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I. INTRODUCTION

The importance of the number of distinct distances in a code was already pointed out by Delsarte in 1973 in [START_REF] Delsarte | Four fundamental parameters of a code and their combinatorial significance[END_REF]. In that paper, he studied for a given code C, the relations between this value, the number of distinct distances for the dual code C ⊥ , and the minimum distances of C and C ⊥ , obtaining interesting results on the weight distributions of cosets of a code. It is easy to see that when one restricts the study to linear codes, then this number coincides with the number of non-zero weights. Further studies on determining the number of weights of a given linear code can be traced back to 1963. In [START_REF] Macwilliams | A theorem on the distribution of weights in a systematic code[END_REF], MacWilliams dealt with the problem to establish if, given a finite set of positive integer S, it is possible to construct a code whose set of non-zero weights is precisely S. Also, Assmus and Mattson investigated on the number of M. Shi is supported by National Natural Science Foundation of China (61672036), Excellent Youth Foundation of Natural Science Foundation of Anhui Province (1808085J20), the Academic Fund for Outstanding Talents in Universities (gxbjZD03).

A. Neri is supported by the Swiss National Science Foundation through grant no. 187711. non-zero weights of a code in [START_REF] Assmus | New 5-designs[END_REF], using this value to give a connection between codes and designs. Another useful application deriving from this number can be found in the works of Hill and Lizak [START_REF] Hill | Extensions of linear codes[END_REF], [START_REF] Hill | An extension theorem for linear codes[END_REF], who gave conditions on extendability of codes based on the number of their non-zero weights.

More recently, additional results on the number of weights of MDS codes were obtained by Ezerman, Grassl and Solé in [START_REF] Ezerman | The weights in MDS codes[END_REF]. They determined this number for all the MDS codes (assuming that the MDS conjecture is true). Their motivation was due to recent results of Rains ([25]) and Grassl, Röttler and Beth ( [START_REF] Grassl | On optimal quantum codes[END_REF], [START_REF] Rotteler | On quantum MDS codes[END_REF]), who constructed quantum error-correcting codes relying on the existence of codewords of a given weight in a classical block code. New lights on MDS codes without assuming the MDS conjecture were recently shed by Alderson in [START_REF] Alderson | On the weights of general MDS codes[END_REF].

A current research topic is to study the maximum number of nonzero weights of codes belonging to some special class of codes. This series of problems in extremal combinatorics started in [START_REF] Shi | How many weights can a linear code have?[END_REF], where Shi, Zhu, Solé and Cohen investigated the class of linear codes. They introduced the functions L(n, k, q) and L(k, q) which represent respectively the maximum number of nonzero weights of an [n, k] code, and the maximum number of nonzero weights of a k-dimensional code, with no restriction on the length. In that paper, some results on these two functions were provided, leaving as on open conjecture that the value L(k, q) is always equal to q k -1 q-1 , Such a conjecture was proved to be true in [START_REF] Alderson | Maximum weight spectrum codes[END_REF], where Alderson and Neri introduced the notion of maximum weight spectrum codes (or MWS codes in short). These codes were studied also by other authors for their combinatorial interest (see [START_REF] Meneghetti | On linear codes and distinct weights[END_REF], [START_REF] Cohen | Maximum weight spectrum codes with reduced length[END_REF], [START_REF] Alderson | A note on full weight spectrum codes[END_REF]). Moreover, the function L(n, k, q) was also studied in [START_REF] Shi | How many weights can a linear code have?[END_REF], and new answers were then provided by Alderson in [START_REF] Alderson | A note on full weight spectrum codes[END_REF]. He defined and studied the combinatorial properties of full weight spectrum codes (or FWS codes in short), which are codes of length n with exactly n nonzero weights. Finally, in [START_REF] Shi | How many weights can a cyclic code have?[END_REF], Shi, Li, Neri and Solé conducted a study on the weights of cyclic codes, determining upper and lower bounds, and finding the number of weights of all the q-ary Hamming codes, and of many q-ary Reed-Muller codes.

In this paper, we will consider the weights of quasi-cyclic codes, which represent the missing link between linear codes and cyclic codes. This point of view gives interesting results connecting these three families of codes. Concretely, we investigate on the function Γ Q (n, , k, q), which is the maximum number of distinct weights that an [n, k] quasi-cyclic code of index gcd( , n) can have over the finite field F q . We derive some upper bounds on this number, analyzing the interplay between the cycle structure of the automorphism group of a quasi-cyclic code and the arithmetic of the underlying finite field. Lower bounds are obtained next, using four different approaches. Firstly, we reduce to lower bounds for linear codes, using the construction of quasi-cyclic codes via direct product. This will result in determining the exact values of Γ Q (n, , k, q) for some set of parameters. A second approach is to study the automorphism group of q-ary Reed -Muller codes. In Theorem 12 we characterize all the possible integers for which a q-ary Reed-Muller code is quasi-cyclic of index . Besides its importance as a result in itself, we also use it to determine lower bounds on the function Γ Q (n, , k, q) for some set of parameters. Additional lower bounds are obtained using the connection with cyclic codes and with the covering radius of the dual code via the celebrated Delsarte bound [START_REF] Delsarte | Four fundamental parameters of a code and their combinatorial significance[END_REF]. We also present asymptotic results on this function, which allow us to determine its behavior for long quasi-cyclic codes of fixed rates.

The material is arranged as follows. Section II contains the necessary terminology and definitions on linear codes, quasi-cyclic codes and on the combinatorial functions that we investigate. Section III is dedicated to the upper bounds on the number of weights that a quasi-cyclic code can have. This is done by analyzing the relations between the cycle structure of the automorphism group of a quasi-cyclic code and the arithmetic of the underlying finite field. In Section IV we focus on the lower bounds. We use different approaches for this purpose, exploiting the connections with linear codes and cyclic codes, and using the said Delsarte bound on the covering radius of the dual code. Moreover, in the same section, we study the quasicyclicity of q-ary Reed-Muller codes, characterizing the indices for which they are quasi-cyclic. Section V considers an asymptotic approach for the estimate of the maximum number of weights that a quasicyclic code can have, producing interesting answers for long quasi-cyclic codes. Section VI contains some numerical values in the case of binary quasi-cyclic codes, leading to a challenging conjecture. Finally, we share our conclusions and some open problems in Section VII.

II. DEFINITIONS AND NOTATION

In this section we recall some preliminary notions of algebraic coding theory, introducing linear codes, quasi-cyclic codes and the combinatorial functions we are going to study in our paper.

A. Linear codes

A (linear) code C of length n over a finite field F q is an F q -vector subspace of F n q . The dimension of the code is its dimension as an F q -vector space, and is denoted by k. A linear code of length n and dimension k over F q will be denoted for brevity by [n, k] q code. The elements of C are called codewords.

The dual C ⊥ of a code C is the orthogonal subspace taken with respect to the standard inner product.

The (Hamming) weight of x ∈ F N q is the number of indices i where x i = 0, and it is denoted by wt H (x). Moreover, the (Hamming) distance between two vectors u, v ∈ F n q is the quantity d H (u, v) = wt H (u -v). The minimum nonzero weight d of a linear code is called the minimum distance.

The set of weights of a linear code C (including the 0) is denoted by wt(C), and the number of nonzero weights of C by s(C), i.e. 

B. Quasi-Cyclic codes

A quasi-cyclic (QC) code is a linear code invariant under some positive power α of the cyclic shift ρ. The smallest such power is called the index of the QC code and denoted by . Let us write n

= Q + R with 0 ≤ R < . Since ρ n = id, then C = ρ n (C) = ρ R (ρ Q (C) = ρ R (C)
, which by minimality of implies R = 0. Hence, the index divides the length n of the code. The quotient n/ is called the co-index. The period t of a codeword c is the smallest positive power of the shift under which the codeword is invariant, i.e. ρ t (c) = c. Furthermore, a quasi-cyclic code of co-index m such that all its nonzero codewords have period m is called strongly quasi-cyclic.

A quasi-cyclic class of index of a quasi-cyclic code is the set of all codewords obtained by action of the -shift ρ on a given codeword.

As is well known, QC codes of index , and coindex m over F q are R-submodules of R , where R =

Fq[x]

(x m -1) [START_REF] Ling | On the algebraic structure of quasi-cyclic codes I: finite fields[END_REF]. When this module has exactly one generator, the code is called one-generator.

C. Combinatorial functions

In this subsection we introduce the combinatorial functions we are going to study in this work. We fix a prime power q and two positive integers k, n such that 1 ≤ k ≤ n. We recall the following two functions from [START_REF] Shi | How many weights can a cyclic code have?[END_REF]. We define Γ C (k, q) as the largest number of nonzero weights of a cyclic code of dimension k over F q . Moreover, we define Γ C (n, k, q) as the largest number of nonzero weights of a cyclic code of fixed length n and dimension k over F q if such a code exists, and by zero otherwise.

Let be an arbitrary positive integer. Define Γ Q ( , k, q) to be the largest number of nonzero weights of a QC code of index gcd( , n) and dimension k over

F q . Clearly, Γ Q (1, k, q) = Γ C (k, q).
Furthermore, we define Γ Q (n, , k, q) as the largest number of nonzero weights of a QC code of fixed length n, index gcd( , n), and dimension k over F q , if such a code exists, and by zero otherwise. Thus, Γ Q (n, 1, k, q) = Γ C (n, k, q). The same functions for strongly QC codes are denoted by Γ 0 Q ( , k, q), and Γ 0 Q (n, , k, q), respectively. Note that we have defined these combinatorial functions in such a way they are defined for every integer and not only for those dividing n.

Moreover, let Λ(m, k, q) be the largest number of nonzero weights of a QC code of co-index m, and dimension k, over F q , if such a code exists, and by zero otherwise. The same function for strongly QC codes is denoted by Λ 0 (m, k, q). Finally, recall the functions L(k, q) and L(n, k, q) introduced and studied in [START_REF] Shi | How many weights can a linear code have?[END_REF], which are defined respectively to be the maximum number of nonzero weights of a linear code of dimension k over F q , and the maximum number of nonzero weights of a linear code with length n and dimension k over the same field F q . These two functions were deeply studied in the last few years. L(k, q) was shown to be equal to q k -1 q-1 in [START_REF] Alderson | Maximum weight spectrum codes[END_REF], while some partial results on L(n, k, q) were given in [START_REF] Alderson | A note on full weight spectrum codes[END_REF], [START_REF] Shi | How many weights can a linear code have?[END_REF].

III. UPPER BOUNDS

In this section we produce upper bounds on the number of weights of quasi-cyclic codes, depending on the length, the dimension, the index and the underlying finite field. In particular, we will use the interplay of the arithmetic of these parameters in order to derive non-trivial upper bounds.

Recall that ρ : F n q -→ F n q denotes the right shift operator on the vector space F n q . We need Lemma 1 from [START_REF] Shi | How many weights can a cyclic code have?[END_REF], whose proof is omitted.

Lemma 1. Let C be an [n, k] q QC code and c ∈ C be a nonzero codeword of period t. Let moreover α ∈ F * q and i ∈ {0, . . . , n -1} such that αc = ρ i (c).

Then, α r = 1, where r = t gcd(t,i) . Moreover, α belongs to the unique cyclic subgroup of F * q of order gcd(t, q -1).

Using Lemma 1, we can prove the following upper bound on the number of nonzero weights in quasicyclic codes.

Lemma 2. If C is an [n, k] q quasi-cyclic code of index , then s(C) ≤ t|n gcd( , t)B t lcm(t, q -1) ≤ 1 + 1<t|n gcd( , t)B t lcm(t, q -1) ,
where B t the number of nonzero codewords of period t contained in C.

Proof:

The proof follows the same idea of the one of [27, Lemma 2]. Consider a quasi-cyclic class {ρ i (c) : 0 ≤ i ≤ n -1} of a given codeword c which has period t. Clearly, we have ρ lcm( ,t) (c) = c. Moreover, since lcm( , t) is the first positive multiple of that is divisible by t, by definition of B t we also have that all the the elements ρ i (c) for 0 ≤ i ≤ n -1 are pairwise distinct, and the quasi-cyclic class has exactly lcm( ,t elements. Therefore, the number of quasi-cyclic classes with index of codewords of period t is Bt lcm( ,t) = gcd( ,t)Bt t . All the codewords in the same class share the same weight. Now, we can use Lemma 1. Let c ∈ C be a codeword and H be the unique subgroup of F * q of order gcd(t, q-1). For every representative α of F * q /H, the codeword αc gives a different class that shares the same weight with c. Hence, there are at most gcd( ,t)Bt gcd(t,q-1)

t(q-1) = gcd( ,t)Bt lcm(t,q-1)
distinct weights among these codewords, showing the first inequality. Moreover, if a codeword has period 1 then it is necessarily a multiple of the all ones vector, and therefore B 1 ∈ {0, q -1}. This proves the second inequality.

Theorem 3. If C is a [n, k] q strongly quasi-cyclic code of index , then s(C) ≤ (q k -1) lcm(q -1, n)
.

Thus Γ 0 Q (n, , k, q) ≤ gcd( ,n)(q k -1) lcm(q-1,n) .
Proof: We apply Lemma 2 when B t = 0 for t = n , so that the sum in the right hand side contains only one summand.

Remark. Observe that when we have = 1, i.e. when we consider cyclic codes, the results above coincide with those obtained in [START_REF] Shi | How many weights can a cyclic code have?[END_REF]. Moreover, the upper bounds obtained in both Lemma 2 and Theorem 3 are consistent with the fact that any quasi-cyclic code of index is invariant under the power r of the shift, provided that r divides n. Indeed, in this case, one can easily check that the upper bound for r is always greater or equal than the one for .

From Lemma 2 we can derive an upper bound also on the function Γ Q (n, , k, q), as shown in the following result.

Theorem 4. Let C be an [n, k] q quasi-cyclic code of index over F q . Then s(C) ≤ 1 + q k -1   1<t|n gcd( , t) lcm(t, q -1) 2   1 2
.

Proof: From Lemma 2, we have

(s(C) -1) ≤ 1<t|n gcd( , t)B t lcm(t, q -1)
.

Applying Cauchy-Schwartz inequality we get

s(C) ≤ 1 +   1<t|n B 2 t   1 2   1<t|n gcd( , t) lcm( , q -1) 2   1 2
.

The result follows by observing that 1<t|n

B 2 t ≤ 1<t|n B t 2 ≤ (q k -1) 2 .
A result that differentiates strongly QC codes from QC codes is the following.

Theorem 5. If C is a [n, k] q strongly quasi-cyclic code of co-index m, then s(C) ≤ q k -1 m . Thus Λ 0 (m, k, q) ≤ q k -1 m .
Proof: If C is strongly quasi-cyclic then all cycle classes have size m, and contain codewords of the same weight. The result follows since the total number of nonzero codewords is q k -1.

IV. LOWER BOUNDS

In this section we focus on the lower bounds for the functions Γ Q (n, , k, q) and Γ Q ( , k, q). We use four different approaches here. First, we reduce to lower bounds for linear codes, using a well-known construction of quasi-cyclic codes using the direct product with the universe code. This will result in determining the exact values of Γ Q (n, , k, q) for some set of parameters. In particular, we will show in Theorem 8 that whenever ≤ 2 k -1, there exist codes of co-index m and dimension mk with all the possible weights. A second approach is to study q-ary Reed-Muller codes. We characterize in Theorem 12 all the possible integers for which a q-ary Reed-Muller code is quasi-cyclic of index . Besides the importance of the result per se, we also use it to determine lower bounds on the function Γ Q (n, , k, q) for some set of parameters. Additional lower bounds are obtained using the fact that a cyclic code is in particular a quasi-cyclic code of every index dividing its length. Finally, we relate the function Γ Q (n, , k, q) with the maximum covering radius of an [n, n -k] q quasi-cyclic code of index , using the celebrated Delsarte bound [START_REF] Delsarte | Four fundamental parameters of a code and their combinatorial significance[END_REF].

A. Reduction to linear codes

In this subsection we explain how to construct quasicyclic codes by using the direct product technique. This will produce, as a consequence, lower bounds based on the maximum number of weights of a linear code.

Recall that given an

[n 1 , k 1 ] code C 1 and an [n 2 , k 2 ] code C 2 over the same finite field F q , the direct product C 1 ⊗ C 2 is the [n 1 n 2 , k 1 k 2 ] code over F q given by C 1 ⊗ C 2 := {u ⊗ v | u ∈ C 1 , v ∈ C 2 } ,
where u ⊗ v denotes the Kronecker product of two vectors, and it is defined as (u ⊗ v) i,j = u i v j . See also [START_REF] Macwilliams | The theory of error correcting codes[END_REF]Chapt. 18] for a more detailed explanation.

Denote by U m the universe code of parameters 

[m, m] over F q . Let C be an [ , k] code over F q . The direct product C ⊗ U m of C and U m is an [ m, km] code. It is clear that it is a QC code of index ,
wt(C ⊗ U m ) ⊇ r 1 • wt(C) ⊕ . . . ⊕ r t • wt(C).
In particular

wt(C⊗U m ) ⊇ r1+...+rt≤m (r 1 • wt(C) ⊕ . . . ⊕ r t • wt(C)) .
Proof: Let r 1 , . . . , r t be positive integers such that r 1 + . . . + r t ≤ m. For i = 1, . . . , t, choose v i ∈ U m of weight r i such that supp(v i ) ∩ supp(v j ) = ∅ for i = j. Then, consider the subcode of C ⊗ U m , given by the set

t i=1 c i ⊗ v i | c i ∈ C . Since supp(v i )∩supp(v j ) = ∅ for i = j, we also have supp(c i ⊗ v i ) ∩ supp(c j ⊗ v j ) = ∅ for every c i , c j ∈ C and i = j. This implies that wt H t i=1 c i ⊗ v i = t i=1 wt H (c i ⊗ v i ) = t i=1 r i wt H (c i ),
and therefore we conclude.

Theorem 7. For every prime power q, and positive integer , k, m such that 0 < k ≤ , we have Γ Q ( m, , km, q) ≥ mL( , k, q). Proof: Let C be a code with L( , k, q) nonzero weights. Moreover, by Lemma 6 we have that

wt(C ⊗ U m ) ⊇ m i=1 wt(C).
By a well-known result in additive combinatorics (see e.g. [START_REF] Granville | An introduction to additive combinatorics[END_REF])

m i=1 wt(C) ≥ m|wt(C)| -m + 1.
We conclude by substituting |wt(C)| = L( , k, q) + 1 in the equation above.

As a consequence, we can completely determine the maximum number of weights of a quasi-cyclic code for some cases. This is done by using the existence of full weight spectrum (FWS) codes, first introduced in [START_REF] Alderson | A note on full weight spectrum codes[END_REF]. An [n, k] FWS code C is a code with all the possible weights, i.e. such that wt(C) = {0, 1, . . . , n}. Theorem 8. For every prime power q, and every positive integers , k, m such that ≤ 2 k -1, we have Γ Q (m , , mk, q) = m .

Proof:

By Theorem 7, we have Γ Q ( m, , km, q) ≥ mL( , k, q). However, for ≤ 2 k -1, it was proved in [1, Lemma 3.8] that L( , k, q) = . Therefore we conclude.

We now recall the notion of maximum weight spectrum (MWS) code introduced in [START_REF] Alderson | Maximum weight spectrum codes[END_REF]. An [n, k] code C over F q is said to be MWS if the number of nonzero weights is q k -1 q-1 . We can deduce the following explicit lower bound again using Theorem 7.

Corollary 9. For every prime power q, and every positive integers , k, m such that k ≥ 2 and ≥ min{q k 2 +k-4 2

, q(q k -1)(q k-1 -1) 2 2(q-1) 3

}, we have

Γ Q (m , , mk, q) ≥ m q k -1 q -1 . Proof: For ≥ min{q k 2 +k-4 2
, q(q k -1)(q k-1 -1) 2 2(q-1) 3

}, it was proved in [START_REF] Alderson | Maximum weight spectrum codes[END_REF] and [START_REF] Alderson | A note on full weight spectrum codes[END_REF] that MWS codes exist. Then we conclude by Theorem 7.

B. Reed-Muller codes

In this subsection we study the quasi-cyclic properties of q-ary Reed-Muller codes. In particular, in Theorem 12 we will characterize the set of indices for which a q-ary Reed-Muller code is quasi-cyclic. This result leads to special lower bounds on the function Γ Q (n, , k, q) for some values of n, k and .

Let m be a positive integer and consider R m := F q [x 1 , . . . , x m ] the ring of polynomials in m variables over F q . Moreover, choose an order on the points of F m q and list them as P 1 , . . . , P n , where n = q m . We define the evaluation map

ev m : R m -→ F n q f -→ (f (P 1 ), . . . , f (P n )).
Definition 10. Let r, m be positive integers such that 0 ≤ r ≤ (q -1)m. The q-ary Reed-Muller code of order r in m variables is the code

RM q (r, m) := {ev m (f ) | f ∈ R m , deg(f ) ≤ r} .
It is well-known (see for instance [START_REF] Blackmore | Matrix product codes over Fq[END_REF]) that the code RM q (r, m) is an [n(r, m), k(r, m), d(r, m)] q code, with (1) n(r, m) = q m . ( 2) k(r, m) = r i=0 B(q, m, i), where B(q, m, i) denotes the coefficient of z i in the polynomial

(1 + z + . . . + z q-1 ) m . (3) d(r, m) = (q -S)q m-1-Q , where r = Q(q - 1) + S with 0 ≤ S ≤ q -2.
Observe that the choice of the order of the points P i of F m q does not matter, since different choices lead to equivalent codes. However, for some special permutations of the points P i 's, the code does not change at all. These permutations are the one induced by the affine general linear group Aff(m, q), the group of linear transformations of the affine space F m q . This group is well-studied, and it is given by the set of transformations of the form M A,v , acting on

x ∈ F m q via M A,v (x) = Ax + v, for any A ∈ GL(m, q), v ∈ F m q . Therefore, Aff(m, q) ∼ = GL(m, q) F m q ,
where the operation is given by (A, v)(B, w) = (AB, Aw + v). It was indeed proved in [START_REF] Berger | The automorphism group of generalized Reed-Muller codes[END_REF]Theorem 5] that Aut(RM q (r, m)) ∼ = Aff(m, q), whenever r ≥ 1. The isomorphism is given by considering that every map M A,v applied to the points P i 's induces a permutation of the points.

Proposition 11. Let q be a power of a prime p and m, i be two non-negative integers. There exists an element g ∈ Aff(m, q) of order p i+1 such that g p i has no fixed points if and only if m ≥ p i .

Proof: Let M A,v be the affine map defined as M A,v (x) = Ax + v. We want to show that we can construct an element (A, v) ∈ GL(m, q) F m q such that (M A,v ) p i+1 = I m and (M A,v ) p i has no fixed points, if and only if m ≥ p i . Finding a pair (A, v) with such properties is equivalent to require that for every x ∈ F m q it holds

(A p i+1 -I m )x = - p i+1 -1 j=0 A j v = -(A -I m ) p i+1 -1 v, (1) 
(A p i -I m )x = - p i -1 j=0 A j v = -(A -I m ) p i -1 v. ( 2 
)
Observe that, since (1) needs to hold for every x ∈ F m q , then in particular it has to be true for x = 0. Therefore, we must have that everything is 0, i.e.

(A p i+1 -I m ) = 0, and 
(A -I m ) p i+1 -1 v = 0.
Moreover, (2) needs to hold for every x ∈ F m p , therefore, it is equivalent to the condition that the vector (A -I m )

p i -1 v / ∈ colsp(A p i -I m ).
Now suppose that m ≥ p i . We choose a matrix A ∈ GL(m, q) with minimal polynomial µ A (x) = (x -1) p i , and a vector v such that (A -I m ) p i -1 v = 0. Note that such a pair (A, v) always exists, since we can for instance take

A = A 0 0 I m-p i ,
where

A =           1 1 1 . . . 0 . . . . . . 0 . . . 1 1           ∈ F p i ×p i q ,
and v as the p i -th standard basis vector. With this choice of A and v, we have that trivially (1) is satisfied, since it is 0 = 0 for every x, and (A -I m ) p i+1 -1 v = 0v = 0. Moreover, Also ( 2) is satisfied.

On the other hand, if m < p i , requiring that (A -I m ) p i+1 = 0 means that the minimal polynomial of A is equal to (x -1) s for some s ≤ m. Therefore, s ≤ p i -1 and

-(A -I m ) p i -1 v = -(A -I m ) s (A -I m ) p i -1-s v = 0 = (A -I m ) p i x = (A p i -I m )x
for every x, v ∈ F m q . Hence, the second inequality cannot be satisfied. The next result characterizes the possible indexes of a q-ary Reed-Muller code.

Theorem 12. Let q = p h be a power of a prime p, and let r and m two positive integers. A q-ary Reed-Muller code of degree r in m variables RM q (r, m) is (permutation-equivalent to) a quasi-cyclic code of index q m p t+1 = p hm-t-1 where t := max{i | m ≥ p i }. Moreover, RM q (r, m) is not permutation-equivalent to a quasi-cyclic code of index q m p j+1 = p hm-j-1 , for any j > t.

Proof: By definition, we have that a code C of length n is equivalent to a quasi-cyclic code of index r if and only if Aut(C) seen as a subgroup of S n contains an element g which is the product of r disjoint s-cycles, where s := n r . Moreover, an element g has this property if and only if g s = id and for every prime p dividing s, the element g s p has no fixed points. By [6, Theorem 5], we have that the automorphism group of RM q (r, m) is Aff(m, q). Since n = q m , the only possible indices for RM q (r, m) being a quasicyclic code are powers of the prime p. Furthermore by Proposition 11, we have that there exists an element g ∈ Aut(RM q (r, m)) such that g p i+1 = id and g p i has no fixed points if and only if p i ≥ m. In particular, g acts on F m q as a product of q m p j+1 = p hm-j-1 disjoint p i+1 -cycles. This concludes the proof.

Example. Consider q = 2 and the code RM 2 [START_REF] Alderson | On the weights of general MDS codes[END_REF][START_REF] Assmus | Polynomial codes and finite geometries[END_REF]. A computation in Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] shows that its permutation group contains a permutation of order 8 with the cycle decomposition (1, 12, 14, 6, 2, 11, 13, 5) [START_REF] Alderson | Maximum weight spectrum codes[END_REF][START_REF] Cohen | Maximum weight spectrum codes with reduced length[END_REF][START_REF] Hill | An extension theorem for linear codes[END_REF][START_REF] Blackmore | Matrix product codes over Fq[END_REF][START_REF] Assmus | Polynomial codes and finite geometries[END_REF][START_REF] Delsarte | Four fundamental parameters of a code and their combinatorial significance[END_REF][START_REF] Haily | On the automorphism group of Distinct Weight codes[END_REF][START_REF] Bosma | The Magma algebra system. I. The user language[END_REF].

But that group does not contain any permutation of order 16. The code RM 2 (2, 4) is doubly circulant, but not cyclic.

Remark. Observe that we can summarizes Theorem 12 by saying that any p h -ary Reed-Muller code RM q (r, m), with r, m ≥ 1 is a Quasi-Cyclic code of index p hm-log p (m) -1 but not a QC code for any smaller index.

The following result summarizes all the cases in which a Reed-Muller code is permutation equivalent to a cyclic code.

Corollary 13. The Reed-Muller code RM q (r, m) is permutation equivalent to a cyclic code if and only if one of the following holds 1) r = 0, for any m and q.

2) r ≥ 1, m = 1 and any q.

3) r ≥ 1, m = 2 and q = 2. Corollary 14. Let q = p h be a power of a prime p. For every positive integers r, t such that 0 ≤ r ≤ q-3 2 , and 0 ≤ t ≤ log p m, we have

Γ Q q, p hm-t-1 , (q-1)m-r-1 i=0 B(q, m, i), q ≥ q m -r-1.
Proof: The number of nonzero weights of q-ary Reed-Muller codes RM q ((q -1)m -r -1, m) for 0 ≤ r ≤ q-3 2 is equal to q m -r -1, by [START_REF] Shi | How many weights can a cyclic code have?[END_REF]Theorem 26]. Then we conclude by Theorem 12.

Corollary 15. With the notations above, we have the following results.

Γ Q 2 m , 2 m-t-1 , 2 m -m -1, 2 ≥ 2 m -2 for m ≥ 3, t ≤ log 2 m; Γ Q 2 m , 2 m-t-1 , m-3 i=0 m i , 2 ≥ 2 m -8 for m ≥ 6, t ≤ log 2 m; Γ Q 3 m , 3 m-t-1 , 2m-2 i=0 B(3, m, i), 3 ≥ 3 m -2 for m ≥ 1, t ≤ log 3 m; Γ Q 3 m , 3 m-t-1 , 2m-3 i=0 B(3, m, i), 3 ≥ 3 m -6
for m ≥ 3, t ≤ log 3 m;

Γ Q 5 m , 5 m-t-1 , 4m-3 i=0 B(5, m, i), 5 ≥ 5 m -3 for m ≥ 1, t ≤ log 5 m.
Proof: The number of nonzero weights of qary Reed-Muller codes for these sets of parameters has been determined in [START_REF] Shi | How many weights can a cyclic code have?[END_REF], and we conclude using Theorem 12.

C. Reduction to cyclic codes

In this subsection, we develop some lower bounds based on some results on cyclic codes that have been found in [START_REF] Shi | How many weights can a cyclic code have?[END_REF]. Note that a cyclic code of length ab is, in particular, a QC code of index a. The following bound is then immediate. The proof is omitted.

Proposition 16. For all integers a, b we have

Γ Q (ab, a, k, q) ≥ Γ C (ab, k, q). (3) 
We combine this result with some lower bounds in [START_REF] Shi | How many weights can a cyclic code have?[END_REF]. The following bound is inspired by [START_REF] Shi | How many weights can a cyclic code have?[END_REF]Theorem 12]. The following bound is based on [START_REF] Shi | How many weights can a cyclic code have?[END_REF]Theorem 13].

Theorem 18. Let q > 2 be a prime power and r ≥ 2 such that gcd(r, q -1) = 1. We have the bound

Γ Q q r -1 q -1 , a, q r -1 q -1 -r, q ≥ q r -1 q -1 -2,
for every integer a dividing q r -1 q-1 .

The following bound is based on [START_REF] Shi | How many weights can a cyclic code have?[END_REF]Theorem 14].

Theorem 19. For every positive integer m, we have ΓQ q m -1, a, (q-1)m-r-1 i=0 B(q, m, i), q ≥ q m -r -2 for 0 ≤ r ≤ q -3 2 and a | q m -1.

ΓQ 2 m -1, a, m-3 i=0 m i , 2 
The next result relies on [START_REF] Shi | How many weights can a cyclic code have?[END_REF]Theorem 15].

Theorem 20. For all integers m ≥ 3, we have

Γ Q (2 m -1, a, 2m, 2) ≥ 2 m/2 ,
for any positive integer a such that a | 2 m -1, and

Γ Q (2 m + 1, a, 2m, 2) ≥ 2 m/2 ,
for any positive integer a dividing 2 m + 1.

A ternary analogue, based on [START_REF] Shi | How many weights can a cyclic code have?[END_REF]Theorem 16] is as follows.

Theorem 21. For all integers m ≥ 2, we have

Γ Q (3 m -1, a, 2m, 3) ≥ 2 × 3 m-2 2 
, for any positive integer a dividing 3 m -1.

D. Covering radius

Now we give lower bounds based on the covering radius of a code, using Delsarte bound. Recall that the covering radius of a code C is the smallest integer t such that every point in F n q has Hamming distance at most t from some codeword of C, and it is denoted by ρ(C) . Consider the combinatorial function T [n, , k, q], which represent the largest covering radius of a QC code of length n, index gcd( , n), and dimension k over F q . The Delsarte bound [START_REF] Delsarte | Four fundamental parameters of a code and their combinatorial significance[END_REF] asserts that for a given linear code C we have ρ(C ⊥ ) ≤ s(C) (see also [START_REF] Macwilliams | The theory of error correcting codes[END_REF]Chap. 6,Theorem 21]). With the above definitions, we can state the following result.

Proposition 22. For all integers n, k with 1 ≤ k ≤ n, we have

Γ Q (n, , k, q) ≥ T [n, , n -k, q]. Proof: Let C be an [n, n-k] q quasi-cyclic code of index with covering radius ρ(C) = T [n, , n -k, q]. Then C ⊥ is an [n, k] q quasi-cyclic code of index with s(C ⊥ ) ≥ ρ(C) = T [n, , n -k, q].

V. ASYMPTOTICS

In this section we give asymptotic estimate on the number of weights of QC codes. More specifically, in order to consider the number of weights of long QC codes of given rate R, and normalized index λ, we study the behavior of the function γ q (λ, R) defined for 0 < R < 1 as

γ q (λ, R) = lim sup n→∞ 1 n Γ Q (n, λn , Rn , q).
Before studying the properties of γ q (λ, R), we recall the function L q already introduced in [START_REF] Shi | How many weights can a linear code have?[END_REF]. It is defined for values 0 < R < 1 as

L q (R) = lim sup n→∞ 1 n
(L(n, Rn , q)) .

However, using the results of [START_REF] Alderson | A note on full weight spectrum codes[END_REF], we can determine completely the function L q .

Theorem 23. For every prime power q and every rate 0 < R < 1, we have

L q (R) = 1.
Proof: By [1, Lemma 3.8], whenever n ≤ 2 k -1, we have L(n, k, q) = n. Now, there exists n 0 ∈ N such that n ≤ 2 Rn -1 for every n ≥ n 0 . For n going to infinity we then get L q (R) = lim sup n→∞ 1 n (L(n, Rn , q)) = 1.

We are now ready to study the function γ q (λ, R) .

Theorem 24. For all rationals 0 < λ < 1, and rates 0 < R < 1, we have γ q (λ, R) = 1.

Proof: It trivially holds that γ q (λ, R) ≤ 1. To derive the opposite inequality, we use Theorem 7. First, we write λ = a b for some a, b ∈ N, such that gcd(a, b) = 1. We take the subsequence n = b for ∈ N, entailing therefore k ∼ Rn = R b, and we get

γ q a b , R = lim sup n→∞ 1 n Γ Q n, na b , Rn , q ≥ 1 b lim sup →∞ 1 (Γ Q ( b, a, R b , q)) ( * ) = 1 b lim sup →∞ 1 (Γ Q ( b, , R b , q)) ≥ 1 b lim sup →∞ 1 (bL( , R , q)) = lim sup →∞ 1 (L( , R , q)) = L q (R) = 1,
where ( * ) holds because gcd( b, a) = and hence by definition

Γ Q ( b, a, R b , q) = Γ Q ( b, , R b , q).
Remark. This bound does not provide any information when is fixed like in the case of e.g. cyclic codes or double circulant codes.

More interesting is what happens when we consider the asymptotic behaviour of codes with a fixed rate. Let > 0 be an integer and 0 < R < 1 be a rational number. We define the function η q ( , R) := lim sup n→∞ 1 n (Γ Q (n, , Rn , q)).

We could not determine the exact value of η q , but we can give a lower bound based on Theorem 7.

Theorem 25. For every positive integer and every rate 0 < R < 1, we have η q ( , R) ≥ L( , R , q) .

Moreover, for all ( , R) satisfying R ≥ log 2 ( + 1) we have η q ( , R) = 1.

Proof: We take the subsequence n = n and using Theorem 7 we obtain η q ( , R) = lim sup The second statement then follows from the fact that for that set of parameters we have L( , R , q) = , by [START_REF] Alderson | A note on full weight spectrum codes[END_REF]Lemma 3.8] VI. NUMERICS Exhaustive computations in Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] yielded the following values. Table 1 was written by computing all possible generator matrices for a one-generator index 2 QC code of length in the range [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF][START_REF] Ling | On the algebraic structure of quasi-cyclic codes I: finite fields[END_REF], and Table 2 was written by computing all possible generator matrices for a one-generator index 3 QC code of length in the range [START_REF] Ezerman | The weights in MDS codes[END_REF][START_REF] Meneghetti | On linear codes and distinct weights[END_REF]. In both the cases we can observe that the lower bound obtained by Theorem 7 is not tight for all the parameters. Therefore, it also seems that the asymptotic lower bound given in Theorem 25 could be non-tight. Based on these values, we conjecture the following.

Conjecture: The functions n → Γ Q (2n, 2, n, 2) and n → Γ Q (3n, 3, n, 2) are nondecreasing functions of n.

VII. CONCLUSION AND OPEN PROBLEMS

In this paper we have studied the largest number of distinct nonzero weights a QC code can have. We have introduced a number of combinatorial functions to that effect. Some are relevant to the index of the code; some to the co-index. Combinatorial upper bounds on these quantities have been derived using the cycle structure of the code. Lower bounds have been derived by employing a variety of techniques. Since this is the third in a series of three papers we have been able to make the results of [START_REF] Shi | How many weights can a linear code have?[END_REF] on linear codes and that of [START_REF] Shi | How many weights can a cyclic code have?[END_REF] on cyclic codes to bear on the problem: see §IV-A and §IV-B respectively. In particular Theorem 7 of §IV-A was very useful in the asymptotic bounds of Section §V. This also leads to the problem of determining the whole behavior of the function η q , which does not seem to be easy. The section on the representation of q-ary Reed-Muller codes as QC codes has its own interest, and can be read independently of the rest of the paper.

The main open problems are as follows. There is no general arithmetic upper bound on the number of weights that is similar to that of [START_REF] Shi | How many weights can a cyclic code have?[END_REF]Theorem 5] based on results of [START_REF] Lidl | Finite fields[END_REF]. As the preceding section shows, it seems there is still room for improvement in Theorem 7. The monotonicity of all combinatorial functions considered is hard to guess. The conjecture in Section §VI is only an example.

  wt(C) = {wt H (c) | c ∈ C} and s(C) = |wt(C) \ {0}| = |wt(C)| -1.

  since a valid generator matrix of U m is the identity matrix of order m, a circulant matrix. Now, for two sets A, B ⊆ N and a positive integer r, we define the sets A ⊕ B := {a + b | a ∈ A, b ∈ B} and r • A := {ra | a ∈ A}. With this notation, we have the following result. Lemma 6. Let C be an [ , k] code and let U m be the universe code of length m. Then, for every r 1 , . . . , r t ∈ N such that r 1 + . . . + r t ≤ m we have

Theorem 17 .

 17 Let m be a positive integer and a be any divisor of 2 m -1. ThenΓ Q (2 m -1, a, 2 m -m -1, 2) ≥ 2 m -5.Proof: We combine Proposition 16 with the fact that the number of weights in the cyclic Hamming code of length n is 2 m -5 [23, Chapt. 6, Ex. (E2)].

≥ 2 m - 9 for m ≥ 6 2 i=0B( 3 3 i=0B( 5

 962335 and a | 2 m -1;ΓQ 3 m -1, a, 2m-, m, i), 3 ≥ 3 m -3 for m ≥ 1 and a | 3 m -1; ΓQ 3 m -1, a, 2m-3 i=0 B(3, m, i), 3 ≥ 3 m -7 for m ≥ 3 and a | 3 m -1; ΓQ 5 m -1, a,4m-, m, i), 5 ≥ 5 m -4 for m ≥ 1 and a | 5 m -1;

1 n

 1 (n L( , R , q)) = L( , R , q) .

Table 1 :

 1 Values of s = ΓQ(2n, 2, n, 2)

	n	4 5 6 7	8	9	10
	s	5 5 8 8 11 13 ≥ 13

Table 2 :

 2 Values of s = ΓQ(3n, 3, n, 2)

	n 4 5	6	7	8
	s	5 7 10 11	≥ 14
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