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I. INTRODUCTION

ETSI (European Te lecommunications Standards Institute

) is in the process of adopting new channel coding for interactivity in Digital Video Broadcasting (DVB) for satellite (RCS: Return Channel over Satellite) and terrestrial (RCT: Return Channel over Terrestrial) transmission. The error-correcting code is a duo-binary 8-state convolutional turbo code, specified for var ious block sizes (from 12 to 216 bytes) and coding rates (from 1/3 to 617).

II. DUO-BINARY CODES

Duo-binary codes were introduced in the domain of turbo codes by Berrou et al. [1]. These codes are in fact binary codes with an unpunctured rate of 2/3: each pair of data bits produces one redundancy bit. Those codes exhibit better correcting per formances and do not suffer from severe flattening at low er ror rates, unlike classical binary turbo codes. In this article, we consider the 8-state duo-binary recommended by the DVB datasheet standard [START_REF]Digital Video Broadcasting (DVB); Interaction channel for satellite distribution systems[END_REF], as an illustrative example. Figure 1 de scribes the layout of the encoder as well as its transition graph. Following the works of Hartmann [START_REF] Hartmann | An optimum symbol-by-symbol decoding rule for linear codes[END_REF], Hagenauer introduced MAP dual decoding for binary turbo codes [START_REF] Hagenauer | Iterative decoding of binruy block and convolutionnal codes[END_REF]. This work was extended to the general case of turbo codes defined over Galois fields by Berkmann [START_REF] Berkmann | Iterative Decoding of Nonbinary Codes[END_REF]. In this article, we extend it to M-binary turbo codes which do not come within the scope of Berkmann's work and seem to have more practical appli cations. Indeed, although duo-binary turbo codes can be de coded by Hagenauer's method, our improvement is to extract duo-binary extrinsic values (instead of binary extrinsic values for Hagenauer). This leads to better performance in tenns of bit error rate. For the sake of simplicity, we present here the equations for the case of duo-binary codes and then explain how they generalize to the general M -binary case.

Let C be a systematic duo-binary convolutional code. Let x = (xo,x1, ... ,XN-1) be a frame of N duo-binary infor mation data symbols to be encoded by the encoder of C. The encoder of C will be denoted C. We suppose that

x is a teffilinated sequence (i.e. if the encoding of x be gins in the zero state of C, it also finishes in the zero state of C). The output sequence produced by C is then c = (xo, Yo, xi, Yi, ... , XN-1, YN-1) where Yi denotes the i-th bi nary redundancy produced by the encoder. The codeword c is then modulated by a BPSK and transmitted over a memory less channel with white Gaussian noise with zero mean. We suppose that the modulation is the conventional one in which a data bit 0 is emitted over the channel as -1 and a data bit 1 as +1.

From the decoder point of view, a frame r = ( r0, r1, r1 0, r2, r3, r' 1, ... , r2N-2, r2N-1, r' N-1) with real numbers values is received, where r2i (resp. r2i+1) corresponds to the received sample for the first (resp. second) bit of the duo-binary symbol Xi and r' i corresponds to the received sample for Yi• For any 0:::; t < N, any si,s2 E {0, 1} and any s E {0, 1}, we define J(t, si, s2) = Prob(r2t, r2t+l I si, s2) and I(t, s) = Prob(r't Is).

More precisely, if 7 is the standard deviation of the noise of the transmission channel (computed from the Eb /NO value and the rate of the code by conventional fonnulas ), we have:
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if ms is the noiseless modulation level of the bit s (i.e. mo = -1 andm1=1).

Let 6 be the reciprocal dual code of C (in the sense of con volutional codes), whose encoder is C. We denote� the set of the states of C. For any state u E �we denote Succ(u) (resp. Pred(u)) the set of states of C which can be reached 1 from state a (resp. which can reach state a) after a single step of convolutional encoding. Let a be any state in 'E and let a ' be any state in Succ(a). Then during a transition from a to a ' , encoder C will produce three bits as outputs that we will denote z1 (a, a ' ), z2 (a, a ' ) and zs (a, a ' ). These three bits are not to be considered in any order: if you consider a code word of C beginning and ending in the zero state of C, then any codeword of 6 with the same length beginning and end ing in the zero state of C should have a null dot product over GF (2) with the codeword of C if z1 (a, a ' ) (resp. z2(a, a ' )) is multiplied with the fi rst (resp. second) bit of the data symbol of the codeword of C, and z3(a,a ' ) is multiplied with the bi nary redundancy of the codeword of C. This defines z1 (a, a ' ), z2 (a, a ' ) and z3 (a, a ' ) uniquely and without ambiguity.

For any a E 'E, any a ' E Succ( a) and 0 :5 t < N we define the branch metric at time t for a transition from a to a ' , that we will denote as B M ( t, a, a ' ) by the following equation:
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Now, we defi ne the forward metrics Au(t) for any (1 E 'E and 0 :5 t < N and the backward metrics Bu(t) for any u E 'E and 0 < t :5 N by the following recurrence equations:
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Then if m = (si, s2) is a duo-binary symbol, the extrinsic value at time t for symbol m, required by the turbo decoding process and that we will denote as EXT Rm(t), is equal to:
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The proofs of these formulas are outside the scope of this paper but they will be published in a more detailed article.

IV. GENERALIZATION TO M -BINARY CODES

In the previous section, we have described computation in the case of duo-binary turbo codes only, in order to lighten the notation. However, these formulas generalize to any M -binary codes.

For instance, if we now consider a tri-binary code, the J terms now have four function indices and are defi ned by the following equation:
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The branch metrics BM(t, a, a ' ) have the same expression, with the difference that the summation of the first factor term is now over { si, s2, s3 E {O , 1}} and the exponent now has an additional term z3 (a, a ' ).s3. The exponent of the second factor still concerns the redundancy of the code and thus is z4 (a, a ' ).s where z4 is the fourth bit produced by the encoder of the dual reciprocal code.

The expression of the state metrics does not change and fi nally the expression of the extrinsic value is modified with an additional term in the first exponent, namely zs (a,a 1 ).s3 while the second exponent becomes z4 (a, a ' ).

V. CIRCULAR CODES

In what follows, we will compare the performance of the dual duo-binary MAP decoding with that of the dual binary MAP decoding [START_REF] Riedel | MAP Decoding of Convolutional Codes Using Reciprocal Dual Codes[END_REF] for the case of the DVB-RCS code [START_REF]Digital Video Broadcasting (DVB); Interaction channel for satellite distribution systems[END_REF]. However, in what precedes, we have considered codes whose encoding begins and ends in the zero state. Practically, in applications, those codes require a set of termination symbols, in order to ensure that the end state is effectively the zero state.

In the DVB-RCS encoding scheme, the beginning and end ing state are computed, given the information data, in order that they be equal. This kind of code is called circular. This allows space to be saved for information data, since there are no longer any terminating symbols. Moreover, since the frame is circular, there are no side effects due to the initialization of forward state metrics and backward state metrics at the begin ning and the end of th� frame, and any extrinsic value benefi ts from the decoding of the entire frame.

However, the orthogonality property is not preserved with such codes and this property is critical for the computation of extrinsic values by the dual method. In order to circumvent the problem, we use the forgetfulness property of convolutional decoding. Indeed, it is a well known fact in turbo decoding that the extrinsic values for a given symbol of the frame essen tially depend on the channel values of its nearest neighbors and the dependence decreases exponentially. This property allows sliding window decoding and has also been validated for dual binary MAP decoding [START_REF] Weiss | Error Correction with Tail-Biting Convolutional Codes[END_REF], which is in any case algebraically equivalent to classical binary MAP decoding [START_REF] Bahl | Optimal Decoding of Linear Codes for Minimizing Symbol Error• Rate[END_REF]. Similarly, dual M -binary MAP decoding is equivalent to classical M - binary MAP decoding .and thus the forgetfulness property also holds in our approach.

Thus, in order to deal with circular codes, we begin the de coding by a prologue which is in charge of estimating the ini 

n-1 + n-3, 1 + n-1 + n-2 + n-3, 1 + n-2 + n-3)
. This code has a rate of 1/3 since the initial code has a rate of 2/3.

Thus, for one input bit, we have three output redundancy bits.

Let Xi be the samples of input bits and r}, rt and r� be the samples of output redundancies. According to the expression of il(D) we then have the recurrence equations:

r} == Xi + Xi-1 + Xi-3 rl == x; + Xi-1 + Xi-2 + Xi-3 r: == Xi + Xi-2 + Xi-3
The corresponding encoder C is depicted in figure 2 and the reader may verify that any sequence of the initial DVB RCS code beginning and ending in the zero state has a null dot product over GF [START_REF]Digital Video Broadcasting (DVB); Interaction channel for satellite distribution systems[END_REF] with any sequence produced by the encoder C of the same length also beginning and ending in the zero state if ai (resp. bi, ri) meets r} (resp. r�, r�). This order is not arbitrary: it is imposed by the initial matrix conventions we chose. In this section we compare our dual duo-binary MAP decod ing with the dual binary MAP decoding described in [START_REF] Riedel | MAP Decoding of Convolutional Codes Using Reciprocal Dual Codes[END_REF] for a special case of the DVB-RCS encoding standard. We choose two different frame lengths (a long one with 188 information bytes and a short one with 12 information bytes) and the spec ifications of the permutations used are to be found in [START_REF]Digital Video Broadcasting (DVB); Interaction channel for satellite distribution systems[END_REF]. For both programs, the computations were done in floating point numbers and we use prologues at each iteration of the turbo decoding process. The number of iterations is the same in both programs and is equal to 8. The bit error ratio curves of each decoding are depicted in figure 3 for a frame length of 188 bytes and in figure 4 for a frame length of 12 bytes. IX.ACKNOWLEDGMENTS
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 1 Figure 1: Architecture and state lattice of the duo-binary con volutional encoder

  tial state metrics of the backward and the forward phase. If N is the length of the frame and L is the length of the prologue, then the initial forward state metrics are computed by making a forward prologue over the channel samples of the interval [N -L , N -l]. At time N -Lall the states are considered a priori possible and thus all the state metrics are initialized to 1.0. Since the frame is circular, the state metrics computed at the end of the prologue after the samples of time N -l, are acceptable initializations for the regular forward phase begin ning with the sample of time 0. Similarly, the initial backward metrics are computed by a backward prologue over the interval [O , L] . VI. IMPLEMENTATION FOR THE DVB-RCS CODE Let us denote A(D} = :E:'.:: aiD i , B(D) = :E:'.:: biD i and R(D) = :E�: riD i , where ai (resp. bi) are the input bits of the DVB-RCS encoder depicted in figure 1 and ri is the output redundancy. Then the transfer function of this code can be computed by the conventional method [9] and we find: (A(D) B(D) R(D)} == (A(D) B(D)}. G 0 The transfer matrix of the dual code is then defined as the matrix H(D) such that G(D).HT(D) = 0 where G(D) is the transfer matrix of the code explicitly given in the previous equation. The matrix H(D} is not uniquely defined and thus we can choose the one with the simplest expression. In fact, we have: Thus we may choose H(D) = (D3 + D + 1, D3 + D2 + D + 1, D3 + D2 + 1). Now the transfer matrix of the reciprocal dual code is H(D) = H(D-1 ). We then have H(D) = (1 +
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 2 Figure 2: Architecture of the dual reciprocal duo-binary con volutional encoder
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 83 Figure 3: Performance of binary and duo-binary MAP decod ing for DVB-RCS standard (frame length= 188 bytes)
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 4 Figure 4: Performance of binary and duo-binary MAP decod ing for DVB-RCS standard (frame length=12 bytes) In the case of 188 byte frame, we see a great degradation of performance if we use binary MAP dual decoding instead of duo-binary MAP decoding. The gap attains 0.6 dB at a bit error ratio of 10-5. In the case of 12 byte frames, the differ ence is only 0.2 dB at the same bit error ratio. The explanation is that, in longer frames, the duo-binary decoder takes advan tage of a greater number of correctly evaluated extrinsic values while the binary decoder suffers from correlation between the extrinsic values of each bit of a duo-binary symbol. This cor relation is eliminated in the duo-binary case since each symbol is treated as a pair, while the binary decoder treats each bit of a pair independently. VI II. CONCLUSION In this article, we have presented a new soft decision algorithm that makes use of duality to compute M -binary extrinsic val ues. We have shown that, in the case of the DVB-RCS code, our approach outperforms the dual binary MAP algorithm by more than 0.2 dB on an AWGN channel. The following step will be to derive simplified versions of this algorithm with a silicon integration.
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