Yannick Saouter

Claude Berrou

FAST SOFT-OUTPUT VITERBI DECODING FOR DUO -BINARY TURBO CODES

In this article, the implementation of a Soft-Output Viterbi decoder for an eight-state duo-binary code is described. This decoder is to be used in a turbo-decoder for convolutional codes. The implementation was made with the SYNOPSYS environment and targeted a 0.18 µm technology. The layout obtained has a working frequency of 150 MHz and thus an output data rate of 300 Mbits/s.

Return Channel over Terrestrial) transmission. The error correcting code is a duo-binary 8-state convolutional turbo code, specifi ed for various block sizes (from 12 to 216 by tes) and coding rates (from 1/3 to 6/7). In this paper, we contemplate the possibility of extending the use of this code to continuous coded streams with high throughputs (:::: 300 Mbits/s). To achieve this, we consider the Soft-Output Vi terbi Algorithm (SOVA) [l, 2] as the component decoder in the turbo decoding iterative process [START_REF] Berrou | Near Shannon limit error correcting coding and decoding: Turbo-codes[END_REF]. This paper de scribes the design of the device, with the prospect of inte gration into 0.18 µm technology.

DUO-BINARY CODES

Duobinary codes were introduced in the domain of turbo codes by Berrou et al. [START_REF] Berrou | Non-binary convolutional codes for turbo coding[END_REF]. These codes are in fact binary codes with an unpunctured rate of2/3: each pair of data bits produces one redundancy bit. These codes exhibit better correcting performances and do not suffer from severe flat tening at low error rates, unlike classical binary turbo codes.

For this reason, they have been used in many communica tion protocols. In our implementation, we used the 8-state duo-binary recommended by the DVB datasheet standard. """

R•I R-1 I s•-2 S"-4 s•-1 R•I 2 s•-s s•-1 S"-4 R-1 3 S'-7 s•-1 S"-6 ... R•I R•I 4 s•-1 s•-1 s• -<i ... R•I R•I ' 5• ... 3 s•-s s•-2 R•I • S"-4 s•-2 S'•S •-• R-0 R-0 7 S"-6 s•-o S' •7 R-1 •-• A-I B-1 s•-1 ... 5• .. 5 R-1 s•-2 R•I s• S"-6 R-0 S"=4 •-1 S'•l R•I s•-1

ALGORITHM OVERVIEW

The SOVA is an extension of the classical Viterbi algorithm:

given sampled data from the channel, it computes four val ues (one for each symbol of the alphabet of the code) at each clock period. These values are minimal when the probabil ities of the corresponding symbol in the sequence are max imal. These values will be called weights in the following.

The Viterbi algorithm is explained in the original paper [START_REF] Viterbi | Error Bounds for Convolutionnal Codes and an Asymptotically Optimum Decoding Algorithm[END_REF] and in many other publications. The weighting algorithm is derived from Battail 's unsimplified revision formula which is to be found in [START_REF] Battail | Ponderation des symboles decodes par l'algorithme de Viterbi[END_REF]. In the case of binary codes, a simplified algorithm has been proposed in [l] and in the general case, including duo-binary codes, the derivation is given in [START_REF] Kwan | A Rate-k/n Heuristic Soft Output Viterbi Algorithm (SOVA) that is Postdetector Compatible[END_REF].

The reader should refer to these articles for full details and especially to [START_REF] Kwan | A Rate-k/n Heuristic Soft Output Viterbi Algorithm (SOVA) that is Postdetector Compatible[END_REF] which describes the exact weighting proce dure of the circuit.

The algorithm is made up of two parts. The fi rst one, given the sampled data of the input channel, computes at any time the most likely state of the encoder (classical Viter bi algorithm). The second one, given the sampled data and the estimated state determined by the latter operation, com putes the opposite of the logarithm of the probabilities that the emitted symbol is one of the four possible symbols (the most probable symbol will be called the principal decision).

This second part makes a first estimate of the weights by computing the differences of metrics for the state decided by the Viterbi algorithm and then, the initial values are up- is the value read from the channel for the least signifi cant bit of the emitted symbol (the most significant bit and as sociated redundancy resp.). The ± operator is equal to + or -depending on whether the expected value is 0 or 1.

For instance according to Fig. 1, from state 4 it is possible to reach state 7 if the data are A = 1 and B = 0 and the associated redundancy is R = 1. Thus the branch metric as sociated with this transition will be equal to -X 1 + X 2 -Y and state 7 will have SM 4 -X1 + X2 -Y as one of its four incoming metrics, if SM 4 is the state metric of state 4.

Thus for any state, at any moment, we can have the history of the choices that led to this particular step. The output of the Viterbi algorithm will be the oldest state in the history of the most likely state (i.e. the one which has the smallest state metric at a given time). If dv is the length of stored histories for any state, then at time t, the output value of the Viterbi algorithm will be the most likely state at time td v.

The value dv is called the depth of the Viterbi algorithm.

The postdetector processor also computes the state met OVERFLOW deals with the overfl ow hazards: when all the most significant bits of the state metrics are equal to 1, they are all set to 0.

STATE METRICS REGISTER stores the state metrics;

STATE SELECTION selects for any state one of the four possible branches for the history;

REGISTER EXCHANGE ARCHITECTURE stores the his tory for any of the states;

MIN8 PIPE computes the most likely state (that has the lowest metric) in a pipeline way;

POSTAMBLE is a simple shift array register which has as many pipeline levels as MIN8 PIPE so that decisions of the latter module are synchronized with the output of the POSTAMBLE module. The samples from the channels were assumed to be si gned .and 4 bits wide. Simulations on a turbo-decoder then established that 8 bits were enough for state metrics, and that a depth equal to 16 gives quite acceptable performance.

With these parameters, Table 1 gives the complexity of any of the modules of the architecture, expressed in terms of 2-inpufNAND equivalent gates.

ARCHITECTURE OF THE POSTDETECTOR PROCESSOR

The postdetector processor is subdivided into two parts. The). Thus, in the classical revision scheme the updating value will be min(W, W�0, W�1, W{0, W{1) where W/i is equal to W;j if the revised symbol belongs to the history of the concurrent path corresponding to symbol (i, j) and will be equal to +oo in the other case. Amongst the four values W/j, one corresponds to the survivor path.

In this case we will have W/j = 0 if the revised symbol belongs to the history of the survivor path and W [j = +oo in the other case. In the first case, the new value for the weight will be 0 whatever the other values involved in the minimum are, and in the second case, the weight of the sur vivor path has no effect on the final value. When we shuf fle the weights by the value of the principal decision, there are only three weight values to store and the new weighting value will be min(W, W{', W�', W�') if the revised symbol does not belong to the survivor path and 0 otherwise, where WJ' is the weight associated with the j-th concurrent path different from the survivor path. The addressing of W" has to take into account the shuffle of the current principal de cision as well as the shuffle of the former principal decision which shuffles W. Thus this technique allows a quarter of the comparators used to be saved and, in addition, this mini mum requires only two stages of comparators and not three, if we neglect the small additional delay of the multiplexer corresponding to the survivor path. Thus, the critical path of the system is shortened.

Figure 4 depicts the architecture of the postdetector pro cessor. The modules have the following tasks:

 1. INTRODUCTION ETSI (European Telecommunications Standards Institute) is in the process of adopting new channel coding for inter activity in Digital Video Broadcasting (DVB) for satellite (RCS: Return Channel over Satellite) and terrestrial (RCT:

Figure

 Figure I describes the layout of the encoder as well as its transition graph.Yannick.Saouter@enst-bretagne.fr Claude.Berrou@enst-bretagne.fr

Fig. 1 .

 1 Fig. 1. Architecture and state lattice of the duo-binary con volutional encoder

Fig. 2 .

 2 Fig. 2. Overall architecture of the duo-binary soft-output decoder.

 rics at any time. Given the state decided by the Viterbi al gorithm, it makes a fi rst estimate of the probabilities. If m is the state predicted by the Viterbi algorithm, the initial weight for symbol 0 (1, 2 and 3 resp.) will be the difference of the incoming state metric for state 0 (1, 2 and 3 resp.), i.e. the sum of the state metric of the predecessor of m for a O (1, 2 and 3 resp.) received symbol plus the associated branch metric, minus the least of the four incoming state metrics. This initial value is then updated according to previous values and according to the histories of symbol choice lead ing to state m. In the history of m, we select the four his tories corresponding to any possible choice for the received symbol. One of these paths is called the survivor path and corresponds to the least incoming metric for m. Along this path, the weights of all the symbols are null. The other three paths are called the concurrent paths. The updating process is the following one: let s be the symbol associated with a concurrent path; if the weight associated with a symbol of the concurrent path is greater than Ps, the initial probability for s, then this value has to be lowered to Ps•4. ARCHITECTURE OF THE VITERBI DECODERThe architecture of the Viterbi decoder is depicted in Figure3. Each of the modules has a specifi c task:ADDCOMP computes the branch meruics ±X1 ± X 2 ± Yin a pipeline way (any of the eight possible branch metrics is computed in a binary tree fashion in three clock periods and the computation of the state metrics is delayed by the same time in order to preserve syn chronization between the modules ADDCOMP and METCOMP); METCOMP computes all the incoming state metrics, gi ven the initial state metrics stored in the STATE MET RICS REGISTER module and the branch me trics gi ven by the ADDCOMP module (the METCOMP mod ule contains the topology of the state lattice and dis patches any branch metric to all the transitions where it is required); MIN4 S compares the incoming state metrics and keeps the smallest one for any state (it is just a minimum out of four values performed in a binary tree fashion);

Fig. 3 .

 3 Fig. 3. Architecture of the Viterbi decoder.

 first one consists of a second Viterbi device. It has two tasks: first, it again computes the state metrics whose values are required for the computation of the initial weights. Second, it computes again the history of symbol choices for any of the eight states. Histories are required in order to apply the updating rule and this is the second part of the processor, which is effectively in charge of computing the updated val ues for the weights according to the updating rule.The weight for the principal decision (i.e. the decision which would oe predicted by a conventional Viterbi decoder and which corresponds to the least incoming state metrics amongst the 32) is always equal to zero. We then use a tech nique to avoid storing them: the symbol s of the principal decision is stored in a shift array and the other three weights are permuted in such a way that the weight of another sym bol s ' is stored in the shift array in row s E9 s' . At the output of the shift array, weights are rearranged in their natural or der, that is, the outgoing weight at time t of symbol s ' will be rte one stored in rows ' E9 s (t -dR), where s (t -dR) is

Fig. 4 .

 4 Fig. 4. Architecture of the postdetector processor.

Table 1 .

 1 Number

	Module	Gates	Module	Gates
	ADDCOMP	1403	STATE SEL.	1241
	METCOMP	1521	MIN4 S	1099
	OVERFLOW	14	STORING	1995
	MINS PIPE	727		
	TOTAL	80 00		

of gates in the Viterbi device: 1 gate'.'.:::'. 1 2-input NANO gate.

ADDCOMP, METCOMP, OVERFLOW and STATE MET RICS REGISTERS have the same behaviour as previ ously and perform the kernel computation of the sec ond Viterbi algorithm; MIN4 S as previously computes the future metric for each state, but given the decided state decstate, it also provides the decided symbol, the concurrent states and the concurrent weights (i.e. corresponding to the three other decisions); CURRENT KEY APPLICATOR applies the current key to the latter shuffled paths so that paths are coherent with the shuffled concurrent weights;

REVISION DEVICE performs the updating process com putations;

WEIGHT SHIFT ARRAYS store weights shuffled by the symbol corresponding to successive principal deci sions.

In the implementation, the same representations were used for the postdetector processor as for the Viterbi device but the weights in the WEIGHT SHIFT ARRAYS were stored as unsigned 6-bit wide numbers. The depth of the updating process was set to 10, after simulations.

PERFORMANCE AND PERSPECTIVES

The description of the circuit was written in VHDL descrip tion language and was synthesized by the S YNOPSYS devel opment environment for ASIC 0.