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Abstract: Hyperspectral (HS) imaging has been used extensively in remote sensing applications
like agriculture, forestry, geology and marine science. HS pixel classification is an important task to
help identify different classes of materials within a scene, such as different types of crops on a farm.
However, this task is significantly hindered by the fact that HS pixels typically form high-dimensional
clusters of arbitrary sizes and shapes in the feature space spanned by all spectral channels. This is
even more of a challenge when ground truth data is difficult to obtain and when there is no reliable
prior information about these clusters (e.g., number, typical shape, intrinsic dimensionality). In this
letter, we present a new graph-based clustering approach for hyperspectral data mining that does not
require ground truth data nor parameter tuning. It is based on the minimax distance, a measure of
similarity between vertices on a graph. Using the silhouette index, we demonstrate that the minimax
distance is more suitable to identify clusters in raw hyperspectral data than two other graph-based
similarity measures: mutual proximity and shared nearest neighbours. We then introduce the
minimax bridgeness-based clustering approach, and we demonstrate that it can discover clusters of
interest in hyperspectral data better than comparable approaches.

Keywords: hyperspectral; similarity; high dimensionality; clustering; density; parameter-free

1. Introduction

Hyperspectral (HS) imaging combines spectroscopy and imaging to capture the reflectance
(or radiance) of surfaces within a scene. It is used in remote sensing applications to determine nutrient
deficiency in crops [1], for vegetation mapping [2] or to model phytoplankton dynamics in the ocean [3].
The data produced by HS sensors is, however, very large (spatially) and HS pixels typically form
high-dimensional clusters of arbitrary sizes and shapes in the feature space spanned by the spectral
channels, which significantly hinders HS data mining. In remote sensing applications, ground truth
data is often used for validation and information recovery in what is referred to as the supervised
framework. However, obtaining such data is costly and time-demanding. “Ground truthing” involves
surveying and processing campaigns with trained personnel, high-end equipment and laboratory tests.
Furthermore, preparing ground truth data can be error-prone [4]. Semi-supervised or unsupervised
methods are then highly desirable as they require little to no training data. In this paper, we focus on
unsupervised classification, also known as clustering. Our objective is that each extracted cluster of
pixels corresponds to a meaningful class of material within the scene. Furthermore, we also aim for
the method to be easy to use and interpret, with no need for user input.

One of the main challenges in HS data clustering is that traditional distance metrics, such as
the Euclidean distance, are meaningless in high-dimensional spaces [5,6]. Dimensionality reduction
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techniques, such as Principal/Independent Component Analysis [7–9], manifold learning [10] or band
selection [11], have been used to address this issue, but they are also subject to the aforementioned
problems, i.e., the need for ground truth data and the parameter tuning. In particular, the choice of
an appropriate number of dimensions remains an open problem. However, we leave dimensionality
reduction aspects outside the scope of this paper, as we focus solely on the clustering technique. In terms
of comparing high-dimensional vectors, graph-based measures of similarity such as the number of
shared nearest neighbours [12] and mutual proximity [13] have been proven useful to alleviate the
curse of dimensionality [14]. The minimax distance [15] is another type of such measure, defined
as the longest edge on a path between two distinct nodes of a graph, minimised over the range of
all possible paths between the nodes. It is also the longest edge on the path between two nodes of
a minimum spanning tree. The minimax distance is very powerful to separate clusters of arbitrary
shape, size and dimensionality, especially if the data is relatively noise-free [16,17]. Furthermore, unlike
the shared nearest neighbours, the minimax distance is completely parameter-free. In this paper, we
propose a clustering method that harnesses the advantages of the minimax distance for HS data mining.
The method creates a minimum spanning tree and determines which edges are most likely bridges
between clusters based on four intuitive and parameter-free heuristics that we introduce. It then works
as a sequential graph partitioning approach using the silhouette index as an objective function. In the
next sections, we review related work, present the minimax distance and demonstrate its suitability for
the task. We then introduce the proposed clustering approach, present results and conclude.

2. Related Work

Unsupervised classification of HS data has been an active research topic for several decades
with many existing methods based on template-matching, spectral decomposition, density analysis or
hierarchical representation [18]. Recent trends have also seen the emergence of deep models [19,20]
that can model the distribution of information in high-dimensional data. However, these methods
currently do not generalise nor scale well and require a tremendous amount of training data. The main
drawback with template-matching methods (e.g., centroid-based, mixture of Gaussians) is that the
shape of the clusters is presumed known a priori, i.e., they are parametric. For example, K-means and
its variants are primarily meant to detect convex-shaped clusters, which occur only rarely in HS data.
In spectral clustering [21,22], the eigenvectors of a Laplacian matrix representing the data are used to
project the clusters in a subspace where they are more separable. Performance depends on how the
Laplacian is defined and how clustering is eventually performed after projecting the data.

Clustering based on density analysis has received a lot of attention in the geoscience and remote
sensing communities. Their rationale is that pixels are sampled from a multivariate probability density
function (PDF) of unknown shape and parameters, which can be estimated from the data. Most
methods are based on a search for the local maxima of the PDF, also referred to as modes. Most existing
mode-seeking approaches, such as Mean Shift [23,24] or Fast Density Peak Clustering [25], assume
that each cluster contains a single dominant mode, although it may not always be true (consider for
instance the case of a ring-shaped cluster). This motivates methods, such as those based on space
partitioning [26], or support vector machines [27], that seek local minima of the density functions as they
represent the boundaries between clusters. These methods are independent of cluster shape. DBSCAN
(Density-based spatial clustering of applications with noise) [28] is another adaptive approach in which
“core points” are selected to better separate clusters and facilitate their extraction. Unfortunately, the
performance of DBSCAN and most density-based clustering methods depend heavily on parameter
tuning, which generally comes down to finding the right amount of smoothing for density estimation.
This problem also applies also to k nearest neighbours (kNN)-based methods [29–31] as k is generally
not an intuitive parameter for end-users. Automatic tuning with the elbow method [32,33] gives no
theoretical guarantee of finding the optimal parameter. Adaptive density estimation (e.g., based on
diffusion [34]) requires a lot of data to find significant patterns in high dimensions, and there is currently
no consensus on whether they can outperform global methods on high-dimensional data [35].
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Parameter-laden algorithms present an important pitfall as incorrect settings may prevent the
retrieval of the true patterns and instead lead the algorithm to greatly overestimate the significance of
less relevant ones [36]. This makes parameter setting a burden to the end-user. Existing parameter-free
approaches are based on finding either a natural cutoff or peaks in some distribution [37,38] or rely on
maximising a quality criterion [39] or combining strategies [40]. The recently proposed FINCH [41] is
based on a simple and intuitive nearest-neighbour rule and hierarchically combines clusters based on
the position of their respective means.

To address the problem of similarity in high dimensions, an effective approach consists of
comparing points in terms of their neighbourhoods rather than only their coordinates. The number of
shared nearest neighbours [14,42] is based on this principle, but it requires setting k, the neighbourhood
size. A parameter-free alternative known as mutual proximity [13], has also shown promise for
clustering but, as we will demonstrate, it leads to sub-optimal performance, and it comes at a high
computational cost. The minimax distance is another type of graph-based similarity measure that
shows promise for data classification [15]. In this paper, our main contributions are an evaluation of
graph-based similarity measures based on the silhouette coefficient, as well as a new parameter-free
clustering algorithm named MBC (Minimax Bridgeness-based Clustering).

3. The Minimax Distance

3.1. Definition

Consider a connected, undirected and edge-weighted graph G(V, E) where V = {vi|i = 1..N}
is a set of N vertices and E = {ei|i = 1..M} is a set of M edges, with N < M. Note P

(
vi, vj

)
the set

of all loopless paths between vertices i and j in G. The largest of all edge weights along a given path
p
(
vi, vj

)
is denoted wmax (p). Then, the path that satisfies:

pmnx
(
vi, vj

)
= argmin

p
[wmax(p)] , p ∈ P

(
vi, vj

)
(1)

is the minimax path between vertices i and j. The edge in which the weight is wmax
(

pmnx
(
vi, vj

))
will

be referred to as the minimax edge, its weight is the minimax distance between vertices i and j.
The minimax distance matrix, similarly to the mutual proximity and shared nearest neighbours

distance matrices, is computed based on E, the weights of the graph. These weights typically represent
the Euclidean distance. They can be obtained from the data inO(n2), with n the number of data points,
but parallel computing can be used to increase efficiency [43,44]. The minimax distance matrix is then
computed based a minimum spanning tree (MST) on G, which constitutes a subset of E. An MST is
defined as a set of edges that connects all the data points, without any cycles and with the smallest
total edge weight. Each edge of an MST is a minimax edge [15], and the distance matrix can then be
obtained in linear time from the MST [45], which can also be constructed in linear time [46].

3.2. Minimax Silhouette

An ideal measure of similarity should be so that it returns a small value if the data points belong
to the same class and a large value otherwise. This property is captured by the silhouette index, which
measures how similar a data point x is to its own cluster compared to other clusters:

s(x) =
b(x)− a(x)

max {a(x), b(x)} (2)

where s(x) is the silhouette of x, a(x) is the average similarity between x and all other points in the
same cluster and b(x) is the smallest average similarity x and all other points in different clusters.
A small average silhouette indicates that clusters are poorly separated, and negative values mean that
they overlap significantly. While the silhouette index is typically used to assess a clustering result, we
use it here to compare similarity measures. We calculated the average silhouette of the ground truth
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of each of the data-sets described in Section 5.2, with the squared Euclidean norm, the spectral angle
mapper and their respective minimax, mutual proximity and shared nearest neighbours versions.

In Table 1, we report the results obtained on the whole data-set (limited to 10,000 points—see
Section 5.2) or only on a core set Γ50 consisting of the 50% data points of highest density (see next
paragraph). We then compared the regular measures, i.e., Squared Euclidean norm (SE) and Spectral
Angle Mapper (SAM), to their corresponding shared nearest neighbour (SNN), mutual proximity and
minimax distance counterparts. Note that SNN requires to tune the parameter k, i.e., the size of the
set of NN within which the shared neighbours are searched for each pair of pixels. The results we
report are the best from all values of k between 5 and N, with a step size of 5. These results indicate that
even the largest silhouette (0.260 with Minimax SE on Γ50) is relatively low, confirming that HS clusters
are generally not well separable in the feature space spanned by all spectral bands. Nevertheless,
we can observe the clear inferiority of the regular measures, with a full-set silhouette of −0.428 at
most. The minimax distance and mutual proximity surpass the shared nearest neighbours overall,
except on the Massey data. Further, note the improvement obtained by discarding the 50% least dense
(i.e., noisiest) pixels, particularly for the minimax distance, which gives the best results overall. This
suggests that the minimax distance is better suited to extract classes of interest from HS data, especially
on core sets.

Table 1. Comparison of similarity measures in terms of average ground truth silhouette (higher is
better). SE: Squared Euclidean norm, SAM: Spectral Angle Mapper.

Pavia U. KSC Salinas Botswana Massey

Regular
SE −0.744 −0.693 −0.461 −0.604 −0.742

SAM −0.742 −0.500 −0.428 -0.616 −0.686

SNN
SE −0.160 −0.245 −0.214 −0.216 −0.094

SAM −0.087 −0.209 −0.189 −0.236 −0.184

Mutual Proximity
SE −0.123 −0.207 −0.035 −0.028 −0.182

SAM −0.156 −0.071 −0.087 −0.084 −0.075

Minimax
SE −0.047 −0.019 0.021 0.015 −0.256

SAM −0.123 −0.256 −0.021 −0.104 −0.261

Mutual Proximity on Γ50
SE −0.038 −0.108 0.038 0.037 −0.115

SAM −0.164 −0.042 0.062 −0.194 0.026

Minimax on Γ50
SE 0.128 0.260 0.212 0.174 −0.115

SAM 0.196 −0.087 0.194 −0.046 −0.349

Using the core set Γ50 allows to tackle two drawbacks of the minimax distance: sensitivity to noise
and computational complexity. Core sets have previously been used for similar purposes [28,40,47].
To select a representative core set in a computationally efficient and parameter-free manner, we estimate
the underlying probability density function of the data and discard the 50% least dense points. We
compared several parameter-free and scalable density estimators in terms of their ability to produce
core sets with compact and well-separated classes at several threshold values [48]. It is particularly
noteworthy that diffusion-based approaches [34] scale poorly to high-dimensional data and suffer from
the Hughes phenomenon: they require a tremendous amount of sampling points to correctly estimate
the multivariate density. Instead, we found that convolving the data with an isotropic Gaussian kernel
with a bandwidth equal to the average distance to a point’s nearest neighbour allowed for a good
balance between low computational footprint and usefulness in identifying core-sets. We used this
approach to estimate density in the remainder of our experiments.
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3.3. Minimax Distance-Based kNN Clustering

In order to further demonstrate the usefulness of the minimax distance, we compared the
performance of two state-of-the-art kNN-based algorithms: KNNCLUST [49] and GWENN [50].
Both rely on a measure of distance to perform clustering. We evaluated whether using the minimax
distance can improve performance in terms of overall accuracy (OA) and cluster purity [51] on the five
data-sets presented in Section 5.2. Figure 1 shows results obtained on one of these data-sets. Note that,
for a given data point x in the feature space, all its neighbours that are at the same minimax distance to
x are sorted based on regular distance.

Figure 1. Clustering results on the Pavia University scene with KNNCLUST (left column) and GWENN
(right column) as a function of k, the number of nearest neighbours. Top: overall accuracy, bottom:
cluster purity.

Results indicate that using the minimax distance can improve the performance of kNN-based
clustering on HS data. On all five data-sets, the peak overall accuracy was improved by at least 3% and
up to 8% (on the Kennedy Space Centre scene), and cluster purity was improved for most values of k.
We also found that, as k increases, the number of clusters decreases. This should be considered when
evaluating cluster purity, which is known to increase with the number of clusters. Purity is a more
meaningful measure of clustering quality when this number is low, which is the case in our experiments.

4. Minimax Bridgeness-Based Clustering

As we demonstrated, the minimax distance is well suited for class separation in HS data. However,
a large minimax distance informs only of the existence of a gap on a path between two points, but not so
much of its significance. The latter can be established when the gap’s existence is confirmed by multiple
pairs of end-nodes. The number of these pairs gives what we refer to as the minimax bridgeness: β(E),
where E is an edge in G. It can also be defined as the number of paths on which E is a minimax edge.
A high bridgeness indicates a consensus between data points that the node crosses a border between
clusters. Figure 2 illustrates the concept of minimax bridgeness with a simple example.

The proposed clustering algorithm, hereby referred to as Minimax Bridgeness-based Clustering
(MBC), works as a sequential graph partitioning with four main steps (see Figure 3):

• Step 1: Compute minimum spanning tree (MST).
• Step 2: Discard edges that are unlikely to separate clusters.
• Step 3: Rank the remaining edges based on minimax bridgeness.
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• Step 4: Remove next highest ranking edge that does not significantly decrease the minimax
silhouette. Repeat until all edges have been assessed.

Figure 2. Illustration of the concept of minimax bridgeness with three clusters C1 (2 points), C2
(5 points) and C3 (4 points). The weight of the edge separating C3 from C2 is the minimax distance
between any point in C3 to any point in C2 and vice-versa. The minimax bridgeness of that edge is the
number of paths on which it has the largest weight: β(EC2−C3) = 20.

Figure 3. Flowchart of the proposed Minimax Bridgeness-based Clustering.

For Step 1, there are numerous algorithms to extract the MST of the data efficiently, but we
consider these aspects outside the scope of this paper. Note that the MST is unique if all pairwise
distances between pixels are different.

In Step 2, to find edges that are unlikely to be inter-cluster bridges (ICBs), we first identify four
important properties of ICBs:

1. They are longer than most edges.
2. They have a higher minimax bridgeness than most edges.
3. They have a lower density point at their centre than most edges.
4. Neither of the vertices they connect is the other’s first neighbour, nor do they have the same

nearest neighbour (see [41]).

With regards to the first three properties listed above, we found that the distributions of edge
length, minimax bridgeness and central point density typically have a single dominant mode each.
Specifically, we use diffusion-based density estimation [34] to determine the peak locations and
estimate these modes. We observed that, for at least one of these three attributes, ICBs always have
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a value significantly larger than the mode. We then established that edges that do not satisfy this
property are unlikely to be ICBs. Note that we tested various density estimation methods, keeping
in mind that we need a parameter-free and computationally efficient method to increase clustering
performance, first by allowing for better identification of ICBs, and then by creating a representative
subset Γ of the data. The latter can be used to create a pseudo-ground truth of the data and apply a
more computationally-efficient clustering on the remaining data points. As previously mentioned, we
found that an isotropic Gaussian kernel with a bandwidth equal to the average distance to any point’s
nearest neighbour gave the best results overall.

Finally, in Steps 3 and 4, we use the minimax silhouette as guiding criterion. In an approach similar
to that employed in GWENN [50], candidate edges are ranked in order of descending β and removed
one by one in a sequential manner. The edge with the largest β is systematically removed. The minimax
silhouette then is calculated after each edge removal. If the edge removed last caused the silhouette
to decrease by more than half its value at the previous iteration, or to become negative, the edge is
put back in the graph. This ad hoc rule is particularly efficient when the data contains well-separated
clusters. As previously demonstrated, the minimax silhouette captures cluster separation better than
other measures of distances on HS data. Our experiments showed that removing an edge that does not
separate clusters tend to decrease the minimax silhouette by more than half its current value.

5. Experimental Validation

5.1. Alternative Clustering Methods

To validate the proposed method, we compared it to five state-of-the-art clustering methods,
which are summarised in Table 2.

Table 2. Characteristics of the clustering methods used for comparison to this study.

Parameters Pros Cons

FCM [52] K, m fuzzy fitted to convex clusters

FDPC [25] dc fast requires decision graph

DBSCAN [28] dmin, Eps fast not scalable

GWENN [50] k non iterative requires NN search

FINCH [41] - parameter-free requires NN search

Laplacian centrality-based (LPC) [38] - parameter-free not scalable

Note that the latter two are parameter-free. Fuzzy C-means requires the number of clusters K and
a (typically parametrised) de-fuzzification parameter m. For FDPC and GWENN, we manually tuned
their respective parameter to obtain the right number of clusters. We also implemented a variant of
MBC, which allows specifying the number of clusters K. We named it K-MBC. In this case, the iterative
approach of step 4 stops when K− 1 edges have been removed or when all edges not discarded in step
2 have been examined, whichever comes first. Finally, we evaluated MBC on Γ50 for each data-set to
determine how it performs on a smaller and cleaner set of points.

5.2. Data

We used five HS images: Pavia University, Kennedy Space Centre, Salinas, Botswana and Massey
University.

The Pavia University image was acquired over Pavia, Italy (Lat-Long coordinates of scene centre:
45◦12′06′′N, 9◦08′08′′E), by the airborne ROSIS (Reflective Optics System Imaging Spectrometer) sensor
operated by the German Aerospace Agency (DLR). It contains 610× 340 pixels (ground resolution:
1.3 m) and 103 spectral bands (430 to 860 nm). Nine classes (Asphalt, Meadows, Gravel, Trees, Painted
metal sheets, Bare soil, Bitumen, Self-blocking bricks, Shadow) are provided as ground truth.
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The KSC image was acquired over the Kennedy Space Centre, Florida (Lat-Long coordinates of
scene centre: 28◦37′50′′N, 80◦46′45′′W), by the airborne AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) NASA instrument. It contains 224 spectral bands (400 to 2500 nm), but only 176 of
them were kept after water absorption bands removal. The ground resolution is 18 m and the ground
truth is made of 13 classes (Scrub, Willow swamp, CP hammock, CP/Oak, Slash pine, Oak/Broadleaf,
Hardwood swamp, Graminoid marsh, Spartina marsh, Cattail marsh, Salt marsh, Mud flats, Water).

The Salinas HSI was also acquired by AVIRIS sensor over agricultural fields in the Salinas Valley,
California (Lat-Long coordinates of scene centre: 36◦18′39′′N, 121◦13′15′′W). It has 512× 217 pixels
(ground resolution: 3.7 m). Twenty absorption bands were removed from the 224 original bands.
The ground truth comprises 16 vegetation classes (Broccoli gr. wds 1, Broccoli gr. wds, Fallow, Fallow
rough plow, Fallow smooth, Stubble, Celery, Grapes untrained, Soil vineyard develop, Corn sen. gr.
wds, Lettuce romaine 4 wk, Lettuce romaine 5 wk, Lettuce romaine 6 wk, Lettuce romaine 7 wk,
Vineyard untrained, Vineyard vert. trellis).

The Botswana HSI was acquired over the Okavango Delta, Botswana (Lat-Long coordinates of
scene centre: 19◦33′33′′S, 23◦07′37′′E), by the Hyperion sensor onboard the EO-1 satellite (within the
same spectral range than AVIRIS), with a ground resolution of 30 m. It has 1476× 256 pixels and
145 bands (from 242 original bands) after water absorption bands removal. The ground truth map
includes 14 classes (Water, Hippo grass, Floodplain Grasses 1, Floodplain Grasses 2, Reeds, Riparian,
Firescar 2, Island interior, Acacia woodlands, Acacia shrublands, Acacia grasslands, Short mopane,
Mixed mopane, Exposed soils).

The Massey University scene [53] was captured in Palmerston North, New Zealand (Lat-Long
coordinates of scene centre: 40◦23′17′′S, 175◦37′07′′E), with an airborne AisaFENIX hyperspectral
sensor covering visible to short-wave infrared (380 to 2500 nm). It has 339 bands (after removal of water
absorption and noisy bands) and 9564 pixels with corresponding ground truth. The latter contains a
total of 23 different land-cover classes, which includes nine different types of roof tops, five vegetation
types, water, soil, and two different shadows.

The characteristics of these five data sets are summarised in Table 3 and their colour composite
are shown in Figure 4.

Table 3. Description of data-sets used: number of labelled pixels N, dimensionality D and number of classes.

Data-Set N D Classes

Pavia University 42,776 103 9

Kennedy Space Centre 5211 176 13

Salinas 54,129 204 16

Botswana 3248 145 14

Massey University 9564 339 23

Figure 4. Colour composites (re-scaled and contrast-enhanced for visualisation) for the five scenes
used in this study: (from left to right) Pavia University, Kennedy Space Centre, Salinas, Botswana and
Massey University scenes. The arrow at the bottom right of each scene indicates the North direction.
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The data was pre-processed to remove noisy spectral bands, burnt pixels and inconsistent ground
truth data (see [4]). Furthermore, the number of pixels was capped to 10,000 per scene, mostly due to
the memory complexity incurred by the computation of the similarity matrix. For each data-set with
more than 10,000 pixels, we performed 20 random selections (Note that the same proportion of each
class was kept after subsampling.) of 10,000 points and computed the average results.

5.3. Criteria

The criteria used to validate the proposed approach and compare it to other state-of-the-art
methods are as follows:

• Overall Accuracy (OA) (see Table 4) is the average number of pixels that are correctly classified.
It is calculated as the sum of diagonal elements of the confusion matrix divided by the total
number of pixels. Here, the confusion matrix is obtained owing to the Hungarian (Munkres)
algorithm [54].

• Purity [51] (see Table 5) measures the tendency of clusters to contain a single class.
• Normalised Mutual Information (NMI) (see Table 6) measures the probabilistic resemblance

between cluster and class labels.
• The average difference between the number of classes and the number of clusters (see Table 7).

In terms of computational cost, we found that it takes about 2 min to cluster 10,000 points with
MBC with a Matlab implementation (hardware: x64-based Intel Core i7-8750H CPU @ 2.20GHz, 32GB
of RAM), mostly spent on the creation of graph G from the data.

Table 4. Comparison of clustering results: Overall Accuracy (%).

Number of Clusters Is Pavia U. KSC Salinas Botswana Massey U.

Known

FCM 41.9 52.5 54.6 61.4 43.3

FDPC 44.2 47.6 62.2 62.4 54.0

GWENN 47.9 49.8 65.3 53.5 44.3

K-MBC 65.9 58.2 76.5 51.2 70.0

Unknown

FINCH 37.0 39.7 55.7 56.2 38.6

LPC 35.2 42.4 59.2 54.2 41.6

MBC 64.2 51.2 76.2 42.3 53.3

MBC on Γ50 70.1 59.1 80.0 60.5 65.7

Table 5. Comparison of clustering results: Purity (higher is better, max: 1).

Number of Clusters Is Pavia U. KSC Salinas Botswana Massey U.

Known

FCM 0.47 0.56 0.63 0.65 0.47

FDPC 0.54 0.64 0.71 0.81 0.59

GWENN 0.62 0.69 0.77 0.73 0.82

K-MBC 0.91 0.74 0.93 0.97 0.74

Unknown

FINCH 0.42 0.42 0.59 0.58 0.42

LPC 0.39 0.44 0.59 0.59 0.60

MBC 0.97 0.70 0.91 0.96 0.60

MBC on Γ50 0.96 0.73 0.95 0.97 0.80
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Table 6. Comparison of clustering results: Normalised Mutual Information (NMI) (higher is better, max: 1).

Number of Clusters Is Pavia U. KSC Salinas Botswana Massey U.

Known

FCM 0.49 0.58 0.69 0.68 0.60

FDPC 0.49 0.59 0.74 0.74 0.69

GWENN 0.48 0.60 0.72 0.61 0.57

K-MBC 0.62 0.71 0.85 0.47 0.76

Unknown

FINCH 0.49 0.60 0.75 0.72 0.69

LPC 0.49 0.57 0.72 0.69 0.53

MBC 0.62 0.62 0.84 0.44 0.77

MBC on Γ50 0.63 0.70 0.87 0.61 0.79

Table 7. Comparison of clustering results: Average difference between number of classes and number
of discovered clusters. Negative values mean that too many clusters were discovered by the method.

Pavia U. KSC Salinas Botswana Massey U.

FINCH −13 −20 −17 −12 −15

LPC −14 −20 −16 −14 −17

MBC 3 2 1 6 −4

MBC on Γ50 0 2 0 4 −1

5.4. Results

From these results, we make the following observations:

• K-MBC significantly outperforms FCM, FDPC and GWENN on all data-sets except Botswana in
terms of OA and NMI. It also yields the best pixel purity on all data-sets except Massey University,
where it is surpassed only by GWENN by 0.08.

• The clustering maps in Figure 5 confirm that our approach performs particularly well at creating
clusters of high purity.

• Although it is expected that MBC would give the best overall results when applied to the core set
Γ50, or when the number of clusters is known, this does not appear as obvious from our results.
However, we note that MBC tends to find too few clusters in the data (especially on the Botswana
data-set, where it misses six classes of pixels).

• FINCH and LPC generally perform poorly overall and especially in terms of number of clusters.
They each tend to detect too many clusters on all data-sets. Interestingly, they also yield poor
pixel purity values. Usually, high purity is expected when the number of clusters is high. The fact
that we observe the contrary indicates that these two methods are really not well suited to deal
with raw hyperspectral data.

• On the core-set Γ50, MBC performs very well and even finds the right number of clusters in
the Pavia University and Salinas scenes. It over-estimates this number by one on the Massey
University scene and under-estimate by two on the KSC scene.

• The Botswana scene seems to the most challenging for the proposed methods. The only case
where the MBC clustering surpasses the benchmark with this scene is in terms of pixel purity.
We noted that this particular scene contains classes of pixels that are among the least pure in
the benchmark, with strong variations in reflectance spectra within classes. We hypothesise that
this is the main reason for our method under-performing on this scene. On the other hand, it is
well known that clustering is generally an ill-posed problem and that different applications may
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require different types of clustering approaches. Clearly, in this case, FDPC performs better, but it
should be noted that it was tuned manually, unlike MBC.

Figure 5. Map of different classes within the data (each colour corresponds to a different class/cluster
of pixels). From left to right: Ground truth, results of FDPC, GWENN, FINCH, LPC, K-MBC and MBC.
Top to bottom: Pavia University and Salinas scenes. Note: cluster colours were selected to maximise
the number of pixels with the same colour as in the ground truth.

Overall, these results indicate that MBC can handle high-dimensional data well and recognise
meaningful classes of materials and surfaces in a scene. While it comes with a certain computational
cost, it performs better than existing clustering methods, even without parameter tuning. These
results also validate our hypothesis that the minimax distance is well suited for hyperspectral data
exploration.

6. Conclusions

We introduced MBC, a parameter-free clustering algorithm based on a new graph-based measure
of similarity, which we named minimax bridgeness. We demonstrated its ability to automatically
discover clusters in high-dimensional remote sensing data without user input, as well as its superiority
over other graph-based similarity measures such as the number of shared nearest neighbours.
The proposed method has two drawbacks: its sensitivity to noise and its high computational cost.
To address these, we used a simple approach based on density estimation to select a subset of relevant
data points, a so-called core set and applied MBC on it, which resulted in stronger performance across
the board. Future work should focus on the selection of core sets for a more efficient exploitation of the
minimax distance and minimax bridgeness. Also, the use of unsupervised dimensionality reduction
techniques based, for instance, on band selection is expected to improve performance by reducing
the curse of dimensionality. Lastly, future work should also focus on developing efficient methods to
produce graph-based similarity matrices that scale to large data-sets.
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