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ABSTRACT 

Many photonic and plasmonic structures have been proposed to achieve ultra-subwavelength 

light confinement across the electromagnetic spectrum. Notwithstanding this effort, however, the 

efficient funneling of external radiation into nano-scale volumes remains problematic. Here we 

demonstrate a photonic concept that fulfills the seemingly incompatible requirements for both 

strong electromagnetic confinement and impedance matching to free space.  Our architecture 

consists of antenna-coupled meta-atom resonators that funnel up to 90% of the incident radiation 

into an ultra-subwavelength semiconductor quantum well absorber of volume V= λ310-6. A 

significant fraction of the coupled electromagnetic energy is used to excite the electronic 

transitions in the quantum well, with photon absorption efficiency 550 times larger than the 

intrinsic value of the electronic dipole.  This system opens important perspectives for ultra-low 

dark current quantum detectors and for the study of light-matter interaction in the extreme 

regimes of electronic and photonic confinement.  

KEYWORDS: Nanoscale absorbers, metamaterials, optical antennas, strong light-matter 

coupling.
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Here P is the non-radiative loss, Γrad is the radiation loss (emission rate) of the quantum system, 

and ε the dielectric constant of the medium surrounding the absorber. The maximum value of 

σabs is achieved at the “critical coupling” condition P = Γrad, but this condition is difficult to 

satisfy in solid-state systems where the linewidth is dominated by non-radiative decay channels

P >> Γrad.4 The situation is very severe in the mid-infrared and THz frequency ranges, where the 

spontaneous emission rate of a single electron is orders of magnitude slower than other 

Achieving strong light absorption is essential for the operation of many 

optoelectronic devices such as solar cells1, detectors2, and saturable absorbers3. The recent 

progress in nano-fabrication techniques has seen the emergence of experiments in which the 

absorption process is controlled at the single photon, single absorber level4,5,6.  In bulk materials, 

light absorption can be simply optimized by increasing the interaction length between the 

light beam and the material. However, achieving strong absorption in a highly subwavelength 

structure is a far more difficult task, and is currently an active research topic in the field of nano-

optics7.  This endeavor is particularly pertinent for solid state systems such as quantum wells 

and dots, as well as for two-dimensional materials8,9,10. In all of these systems, the typical de 

Broglie carrier wavelength is orders of magnitude smaller than the photon wavelength 

corresponding to the quantum transition of interest.  The problem can be illustrated by 

considering an isolated nanostructure illuminated with intensity Iin (Figure 1a), where the 

efficiency of the absorption process is quantified by the absorption cross section σabs=Pabs/Iin, 

with Pabs the absorbed power.  Following Tretyakov,11 the resonant absorption cross section can 

be expressed as:
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dissipation mechanisms.  As illustrated in Figure 1a, in this work we consider a 1x1 µm² absorber 

that consists of a 32-nm-wide semiconductor quantum well (QW) containing ~103 electrons. The 

first electronic transition of the QW is at fP = 3.3 THz,12 corresponding to a wavelength λ = 90 µm 

that is much larger than the size of the absorber. Eq.1 provides an intrinsic absorption cross 

section σabs = 0.047 µm², three orders of magnitude smaller than the theoretical maximum 3λ²/8 

επ= 77 µm², with  = 12.4.  Indeed, the non-radiative rate P = 0.2 THz of the QW is much larger 

than the radiation loss, Γ rad=3.2x10-5 THz (see Supplementary Information for estimations of P 

and Γrad).

A solution inspired from microwave technology13 is to couple the nano-absorber to an 

antenna that increases the overall radiation loss of the system14,15. Such optical antennas can 

be used to build ultra-fast thermal emitters16, novel non-linear devices17,18, and ultra-low 

dark current infrared detectors19. In the optical domain, we can also draw inspiration from the 

Purcell effect for the emission process20, which states that the spontaneous emission rate is 

strongly dependent on the electromagnetic environment. Coupling an emitter to a resonant 

microcavity can boost or inhibit the spontaneous emission rate21,22. In the case of the absorption 

process, the benefit of microcavities and meta-atom resonators is that they enable electric field 

confinement into highly subwavelength volumes Veff, comparable with the nano-absorber 

size23(Figure 1b). As the light-matter interaction strength scales as 1/Veff
1/2, the absorption 

rate is increased, and eventually the regime of strong and ultra-strong light-matter coupling 

can be achieved12,24,25. However, a strong electromagnetic confinement suppresses the cavity 

radiation loss rate, which scales as Veff,26,27 and therefore the microcavity-coupled nano-

absorber becomes almost inaccessible to external electromagnetic radiation. In the visible 

and the near infrared spectral region, several strategies have been proposed to achieve  
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5

impedance matching between free space and plasmonic nanostructures.10,28,29,30 

In this work we demonstrate that is possible to reconcile the antenna concept with the 

microcavity effect, and to achieve very efficient funneling of incident radiation into a highly 

subwavelength quantum nano-structure.  We introduce a THz photonic arrangement that 

combines antennas with metamaterial LC (inductor-capacitor)-resonators and concentrates the 

electric field into nano-volume capacitors filled with semiconductor quantum wells, as illustrated 

in Figure 1c. In this configuration, the mode of the resonator is matched to free space and (ultra-) 

strongly coupled with the QW electronic transition. 

These concepts, and the following experimental results, have been analyzed in the 

framework of the temporal coupled mode theory (CMT).31,32 The CMT provides a set of linear 

differential equations that describe the temporal evolution of the amplitudes P, a, A of, 

respectively, the matter oscillator (P), the electric field of the micro resonator (a), and the 

antenna (A), as a function of the incident wave amplitude (Sin). We compare three different cases: 

matter oscillator P in free space (Figure 1a,d); P coupled with a meta-atom resonator a, which 

interacts with free space (Figure 1b,e); and, P interacts with an antenna (A)-coupled meta-atom 

(a) (Figure 1c,f). Each oscillator has its own non-radiative loss rate (P, a , A). By design, the 

transmission port is absent in our devices, and we consider only the reflection port (Sout).  As 

shown in the Supplementary Information, our formalism leads to eq.1 for the case of a single 

absorber in free space (Figure 1a,d). 

As a first step we are interested in understanding how the absorption cross section (eq. 1) 

is modified in the presence of the resonator, Figure 1b,e and Figure 2. Our resonator is a THz LC 
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*
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where f12 is the oscillator strength of the transition, e is the electron charge, N1 and N2 are the 

total electron populations in the first and second subbands, respectively, ε0 is the vacuum 

permittivity, and m* is the electron effective mass. 

As shown in Figure 2, in order to increase the interaction with the incident light, the 

antenna-coupled LCs are periodically repeated to form a metamaterial, made up of a unit cell of 

area  such that the beam spot size S of the incident wave covers many unit cells.11,23  In the 

metamaterial configuration the ratio between the absorbed and incident power Pabs/Pin for each 

unit cell corresponds to abs/.  In the framework of the CMT, a general expression for the 

absorption cross section as a function of the power dissipated by the quantum system is: 

(3)  
2 |P|²

,
|S |²

pabs

def

in

  


circuit, as described in ref. 12, where the electric field is compressed into ultra-subwavelength 

volume, Veff~10-6λ3, between the two double-metal capacitive parts of 1 µm² area and thickness 

300 nm (Figure 1a). The 300-nm-thin wires of length PL connecting the capacitors act as 

inductors and allow the resonant frequency to be tuned in the THz range. The absorbing region, 

which contains five 32-nm-wide highly doped quantum wells, is placed only in the two 

capacitive parts (more information in the supplementary material), but owing to surface 

depletion effects, only the central well is effectively populated at 1.4x1011
 cm-2 electrons. The 

interaction between the QW and the LC resonator is quantified by the coupling strength ΩR, also 

known as vacuum Rabi frequency12:
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a

Here, |P|² is proportional to the energy stored in the electronic polarization, and can be related to 

the density of microscopic dipoles excited by the electric field of the resonator, and |Sin|² =ΣPin/S 

is the power incident per array unit cell. Eq.3 is a direct consequence of energy conservation and 

the definition of the absorption cross section33. Note that the parameter  quantifies the fraction 

of photons absorbed by the QW only. The other loss channels, such as the metal losses in 

the electromagnetic resonators, can also be inferred from CMT, as shown in the 

Supplementary Information.

The quantity  is not directly provided by experiments, where one instead probes the 

reflectivity of the system, R() = |Sout|²/|Sin|². By fitting the experimental reflectivity R(ω) we can 

infer the CMT parameters (P, Ω , R, Γa) and evaluate the absorption cross section from eq.3. 

The reflectivity spectra R(ω) were recorded with a dry-air purged Fourier transform 

infrared spectrometer (FTIR) (Bruker Vertex 70v). We use a proprietary experimental 

arrangement where a pair of f/1 parabolic mirrors focus the radiation from a Globar source 

onto the sample and collect the reflected light, which is detected using a He-cooled 

Ge bolometer (QMC instruments). Light is linearly polarized along the two capacitors 

of the meta-atoms, and impinges at 45° onto the sample in a transverse magnetic 

configuration. All spectra are normalized to the reflectivity of a flat Au surface. As a 

result of the fabrication process, the meta-atoms are placed on the top of 3 µm thick Si3N4 

layer, which has a flat Au mirror on the bottom that blocks the transmission port12 (see 

Supplementary Information for full structure details). Typical reflectivity spectra for a meta-

atom (PL = 11 µm, fLC = 3.2 THz) resonant with the electronic transition are shown in Figure 

2b at both room temperature and 7 K.  At room temperature, the effect of the electronic 

absorption is negligible12, and one observes only the response of the meta-atoms (blue solid 

line). At 7 K (red solid line), the QW absorption is activated, and the LC mode splits into 
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(4)
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This expression is valid for both the weak and strong coupling regime. Here R0 = P/(1+ 

P/( a  a)) = 0.09 THz. If the system is in the strong coupling regime, such that R >> R0, 

then eq.4 shows that the peak absorption saturates at a fixed value   

. This is similar to eq.1, except that now the intrinsic radiation  2
/ 4 /

abs P a P a a
        

loss of the absorber is replaced with that of the meta-atom resonator, Γa. 

The corresponding values of ω() from eq.3 are plotted in Figure 2c, with peak values ~0.08 at 

the two polariton states, in agreement with eq. 4. In this case,  Σ= 40 µm², yielding an absorption 

cross section σabs = 3.2 µm².  This value is already a significant improvement with respect to the 

single QW absorber. However, the value ~0.08 and the high reflectivity observed in 

experiments (Figure 2b) indicate a strong photon rejection rate (85%–90%).  Indeed, while the 

lower (LP) and upper (UP) polariton modes, separated by the vacuum Rabi splitting 2ΩR. At low 

temperature, CMT fits provide typical values a = 0.15 THz, Γa = 0.013 THz and ΩR = 0.4 THz. 

These studies were complemented with data from four other LC structures with PL = 9 µm, 10 

µm, 12 µm, and 14 µm (see Supplementary Information). As described in Ref.12, these 

measurements allow the effective volume Veff = λ310-6 to be obtained from eq.2, which was 

found to be very close to the geometrical volume of the capacitive parts V0 = 0.6 µm3, Veff = 1.2 

V0. 

The CMT analysis, detailed in the Supplementary Information, shows that the absorbing 

cross-section σabs is maximized at the onset of the strong coupling and is expressed as:  
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strong coupling regime is favored because of the dependence ΩR~1/Veff
1/2, the radiative coupling 

of the resonator vanishes in systems with strong electromagnetic confinement. For instance, 

in double-metal resonators, the radiation loss is proportional to the thickness of the structure23. 

This is the reason why the radiation loss of the LC is very low, Γa = 0.013 THz. 

We now demonstrate that this limitation can be lifted in a photonic arrangement based on 

the strong coupling between antennas with a high radiation loss and the ultra-subwavelength 

resonators (Figure 3 and Figure 1c,f). As shown in Figure 3a, the antenna element is a large 

double-metal patch antenna of a total length LA= λA/2neff, where λA is the resonant wavelength of 

the antenna and neff is an effective index. The bulk of the patch antenna is filled with a 3 µm 

Si3N4 layer, which is therefore much thicker than the capacitors of the LC structures. The electric 

field of the fundamental antenna resonances is maximum at the edges, and changes sign in the 

middle of the antennas27 (Figure 3a). The symmetry of the antenna resonance thus matches that 

of the LC mode. Therefore optimal coupling is achieved in the configuration described in Figure 

1c and Figure 3a, where each antenna connects the capacitors of two neighboring meta-atoms. 

Nevertheless, as this system allows a large number of degrees of freedom, many other 

configurations can be considered, even ones with topologically distinct unit cells. Furthermore, 

the antennas can be fabricated directly on the bare LC resonator arrays, thus allowing a 

straightforward comparison between uncoupled and antenna-coupled meta-atoms. In Figure 3b, 

we show reflectivity data for the same LC resonator as discussed above (PL = 11µ m) both before 

(blue solid line), and after (dark green solid line), antenna fabrication. The length of the antenna 

is LA = 5 µm and it resonates at fA = 4.65 THz; this provides and effective index neff ~ 6. We see 

that the LC resonance is split into two resonances, A1 (at 2.67 THz) and A2 (at 4.8 THz), 

indicating strong non-perturbative coupling between the antenna and the LC. The reflectivity 
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10

contrast is strongly improved: 50% as compared to 15% without the antenna. In Figure 3b 

we also provide electric energy maps obtained by numerical simulations, showing that A1 is LC-

like and A2  is antenna-like, with A1 having the same effective volume Veff as the LC alone. CMT 

fits provide a coupling constant G= –0.6 THz as well as the antenna radiation and non-

radiation losses, A = 0.2 THz and A = 0.85 THz, respectively. We also find that the radiation 

loss of the antenna-coupled LC is strongly a suppressed,  ’ = 0.0012 THz, so that the 

interaction with the free-space is essentially mediated by the antenna. The Si3N4 layer also 

introduces a –0.3 THz shift of the LC frequency (Supplementary Information).

Next, we examine the performance of such antenna-coupled LC structures for enhancing 

the quantum well absorption. Two types of structures have been studied. The first are the LC 

structures with variable PL (9 µm, 10 µm, 11 µm 14 µm), which have been reprocessed with 

antennas. In this case the antenna resonance is fixed (fA = 4.65 THz) and the LC resonance is 

varied, Figure 4a. In the second type of structure, the antenna-coupled LC resonance is designed 

with a fixed frequency, fLC = 3.35 THz, nearly resonant with the QW absorption (fP = 3.3 THz). 

The antenna resonance fA is then varied by changing the length LA (5 µm–14 µm), Figure 4b. In 

Figures 4a,b we show only the low temperature reflectivity spectra (solid lines) where the QW is 

active; more data is provided in the Supplementary Information. The full system consists of three 

coupled oscillators, as described in Figure 1c,e, and therefore the reflectivity spectra display 

three reflectivity minima. All spectra are fitted with the CMT model (dotted lines), which 

provides almost constant values for G ~ –0.7 THz, resonator loss a = 0.15 THz, a ~ 10-3 THz, 

as well as the Rabi frequency ΩR = 0.4 THz. In Figure 4b the loss rates of the antennas evolve 

monotonically in the range ΓA = 0.4–0.2 THz and A =0.75–0.45 THz owing to the frequency-

dependent loss of the Si3N4 layer.  All fitting parameters are provided in the Supplementary 

Information. In Figure 4 the estimations of the photon collection efficiency are provided  next to
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(5)       
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abs A R R

A A a R R

g
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
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  
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In this formula we have defined g = G²/(ΓA+A) and ΩR1² = P( a+g). The absorption cross 

section is thus a bell-like function of the Rabi frequency squared ΩR², and optimal for ΩRΩ = R1. 

Using the parameters of our structures, we have g = 0.74 THz and ΩR1 = 0.42 THz. Our system 

with ΩR = 0.4 THz thus operates very close to the optimal point with maximum possible 

absorption, σ = abs/ = Σ0.3 . It is interesting to note that in the case where the antenna non-

radiative loss γA can be neglected, and a high coupling constant G is achieved, eq.5 predicts 

each experimental spectrum. The peak values have now increased to ~0.2 (Figure 4a) and 

~0.35 (Figure 4b). In Figure 4b it is important to note that as the antenna length LA increases, the 

antenna becomes resonant with both the LC and the QW systems, and the area Σ of the array unit 

cell is increased.  As a result, the antenna array with LA = 12 µm (fA = 3.3 THz) and Σ= 69 µm² 

has a maximum absorption cross-section σabs = 20 µm², which is on the same order of magnitude 

as the theoretical limit of a single absorber (77 µm²). However, maximum efficiency ~0.35 is 

obtained for an antenna with LA = 9 µm (fA = 3.9 THz), which displayed high radiation loss, ΓA = 

0.3 THz, and a strong reflectivity contrast of 90%.

The analysis based on CMT further uncovers a benefit of the strongly antenna-

coupled meta-atoms (Supplementary Information). It shows that the maximum absorption 

appears at the energy of the electronic transition, and for the case where all three 

resonators have the same frequency, in accordance with the data from Figure 4. 

Neglecting the radiation loss from the quantum wells and the meta-atom, the following 

expression is obtained: 
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0

almost unity maximum absorption, regardless of the intrinsic loss P of the absorber. This means 

that such configuration always allows impedance matching to free space, independent of 

the physical phenomena that govern P.

In Figure 5, we compare the best results obtained for the photon absorption rate  in our 

structures with respect to the QW absorber where σ= 0abs/(3λ²/8επ) = 6x10-4.  The peak value 

33 .0= for the antenna-coupled LC is 550 times larger than  .  Furthermore all CMT fits use the 

same value of the light-matter coupling constant, ΩR =0.4 THz, meaning that the addition of the 

antenna layer does not result in a delocalization of the electromagnetic energy and the effective 

resonator volume remains the same, Veff = λ310-6. This is confirmed by finite element 

simulations, which show only a 5% reduction of the LC effective volume in the antenna-coupled 

LC structures. Our system thus reconciles the seemingly incompatible requirements for both 

strong electromagnetic confinement and impedance matching to free space.  Such a photonic 

architecture can be very beneficial for ultra-low dark current THz quantum detectors, where the 

electrical area is strongly reduced with respect to the effective absorption cross section of the 

device.19,23 In that case, the detector responsivity is proportional to the η coefficient defined in 

eq. 3, and the ratio between the photocurrent and dark current is provided by the quantity σabs/s, 

where s the surface of the absorbing region.19,23 Such devices, which can also operate in the ultra-

strong light-matter coupling regime, can also be used to study the effect of the polariton states on 

the electronic transport.34, 35 The process that was developed for this demonstration can also be 

exploited for a large variety of planar antennas coupled with double-metal meta-atoms, and 

opens many possibilities for the design of perfectly absorbing infrared metamaterials.36
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Figure 1. Absorption engineering in a quantum well particle (a) Single nano-absorber (two-

level quantum well) interacting with incident infrared radiation. (b) The QW no longer interacts 

with free space directly, but is coupled to a resonant meta-atom with a coupling rate ΩR. (c) The 

coupling to free space is mediated by an additional antenna element interacting with the 

meta-atom with a coupling rate G.  In all cases σabs denotes the absorption cross-section 

of the electronic transition only. (d,e,f) Coupled-mode diagrams for the aforementioned 

cases P: electronic polarization strength, a: electric field amplitude of the LC resonator, A: 

electric field amplitude of the antenna. Sin and Sout are the incoming and reflected wave, 

respectively. The relevant coupling and loss rates are indicated.
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Figure 2. Quantum well coupled to meta-atom resonator (a) Electron microscope image of an 

array of inductor-capacitor (LC) meta-atoms with unit cell Σ where the active region is 

embedded inside the capacitive elements of the meta-atoms (red squares). PL denotes the internal 

perimeter of the inductive loop. (b) Room temperature (blue) and 7 K (red) reflectivity spectra of 

a structure with PL =11 µm and fLC = 3.2 THz . Solid lines are experimental data, and dashed 

lines are obtained using CMT fits. The dotted line shows the electronic transition frequency fP. 

LP: lower polariton, UP: upper polariton. The Rabi-splitting extracted from this data is 2ΩR = 0.8 

THz. (c) Fraction of photons absorbed η from the CMT fit of panel (b). 
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Figure 3. Antenna-coupled meta-atom (a) Electron microscope image of the coupled LC 

resonator – antenna array, with unit cell Σ. The antenna resonator is formed between a top metal 

strip and a bottom metallic plane, that also illustrates the fundamental half wavelength mode.  

The spacing between two LC meta-atoms is given by the antenna length LA. (b) Room 

temperature reflectivity spectra of an array of LC meta-atoms (blue solid line) and of the same 

array coupled with antennas with LA = 5 µm (dark green solid lines). The dotted curves are CMT 

fits. A1 and A2 denote the two coupled modes, for which we also provide the electric energy 

density obtained from finite element method simulations.
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Figure 4. Fully coupled system (a) Low temperature (7 K) reflectivity spectra for 

antenna-coupled LC, for a fixed antenna resonance (fA = 4.65 THz) and variable LC resonant 

frequencies. The latter are indicated by numerical values and triangles with respect to the 

frequency axis. Experimental data is shown in solid lines and CMT fits in dotted lines. 

Right panel: photon absorption efficiency σ=abs/Σ from eq.3 for each spectrum. (b) 

Low temperature (7 K) reflectivity spectra in the case where LC and QW are nearly resonant 

at fLC~fP= 3.3 THz, and the antenna frequency fA varied.  The latter is indicated by numerical 

values and dots with respect to the frequency axis. Experimental data is shown in solid lines 

and CMT fits in dotted lines; the corresponding spectra of σ=abs/Σ are indicated in the right 

panel.
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Figure 5. Absorption engineering from experiments. Fraction of absorbed photons for the 

three systems considered in Figure 1. The “QW alone” is modelled as a Lorentzian shape with 

full width at half maximum 2P=0.4 THz and peak value  =abs/(3²/8) = 6x10-4.  The 

“QW+LC” curve corresponds to Figure 2c, and the “QW+LC+Antenna” curve corresponds to 

the highest values derived from the measurements in Figure 4b (fA = 3.9 THz).
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