = 1, . . . r].

Here if x = (x1, . . . , xr) ∈ V r we have

xj =
b∑

α=1

zα,jvα +
b+2∑

µ=b+1

zµ,jvµ.

We will use the notation P(Cmr)+ to denote the polynomials in the “posi-
tive” variables zα,j , 1 ≤ α ≤ b, 1 ≤ j ≤ r. As suggested by the notation,
we shall think of (zα,j) as a complex b× r-matrix. In this way P(Cmr)+ is
identified with the space Pol(Mb,r) of polynomials in the entries of complex
b× r-matrices.

As a subgroup of U(2rm), the intersection

K∞ ×K ′∞ = (O(b, 2)× Sp2r(R)) ∩U(2rm)

acts on P(Cmr) (Fock model of the Weil representation) and preserves the
subspace P(Cmr)+. Here K∞ ∼= O(b)×O(2) is a maximal compact subgroup
of O(b, 2) and K ′∞ is a maximal compact subgroup of Sp2r(R). Through the
isomorphism

P(Cmr)+
∼= Pol(Mb,r(C))

the action of O(b)×{1} ⊂ K∞ on P(Cmr)+ corresponds to the natural action
of O(b) on Pol(Mb,r(C)) induced by the linear left action on the columns of
the matrices.

First consider the case r = 1. Then we simply set zα = zα,1 and the space
P(Cmr)+ = P(Cm)+ is the space of polynomials in the variables zα. Note
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that p ∼= Cb ⊗ C2; we let ωα,µ be the linear form which maps an element
of p to its (α, µ)-coordinate. For any multi-index α = (α1, α2) we write
ωα = ωα1,b+1 ∧ ωα2,b+2 and zα = zα1zα2 . The form∑

α

zα ⊗ ωα ∈ HomK∞(∧2p,P(Cm)+)

is precisely the image ι(ϕ1,0) of the Schwartz form ϕ1,0 ∈ HomK∞(∧2p,S(V )),
constructed by Kudla and Millson, under the intertwining operator ι. The
natural product

r⊗
j=1

C[z1,j , . . . , zb,j ]→ C[z1,j , . . . , zb,j : j = 1, . . . r]

induces a natural map

HomK∞(∧2p,P(Cm)+)⊗r → HomK∞(∧2rp,P(Cmr)+)

which maps
r⊗
j=1

(∑
α

zα,j ⊗ ωα

)
onto ι(ϕr,0), the image of the Kudla-Millson form ϕr,0 ∈ HomK∞(∧2rp,S(V r)).
We shall abusively denote it ϕr,0 as well.

We now describe Funke-Millson forms. For any multi-index α = (α1, . . . , α`)
we let

vα = vα1 ⊗ · · · ⊗ vα` ∈ T
`(V ).

Given any `-tuple I = (i1, . . . , i`) of integers, with 1 ≤ ij ≤ b we define

ϕI0,` ∈ Hom(C, [P(Cmr)+ ⊗ T `(V )]K∞)

by

ϕI0,` =
∑
α

(zα1,i1 · · · zα`,i`)⊗ vα.

Using the natural product on P(Cmr)+, we have

ϕIr,` = ϕr,0 · ϕI0,` ∈ HomK∞(∧2rp,P(Cmr)+ ⊗ T `(V )).

We shall denote ΦT `(V ) the subspace of HomK∞(∧2rp,P(Cmr) ⊗ T `(V ))

spanned by the Schwarz forms ϕIr,`.

Now fix a partition λ = (λ1, . . . , λk), with k =
[
m
2

]
, and let ` = λ1 +

. . . + λk. The finite dimensional O(V )-module S[λ](V ) can be obtained as

the image of the classical Schur functor Sλ(V ) ⊂ T `(V ) under the O(V )-
equivariant projection of T `(V ) onto the harmonic tensors. We denote by
π[λ] the corresponding O(V )-equivariant projection of T `(V ) onto S[λ](V ).
We set

ϕIr,[λ] = (1⊗ π[λ]) ◦ ϕIr,`.
We shall denote Φ2r

[λ] the subspace of HomK∞(∧2rp,P(Cmr)⊗T `(V )) spanned

by the Schwarz forms ϕIr,[λ].
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More generally if E is any finite dimensional representation, it decomposes
into a finite direct sum (with multiplicities) of O(V )-modules S[λ](V ) and we

shall denote Φ2r
E the finite direct sum of the corresponding Φ2r

[λ]’s identified as

a subspace of HomK∞(∧2rp,P(Cmr)⊗E). We will in fact abusively identify
Φ2r
E with a subspace

Φ2r
E ⊂

[
S(V r)⊗A2r(D)⊗ E

]O(V )

using the intertwining operator ι.

7.2. The Funke-Kudla-Millson ring. Consider a finite graded ring of
finite dimensional representations H∗ of O(V ). We use the above special
Schwartz forms to construct a subring of the bi-graded complex

(7.1)
⊕
i,j

[
S(V i)⊗A2i(D)⊗Hj

]O(V )
.

Indeed, the wedge product

∧ : A2i(D,Hj)×A2i′(D,Hj′)→ A2(i+i′)(D,Hj ⊗Hj′)

composed with the product Hj⊗Hj′ → Hj+j′ yields a ring structure on (7.1)

and since the latter obviously maps Φ2i
Hj × Φ2i′

Hj′ into Φ
2(i+i′)

Hj+j′ we conclude:

Proposition 7.2.1. The subspace⊕
i,j

Φ2i
Hj ⊂

⊕
i,j

[
S(V i)⊗A2i(D)⊗Hj

]O(V )

is a subring.

Consider now a (global) arithmetic quotient YK with K ⊂ O(V )(Af ) an
open compact subgroup. Let ϕ ∈ S(V (Af )i) be a K-invariant Schwartz
function for some i. Then for any ϕR ∈ Φ2i

Hj , we define a global Schwartz
form

φ = ϕR ⊗ ϕ ∈
[
S(V (A)i)⊗A2i(D)⊗Hj

]O(V )
.

Applying the theta distribution (6.1) to φ yields a theta function θψ,φ(g, g′)
which, as a function of g ∈ O(V ), defines a differential form in A2i(XK ,H

j).
Varying ϕ and g′ we obtain a subspace

A2i
FKM(XK ,H

j) ⊂ A2i(XK ,H
j).

It follows from Proposition 7.2.1 that

(7.2) ΦH∗ :=
⊕
i,j

A2i
FKM(XK ,H

j)

is a subring of the graded ring
⊕

i,j A
2i(XK ,H

j); we shall refer to it as the
Funke-Kudla-Millson ring of XK . Restricting to the connected component
YK ⊂ XK yields the Funke-Kudla-Millson ring of YK .
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7.3. Relation with θ-classes. By construction, the cohomology class of a
differential form in A2i

FKM(YK ,H
j) is a θ-class in

H i,i
θ (YK ,H

j) := H2i
θ (YK ,H

j) ∩H i,i(YK ,H
j).

It turns out that the converse is also true:

Proposition 7.3.1 (see Theorem 11.2 of [7]). Any class in H i,i
θ (YK ,H

j)

can be represented by a differential form in A2i
FKM(YK ,H

j).

8. Universal families of polarized hyperkähler manifolds

In this section, we study the cohomology groups of universal families of
polarized hyperkähler manifolds via Deligne’s decomposition theorem and
prove the cohomological Franchetta conjecture. Furthermore, we prove the
cohomological tautological conjecture using the FKM ring. Throughout this
section, we shall be concerned with hyperkähler manifolds of type Λ and
rank Λ = 3 + b.

8.1. Cohomology of universal families of hyperkähler manifolds.
Let π : U → F be a smooth family of polarized hyperkähler manifolds over
a variety F . Let Hiπ denote the local system on F whose fiber at a point
p ∈ F is H i(Up,Q), with Up = π−1(p). According to the decomposition
theorem of Deligne [19], we have

(8.1) Hk(U ,Q) ∼=
⊕
i+j=k

H i(F ;Hjπ)

compatible with the mixed Hodge structure on both sides (cf. [18, §4.3]).
For our purpose, we shall consider the universal family (as stacks)

π` : U `h → F `h
of polarized hyperkähler manifolds of type Λ and dimension 2n with a full
`-level structure defined in §3.4. The decomposition theorem still applies
in this case via equivariant cohomology. Our first result is a cohomologi-
cal version of O’Grady’s generalized Franchetta conjecture for hyperkähler
manifolds. Here we work with stack cohomology.

Theorem 8.1.1. Let mΛ be the second Betti number of hyperkähler mani-
folds in F `h. Assume that r < mΛ−3

4 . For any class α ∈ CHr(U `h,Q), if the
restriction of α to the very general fiber of π` is homologous to zero, then
its fudamental class [α] is supported on proper subvarieties, i.e. there exists
an open subset U ⊆ F `h such that [α] is homologous to zero in π−1

` (U). In
particular, Theorem 1.2.1 holds.

Proof. Obviously, we can assume ` is sufficiently large. The local system
Hiπ` = Ri(π`)∗Q on F `h descends to its coarse moduli space F `h. There is a
natural isomorphism

(8.2) Hk(F `h,Hiπ`) ∼= Hk(F `h,Hiπ`)
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and we may regard F `h as an open subset of Γ`h\D.
Next, under our hypothesis, Proposition 6.2.1 implies that, in the degrees

i ≤ 2r we are concerned with, only even degrees contribute non-trivially to
the algebraic part of the decomposition (8.1). By assumption, we have

(8.3) [α] ∈
r⊕
i=1

H2i(F `h,H2(r−i)
π`

).

Denote by γi ∈ H2i(F `h,H
2(r−i)
π` ) the i-th component of (8.3). Since [α] is

algebraic, it lies in the lowest weight subspace of H2r(U `h,Q). As (8.1) is
compatible with the mixed Hodge structure on both sides, each γi lies in

the lowest weight subspace of H2i(F `h,H
2(r−i)
π` ).

Recall that Lemma 3.6.1 implies that there exists an automorphic local
system

H• =
⊕

Hj

on Γ`h\D such that Hjπ` = Rj(π`)∗Q on F `h is the pullback (P`h)∗Hj . So we
have a natural map

(P`h)∗ : H2i(Γ`h\D,H2r−2i)→ H2i(F `h,H2r−2i
π`

) ∼= H2i(F `h,H2r−2i
π`

)

induced by P`h, which is a mixed Hodge structure morphism, and it is sur-
jective onto the non-zero lowest weight part. We can therefore lift γi to an
element

γ̃i ∈ H2i(Γ`h\D,H2r−2i),

with lowest weight (cf. [61, 58]). Now it suffices to show

(8.4) γ̃i ∈ SCi
hom(Γ`h\D,H2r−2i)

since elements in SCi
hom(Γ`h\D,H2r−2i) are obviously supported on proper

Shimura subvarieties.
Finally, as the local system H• arises from a finite dimensional repre-

sentation of O(V ), Theorem 6.4.1 can be applied and this directly implies

(8.4). In particular, the conditions in Theorem 8.1.1 hold for K3[n]-type hy-
perkähler manifolds with n ≤ 2 for all r and hence Theorem 1.2.1 holds. ♣

8.2. Leray spectral sequence and cup product. There are natural cup
products on both sides of (8.1). In general these coincide only on the asso-
ciated graded rings, see e.g. [10]. However Voisin [72] has proved that these
two cup products are compatible for K3 surfaces after shrinking to a smaller
open subset. In what follows we partially extend her results to families of
hyperkähler manifolds.

Let us first make some conventions. In this subsection, we will deal with
the universal family of lattice polarized hyperkähler manifolds with level
structures (see §3.3 for all notions). For simplicity of notation, we will use
π : U → F to denote the universal family U `Σ,h → F `Σ,h of h-ample Σ-
polarized hyperkähler manifolds with a full `-level structure and let Y =
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Γ`Σ\DΣ. We denote by
P : F → Y

the period map. Moreover, we choose ` sufficiently large so that Y is smooth
and Lemma 3.6.1 applies.

Consider on U the short exact sequence of vector bundles

0→ π∗ΩF → ΩU → ΩU/F → 0

that defines the fiber bundle of relative differential forms ΩU/F . This gives

a decreasing filtration L∗Ωq
U of the fiber bundle Ωq

U defined by

LpΩq
U = π∗Ωp

F ∧ Ωq−p
U .

The associated graded vector bundle is GrpLΩq
U = π∗Ωp

F ⊗Ωq−p
U . This yields

a filtration on the complex Aq(U) which is the space of smooth sections
of Ωq

U . We therefore have a corresponding (Leray) spectral sequence that
computes the cohomology of U from that of the base F and the fiber. The
E1 term is

Ep,q1 = Ap(F , Rqπ∗R).

Note that the filtration is compatible with the cup-product meaning that
if α ∈ Lp1Ak1(U) and β ∈ Lp2Ak2(U) then α ∧ β ∈ Lp1+p2Ak1+k2(U). The
cup-product on A∗(U) induces the natural structure on E1. Recall that
Rπ∗R is the pullback of a local system H• on Y that comes from a finite
dimensional representation of O(Σ⊥(R)). The pullback P∗ΦH• of the FKM
ring on Y associated to ΦH• defines a subring of E1; we will abusively refer
to it as the FKM subring of the E1 term of the Leray spectral sequence that
computes the cohomology of U from that of the base F and the fiber.

Theorem 8.2.1. Let the notations be as above. Given any two cycles
α1, α2 ∈ CH∗(U) of codimension < mΛ−3

4 , the two cup-products of [α1] and
[α2] in H∗(U ,C) associated to the two sides of (8.1) differ by a class sup-
ported on the Noether-Lefschetz locus of F .

Proof. Let 2kj be the degree of αj (j = 1, 2). Denote by α
(i)
j the 2i-th

component of αj in the decomposition (8.1). Since kj <
mΛ−3

4 , the argument

in the proof of Theorem 8.1.1 implies that each α
(i)
j can be lifted as a θ-

class in H2i
θ (Y,H2(kj−i)). Now Proposition 7.3.1 implies that such a θ-class

can be represented by a differential form in the FKM ring. It follows that
both α1 and α2 can be represented by elements of the FKM subring of the
E1 term of the Leray spectral sequence that computes the cohomology of
U from that of the base F and the fiber. Now, being a subring, the FKM
subring is stable by cup-products. It follows that α1 ∧ α2 belongs to the
FKM ring and that

α1 ∧ α2 − α(0)
1 ∧ α

(0)
2 ∈

k1+k2⊕
i=1

H i,i
θ (Y,H2(k1+k2−i))

is supported on the Noether-Lefschetz locus of F by Corollary 6.4.3. ♣
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8.3. Towards the Cohomological Tautological Conjecture. Suppose
that U → F is a smooth connected family of projective hyperkähler mani-
folds. We denote by R∗π(F) ⊆ CH∗(F) the subring generated by all κ-classes.
An easy fact is that inclusions

(8.5) NL∗π(F) ⊆ R∗π(F)

are preserved under the pullback by morphisms preserving the relative Pi-
card group (modulo DCH∗(F)). Here, a morphism between two families
π : U → F and π′ : U ′ → F ′ preserving the relative Picard group is a
commutative diagram

(8.6) U ′
f̄
//

π′

��

U
π
��

F ′
f
// F

with f̄∗Pic(U/F) ∼= Pic(U ′/F ′). This is because f∗(NL∗π(F)) ⊆ NL∗π′(F ′)
and f∗R∗π(F) = R∗π′(F ′) modulo DCH∗(F ′).

Using this fact, we can work with κ-classes on a general family of hy-
perkähler manifolds and Theorem 4.3.1 will be deduced from the following
result as a direct consequence.

Theorem 8.3.1. Let π : U → F be a smooth family of h-polarized hy-
perkähler manifolds of type Λ over an irreducible quasi-projective variety F
of dimension b ≥ 3. Let r+ 1 be the Picard number of the generic fiber of π
and let

B = {L0, . . . ,Lr} ⊂ PicQ(U)

be a collection of line bundles whose images in PicQ(U/F) form a basis. If
bj = 0 for j ≥ 1

4(mΛ − 3), the κ-class [κBa0,...,ar,b1,...b2n
] ∈ H∗(F ,Q) is lying

in NL∗hom(F).

Proof. According to the discussion above, it suffices to show that the asser-
tion holds when π : U → F is a connected component of the universal family
(as stacks) of lattice-polarized hyperkähler manifolds. Because of (5.10), we
can add level structures and further be reduced to the case where π : U → F
is the universal family U `Σ,h → F `Σ,h in §8.2.

To prove the assertion, we only need to show that the cup product

(8.7) cai1 (Li) . . . c1(Lr)ar . . . c1(Tπ)b1 . . . c2n(Tπ)b2n

lies in the FKM ring because the push-forward of classes in FKM ring lie
in H∗θ (F ,C). Then the same argument as in the proof of Theorem 8.2.1
implies that as long as b > 2, it suffices to show c1(Li) and cj(Tπ) lie in the
FKM ring on U .

Using the notations of §8.2, the cycle classes of c1(Li) and cj(Tπ) can be
lifted to classes in

⊕
p+q=2

Hp(Y,Hq) and
⊕

p+q=2j
Hp(Y,Hq) respectively via

the period map P : F → Y , as in the proof of Theorem 8.1.1.
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Next, by our assumption b ≥ 3, Theorem 6.4.1 implies that the FKM ring
on Y contains

⊕
p+q=2

Hp(Y,Hq) and
⊕

p+q=2j
Hp(Y,Hq) when j < mΛ−3

4 . This

proves our assertion.
Last, let us explain how we get the bound of j. Note that Theorem 6.4.1

actually only applies when j < dimY
4 . However, recall that the moduli space

F `h has dimension mΛ − 3, and cj(Tπ) can be lifted to the universal family

U `h → F `h as Tπ descends. The lifted class lies in the FKM ring of U `h by
Theorem 6.4.1 and the same argument as above. Then our claim follows
from the fact that the pullback of the FKM ring on U `h is contained in the
FKM ring of U . ♣

Remark 8.3.2. Theorem 8.3.1 is no longer true when dimF ≤ 2. For
instance, there exist divisors on Hilbert modular surfaces which are not in
the span of modular curves. (cf. [64])

Remark 8.3.3. One may have a weaker result if we replace the singular
cohomology of F `h by Deligne-Beilinson cohomology. e.g. See Theorem 9.3.3.

8.4. As one can see from the proof, the only obstruction for proving the co-
homological tautological conjecture for all hyperkähler moduli spaces is that
we do not know whether the i-th components of ck(Tπ) in the decomposition

(8.1) are theta classes when mΛ−3
2 ≤ i ≤ min{2k, 3(mΛ−3)

2 }.
As pointed out in [72] and [68, 63], the Beauville-Voisin conjecture actu-

ally predicts that every i-th component of ck(Tπ) lies in the last component
(after possibly shrinking to an open subset of Fh). This can be deduced
from the existence of so called “Chow-Kunneth” decomposition (cf. [48]).
Therefore, the Beauville-Voisin conjecture implies that Conjecture 5 is true
at least after shrinking to an open subset of Fh.

8.5. Further remarks. For polarized hyperkähler manifolds of generalized
Kummer type, we know that the moduli space Fh is 4-dimensional. In this
case, the κ-classes on moduli space of lattice-polarized hyperkähler manifolds
automatically map to NL∗hom(Fh) via the push-forward map. This is because
CH1(Fh) is spanned by NL-divisors and R3

hom(Fh) = R4
hom(Fh) = 0. So we

have

NLihom = Rihom(Fh), for all i 6= 2.

Then it suffices to check whether the κ-class

(8.8) [κa;b1,...,b2n ] ∈ H4(Fh,Q),

(i.e. a +
2n∑
j=1

jbj − 2n = 2) is lying in NL2
hom(Fh). By Theorem 8.3.1, we

know this is true when bi = 0 for i > 1. When bi 6= 0 for some i > 1, one
can see some examples computed in §4.11. In the case of n = 2, combining
these results together, we know that the conjecture holds if and only if

κ0;0,3,0,0, κ1;0,1,1,0, κ2;0,2,0,0, κ2;0,0,0,1, κ3;0,0,1,0, κ4;0,1,0,0
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are contained in NL2
hom(Fh).

9. Ring of Special cycles

In Kudla’s program, it is more natural to consider the weighted cycles on
Shimura varieties rather than the connected cycles. These are the so-called
special cycles. In this section, we discuss the properties of the special cycles
and their applications.

9.1. Kudla’s special cycles. Keep the same notations as in §5.1. We
let λ be the first Chern class of the Hodge line bundle on YK . For any
β ∈ Symr(Q), we set

Ωβ = {v ∈ V n | 1

2
(v,v) = β, dimU(v) = rankβ},

and the special cycles on YΓ of codimension r are defined as

(9.1) Z(β, ϕ,K) = λr−rankβ ·
∑
v∈Ωβ
mod Γ1

ϕ(v)c(U(v), 1,K),

with ϕ being a K-invariant Schwartz function on V r(Af ). Then Z(β, ϕ,K)
can be viewed as a cycle class in CHr(YK) if rankβ = r. As before, we let

S̃C
r
(YK) be the subspace of CHr(YK) spanned by Z(β, ϕ,K) and let

S̃C
∗
(YK) ⊆ CH∗(YK)

be the subring generated by all special cycles. The special cycles have many
nice properties, e.g. they behave well under pullback (cf. [34]). More impor-
tantly, although in general the Chow ring CH∗(YK) is not finitely generated,
we have

Theorem 9.1.1. The ring S̃C
∗
(YK) is finitely generated and its image in

H∗(YK ,Q) contains H∗θ (YK ,Q).

The first statement follows from the work of Zhang [73] and a recent result
of Bruinier and Westerholt-Raum [13], while the second assertion is proved
in [6]. Clearly, there is an inclusion

S̃C
∗
(YK) ⊆ SC∗(YK).

Moreover, we believe that the following statement should be true.

Conjecture 8. SC∗(YK) = S̃C
∗
(YK).

We shall remark below (see Proposition 9.1.2) that this conjecture can be
easily checked in some simple cases such as the moduli space of polarized
K3 surfaces, or the moduli space of some polarized K3[n]-type hyperkähler
manifolds (See Proposition 9.1.2). Recall that the second cohomology of a
K3 surface is isomorphic to the even unimodular lattice

LK3 = U⊕2 ⊕ E⊕2
8 (−1),
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and the primitive cohomology of a polarized K3 surface (X,H) in Kg is
isomorphic to

Lg := v⊥ = (2− 2g)⊕ U⊕2 ⊕ E⊕2
8 (−1),

where v ∈ LK3 represents the class c1(H). The moduli space Kg of polarized
K3 surfaces of genus g is an open subset of the arithmetic quotient YLg =
ΓLg\D, where ΓLg is the associated polarized monodromy group. In this
situation, we have

Proposition 9.1.2. SCr(YLg) = S̃C
r
(YLg) for all r.

Proof. The arithmetic subgroup ΓLg is nothing but the collection of isome-
tries of LK3 preserving v. Every connected cycle c(U) in YLg of codimension
r can be described as the map

ΓΣ\DΣ → YLg ,

where Σ = span{U, v} ∩ LK3 is a primitive sublattice of LK3 and DΣ and
ΓΣ are defined as in §3.7. We write c(Σ) = c(U) for this connected cycle.

As LK3 is unimodular, every even lattice of signature (1, r) (r ≤ 19)
admits a unique (up to isometry) primitive embedding in LK3 . Let Σ be an
even lattice of signature (1, r). The special cycle on YLg is of the form

Z(Σ) =
∑

φ̂(Σ)=Σ′

mod ΓLg

c(Σ′),

where the sum runs over all embeddings φ : Σ ↪→ LK3 modulo the isometries

in ΓLg and φ̂(Σ) is the saturation of φ(Σ) in LK3. We can write

Z(Σ) = c(Σ) +
∑

Σ�Σ′

Σ↪→Σ′

m(Σ′)c(Σ′)

for some integers m(Σ′) > 0. Then it is easy to see that c(Σ) is in the span
of Z(Σ′) and this proves the assertion.

♣

9.2. Dimension of S̃C
r
(YK). Let us give some examples to explain how to

use the results of Bruinier and Westerholt-Raum in [13] and Zhang in [73]
to construct relations between special cycles and estimate the dimension of

S̃C
i
(YK). Let Λ be an even lattice of signature (2, b). For simplicity, we

restrict ourselves to the case where YK is the arithmetic quotient YΛ :=
ΓΛ\D, where ΓΛ is the arithmetic subgroup

(9.2) {g ∈ SO(Λ)| g acts trivially on d(Λ)}.
Let Hr be the Siegel upper half-plane of genus r. The metaplectic double
cover Mp2r(Z) of Sp2r(Z) consists of pairs (M,φ(τ)), where

M =

(
a b
c d

)
∈ Sp2r(Z), φ : Hr → C with φ2(τ) = det(cτ + d).



TAUTOLOGICAL CLASSES ON MODULI OF HYPERKÄHLER MANIFOLDS 37

Let ρ
(r)
Λ be the Weil representation of Mp2r(Z) on C[d(Λ)r]. For any k ∈ 1

2Z,

a vector-valued Siegel modular form f(τ) of weight k and type ρ
(r)
Λ is a

C[d(Λ)r]-valued holomorphic function on Hr, such that

f(Mτ) = φ(τ)2k · ρ(r)
Λ (M,φ)(f), for all (M,φ) ∈ Mp2r(Z)

and it is a Siegel cusp form if f(τ) is vanishes at all cusps. We denote
by M r

k,Λ(ρΛ) (resp. Srk,Λ(ρΛ)) the space of C[d(Λ)r]-valued modular (resp.

cusp) forms of weight k and type ρ
(r)
Λ . Then

Proposition 9.2.1. For 1 ≤ r ≤ b, we have

(9.3) dim S̃C
r
(YΛ) ≤ dim S̃C

r−1
(YΛ) + dimSrb+2

2
,M

(ρ∨Λ).

Proof. The proof is similar to the case r = 1 proved in [11, §5]. By [13] and
[73] the generating series

(9.4) Φ(τ) =
∑

Z(β, ϕ)qβϕ∗,

is a C[d(Λ)r]-valued Siegel modular form of weight b+2
2 and type ρΛ, where

qβ = exp(2πTr(βτ)) (cf. [13, Theorem 5.2]). Using the Petersson inner
product

M r
b+2

2
,Λ

(ρΛ)× Srb+2
2
,Λ

(ρ∨Λ)→ C,

we obtain a natural map

(9.5) Srb+2
2
,Λ

(ρ∨Λ)→ S̃C
r
(YΛ)/λ · S̃C

r−1
(YΛ)

by tensoring with Φ(τ). The assertion then follows directly from the surjec-
tivity of (9.5). ♣

For general YK , the statement is still true once we replace Srb+2
2
,M

(ρ∨Λ) by

the space of cuspidal vector-valued modular forms with respect to certain
congruence subgroup of Mp2r(Z). This also follows from the modularity
result of Zhang, Bruinier and Westerholt-Raum.

Remark 9.2.2. The inequality (9.3) is in general strict (see [12, §6.1]). A
very interesting question to investigate is when the equality holds (see [12,
Theorem 2]). This would enable us to compute the Betti numbers of YK
and also the dimension of S̃C

r
(YK).

9.3. Further questions. Let us step back to SCr(YK). Following [65],
when b ≥ 3, one can show that

λb−2 ∈ SCb−2(YK) 6= 0

while λb−1 = λb = 0 in CH∗(YK). Furthermore, we have

Proposition 9.3.1. For i > b− 2 and j > 1, the subgroup

λj · SCi−j(YK) ⊆ SCi(YK)

is zero.
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Proof. The proof is the same as in [65], where one can show that the self
intersection of the Hodge line bundle of codimension ≥ b− 1 on a Shimura
variety of orthogonal type with dimension b ≥ 3 is rationally equivalently to
zero. ♣

Recall that SCr
hom(YK) = 0 for r > b− 2 by Corollary 6.4.2, we wonder if

the questions below have a positive answer.

Question 9.3.2. Assume that dimYK ≥ 3. Do the following hold?

(1) SCr(YK) = 0 for r > b− 2.
(2) The cycle class map induces an isomorphism cl : SCr(YK)→ SCr

hom(YK)
for all r.

Theorem 9.3.3. For r ≤ b
4 , there is an isomorphism

H2r
D (YK ,Z(r))⊗Q ∼= H2r(YK ,Q).

In particular, SCr(YK)→ H2r(YK ,Q) is an isomorphism for r ≤ b
4 provided

both the Hodge conjecture and the Bloch-Beilinson conjecture hold.

Proof. Using the standard exact sequence of Deligne-Beilinson cohomology
and singular cohomology groups (cf. [21, Corollary 2.10]), we can get an
injection

H2i
D (YK ,Z(i))⊗Q ↪→ H2i(YK ,Q), i ≤ b

4
because of the vanishing result Proposition 6.2.1. As the connected cycles
are all defined over Q̄, the assertion then follows from the generalization of
the Noether-Lefschetz conjecture (cf. [6, Theorem 3.6]), which shows that
H2i(YK ,Q) is equal to SCi

hom(YK).
♣

Remark 9.3.4. Note that all the connected cycles are defined over Q̄. Ac-
cording to the proof of Theorem 9.3.3, when r < b

2 , Question 9.3.2(2) has
an affirmative answer provided both the Bloch-Beilinson conjecture and the
Hodge conjecture hold.

Let us come back to Kg, where the first part of Question 9.3.2 indicates
that NLr(Kg) = 0 for r > 17. This can be viewed as analogous to Faber’s
conjecture on Mg. The second part is then equivalent to saying that there
is an isomorphism

NL∗(Kg) ∼= NL∗hom(Kg).
For small g, one can get partial results towards these questions via the
geometric construction of Kg.
Proposition 9.3.5. When g ≤ 14 or g ∈ {16, 18, 20}, NL19(Kg) = 0.

Proof. This follows from the fact that Kg is unirational for small g. Indeed,
Mukai has proved that Kg is unirational when g ≤ 13 or g ∈ {16, 18, 20}
and Nuer [49] recently proved that K14 is also unirational.

Note that this method of proof can not work in general as Kg is of general
type for g sufficiently large. ♣
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Remark 9.3.6. In this case, as the Betti number of K2 has been computed
in [33], one can make explicit computations to verify Question 9.3.2 (2) via
Proposition 9.2.1.

References
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