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In this work we present an implementation of the analytical string theory recently applied to the description of
glasses. These are modeled as continuum media with embedded elastic string heterogeneities, randomly located
and randomly oriented, which oscillate around a straight equilibrium position with a fundamental frequency
depending on their length. The existence of a length distribution is reflected then in a distribution of oscillation
frequencies which is responsible for the boson peak in the glass density of states. Previously, it has been shown
that such a description can account for the elastic anomalies reported at frequencies comparable with the boson
peak: the strong phonon scattering and the negative dispersion in the sound velocity, as a result of the interference
of the string oscillations with propagating sound plane waves. Here we start from the generalized hydrodynamics
to determine the dynamic correlation function S(k, ω) associated with the coherent, dispersive, and attenuated
sound waves resulting from such interference. We show that once the vibrational density of states has been
measured, we can use it for unambiguously fixing the string length distribution inherent to a given glass. The
density-density correlation function obtained using such distribution is strongly constrained, and able to account
for the experimental data collected on two prototypical glasses with very different microscopic structure and
fragility: glycerol and silica. The obtained string length distribution is compatible with the typical size of elastic
heterogeneities previously reported for silica and supercooled liquids, and the atomic motion associated with
the string dynamics is consistent with the soft modes recently identified in large-scale numerical simulations
as nonphonon modes responsible for the boson peak. The theory is thus in agreement with the most recent
advances in the understanding of the glass-specific dynamics and offers an appealing, simple understanding of
the microscopic origin of the latter, while raising new questions on the universality or material specificity of the
string distribution properties.

DOI: 10.1103/PhysRevB.101.174311

I. INTRODUCTION

A long-standing issue in condensed matter physics is repre-
sented by the understanding of the low-frequency vibrational
properties of glasses. It is well known that at long wavelengths
and low frequencies, the continuum description of elastic
properties in a solid generally works well in a crystal, which
means that the Debye approximation of the density of states is
a good description of the actual situation [1]. This approxima-
tion however dramatically fails when it comes to a disordered
material such as a glass, in spite of intuition that says this
should not happen. Indeed, on the macroscopic scale, the
wavelengths of sound waves are much larger than the typical
length scale of the disorder; thus the microscopic structure
should be irrelevant, and a description of the medium as a
continuum should work well. We can expect this approxima-
tion to fail when the wavelength becomes comparable with the
microscopic structure. It is however found to fail much earlier
than expected, at wavelengths on the order of tens of mean
interatomic distances, a mesoscopic scale corresponding to
the medium-range order in glasses and at which it still works
reasonably well in crystals [2].

Historically, the above failure has been observed through
the deviation of the vibrational density of states from the

Debye prediction at frequencies of a few THz, about 1/10 of
the Debye frequency, pointing to the existence of an excess of
low-energy modes, called the “boson peak” [3]. Such anomaly
in the vibrational density of states can be connected with the
anomalous temperature dependence of the specific heat at low
temperature, as well as with the existence of a plateau in the
thermal conductivity, with the suppression of the umklapp
peak typical of crystals, at temperatures of about 10 K [4,5].
Such excess is qualitatively similar for many such materials,
and the details, but not the broad features, depend on external
parameters such as temperature, density, pressure, as well as
chemical and thermal history [6–15].

This anomaly in the density of states is accompanied by
some so-called elastic anomalies in the longitudinal acoustic
phonons, as evidenced by a series of experimental stud-
ies [2,16–18]: a negative dispersion of the sound velocity, with
a minimum close to the boson peak frequency, and a strong
attenuation � of the acoustic phonons, whose dependence on
the wave vector k has long been believed to be compatible
with a Rayleigh scattering mechanism (� ∝ kd+1, where d
is the dimensionality of space), but recently found to go
like −kd+1 ln k near the boson peak frequency [19,20]. As
such, the failure of the Debye approximation seems to be
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drawn by a strong scattering of sound waves, whose origin
is still a matter of debate and which leads to a crossover
from well-defined acoustic modes for long wavelengths to
ill-defined ones for smaller wavelengths, the so-called Ioffe-
Regel crossover. Three dynamical regimes have thus been
identified in glasses [21,22]: (i) a low-frequency plane-wave-
dominated regime, where phonons undergo weak scattering
and are equivalent to phonons in crystals; (ii) a strong-
scattering regime, above the Ioffe-Regel limit, where the
corresponding phonons are called “diffusons” and cannot
be thought of as propagative plane waves anymore [23];
and (iii) the Anderson localization regime near the mobility
edge [21,24,25]. The existence of these three regimes strongly
impacts transport properties, so that their microscopic un-
derstanding has become essential for many technological
applications aiming at using glasses for thermal insulation or
confinement.

Understanding the microscopic origin of the strong-
scattering regime, and thus of elastic anomalies and the boson
peak, represents a challenge that has been at the focus of
an intense theoretical and experimental research effort for at
least 50 years. Many theories and models have been devel-
oped [26–33], which can be divided into three main groups:
(i) the existence of quasilocal vibrational states, produced
by soft anharmonic potentials [34–36], (ii) the existence of
nanometric elastic heterogeneities [27–30,37,38], and (iii) the
identification of the boson peak with the first transverse Van
Hove singularity, broadened by disorder and shifted because
of the density difference with respect to the corresponding
crystalline phase [39,40].

Recent work has shown that the theory of elastic
nanoheterogeneities is unable to reproduce the observed over-
Rayleigh acoustic attenuation [20]. On the other hand, recent
large-scale numerical simulations have unveiled the pres-
ence of low-energy quasilocalized nonphononic modes, which
would coexist with normal acoustic phonons [41–45] and be
characterized by a particle displacement decreasing like r−2

in 3D, where r is the distance away from the center of the
mode. The low-frequency density of states is thus the result
of the sum of a Debye contribution for the acoustic phonons
and a nonphononic contribution coming from these modes and
going as ω4. These low-energy modes would stem out from
microscopic structural arrangements and/or heterogeneities
in the glass and can be associated with another class of
theoretical models, which has focused on the identification of
stringlike behavior in glasses. Cooperative stringlike motion
was successively found in supercooled liquids [46,47], and
Yu et al. [48] proposed an interpretation of the β relaxation
in a variety of supercooled liquids and glasses in terms of
stringlike configurations. Concerning glasses, already in the
1990s Schober et al. [49] in a numerical simulation of a
soft-sphere glass identified well below the glass transition
temperature vibrational modes involving only atoms arranged
in a stringlike pattern. Novikov and Surotsev [50] showed that
Raman scattering data from glasses could indeed be explained
by vibrational eigenmodes localized along a one-dimensional
spatial geometry. More recently, Concustell et al. [51] have
induced and characterized elastic anisotropy in a bulk metal-
lic glass, showing that their findings are consistent with an
alignment of stringlike atomic arrangements.

Recently, one of us has developed an analytical description
showing that the presence of strings in a glass thought of as a
continuum medium can give rise to the vibrational anomalies
observed in glasses [52]. Here we develop this theory and
provide a formula to directly link the density of states g(ω) of
an amorphous material in the THz range with its longitudinal
dynamic structure factor S(k, ω). We find that the string
distribution obtained from the experimental boson peak is able
to nicely fit the inelastic x-ray scattering data on the S(q, ω)
obtained on glycerol [2] and silica [16] with an agreement as
good as the one historically obtained fitting the same data with
a damped harmonic oscillator (DHO) model.

This paper is organized as follows: Section II shows how
to compute the dynamic structure factor S(�k, ω) for coherent
acoustic waves propagating in a medium described by a
complex index of refraction, starting from the boson peak.
This computation is done following our previous work [52]
and relies on the properties of an acoustic wave propagating
in a medium filled with elastic strings randomly placed and
oriented [52,53]. For the reader’s convenience, some details
of the index of refraction computation are reproduced in
Appendix A. The relation of the current approach to the
damped harmonic oscillator model is discussed in Ap-
pendix B. Section III is devoted to the application of the model
for fitting experimental data on two prototypical glasses,
glycerol and silica. The discussion of the results of such
fitting, and notably the obtained string length distribution and
its relation to the elastic anomalies, is reported in Sec. IV A,
while Sec. IV B focuses on the comparison of our results
and recent numerical simulations, specifically concerning the
atomic motion in the strings implicit to the our model. Finally,
Sec. V presents our concluding remarks.

II. THE STRING MODEL

Here we recall the basics of the model developed
in [52,53]. It is based on continuum mechanics. The glass is
modeled as a Debye solid plus an embedded distribution of
elastic strings. These strings are pinned at their ends and have
a distribution of lengths. They can oscillate around an equilib-
rium position and their fundamental mode of vibration gives
rise to the excess modes over the Debye level observed in
many glasses. Also, they interact with elastic waves, leading
to the frequency dependence of phase velocity and attenuation
of coherent sound waves.

A. Preliminaries

We consider then an elastic, homogeneous, isotropic solid
with Lamé coefficients λ,μ, mass density ρ, and number
density n. The displacement at time t of a point whose
equilibrium position is �x is denoted �u(�x, t ), and its velocity is
�v(�x, t ) ≡ ∂ �u(�x, t )/∂t . The current �j ≡ n�v has a longitudinal
component j(�x, t ) that, in the absence of strings, obeys the
equation

− 1

c2
L

∂2 j(�x, t )

∂t2
+ ∇2 j(�x, t ) + ξ∇2 ∂ j(�x, t )

∂t
= 0, (1)

where c2
L = ρ/(λ + 2μ) and ξ is a phenomenological damp-

ing coefficient [54]. Looking for traveling waves along one
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dimension,

j(�x, t ) = j0ei(ωt−kx), (2)

leads to the dispersion relation,

ω2

c2
L

− k2 − ik2ωξ = 0, (3)

and, when ωξ � 1, we have

j(�x, t ) = j0ei(ωt−ωx/cL )e−x(ω2ξ )/2cL , (4)

the well-known result that, at low frequencies, elastic waves
have a damping proportional to frequency squared, or that
there is an attenuation length proportional to ω2. For later pur-
poses we introduce the (“bare”) Green’s function g0(�x, �x0, t −
t0), the solution of

− 1

c2
L

g̈0(�x, �x0, t − t0) + ∇2g0(�x, �x0, t − t0)

+ ξ ∇2ġ0(�x, �x0, t − t0) = −δ(�x − �x0)δ(t − t0), (5)

where an overdot denotes differentiation with respect to time.
We shall use the definition of the Fourier transform F̃ (�k, ω) of
a function F (�x, t ) as

F̃ (�k, ω) ≡
∫ ∞

−∞
d3x dt ei(�k·�x−ωt )F (�x, t ), (6)

so the bare Green’s function in frequency–wave-number space
is given by

g̃0(�k, ω) = −1

(ω2/c2
L ) − k2 − ik2ξω

, (7)

whose poles reproduce the dispersion relation (3).
If now we consider the solid to be in thermodynamic

equilibrium at temperature T , the currents will be fluctuating
quantities. Of particular interest is the dynamic correlation

J (�k, t ) ≡ 〈 j∗(�k, 0) j(�k, t )〉, (8)

where the brackets denote a thermal average. Also, we shall
drop the tildes from the Fourier transforms to simplify the
notation. Note that because of thermal equilibrium, this is a
real function that is defined for positive times t , and it can be
extended to negative times imposing that it be even in time.
Of particular interest is the Fourier transform

J (�k, ω) ≡ 2Re[J ], (9)

J ≡
∫ ∞

0
dt e−iωt J (�k, t ). (10)

A standard treatment [55] of the initial value problem of
Eqs. (1) and (5) leads to an expression of the bare correlation
J0 in terms of the bare Green’s function g0:

J0(�k, ω) = −2
J0(�k, 0)

c2
L

ωIm [g0(�k, ω)] (11)

= 2

c2
L

J0(k, 0)
ξω2k2

(
ω2

c2
L

− k2
)2 + ξ 2ω2k4

, (12)

where the second line is a well-known expression [56], that
has been obtained here substituting (7) into (11).

B. Addition of strings

We now consider elastic waves as above, propagating in
a medium with a frequency-dependent index of refraction
induced by the presence of strings:

− 1

c2
L

∂2 j(�x, t )

∂t2
+ ∇2 j(�x, t ) + ξ∇2 ∂ j(�x, t )

∂t

−∇2[ f (t ) ∗ j(�x, t )] = 0, (13)

where ∗ means convolution in time and f (t ) must vanish for
negative times due to causality. The road to Eq. (13) as well
as its relation to strings is recalled in Appendix A. There is a
Green’s function associated with this equation, the solution to

− 1

c2
L

∂2g(�x, �x0, t − t0)

∂t2
+ ∇2g(�x, �x0, t − t0)

+ ξ∇2 ∂g(�x, �x0, t − t0)

∂t
− ∇2[ f (t ) ∗ g(�x − �x0, t − t0)]

= −δ(�x − �x0)δ(t − t0), (14)

which gives, in frequency–wave-number space,

g(�k, ω) = −1(
ω2/c2

L

) − k2 − ik2ξω + k2 f (ω)
, (15)

whose poles give an effective, complex wave number as
a function of frequency, say K (ω), that defines a phase
velocity, v ≡ ω/Re[K (ω)], and an attenuation length, 
 ≡
−1/Im[K (ω)]. Alternatively, both the phase velocity and the
attenuation length can be expressed as functions of the wave
number k.

Consider now Eq. (13) in wave number space:

− 1

c2
L

∂2 j(�k, t )

∂t2
− k2 j(�k, t ) − k2ξ

∂ j(�k, t )

∂t

+k2
∫ ∞

−∞
dt ′ f (t ′) j(�k, t − t ′) = 0. (16)

Multiplying this equation by j∗(�k, 0), and taking the thermal
average, we get

−1

c2
L

∂2J (�k, t )

∂t2
− k2J (�k, t ) − k2ξ

∂J (�k, t )

∂t

+k2
∫ t

−∞
dt ′ f (t ′)J (�k, t − t ′) + k2〈 j∗(�k, 0)I (�k, t )〉 = 0.

(17)

This equation is similar to, but differs from, the equation
obeyed by the dynamic form factor in a memory function
formalism [57]. This point is further discussed in Appendix B.
Further multiplying by exp(−iωt ) and integrating over t from
0 to ∞ leads to

1

c2
L

∂J (�k, 0)

∂t
+ k2ξJ (�k, 0) + k2D(�k, ω) + i

J (�k, 0)

c2
L

ω

− g−1(�k, ω)J (�k, ω) = 0, (18)

where

D(�k, ω) ≡
∫ ∞

0
dt e−iωt 〈 j∗(�k, 0)I (�k, t )〉, (19)
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and

I (�k, t ) ≡
∫ ∞

0
dτ f (τ + t ) j(�k,−τ ) (20)

is a functional of the history of the system previous to its initial
state j(�k, 0). The initial value problem for dispersive waves,
i.e., when the speed of propagation depends on frequency,
does in general depend on its previous history. We shall
assume there is no statistical correlation between the initial
value of the current j∗(�k, 0) and its previous, dispersion-
dominated, history:

D(�k, ω) = 0. (21)

We now show that

1

c2
L

∂J (�k, 0)

∂t
+ k2ξJ (�k, 0) = 0. (22)

Indeed, note that Eq. (17) is the time derivative of

− 1

c2
L

∂ j(�k, t )

∂t
− k2 j(�k, t ) − nk2ξu(�k, t )

+ nk2
∫ ∞

−∞
dt ′ f (t ′)u(�k, t − t ′) = 0. (23)

Since 〈j ∗
l�k (0)ul�k (0)〉 = 0 because density and velocity are un-

correlated, and assuming again that the initial value of the cur-
rent is uncorrelated with the previous, dispersion-dominated,
history, we have (22). Consequently, Eqs. (18) and (9) lead to

J (�k, ω) = − 2

c2
L

J (k, 0)Im [ωg(�k, ω)], (24)

where g(�k, ω) is the Green’s function and which leads to the
density correlation through

S(�k, ω) = k2

ω2
J (�k, ω). (25)

C. Relation of the boson peak to the strings

Following [52], as we explain in more detail in
Appendix A, our model corresponds to a harmonic system
with two kinds of normal modes, noninteracting at leading
order: phonons and string modes. As such, the normal mode
density of states is

g(ω) = gD(ω) + gS (ω), (26)

where gD(ω) is the Debye distribution, only due to phonons,
and gS (ω) is the excess over this distribution (i.e., the boson
peak), assumed to only correspond to string modes. The
interaction between phonons and strings is given by the
(nonvanishing) right-hand sides of Eqs. (A1) and (A2). This
interaction is responsible for the modification of velocity and
damping of phonons in the energy range of the boson peak, as
we will see in the next sections.

The distribution of excess modes over the Debye distribu-
tion determines then a distribution of string lengths L through

gS (ω0)dω0 ≡ 2p(L)dL (27)

with ω0 the fundamental frequency of a string of length L
pinned at its ends. The factor of two in Eq. (27) indicates that
there are twice as many states of a given frequency as strings.
This is due to the fact that each string can oscillate along two
linearly independent directions that are perpendicular to its
equilibrium orientation.

As explained in detail in Appendix A, the string has a mass
per unit length m = αρb2, where ρ is the mass density of the
material, b is a length of order one interatomic spacing, and
α is a dimensionless parameter of order one. The string also
has a line tension T and an internal damping B/2m. Conse-
quently, c = √

T /m is the speed of waves along the string,
and ω0 =

√
(πc/L)2 − (B/2m)2. So, given a specific boson

peak, as determined by atomistic modeling or experimental
data, gS (ω0) can be read off it and Eq. (27) determines the
string length distribution p(L), which in turn, through (A14),
determines the index of refraction f (ω) that goes into the
Green’s function (15) whose imaginary part provides the
correlation function S(�k, ω) using (24) and (25).

III. RELATING THE BOSON PEAK DATA
TO THE IXS DATA

In this section we relate the derived S(�k, ω) to the ex-
perimental data that can be obtained in an inelastic x-ray
scattering experiment (IXS), in order to apply our model to the
data collected with this technique on two prototype glasses,
glycerol and silica.

The experimental inelastic scattering spectrum of a glass
is composed of a Brillouin triplet: an elastic line, related
to the frozen density fluctuations, and the Stokes and anti-
Stokes inelastic peaks corresponding to the annihilation and
excitation of a vibrational excitation. The measured spectrum
can be formally described as [58]

I (k, ω) = Akh̄ω
[nB(ω) + 1]

kBT
Stot (k, ω). (28)

Here, we have replaced the vector �k by its modulus, given the
isotropy of the system. Ak is a normalization factor reflect-
ing the k dependence of the atomic form factors, nB(ω) =
(eh̄ω/kBT − 1)−1 is the Bose-Einstein factor, and S(k, ω) is
the longitudinal density-density correlation function, which is
modeled as the sum of a delta function for the elastic line and
an inelastic contribution:

Stot (�k, ω) = fkδ(ω) + (1 − fk )S(k, ω), (29)

where fk accounts for the measured proportion between
elastic and inelastic parts of spectra and is related to the
nonergodicity factor and S(k, ω) is given by (25).

Equation (28) can be fitted to the experimental spectra after
convolution with the instrumental resolution function R(ω),
adding a k-dependent background bgk:

Iexp(k, ω) = bgk +
∫

I (k, ω)R(ω − ω′)dω′. (30)

Now that we have a reasonable expression for the intensity
to work with, the next task is to assign physical values to
the parameters of the model. For the instrumental resolution
function, we use the one experimentally measured and we
model it via a linear combination of a Lorentzian and a
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Gaussian function. We are then left with three groups of
parameters for the description of the experimental spectra:

(i) Experimental setup and partly material-related: bgk , Ak .
(ii) Material-related: fk , ξ , J (�k, 0), cL, and cT .
(iii) Strings-related: α, c, B/m, and gS (ω).
The function gS (ω) is obtained from the measured density

of states, by modeling the excess over Debye distribution
using a 5-degree polynomial (i.e., up to ω5). Note that the the-
oretical g(ω) is a number of states per unit frequency per unit
volume. The experimental density of states is, however, nor-
malized to the atomic volume, and thus is a number of states
per unit frequency. The extra volume is obtained from the
very low frequency asymptotics of the experimental values,
where it does coincide with the Debye theory. The number
of free parameters can be reduced by relating the velocities
cL, cT , and c through the equalities: cT = cL/

√
K/μ + 4/3,

where K and μ are the material’s bulk and shear modulus re-
spectively, and [59] c = cT . The zero-frequency value J (k, 0)
is fixed to the literature data of the longitudinal velocity
as measured with Brillouin light scattering. To simplify our
model, we observe that the effect of damping in the elastic
waves due to the internal friction of strings, given by B/m,
can be reasonably assumed to be negligible compared to the
other sources of damping. We thus take its value simply as
zero.

The remaining fitting parameters are thus bgk , Ak for the
instrumental part; fk , ξ , and cL for the material part; and only
α for the strings-related part. ξ , cL, and α are expected, in
a first approximation, to be k independent. For this reason,
and for getting the best description over a large k range, they
are found by simultaneously fitting 5 IXS spectra throughout
the studied wave number range. The k-dependent parameters,
such as bgk , Ak , and fk , are then found by independently fitting
each spectrum using Eq. (30), for fixed values of ξ , cL, and α.
The procedure is iteratively repeated until convergence.

To sum up, given boson peak data gS (ω), one obtains
p(L) through Eq. (27). This relation involves a free parameter
B/2m, the internal damping of string motion, that in the
examples that will be worked out below will be put equal to
zero. It also involves c, the speed of waves along the string, a
parameter that is completely determined by cT , the transverse
speed of sound of the material under consideration. Next, p(L)
determines f (ω) through Eq. (A13). This relation involves
m, the mass per unit length of the string, which is related to
the mass density ρ of the material through m = αρ b2, where
b is a length of order one interatomic distance that cancels
out in the calculations, and α is a dimensionless parameter of
order one that, in the examples below, will be effectively put
equal to one. Finally, as mentioned, J (k, 0) is also fixed from
literature data. With f (ω) determined, S(�k, ω) is found using
Eqs. (15), (24), and (25). This final formula for S(�k, ω) de-
pends on two parameters: ξ , the wave attenuation coefficient
in the absence of strings, and cL, the speed of sound. They will
be varied, within reasonable bounds, to fit the S(k, ω) obtained
from the experimental I (k, ω). This, in turn, is done using
Eqs. (28) and (29). These expressions depend on experimental
parameters, Ak and bgk , and a material-related parameter,
fk .

Once the parameters that afford the best fit to the experi-
mental data are obtained, they can be used to obtain the phase

FIG. 1. The boson peak of glassy glycerol at 170 K, taken from
Ref. [60], and reported in nonreduced units [g(ω) − gD(ω)], together
with the fit to the function defined in the text.

velocity v and attenuation � solving for the poles, say K (ω),
of the Green’s function in Eq. (15):

v = ω

Re[K (ω)]
, (31)

� = −cLIm[K (ω)]. (32)

For testing the modeling of the inelastic scattering data
through the string distribution obtained from the experimental
density of states, we have chosen two prototype cases, a
fragile glass, glycerol, and a strong one, silica, for which all
the experimental data are available.

A. The case of glycerol

We present here the fit of inelastic x ray scattering data
obtained by Monaco and Giordano [2] on a glass of glycerol
at 150 K, the glass transition temperature being Tg = 189 K.
In that paper, data between k = 1.1 and k = 5 nm−1 have
been reported and fitted with a damped harmonic oscillator
(DHO) model for the inelastic contribution. Such work has
given the first experimental evidence of the existence of elastic
anomalies in glasses in the boson peak region and the early
breakdown of the Debye approximation: a crossover from a
regime where the phonon attenuation increases with k4 to a
regime where it goes as k2, accompanied by a dip in the sound
velocity with respect to the expected behavior. Moreover, the
calculation of the density of states using the experimental
S(k, ω) has been found to be in reasonable agreement with the
experimental data as measured by inelastic neutron scattering
at 170 K [60]. The role of the attenuation has been there
highlighted, as fundamental to get the right position of the
boson peak.
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FIG. 2. Inelastic x-ray scattering spectra of glassy glycerol as
measured at 150 K and reported in Ref. [2] for exchanged momentum
q = 1.3, 1.5, 1.7, 1.9, 2.1, and 2.5 nm−1 from panels (a) to (f). For
the sake of clarity we report only the positive energy exchange side
and only the inelastic contribution after subtraction of the elastic line.
The black solid lines represent the fit with the string model, where the
string distribution has been deduced from the boson peak.

If in that work the authors could reproduce the density
of states from the experimental density-density correlation
function, here we follow the opposite direction, using the
density of states for reproducing the S(k, ω). Figure 1 re-
ports the excess density of states on the Debye prediction
as obtained from Ref. [60]. In order to extract an analytical
expression for p(L), we fit it using the function gs(E ) =
p0 ∗ E3 ∗ exp[−p1 ∗ (E − p2)2], which respects the bound-
ary conditions gs(0) = gs(∞) = 0, also reported in the figure.
Figure 2 reports a selection of inelastic spectra of glycerol,
in the [1–3] nm−1 range, together with the fit to Eq. (28).
For a better visualization, we have chosen to report only the
inelastic part of the spectra, after subtraction of the fitted
elastic line, and only for positive exchanged energies.

We recall here that in Ref. [2] the k4-k2 crossover was
identified at k ≈ 2 nm−1. The k values here chosen span then
the interesting k region. We have not reported larger k as
the vibrational modes are largely too damped and the energy
range too short for a constraining fit with our model. From
the figure, it is clear that the fitting model catches quite well
the k dependence of the major inelastic contribution features
(energy position and attenuation), with a fitting quality com-
parable to the DHO fit reported in Ref. [2]. The k-independent
parameters fitted with our iterative procedure are reported in
Table I.

To go further, we can extract from our model the phase
velocity v and the attenuation � calculated as indicated in
Eqs. (31) and (32). They are reported in Fig. 3, together with
the boson peak, and they are compared with the expected

TABLE I. Table of the physical quantities needed for the string
model and the k-independent fitting parameters for glycerol and
silica.

Glycerol Silica

J (k, 0) (km/s) 3.625 [61] 6.5 [16]
K (GPa) 14.1917 [62,63] 44.97 [64]
μ (GPa) 4.85 [62,63] 36.07 [64]
cL (km/s) 3.42 ± 0.03 6.08 ± 0.05
ξ (10−14 s) 3.1 ± 0.3 2.84 ± 0.17

velocity and attenuation in the absence of strings (in red). It
is clear that the addition of strings strongly modifies velocity
and attenuation. More precisely, from these graphs, we under-
stand that the longest strings, corresponding to the low-energy
modes of the boson peak (BP), and thus to its onset, interfere
with elastic waves slowing them down, while the shortest
strings, corresponding to the high-energy part of the BP, speed
them up again. This interference is accompanied by the onset
of a strong attenuation. Note that in the figure we report the
“string-dependent” attenuation, i.e., the residual attenuation
once the one without strings has been subtracted. As such, at

FIG. 3. Top panel: Excess of modes (boson peak) in the regular
density of states of glassy glycerol and its modeling with the function
detailed in the text. The red dashed line represents what we should
have in the absence of strings (no excess). The mismatch at low
energy is due to the larger weight that low-energy states have in this
case, compared with the fit in nonreduced units reported in Fig. 1.
Central panel: The velocity as obtained using Eq. (31), compared
with the one in the case of no strings (red). Bottom panel: The excess
attenuation, due to strings, with respect to the attenuation in the case
of no strings. Its maximum, marked by the vertical green dashed line,
corresponds to the change of behavior in the velocity from a lower
to a higher velocity with respect to the no-string case, and to the
maximum of the BP.
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FIG. 4. The boson peak of glassy silica at 1673 K, taken from
Ref. [17], reported in nonreduced units [g(ω) − gD(ω)], together
with the fit to the function detailed in the text, and a fit to a 5-degree
polynomial for comparison.

low energy it is zero and constant, meaning that the total at-
tenuation goes like k2, and then it increases, meaning that the
total one goes like k4, before decreasing again. The maximum
corresponds to the maximum of the BP, i.e., the maximum of
density of string modes. It is worth noticing that while our
model well reproduces the existence of a dip in the sound
velocity as well as the k4-k2 crossover, all the phenomenology
appears shifted at lower k with respect to what is found with
a DHO model. We do not expect the two models to give
exactly the same results, as we explain in Appendix B; still
the physical meaning behind the results obtained with the two
models is very similar: we have the same elastic anomalies,
which occur in both cases in correspondence with the BP,
excess of modes in the regular density of states (string case)
or the reduced one (divided by ω2; DHO case).

B. The case of silica

In this section, we apply the string model to the case of
silica and more specifically we fit the data collected by x-ray
inelastic scattering at T = 1620 K (glass transition temper-
ature Tg = 1450 K [65]) and reported by Baldi et al. [17].
Figure 4 reports the excess density of states in nonreduced
units as obtained from the one measured by neutron scattering
at T = 1673 K and reported in the same paper, together
with a fit to the same function introduced for glycerol, for
extracting the string distribution. This function overestimating
the low-energy density of states in this case, we have fitted the
BP as well with a 5-degree polynomial function, cutting it at
low and high energies to avoid unphysical negative values.
While the choice of the analytical function for the BP does
modify the quality of the fit for it, we have verified that

FIG. 5. Inelastic x-ray scattering spectra of glassy silica as mea-
sured at 1620 K and reported in Ref. [17] for exchanged momentum
q = 1.1, 1.3, 1.7, 2.3, 2.7, and 2.9 nm−1 from panels (a) to (f). For the
sake of clarity we report only the positive energy exchange side and
only the inelastic contribution after subtraction of the elastic line.
The black lines represent the fit with the string model, where the
string distribution has been deduced from the boson peak using the
same fitting function as in glycerol.

the string distribution and the inelastic spectra fit are not
significantly modified, and we can draw the same general
conclusions independently on the specific model chosen. As
such, in the following we show only the results obtained
with the same fitting function as used for glycerol, which
is physically more sound. Some selected inelastic spectra
with the fit performed with our model in the exchanged wave
vector range between 0.95 and 2.8 nm−1 are reported in
Fig. 5. The agreement is quite good, up to k ∼ 2 nm−1, from
which value it gets worse and worse with increasing wave
vector, overestimating the position and underestimating the
width. The k-independent fitting parameters are reported in
Table I. This can be understood going back to Ref. [17],
where a critical wave vector kc = 1.41 nm−1 was identified,
such that � ∝ k4 for k � kc and � ∝ k2 above. Related to
the Ioffe-Regel crossover, this critical wave vector has been
successively identified as the limit above which the spectra are
mostly determined by the local order and similar to the ones
of the polycrystal with the same local order and density. Here
the peak acquires contributions from the transverse modes and
from the higher-energy optic modes, not being then a single
plane wave anymore [66]. We can thus expect our model not
to work anymore in this regime.

Similarly to the case of glycerol, we report in Fig. 6
the boson peak, the velocity as modified by the presence of
strings, and the excess attenuation due to the strings. The same
considerations as above hold true for silica, both on the effect
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FIG. 6. Top panel: Excess of modes (boson peak) in the regular
density of states of glassy silica and its modeling with the same
function as in glycerol. The red dashed line represents what we
should have in the absence of strings (no excess). Central panel: The
velocity as obtained using Eq. (31), compared with the one in the
case of no strings (red). Bottom panel: The excess attenuation, due
to strings, with respect to the attenuation in the case of no strings.
Its maximum, marked by the vertical green dashed line, corresponds
to the change of behavior in the velocity from a lower to a higher
velocity with respect to the no-string case, and to the maximum of
the BP.

of strings and on the different crossover position with respect
to the findings of the DHO model.

IV. DISCUSSION

A. The string distribution

We have seen that our string model is able to provide a fit
to experimental data as good as the one historically obtained
with the DHO model. The derived velocity and attenuation, as
calculated from the fitting parameters and Eqs. (31) and (32),
can be clearly interpreted in terms of interference of the elastic
waves with low-energy localized modes from strings with
different lengths, giving a straightforward understanding of
the elastic anomalies in glasses.

It is interesting to underline that in the examples above
we have made a series of simplifications, which allows us to
extract the important parameters of the model: (i) we have
neglected the intrinsic damping in the strings, by imposing
B/m = 0; (ii) we have assumed α = 1, which corresponds
to saying that the linear mass density of the string is the
same as in the material; and (iii) we have taken the speed
of sound c in the string equal to the speed of shear waves:
c = cT . Moreover, the excess density of states is fixed by the
experimental observation. The parameter b (cross-sectional
size of the string), still present in the model, cancels out, so

FIG. 7. We compare here the string length distribution as ob-
tained from the boson peak in glassy glycerol (black) and in silica
(red).

that the dynamics depends only on the strings’ length, whose
distribution leads to the distribution of string vibrational
modes and then to the boson peak. As such, our fitting model
is almost with no free parameters once the boson peak has
been measured, which unambiguously fixes the string length
distribution. The quality of the agreement of the model with
the data is then impressive. In Fig. 7 we report the length
distribution obtained for glycerol and silica.

Despite the large structural and dynamical differences
between these two glasses, the boson peak is located at
very similar energies, with a maximum, in reduced units, at
4 meV in glycerol and 6 meV in silica. This may explain
the similarity of the string length distributions reported in
the figure, with a slight difference in the position of the
maximum, which well mimics the one in the BP position,
the maximum being 0.52 nm and 0.64 nm for glycerol and
silica, respectively. Such value corresponds well to the size
of the elastic heterogeneities as found for silica in [66], and
is also the typical size of the dynamical heterogeneities in
glass-forming liquids close to the glass transition, suggesting
a direct link between our strings and these latter [67,68]. It is
also remarkable that in both glasses most of strings’ lengths
lie between about 0.4 nm and 2.6 nm, implying that the same
string modes are present in both glasses. It is worth noticing
that 0.4 nm corresponds well to the correlation length for the
spatial fluctuations of the local sound velocity, as identified
in silica in [69]. Beyond these similarities, the two glasses’
distributions differ for their integral area, which is directly
connected to the boson peak amplitude, and corresponds to
the total string number density: 5.012 nm−3 for glycerol
and 3.177 nm−3 for silica (3.129 nm−3 for the 5-degree
polynomial fit).
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In light of these observations, one may wonder whether the
extent of the string distribution as well as a maximum around
0.5–0.6 nm are somehow universal parameters independent of
the glass and of the position and intensity of the BP, which
are only dependent on the finer details of the distribution
(such as the precise position of the maximum and the total
integral). Indeed, glycerol is a so-called intermediate glass,
with fragility m = 50–53 [70], against the strong character
of silica, m = 19.8 [71]. Fragility has been recently related
to the microscopic connectivity [72], the fragility decreasing
with the increasing of the network rigidity or connectivity. It
would then be interesting to further investigate the relation
between string length distribution and microscopic connectiv-
ity, by applying our model to a very fragile glass (m � 90).
More generally, applications of the model to more systems
would help in understanding the role played by the length
distribution detailed shape in determining the position of the
excess of modes and shape (the BP), and its correlation with
the fragility of the glass, and identify the universal features.

B. Strings and low-energy localized modes
from numerical simulations

Very recently large numerical simulations have proved the
existence in glasses of low-energy localized nonphononic
modes at low energy. It is interesting to investigate further
the link which can exist between the strings in our theory and
such modes. These latter correspond to particle displacements
decaying as r−2 in 3D from the localization point [41–45], the
same decay law being obeyed by the plastic events associated
with quasistatic deformations. Interestingly, their density of
states grows like frequency to the fourth in two, three, as well
as four dimensions for energies below the boson peak [45]. In
order to check whether the string vibrations present the same
characteristics as the low-energy localized modes reported in
these works, we calculate the particle displacement associated
with them, solving Eqs. (A2) and (A3).

Consider a string segment of length L along the z axis,
oscillating with a small amplitude δ and fundamental fre-
quency ω0 along the y direction. The displacement Xn(s, t ′)
as a function of a Lagrangian variable s along the string and
time t ′ is

Xn(s, t ′) =
(

0, δeiω0t ′
sin

[
π

L

(
s + L

2

)]
, s

)
(33)

with −L/2 < s < L/2, equilibrium position X 0
n (s) =

(0, 0, s), bi = (0, 0, 1) where m = ρb2, and τ j = (0, 0, 1) is
the tangent to the string (see Appendix A). In this case the
particle velocity obtained from (A2) and (A3) is

vm(�x, ω0)

= −ibμω0δ

∫ L/2

−L/2
ds sin

[
π

L

(
s + L

2

)]

×[∇1G0
3m(�x − �X0(s), ω0) + ∇3G0

1m(�x − �X0(s), ω0)
]
,

(34)

where G0
i j is the bare Green’s function introduced in

Appendix A. For our present purposes we need it in the

FIG. 8. Particle motion associated with string motion, according
to Eqs. (33) and (36), for particles very close to the string (r � L).
The string (red straight line) points along the z axis and moves per-
pendicular to itself, along the y axis. Particles move along a direction
parallel to the string, the z axis. Left panel: Motion of particles lying
along the x-y plane. Right panel: Motion of particles along x-z. Here
the particle motion is invariant with respect to translations along the
z axis. Note that the string and its (perpendicular) motion determine
a plane, here the y-z plane. Particle motion on one side of this plane,
say positive x, is 180◦ out of phase with respect to particle motion on
the other side, negative x.

representation [73]

4πρG0
km(�r, ω0)

= 1

c2
T r

δkme−iω0r/cT + rkrm

r3

[
1

c2
L

e−iω0r/cL − 1

c2
T

e−iω0r/cT

]

+
(

1

r

)
km

[−1

iω0

(
r

cT
e−iω0r/cT − r

cL
e−iω0r/cL

)

+ 1

ω2
0

(
e−iω0r/cT − e−iω0r/cL

)]
. (35)

After substitution of this expression into (34) we can identify
three distinct regimes as a function of distance from the
string:

(a) r � L: that is, particle motion very close to the string,
at distances small compared to string length. In this case it
is straightforward to verify that, far from the pinning points,
v1 = v2 = 0 and that

u3(x, y; ω0) ∝ x

x2 + y2
, (36)

where (x, y) are coordinates on a plane centered on the string
and perpendicular to it. This means that particles sharing the
same (x, y) coordinates will have the same motion, parallel to
the string. This latter however moves perpendicular to itself,
as it moves along the y direction while it is aligned along the
z direction. As such, the particle displacement generated by
the string corresponds to a transverse excitation, as can be
better appreciated from Fig. 8. This motion seems compatible
with that reported by Schober et al. [49,74,75] in numerical
simulations.

(b) r ∼ L: distances on the order of the string length. Re-
member that ω0 ∼ c/L. In this case, omitting terms depending
on the string acceleration, which will be considered in (c), the
particle displacement decays like r−2 away from the center
of the string, in a very nice agreement with the results of
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Lerner et al. [42–45] for the eigenvectors of the localized
modes of a disordered solid.

(c) r � L: distances very far from the string. In this case
vm(r, ω0) ∼ 1/r. This is the typical decay of a radiation field
and was to be expected. Indeed, the vibrating string picture
encapsulates the time variation of an inhomogeneous strain
distribution. An inevitable result of such a time evolution
is the generation of a radiating field that propagates away
to infinity. This part of the particle displacement however
emerges only after considering its time evolution; it depends
on the string acceleration and cannot be obtained from a
diagonalization of the dynamical matrix as calculated in
Refs. [41–45].

So the string plays the role of a one-dimensional dynamical
object that encapsulates the coherent motion of a localized,
three-dimensional set of particles. More precisely, the boson
peak normal modes correspond to motion of a localized set
of particles in three-dimensional space, whose dynamics is
described by a one-dimensional string of finite length.

Once we have assessed that the particle displacement
related to a string motion is compatible with the one of
the nonphonon low-energy localized modes, we next need
to understand whether the density of states of the localized
modes is also the same. The low-energy ∼ω4 behavior is
actually not incompatible with the experimental density of
states we have used in previous sections. In terms of strings, it
would translate into a density of string lengths ∼L−6 at large
L.

Finally, the strings we have been considering are a specific
implementation of nonaffine displacements. As such, they can
account for both the excess number of vibrational states and
the dispersive properties of acoustic waves, in glasses. In this
sense, our work is intimately in agreement with the recent
results by Caroli and Lemaître, who have directly solved
Newton’s equation for a system of particles interacting
through a soft-sphere potential in two dimensions, and high-
lighted the major role played by nonaffine displacements in
the acoustic behavior of amorphous solids [20]. It would be
interesting to extend the string picture to two-dimensional
glasses to further relate this picture to the cited findings.

V. CONCLUSION

We have presented in this paper an implementation of the
analytical string theory as developed by one of us for the
description of the physics of dislocations, and later applied to
the description of glasses, modeled as continuum media with
embedded elastic string heterogeneities [52]. In that previous
work it was already shown that such a description can account
for the elastic anomalies reported at frequencies comparable
with the boson peak: the strong phonon scattering and the
negative dispersion in the sound velocity. Here we further
develop that theory, in order to get the density-density correla-
tion function and compare with experimental data obtained by
inelastic x-ray scattering on two prototypical glasses, glycerol
and silica.

We show that, once the vibrational density of states has
been measured, we can use it for unambiguously fixing the
string length distribution inherent to that glassy system. The
density-density correlation function obtained using such dis-

tribution is strongly constrained, and able to account for the
experimental data in a fairly extended wave vector range, with
the refinement of just a few fitting parameters. As such, the
quality of the fit in the large wave vector range around the
boson peak region is quite impressive for both systems.

From such fits, we can infer that the sound velocity and
the attenuation of the elastic waves traveling in the continuum
medium are perturbed due to the interference with the string
vibrational eigenmodes: longer strings, characterized by low-
energy eigenmodes, slow down the sound wave, while shorter
strings, whose eigenmodes correspond to the high-frequency
tail of the boson peak, speed it up again. The maximum of the
BP corresponds to a critical energy at which the change from
negative to positive interference in the speed of sound takes
place, as well as to the maximum of the extra attenuation, due
to the interference with the strings. While the phenomenology
closely resembles the one evidenced in [2], this critical energy
is slightly smaller. However, as explained in Appendix B, it is
not expected to obtain the same value.

We have shown that the string distribution model is com-
patible with the recent theoretical advances in the understand-
ing of the vibrational properties of glasses in the sub-THz–
THz range. More specifically, the atomic motion associated
with the strings presents a similar spatial amplitude behavior
to the one obtained for the low-energy nonphononic modes in
recent numerical simulations, allowing us to directly connect
such nonphononic low-energy excess modes with the funda-
mental eigenmodes of the elastic heterogeneities represented
by the strings.

It is thus interesting to critically inspect the string length
distribution and its connection with the vibrational density of
states and elastic anomalies. We have shown some common
features, such as the range of string lengths and a peak at about
0.5–0.6 nm, which are compatible with the reported elastic
heterogeneities correlation length for silica [66] and dynami-
cal heterogeneities in supercooled liquids [67,68]. Such com-
mon properties suggest a possible universality, beyond the
fragility and the microscopic connectivity of the glass, which
could be instead more closely related to the string density or
the finer details of the distribution.

Our work thus not only offers a powerful tool, allowing us
to directly obtain the longitudinal density-density correlation
function from the density of states measurement, but also
offers a microscopic understanding of the vibrational prop-
erties of glasses in terms of interference of the sound plane
waves with low-energy modes of elastic 1D heterogeneities,
compatible with the most recent theoretical findings. Such a
picture allows us to identify the string length distribution fea-
tures as key players in determining the vibrational anomalies,
showing the universal character of some of them against the
material-specific character of others.

Several future ways of investigation can be anticipated
here. Our approach is expected to be universal, as it is based
on continuum mechanics; thus its overall features should hold
for all glasses, down to length scales of a few interatomic
spacings. Still, the quantitative details should differ from
glass to glass, depending on their specific microstructure. The
identification of very similar string length distributions in two
glasses with fairly different fragility requires further work for
shedding light on this point, and identifying the universal or
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material-specific features of the string distribution. For this,
the application of the model to a large number of systems with
fragility spanning up to values as large as 90 and different
microscopic connectivity is foreseen.

Second, the many experimental observations on the pres-
sure and temperature dependence of the BP naturally raise
the question about how the thermodynamic conditions impact
the string distribution. It is clear that an effect will arise
already for the induced density change; still the possible
microstructure change should also reflect in modifications in
the string distribution.

Finally, the reported success of our theory in describing the
elastic anomalies in glasses, at energies in the THz range and
nanometric wavelength, represents a solid basis for further
developing the model for trying to understand other glass-
specific dynamical phenomena. For example, an investigation
of the string dynamics at temperatures lower than 1 K, where
quantum effects are likely to dominate, could shed light on
the nature of two-level systems (TLS), or the implementation
of the coupling of the strings with electromagnetic radiation
would allow us to compare our model with a large amount
of experimental data from optical spectroscopies (infrared,
Raman, hyper-Raman, etc.), allowing us also to identify the
limits of our description.
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APPENDIX A: COHERENT WAVES, STRINGS,
AND THE BOSON PEAK [52,53,76]

Consider a set of elastic strings of length L with pinned
end points. There are p(L)dL strings with length between
L and L + dL per unit volume. Each string is described
by a displacement �X (s, t ) away from a straight equilibrium
position �X0, with s a Lagrangian parameter along the string,
which obeys the equation of an elastic string loaded by an
external stress which, in the present context, will be associated
with an elastic wave:

mẌk (s, t ) + BẊk (s, t ) − T X ′′
k (s, t ) = μb Nk j p∇ jup( �X , t ),

(A1)

where m ∼ ρb2 is a mass per unit length, b is a length of
order one interatomic distance, T ∼ μb2 is a line tension, B
is a phenomenological damping coefficient, and ∇l uk ( �X0, t )
is the gradient of the displacement �u(�x, t ) associated with the
incoming wave, evaluated at the string equilibrium position.
Nk j p ≡ εk jmτmτp + εkpmτmτ j , where τ j is the unit tangent
along the string equilibrium position. A prime means differ-
entiation with respect to s. The right-hand side of (A1) is the
Peach-Koehler force for screw dislocations in elastic continua.
This coupling ensures that only the shear modulus, and not the
bulk modulus, will, later on, become frequency dependent, a
fact that has been observed in the numerical simulations of
Maruzzo et al. [77].

On the other hand, an elastic wave traveling in the presence
of such a string will obey the equation [78,79]

ρv̈i(�x, t ) − ci jkl∇ j∇lvk (�x, t ) = si(�x, t ), (A2)

with

si(�x, t ) = ci jklεmnkb
∫
L

ds Ẋm(s, t )τnτl∇ jδ(x − X0), (A3)

where ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk ).
So the picture is as follows: an elastic wave hits an elastic

string; the string responds according to Eq. (A1); this response
is plugged into the right-hand side of Eq. (A2) to obtain the
scattered field generated by this response. Actually plugging
the solution of (A1) into (A2) leads to, in the frequency
domain,

−ρω2vi(�x, ω) − ci jkl∇ j∇lvk (�x, ω) = Vikvk (�x, ω), (A4)

where

Vik = A Nmi j∇ jδ(�x − �X0) Nmlk∇l |�x= �X0
, (A5)

with

A ≡ 8

π2

(μb)2

m

L

[ω2 − (πc/L)2 − iωB/m]
, c2 ≡ T /m.

(A6)

The next step is to think of the right-hand side of (A4)
as consisting, not of a single string, but of many strings,
randomly located and oriented, and with a distribution of
lengths given by p(L). In this case the problem is of a wave
traveling in a random medium, or more precisely, in a medium
filled with random scatterers. In any case, it is possible to find
a coherent wave solution that is described by a complex index
of refraction. This is achieved through the computation of an
effective, average, Green’s function.

Consider the full Green’s function for the problem (A4):

ρω2Gim(�x, ω) + ci jkl∇ j∇lGkm(�x, ω)

= −
∑

strings

VikGkm(�x, ω) − δimδ(�x). (A7)

To this end the average Green’s function is written as
(“Dyson’s equation”)

〈〈G〉〉 = [(G0)−1 − �]−1, (A8)

where G0 is the Green’s function of the medium without
dislocations (i.e., “free” or “bare”) [79–81], for an infinite,
homogeneous, and isotropic medium, and the double brackets
〈〈·〉〉 denote an average over the random variables character-
izing the disordered medium, not to be confused with the
thermal average considered in the text. The mass operator
� can be computed from the interaction V according to a
well-defined, perturbative procedure. It turns out that, due to
the pointlike nature of the interaction in (A7), the perturbation
series can be summed and the result is

�i j = −
∫

σ0(L)p(L)dL

[
1

5
(δi j − k̂ik̂ j )k

2 + 4

15
kik j

]
(A9)

with

σ0 ≡ 2A
1 + AI

, I ≡ −iω3 1

5π

1

ρc5
T

. (A10)
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Clearly, just like G0, the mass operator �, and conse-
quently the effective Green’s function 〈〈G〉〉, split into longi-
tudinal and transverse parts:

〈〈Gi j〉〉 = 〈〈GL〉〉k̂ik̂ j + 〈〈GT 〉〉(δi j − k̂ik̂ j ). (A11)

For the purposes of the present work we are only interested in
the longitudinal portion and, from (A8), the result is

〈〈GL〉〉−1 = ρ
( − ω2 + c2

Lk2
) + k2 4

15

∫
σ0(ω, L)p(L)dL.

(A12)
Comparing (15) and (A12) we obtain

f (ω) = − 4

15

1

ρc2
L

∫
σ0(ω, L)p(L)dL, (A13)

which relates a population of strings with a distribution of
lengths and the index of refraction of Sec. II B.

Putting together (A6), (A10), and (A13) we have

f (ω) = − f0

∫
Lp(L)dL

ω2 − (πc/L)2 − i
[
ωB/m + 2ω3/

(
αω2

T

)] ,

(A14)

where

f0 ≡ 1

α

8

15

8

π2

c4
T

c2
L

, ω2
T ≡ 5π3

4

cT

L
, (A15)

and α is a dimensionless parameter of order one defined by
m ≡ αρb2.

APPENDIX B: THE DAMPED HARMONIC
OSCILLATOR MODEL

We follow the book of Boon and Yip [56]; see also
Scopigno et al. [57]. Starting from a linear description of
a Navier-Stokes fluid with constant transport coefficient one
finds, neglecting temperature fluctuations, that the current
j(�x, t ) obeys the same Eq. (1) that has been our starting point
for waves in an elastic solid, and, unsurprisingly, the current
correlation is given by (11). That is, Navier-Stokes sound in
a fluid and elastic sound in a continuous, homogeneous solid
obey the same equations at low frequency and wave number.

In generalized hydrodynamics, the next step is to introduce
a memory function into the equation for the current correlation
function. The Navier-Stokes expression

∂JNS(k, t )

∂t
= −k2c2

L

∫ t

0
dt ′JNS(k, t ) − νk2JNS(k, t ), (B1)

where ν is the viscosity, is replaced by

∂JGH(k, t )

∂t
= − (kv0)2

S(k)

∫ t

0
dt ′JGH(k, t )

− k2
∫ t

0
dt ′�(k, t − t ′)JGH(k, t ). (B2)

Here, v0 is the thermal particle velocity and S(k) is the
static structure factor. These quantities are determined by the

material at hand, and the replacement of cL by v0/S(k) is
dictated by one of the sum rules that must be obeyed by the
current correlation function J (k, t ). The “memory function”
�(k, t ) is, as yet, undetermined, and is supposed to capture the
fact that, at high frequencies and short wavelengths, viscous
effects are no longer described by constant coefficients, but
depend on time and length scales. The current correlation
obtained from this expression is

JGH(k, ω)

= 2v2
0ω

2k2�′(k, ω)

{ω2−[(kv0)2/S(k)]+ωk2�′′(k, ω)}2+[ωk2�′(k, ω)]2
,

(B3)

where �′ and �′′ are the real and imaginary parts of the
Laplace-Fourier transform of �(k, t ).

The damped harmonic oscillator (DHO) expression em-
ployed in Refs. [2,17] to interpret the glycerol and silica data
is obtained from (B3) with the special choices

�′′(k, ω) = 0, k2�′(k, ω) ≡ 2�(k),
(kv0)2

S(k)
≡ �2(k).

(B4)

That is, the damping is instantaneous (i.e., independent of
frequency) but wave number dependent. The functions �(k)
and �(k) are obtained through a comparison with the exper-
imental data, and they do not appear to be directly related to
a specific particle behavior in the glass. They do reproduce,
however, the Navier-Stokes behavior at long wavelengths.

In the body of this paper we have used an expression for the
current correlation given by Eqs. (24), (15), and (A14). This
expression differs from a DHO model. It can, however, be
obtained as a special case of the generalized hydrodynamics
expression, Eq. (B3), with

ω�′ = c2
L(ξω + Im f ), (B5)

v2
0

S(k)
− ω�′′ = c2

L(1 − Re f ). (B6)

These two formulas show that the string model developed in
the body of the paper can be considered as being encompassed
by a memory function formalism, albeit with a somewhat
roundabout formulation. The coherent-wave picture devel-
oped in Sec. II provides a more direct formulation, that in
addition has a straightforward physical interpretation, and it
links the wave behavior to the vibrational degrees of freedom
contained in the boson peak, through the function f (ω).
These coherent waves are characterized by a phase velocity
and attenuation given by Eqs. (31) and (32), which differ
from the position divided by wave vector and full width at
half maximum of the inelastic peak in the dynamic structure
function, which are the definitions of velocity and attenuation
commonly associated with the DHO model. Both the string
and the DHO models provide adequate fits of the experimental
data. They differ, however, in terms of physical interpretation.
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