N
N

N

HAL

open science

Fast soft-output Viterbi decoding for duo-binary turbo
codes

Yannick Saouter, Claude Berrou

» To cite this version:

Yannick Saouter, Claude Berrou. Fast soft-output Viterbi decoding for duo-binary turbo codes. 2002
IEEE international symposium on Circuits and Systems, May 2002, Phoenix, AZ, United States.

pp-885-885, 10.1109/ISCAS.2002.1009983 . hal-02786817

HAL Id: hal-02786817
https://hal.science/hal-02786817

Submitted on 29 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-02786817
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

FAST SOFT-OUTPUT VITERBI DECODING FOR DUO-BINARY TURBO CODES

Yannick Saouter and Claude Berrou

Ecole Nationale Supérieure de Télécommunications de Bretagne,
Technopole Brest-Iroise, BP832, 29285 Brest Cédex, France.

ABSTRACT

In this article, the implementation of a Soft-Output Viterbi
decoder for an eight-state duo-binary code is described. This
decoder is to be used in a turbo-decoder for convolutional
codes. The implementation was made with the SYNOPSYS
environment and targeted a 0.18 pm technology. The layout
obtained has a working frequency of 150 MHz and thus an
output data rate of 300 Mbits/s.

1. INTRODUCTION

ETSI (European Telecommunications Standards Institute)
is in the process of adopting new channel coding for inter-
activity in Digital Video Broadcasting (DVB) for satellite
(RCS: Return Channel over Satellite) and terrestrial (RCT:
Return Channel over Terrestrial) transmission. The error-
correcting code is a duo-binary 8-state convolutional turbo
code, specified for various block sizes (from 12 to 216 by-
tes) and coding rates (from 1/3 to 6/7). In this paper, we
contemplate the possibility of extending the use of this code
to continuous coded streams with high throughputs (> 300
Mbits/s). To achieve this, we consider the Soft-Output Vi-
terbi Algorithm (SOVA) [1, 2] as the component decoder
in the turbo decoding iterative process [3]. This paper de-
scribes the design of the device, with the prospect of inte-
gration into 0.18 um technology.

2. DUO-BINARY CODES

Duobinary codes were introduced in the domain of turbo
codes by Berrou et al. [4]. These codes are in fact binary
codes with an unpunctured rate of 2/3: each pair of data bits
produces one redundancy bit. These codes exhibit better
correcting performances and do not suffer from severe flat-
tening at low error rates, unlike classical binary turbo codes.
For this reason, they have been used in many communica-
tion protocols. In our implementation, we used the 8-state
duo-binary recommended by the DVB datasheet standard.
Figure 1 describes the layout of the encoder as well as its
transition graph.

Yannick.Saouter@enst-bretagne.fr

Claude.Berrou@enst-bretagne. fr

initial future state
sta and redundaney

d

A=0
B=1

s™=1
R=1

S'=3
R0
$'=4
R=0
S'=6
R=1}

S'=0
R=1

o
7

o
4y

I

z

4 &L
n B2 BV
Ly Ly

v BN WA W
UL

-]
0
L4

2 =
1L 4

s'=2

R=0
§'s$
R=0
s=7

R=

il

i
”

7

v
R
o
v
D)
&

1
L

@
L &
@

3
-
[

Fig. 1. Architecture and state lattice of the duo-binary con-
volutional encoder

3. ALGORITHM OVERVIEW

The SOVA is an extension of the classical Viterbi algorithm:
given sampled data from the channel, it computes four val-
ues (one for each symbol of the alphabet of the code) at each
clock period. These values are minimal when the probabil-
ities of the corresponding symbol in the sequence are max-
imal. These values will be called weights in the following.
The Viterbi algorithm is explained in the original paper [5]
and in many other publications. The weighting algorithm is
derived from Battail’s unsimplified revision formula which
is to be found in [6]. Inthe case of binary codes, a simplified
algorithm has been proposed in [1] and in the general case,
including duo-binary codes, the derivation is given in [2].
The reader should refer to these articles for full details and
especially to [2] which describes the exact weighting proce-
dure of the circuit.

The algorithm is made up of two parts. The first one,
given the sampled data of the input channel, computes at
any time the most likely state of the encoder (classical Viter-
bi algorithm). The second one, given the sampled data and
the estimated state determined by the latter operation, com-
putes the opposite of the logarithm of the probabilities that
the emitted symbol is one of the four possible symbols (the
most probable symbol will be called the principal decision).
This second part makes a first estimate of the weights by
computing the differences of metrics for the state decided
by the Viterbi algorithm and then, the initial values are up-

FIRST VITERBI CORE

/ ;

i { .

1| STATE STATE LATTICE STORAGE H SYMBOL LATTICE STORAGE
i i [Metrics| | | S IRN

H COMPU- i

i | TATION i

POSTDETECTOR PROCESSOR

REVISION PROCESS UNIT
piodrerd 3
compu-| w,

SHIFT ARRAY REGISTER
+ outpul
TATION [wecntsstomace |- S

Fig. 2. Overall architecture of the duo-binary soft-output
decoder.

dated according to the three paths which were in compe-
tition with the survivor path. Thus there are two distinct
Viterbi devices in the circuit, each with its own memory. In
the following, unless otherwise specified, the first one will
be referred to as the Viterbi device, while the second one
will be called the postdetector processor or even simply the
processor. The global architecture is illustrated in Figure 2.

The Viterbi algorithm, for any of the eight states, at any
step computes one value called the state metric. This value
is the minimum of the four incoming metrics of this state
(one for each possible symbol). Any incoming metric is the
result of the addition of the state metric of a predecessor
of the state in the state graph plus the branch metric asso-
ciated with the transition in the graph. This branch metric
is equal to £X; £ X2 £ Y where X; (X3 and Y resp.)
is the value read from the channel for the least significant
bit of the emitted symbol (the most significant bit and as-
sociated redundancy resp.). The + operator is equal to +
or — depending on whether the expected value is 0 or 1.
For instance according to Fig. 1, from state 4 it is possible
to reach state 7 if the data are A = 1 and B = 0 and the
associated redundancy is R = 1. Thus the branch metric as-
sociated with this transition will be equalto —X; + X, —Y
and state 7 will have SM4 — X; + X, — Y as one of its
four incoming metrics, if SMy4 is the state metric of state 4.
Thus for any state, at any moment, we can have the history
of the choices that led to this particular step. The output of
the Viterbi algorithm will be the oldest state in the history
of the most likely state (i.e. the one which has the smallest
state metric at a given time). If dy is the length of stored
histories for any state, then at time ¢, the output value of the
Viterbi algorithm will be the most likely state at time ¢ —dv .
The value dy is called the depth of the Viterbi algorithm.

The postdetector processor also computes the state met-
rics at any time. Given the state decided by the Viterbi al-
gorithm, it makes a first estimate of the probabilities. If
m is the state predicted by the Viterbi algorithm, the initial
weight for symbol 0 (1, 2 and 3 resp.) will be the difference

of the incoming state metric for state 0 (1, 2 and 3 resp.),
i.e. the sum of the state metric of the predecessor of m for
a0 (1, 2 and 3 resp.) received symbol plus the associated
branch metric, minus the least of the four incoming state
metrics.

This initial value is then updated according to previous
values and according to the histories of symbol choice lead-
ing to state m. In the history of m, we select the four his-
tories corresponding to any possible choice for the received
symbol. One of these paths is called the survivor path and
corresponds to the least incoming metric for m. Along this
path, the weights of all the symbols are null. The other three
paths are called the concurrent paths. The updating process
is the following one: let s be the symbol associated with a
concurrent path; if the weight associated with a symbol of
the concurrent path is greater than p;, the initial probability
for s, then this value has to be lowered to p;.

4. ARCHITECTURE OF THE VITERBI DECODER

The architecture of the Viterbi decoder is depicted in Figure
3. Each of the modules has a specific task:

ADDCOMP computes the branch metrics £ X; £ Xo 1Y
in a pipeline way (any of the eight possible branch
metrics is computed in a binary tree fashion in three
clock periods and the computation of the state metrics
is delayed by the same time in order to preserve syn-
chronization between the modules ADDCOMP and
METCOMP);

METCOMP computes all the incoming state metrics, gi-
ven the initial state metrics stored in the STATE MET-
RICS REGISTER module and the branch metrics gi-
ven by the ADDCOMP module (the METCOMP mod-
ule contains the topology of the state lattice and dis-
patches any branch metric to all the transitions where
it is required);

MIN4S compares the incoming state metrics and keeps
the smallest one for any state (it is just a minimum out
of four values performed in a binary tree fashion);

OVERFLOW deals with the overflow hazards: when all
the most significant bits of the state metrics are equal
to 1, they are all set to 0.

STATE METRICS REGISTER stores the state metrics;

STATE SELECTION selects for any state one of the four
possible branches for the history;

REGISTER EXCHANGE ARCHITECTURE stores the his-
tory for any of the states;

MINSPIPE computes the most likely state (that has the
lowest metric) in a pipeline way;

POSTAMBLE is a simple shift array register which has as
many pipeline levels as MIN8PIPE so that decisions of
the latter module are synchronized with the output of
the POSTAMBLE module.

Fig. 3. Architecture of the Viterbi decoder.

The samples from the channels were assumed to be si-
gned and 4 bits wide. Simulations on a turbo-decoder then
established that 8 bits were enough for state metrics, and
that a depth equal to 16 gives quite acceptable performance.
With these parameters, Table 1 gives the complexity of any
of the modules of the architecture, expressed in terms of 2-
input NAND equivalent gates.

Module Gates
ADDCOMP 1403
METCOMP 1521

OVERFLOW 14
MINSPIPE 727
TOTAL 8000

Module Gates
STATE SEL. 1241
MIN4S 1099
STORING 1995

Table 1. Number of gates in the Viterbi device: 1 gate ~ 1
2-input NAND gate.

S. ARCHITECTURE OF THE POSTDETECTOR
PROCESSOR

The postdetector processor is subdivided into two parts. The
first one consists of a second Viterbi device. Ithas two tasks:
first, it again computes the state metrics whose values are
required for the computation of the initial weights. Second,
it computes again the history of symbol choices for any of
the eight states. Histories are required in order to apply the
updating rule and this is the second part of the processor,
which is effectively in charge of computing the updated val-
ues for the weights according to the updating rule.

The weight for the principal decision (i.e. the decision
which would be predicted by a conventional Viterbi decoder
and which corresponds to the least incoming state metrics
amongst the 32) is always equal to zero. We then use a tech-
nique to avoid storing them: the symbol s of the principal
decision is stored in a shift array and the other three weights
are permuted in such a way that the weight of another sym-
bol s’ is stored in the shift array in row s @ s’. At the output
of the shift array, weights are rearranged in their natural or-
der, that is, the outgoing weight at time ¢ of symbol s’ will
be the one stored inrow s’ @ s(t — dr), where s(t — dg) is

Fig. 4. Architecture of the postdetector processor.

the principal decision given by the Viterbi detector at time
t—dg and dp is the depth of the revision process. This tech-
nique has two advantages: first, it saves a quarter of the area
of weight storage and second an updated value becomes at
most the minimum out of four values and not five values
as previously. Indeed, the revision process involves for any
of the four possible symbols, lowering the weights along
the corresponding history: if a symbol s has a weight equal
to W, then any of the symbols with weight W in the his-
tory of the path corresponding to s will have its new weight
set to min (W, W,). Thus, in the classical revision scheme
the updating value will be min(W, W(,, Wg,, Wiy, Wi,)
where W}; is equal to W;; if the revised symbol belongs to
the history of the concurrent path corresponding to symbol
(%, j) and will be equal to +oco in the other case. Amongst
the four values W}, one corresponds to the survivor path.
In this case we will have W}; = 0 if the revised symbol
belongs to the history of the survivor path and Wi’j = 400
in the other case. In the first case, the new value for the
weight will be 0 whatever the other values involved in the
minimum are, and in the second case, the weight of the sur-
vivor path has no effect on the final value. When we shuf-
fle the weights by the value of the principal decision, there
are only three weight values to store and the new weighting
value will be min(W, W{', W}/, W) if the revised symbol
does not belong to the survivor path and 0 otherwise, where
WJ” is the weight associated with the j-th concurrent path
different from the survivor path. The addressing of W has
to take into account the shuffle of the current principal de-
cision as well as the shuffle of the former principal decision
which shuffles W. Thus this technique allows a quarter of
the comparators used to be saved and, in addition, this mini-
mum requires only two stages of comparators and not three,
if we neglect the small additional delay of the multiplexer
corresponding to the survivor path. Thus, the critical path
of the system is shortened.

Figure 4 depicts the architecture of the postdetector pro-
cessor. The modules have the following tasks:

ADDCOMP, METCOMP, OVERFLOW and STATE MET-
RICS REGISTERS have the same behaviour as previ-
ously and perform the kernel computation of the sec-
ond Viterbi algorithm;

MIN4S as previously computes the future metric for each
state, but given the decided state decstate, it also
provides the decided symbol, the concurrent states
and the concurrent weights (i.e. corresponding to the
three other decisions);

SYMBOL SELECTION selects for any state one of the
four possible branches for the symbol history;

SYMBOL REGISTER EXCHANGE ARCHITECTURE sto-
res the history of the symbol choices for any state;

CONCURRENT PATH SELECTION makes the selection
of the three alternate paths in the history of symbols
leading to the decided state decstate;

SHUFFLE KEY SHIFT ARRAY stores the keys used to
avoid the storage of null weights corresponding to the
principal decision in the WEIGHT SHIFT ARRAY (in
fact the keys are simply the principal decision sym-
bol);

STORED KEYS APPLICATOR applies the shuffle keys
stored in the SHUFFLE KEY SHIFT ARRAY to the pa-
ths selected by CONCURRENT PATH SELECTION;

CURRENT KEY APPLICATOR applies the current key to
the latter shuffled paths so that paths are coherent with
the shuffled concurrent weights;

REVISION DEVICE performs the updating process com-
putations;

WEIGHT SHIFT ARRAYS store weights shuffled by the
symbol corresponding to successive principal deci-
sions.

In the implementation, the same representations were
used for the postdetector processor as for the Viterbi device
but the weights in the WEIGHT SHIFT ARRAYS were stored
as unsigned 6-bit wide numbers. The depth of the updating
process was set to 10, after simulations. Table 2 gives the
complexity of any module of the processor, expressed in
equivalent 2-input NAND gates.

Module Gates Module Gates
ADDCOMP 1403 STORED KEYS APPL. 99
METCOMP 1521 CURRENT KEYS APPL. 70
OVERFLOW 14 REVISION 11268

MIN4S 1099 STORAGE 2896

SYMB. SEL. 773
TOTAL 19143

Table 2. Number of gates in the postdetector processor: 1
gate ~ 1 2-input NAND gate.

6. PERFORMANCE AND PERSPECTIVES

The description of the circuit was written in VHDL descrip-
tion language and was synthesized by the SYNOPSYS devel-
opment environment for ASIC 0.18 pm technology library
provided by Austria Microsystems. The description of the
circuit was validated by simulation before and after synthe-
sis. The chip has a total area of 0.4 mm? (0.1 mm? for the
Viterbi device and 0.3 mm? for the postdetector processor)
and is expected to work up to 150 MHz (250 MHz for the
Viterbi device and 150 MHz for the postdetector processor)
in the typical case of a temperature which gives an output
data rate of 300 Mbits per second. In our future work, we
plan to improve and optimize the architecture in order to
reach a working frequency of 300 MHz (i.e. an output data
rate of 600 Mbits/s).

7. REFERENCES

[1] C. Berrou, P. Adde, E. Angui, and S. Faudeil, “A
low-complexity Soft-Output Viterbi Decoder Architec-
ture,” in 1993 Intl. Conf. on Communications, Geneva,
Switzerland, 1993, vol. 2, pp. 737-740.

[2] D. Kwan and S. Kallel, “A Rate-k/n Heuristic Soft-
Output Viterbi Algorithm (SOVA) that is Postdetector-
Compatible,” IEEE Trans. on Comm., vol. COM-46,
no. 5, pp. 621-626, May 1998.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near
Shannon limit error correcting coding and decoding:
Turbo-codes,” in Intl. Conf. on Communications,
Geneva, Switzerland, May 1993, vol. 2, pp. 1064-1070.

[4] C.Berrou and M. Jezequel, “Non-binary convolutional
codes for turbo coding,” Electronics Letters, vol. 35,
no. 1, pp. 39, January 1999.

[5] A.J. Viterbi, “Error Bounds for Convolutionnal Codes
and an Asymptotically Optimum Decoding Algorithm,”
IEEE Trans. on Inf. Theory, vol. IT-13, pp. 260-269,
April 1967.

[6] G. Battail, “Pondération des symboles décodés par
I’algorithme de Viterbi,” Annales des Télécommunica-
tions, vol. 42, no. 1-2, pp. 31-38, January 1987.

