
HAL Id: hal-02786818
https://hal.science/hal-02786818

Submitted on 29 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Fast SUBMAP decoders for duo-binary turbo-codes
Yannick Saouter, Claude Berrou

To cite this version:
Yannick Saouter, Claude Berrou. Fast SUBMAP decoders for duo-binary turbo-codes. First IEEE In-
ternational Conference on Circuits and Systems for Communication, Jun 2002, St Petersburg, Russia.
�10.1109/OCCSC.2002.1029067�. �hal-02786818�

https://hal.science/hal-02786818
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Fast SUBMAP decoders for duo-binary turbo-codes

Yannick Saouter1 and Claude Berrou2

Abstract - Since 1993, turbo-codes [1) have been used

in several communications systems because of their high

performance in error correction over noisy channels. In

data frame applications, the main decoding algorithm

used in this technology is the suboptimal ma:i:imu.m a

posteriori algorithm (SUBMAP). In this paper, we de

scribe several implementations of a SUBMAP decoder

for du<>-binary codes, the final one being optimized for

speed.

Index Terms - Turbo-codes, SUBMAP, VLSI, Gigabit

networking.

I. Introduction

ETSI (European Telecommunications Standards
Inst_itute) is. in the. I?roc�ss of �dopting new channel
codmg (or mteract1v1ty m D1g1tal Video Broadcast
ing (DVB) for satellite (RCS: Return Channel over
Satellite) and terrestrial (RCT: Return Channel over
Terrestr�al) transmission. The_ error-correcting code is
a duo-bmary 8-state convolut1onal turbo code speci
fied for various block sizes (from 12 to 216 byt�s) and
coding rates (from 1/3 to 6/7). In this paper, we study
the perspective of the silicon integration of decoders for
DVB-RCS with high throughputs (� 300 Mbits/s). To
achieve this, �e consider the SUBMAP as the compo
nent decoder m the turbo decoding iterative process.
This paper describes the design of the device, with the
prospect of integration into 0.18 µm technology.
II. Turbo-codes

In this section, we make a brief description of turbo
encoding. Full details on this topic can be found for
instance in (2). Typically a turbo-code is built with two
recursive convolutional encoders processing the same
set of data: the first one performs the encoding in the
natural order while the second one operates on a per
muted order. In data frame applications which are
used in most ct;immunications systems, the permutation
operates on a smgle frame. The choice of permutation is
critical �<;>r performance at low error rates. The system
output is thus composed of the data taken in natural
order an� the two redundancy sets produced by each
convolutional encoder. Those outputs are then emitted
on the transmission channel.

The decoder samples input data from the transmis
sion channel. These data are not binary hard decisions

1 Ya.nnick.Sa.outer@enst-bretagne.fr
2 Claude.Berrou@enst-bretagne.fr

but soft decisions i.e. the data have integer values which
are proportional to the intensity of the signal read from
the channel. The decoder thus operates in a cascading
way: the first decoder uses the sampled data in their
natural. order together with the first re�undancy set to
determme a first guess of the data. This first estimate,
called the extrinsic value, is then used by the second
decoder, together with the permuted data samples and
the second redundancy set to produce a second estimate
which will be used by the next decoder. Typically such
systems are composed of 8 to 16 decoders serially con
nected and exchanging extrinsic values.

Although initially designed with binary convolu
tional codes, M-ary convolutional codes can also be
used in a turbo-code system. They allow better cor
r�cting perform�ce and _ limit the fiattenin� imperfec
tion observed with classical turbo-codes [3J. Circular
codes [4} are also extremely useful since they avoid the
use of ter�inating symbols. As a consequence, our im
plementation was made around a duo-binary circular
code. The length of the frame was set to 992 duo-binary
symbols, hence 248 bytes, whose entire specification can
be found in [5].
III. The SUBMAP Algorithm

_This se�tion is devoted to the SUBMAP algorithm
w�1ch �as mtrodnced by Robertson et al. [6] as a sim
phficat10n of the MAP algorithm [7]. The SUB MAP
a_lgorithm is a srs9 (soft-in soft-out) decoding algo
rithm for convo_lut10nal codes: given input data, it
computes_ a� estimate of the probability that an infor
mat10n bit is equal to 0 or 1, unlike the conventional
Viterbi algorithm which gives only a binary decision.
Convolutional codes are lattice codes: they can be de
scribed by a set of vertices, called states of the code.
Each state has ·two outgoing edges (four in the case of
duo-binary codes) leading to a new state. Each edge is
labelled by the information symbol and the produced
redundancy. It has to be noted that if we transform
the outgoing edges by incoming ones, we again obtain
a lattice code called the reciprocal code. The SUBMAP
algorithm takes advantage of these two codes. Thus we
have two different phases: the first one using the initial
code called the forward phase and the second one using
the reciprocal code called the backward phase.

The forward phase computes at each time t, for any
state s of the initial code, an estimate of the proba
bility tha� the encoder was in state s at time t during
the encoding of the data sequence. This value is called
the state metric of the state s. More precisely, if X 1 (t),

1

http://Yannick.SaouterOenst-bretagne.fr
http://Claude.BerrouOenst-bretagne.fr

X2(t) are the values read from the channel for the first
and second bit of the data respectively, R(t) is the value
read for the redundancy and EXT R(a, t) the extrinsic
value at time t for any of the four symbols a of informa
tion data tokens and then the forward state metric of
states at timet is FSM(s,t) = Mina{IFSM(a,s,t)}
where IF SM(a, s, t) is the incoming forward state met
ric of state s at time t for symbol a which is computed
by the formula:

- -

IFSM(a,s,t) =

SM(PrevState(a, s), t- 1)
+(-l)(a&Ol) X1 (t) + (-l)(a&lO) X2(t)
+(-l)PrevRed(a,s) R(t) + EXTR(a, t)

where PrevState(a, s) is the state whose outgoing
edge labelled with the information symbol a leads to s
(a&Ol) (r

_
esp. (a&lO)) is the value of the first (resp'.

second) bit of symbol a and PrevRed(a, s) is the value
of the redundancy labelling the edge between the states
PrevState(a, s) and s. Similarly, the backward phase
computes the backward state metrics BSM(s, t) on the
reverse frame, using the transitions of the reciprocal
code.

The next step of the algorithm takes into account the
values of the forward the and backward metrics. This
step produces values called weights for each symbol a
at any time t: the smaller the value of the weight for
symbol a, the greater the probability for this symbol at
time t. The formula for the weight is:

W(a, t) =

Min,{FSM(PrevState(a, s), t - 1) + BSM(s, t)
+(-l)(a&Ol) X1 (t) + (-l)(a&lO) X2(t)
+(-l)PrevRed(a,s) R(t) + EXTR(a, t)}.

At this point the output extrinsic value, which will
be given as an input to the following decoder, can be
computed as:

EXT ROUT(a, t) =
l/2(W(a, t) - (-l)(a&oi) X1 (t) - (-l)(a&rn) X2(t))
-EXTR(a, t).

IV. Global architecture

In fact, the whole SUBMAP algorithm is not imple
mentable in practical cases because it would require a
large amount of data memory.

Several solutions have been proposed to circum
vent the problem [8, 9]. The one we chose, proposed by
Viterbi [9], uses the property of convergence of the state
metrics along the lattice: when performing a backward
or forwarq estimation of the state metrics on a frame,
after a number of data samples which is typically five
or six times the constraint length of the code, the esti
mates do not vary much. Thus, in the backward phase,

we split the data samples frame into windows whose
length is large enough to ensure the convergence of the
state metrics. Then the backward metrics are computed
by two backward processors: one training on even win
dows and computing on odd windows, the other one
training on odd windows and computing on even win
dows. By using a proper pipeline execution scheme of
the forward phase, it is then necessary to store only two
windows of metrics. The length of each window was
set to 48 and it thus leads to a global memory size of
2 x 18 x 8 x 8 = 6144 RAM memory bits. The global
architecture of the SUBMAP decoder is presented in
figure 1.

V. Speed improvements

Three architectures of the same decoder were de
rived: the first one was designed in such a way as to
be minimal in area with a minimal working frequency
of at least 250 MHz, while the second and third de
signs were optimized for speed. In the second design,
we nevertheless limit the resulting increase in area for
the circuit, while the third design even uses costly time
optimizations. ,

A. Anticipation of the branch metrics com
putations

In a SUBMAP design, the critical path is in the
computation of state metrics. Indeed, at each clock
edge, the new state metrics have to be computed from
the previous ones and the data samples. Thus, in or
der to obtain high speed, it is necessary to limit the
number of explicit operations to be performed in the
critical path. One classical optimization is to compute
a priori the value (-l)(a&oi) X1(t) + (-l)(a&io)X2(t) +
(-l)PrevRed(a,s) R(t) + EXTR(a, t) occurring in the ex
pression of SM(s , t), for any symbol a and any state
s. This computation can be done in a pipeline way,
delaying the explicit computation of F SM(s, t) by the
length of the pipeline. This optimization is necessary
for all designs. With this feature, the critical path then
contains a single addition and a minimum amongst four
values.

B. Efficient overflow strategy

In fact, state metrics have to be realigned. In
deed, if nothing is done, the state metrics will overflow.
Since only differences of state metrics are relevant in
the SUBMAP algorithm, one may subtract the same
quantity from each of them at any time, without mod
ifying the algorithm. The conventional method is at
any time t to subtract Min,{FSM(s, t)} from all the
terms FSM(s, t). However this method would involve
computing the minimum out of eight values and mak
ing eight parallel subtractions. This method is costly in
terms of area and since it occurs inside the critical path,
it is also prohibitive for the frequency of the circuit. A

2

:---

SHIFT REGISTER

EXTRINSIC
VALUES

COMPUTATION

)__ _!

Fig. 1: Overall architecture of the SUBMAP decoder

more efficient technique is to compute the state metrics
with one more significant bit than necessary and if all
these supplementary bits are equal to 1 at the same
time for all the states, they are all set to 0 in parallel.
This amounts to making a subtraction of 2(k-l) where k
is the number of bits for the state metrics. This avoids
the use of a real subtracter and the overflow detection
is just an or gate with 8 entries. This technique is ben
eficial in all cases and thus has been used in the three
designs.

C. Pipelining

Pipelining was also used in the three implementa
tions. It proves to be necessary in the WEIGHT COM
PUTATION module and in the EXTRINSIC VALUES
COMPUTATION module in order to ensure that their
critical pa�h is shorter than the critical path of state
metrics computation. But it is also necessary to avoid
the latency of read/write memories becoming a bot
tleneck. As a consequence, access to memories were
buffered: a read or a write instruction is taken into ac
count one clock edge later and the result, in the case of a
read instruction, is available again one clock edge later.
In this way, the access time of the memory devices does
not appear in the critical path of the circuit. It has also
to b� noted that multiple access to the memories (up
to 4 m parallel) was made possible by organizing them
into separate banks which support a maximum of two
read instructions or one write instruction.

D. Computing the minima

The following optimization concerns only the last
two designs. In the critical path, a minimum amongst
four values has to be performed at each clock edge. The
standard way to realize this is to arrange the computa
tions in binary tree fashion. This architecture requires
three comparators and two successive comparator stages

occur in the critical path. However it is possible to or
ganize the computation in such a way that the critical
path contains a single comparator stage. Indeed, to
compute the minimum of the four values Vi, Vi, V3
and V4, it is possible to perform all the six comparisons
V; < Vj with i < j in parallel. .Then the value Vi
will be the minimum if all the boolean values Vi < Vi,
Vi < Vs and Vi < Vi are true. Likewise V2 will be the
minimum if the boolean values not (Vi < Vi), V2 < Vs
and Vi < Vi are true. Thus for all the four values V;, it
is possible to compute the boolean value which is true if
and only if V; is the minimum value (this boolean value
will be the result of an and operation over three compar
isons possibly negated). These booleans are then used
to correctly drive as the output value the unique value
V; which has its corresponding boolean equal to 1. This
selection was made by multiplexers and logical or gates
in the second design and by three-state output buffers
in the third design. Since most of the FPGA circuits
do not have three-state buffers in their internal logic,
the second design can address FPGA technology while
the third one is reserved for ASIC technology. With
this technique, the critical path is reduced by a com
parator and the small supplementary number of logical
gates has a negligible propagation time compared with
a comparator device.

E. Fast operators

The last optimization, only used in the third de
sign, was to adopt fast operators instead of the basic
ripple carry adders used previously. Several designs
were compared: the basic ripple carry adder, the basic
carry lookahead adder, the Brent-Kung adder [101, the
flat adder (whose carries are all computed in paraflel in
binary tree structures), the redundant adder [11], the
carry lookahead with 1 conditional carry stage and the
carry lookahead with 2 conditional carry stages. The
structure of a conditional carry adder is organized as

3

follows: the incoming operands are split into two parts,
their least significant bits and their most significant
bits. Three additions are performed in parallel: the
addition of the least significant bits, the addition of the
most significant bits with an incoming carry equal to
0 and the addition of the most significant bits with an
incoming carry equal to 1. The output carry of the first
adder is then used to select the correct most significant
bits of the result amongst the results performed by the
last two adders. Of course, this technique can be used
recursively on the three component adders. Table 1
summarizes the performances of all the adders consid
ered. These values were obtained by the SYNOPSYS
development chain with a 0. 18 µ CMOS technology.

While the redundant adder design is the fastest, it
is also by far the largest and was discarded for this rea
son. It is also noteworthy that it is disadvantaged by
the short format of its operands. Indeed, its propaga
tion time is constant whatever size the operands are,
while for instance carry lookahead adders with 2 con
ditional carry stages have a propagation time growing
linearly with operand size. Thus if the operands had
been larger, the redundant adder would have been by
far the fastest, while in our implementation the differ
ence is small. We then decided to use the latter type,
since the area difference compared with the pure carry
lookahead design is negligible.

TABLE 1: Performance and Area for an 8-bit Adder

Architecture type Area Critical path
time

Ripple Carry Adder 130 gate5 1.55 ns
Carry Lookahead Adder 183 gates 1.33 ns
Brent-Kung Adder 150 gates 2.76 ns
Flat Adder 227 gates 2.42 ns
Redundant Adder 413 gates 0.95 ns
CLA (1 cond. carry stage) 183 gates 1.21 ns
CLA (2 cond. carry stages) 189 gates 1.10 ns

VI. Performance

In our implementations, the input data were sam
pled as signed 4 bit integers, while the extrinsic values
are unsigned and 6 bits wide, and the state metrics were
computed as unsigned 8 bit wide integers. Such values
were determined by simulations and exhibit little degra
dation in terms of power of correction with respect to
the ideal case (integers with infinite precision). The im
plementations were described in the VHDL description
language and compiled with the SYNOPSYS develop
ment chain to target a 0.18 µ CMOS technology. Table
2 summarizes the performances of all the SUBMAP de
signs. The SUBMAP decoder is not fully pipelined: 192
preliminary clock edges are necessary before the first
quadruplet of extrinsic values is output. Consequently,
in our example with data frames of 992 duo-binary
symbols, the output data rate of the optimized design
is equal to 2 x 1.�7 x 99�!;92 = 0.896 Gbit / s.

TABLE 2: Performance and Area for the SUBMAP Ar

chitectures

SUBMAP
3.54 ns / 282 MHz

BASIC 28492 gates + 6144 RAM bits
2 .50 ns / 400 MHz

ADVANCED 37657 gates + 6144 RAM bits
1.87 ns / 534 MHz

OPTIMIZED 54010 gates + 6144 RAM bits

VII. Conclusion

In this article, we have described three implementa
tions of a SUBMAP decoder for duo-binary turbo-codes.
The optimized structure exhibits an output data rate
approaching 1 Gbit per second and is thus suitable for
most of the high rate transmission systems.

In our future work, we plan to investigate turbo
codes over large M-ary symbol alphabets, that will
certainly enable higher data rates to be obtained.

References

[1] C. Berrou and A. Glavieux. Near Shannon limit error cor
recting coding and decoding: Turbo-codes. In Intl. Corif.
on Comm., vol. 2, pp. 1064-1070, Geneva, Switzerland,

1993.
[2] B. Vucetic and J. Yuan. Turbo Codes - Principles and

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

4pplications. Kluwer Academics Publishers, 2000.
C. Berrou and M. Jezequel. Non-binary convolutional
codes for turbo coding. Electr. Let., 35(1):39, Jan. 1999.
C. Bettstetter. Turbo decoding with tail-biting trellises.
Diplomarbeit, July 1998.
C. Douillard, M. Jezequel, C. Berrou, N. Brengarth, J. Tou
sch, and N. Pham. The Turbo Code Standard for DVB
RCS. In 2nd Intl. Symp. on Turbo Cod.es f:f Related Top
ics, pp. 535-538, Brest, France, Sept. 2000.
P. Robertson, P. Hoeher, and E. Villebrun. Optimal and
Suboptimal Maximum a Posteriori Algorithms suitable for
Turbo Decoding. Euro. Tr. Telecomm., 8:119-125, Mar.
Apr. 1997.
L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal De
coding of Linear Codes for Minimizing Symbol Error Rate.
IEEE Tr. Inf. Th., IT-20:284-287, Mar. 1974.
A. Dingninou, F. Raouafi, and C. Berrou. Organisation de
la memoire dans un turbo decodeur utilisant l'algorithme
SUBMAP. In GRETSI'99, pp. 71-74, Vannes, France,
Sept. 1999.
A.J. V iterbi. An intuitive justification and a simplified im
plementation of the MAP decoder for convolutional codes.
IEEE J. on Sel. Areas in Comm., SAC-16(2):260-264,
Feb. 1998.
R.P. Brent and H.T. Kung. A Regular Layout for Parallel
Adders. IEEE Tr. Comp., C-31:260-264, Mar. 1982.
C.Y. Chow and J.E. Robertson. Logical Design of a Re
dundant Binary Adder. In Proc. of the· 4th Symp. on
Comp. Arith., pp. 109-115, Oct. 1978.

4

