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Abstract: Due to the endosymbiotic origin of organelles, a pattern of coevolution and coadaptation
between organellar and nuclear genomes is required for proper cell function. In this review,
we focus on the impact of cytonuclear interaction on the reproductive isolation of plant species.
We give examples of cases where species exhibit barriers to reproduction which involve plastid-nuclear
or mito-nuclear genetic incompatibilities, and describe the evolutionary processes at play. We also
discuss potential mechanisms of hybrid fitness recovery such as paternal leakage. Finally, we point out
the possible interplay between plant mating systems and cytonuclear coevolution, and its consequence
on plant speciation.
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1. Introduction

Speciation is the evolutionary process that leads to the differentiation of distinct species from
an ancestral population. The delimitation of a species can be assessed by the level of barriers to
reproduction to another species, i.e., the possibility to mate and produce viable and fertile hybrids.
In plants, pre-zygotic barriers can involve differences in phenology, pollinator guild or habitat and
pollen-stigma compatibility. Post-zygotic barriers expressed in hybrids can affect germination rate,
survival or reproductive traits such as pollen quantity or quality and seed production [1–3]. The longer
the species have diverged, the more they are expected to be reproductively isolated due to genetic
differences, i.e., different fixed substitutions [4]. These mutations might have been directly selected
by natural selection, for example if they confer a better adaptation to a given habitat, rendering the
hybrid maladapted to both parental habitats. However, more generally, the reduced fitness of hybrids
is believed to be due to genetic incompatibilities, i.e., mutations fixed independently by the species,
that will interact negatively in the hybrid (Bateson–Dobzhansky–Muller incompatibilities—BDMIs) [5,6].
BDMIs can arise via different evolutionary processes. A given mutation might be neutral or nearly
neutral in a given species, fixed by chance (genetic drift), but acting negatively on genes from the other
species in the hybrid. If, on the contrary, this first mutation is not neutral and impacts, for instance,
possible interactions with other genes, these interactions might be re-established through positive
selection. A third possibility is that BDMIs result from a genetic conflict between a selfish element
that distorts segregation to increase its own transmission, inducing an arms-race to counteract its
effect [5,7,8].

In this review, we will assess how organellar genomes and their interaction with the nucleus can be
involved in the process of speciation and reproductive isolation. Interestingly, hybrids from reciprocal
crosses often reveal an asymmetry in the level of reproductive isolation. This phenomenon called
Darwin’s corollary, points to the possible cytonuclear origin of genetic incompatibilities (cytonuclear
incompatibilities, CNIs) [9,10]. In addition, recent studies provide accumulative evidence of the
frequent role of cytoplasmic genomes in adaptation and speciation in plants (reviewed in [9,11,12]).
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2. How Can Cytonuclear Incompatibilities Be Involved in Speciation?

2.1. Coevolution between Nuclear and Organellar Genomes

Plastids and mitochondria are essential components of plant cells: mitochondria are responsible
for cellular respiration and plastids have an essential role in photosynthesis and seed storage lipid
synthesis [12]. The organellar protein complexes are encoded by nuclear and organellar genes,
leading to genetic interactions between the nucleus and the organelles [12–15]. Such a pattern
of cytonuclear (CN) interactions is the result of a long-term evolutionary history of organellar
endosymbiotic origins [16]. Indeed, both organellar genomes originate from free-living bacteria,
integrated into the host cell as endosymbiont, leading to the current eukaryotic cell as we know
it [13,16,17]. These endosymbiotic events were followed by a massive functional gene transfer from
the endosymbiont genome (i.e., plastidic and mitochondrial) to the host cell (i.e., the nucleus) and a
subsequent gene loss of the redundant organellar function, leading to a reduction in size of organellar
genomes [16,17]. Thus, organellar genomes do not encode the vast majority of the proteins they need
for proper function (e.g., more than 90% of the plastid proteins are encoded by the nucleus [13]).
Still, organellar genomes have conserved some key genes from their initial set of genes, encoding
subunits (SUs) of enzyme complexes of essential eukaryotic pathways, such as respiration and
photosynthesis [16–18]. However, for the proper cell performance, these organellar complexes also
need gene products from nuclear genes, often derived from former organellar genes transferred to the
nucleus [19]. Coordination between organellar and nuclear genomes is thus essential for eukaryotic
cells [20] and represents a case of coevolution where organellar and nuclear genomes impose selection
pressure on one another for the proper function of plant cells [12,17].

Differences exist between organellar and nuclear genomes. For example, due to the uniparental
mode of inheritance resulting in a lack of recombination between parental genomes, organellar
genomes have a reduced effective population size (Ne) which reduces the efficacy of natural selection
and increases the impact of genetic drift [17]. As an outcome, organellar genomes should be more
prone than the nuclear genome to evolve under Muller’s ratchet, i.e., the irreversible accumulation
of deleterious mutations due to the lack of recombination [12]. Another contrasting characteristic
is the mutation rate, which is much lower in the organellar genomes compared to the nuclear one,
at least in land plants [21]. Given the specific features of organellar genomes and the accumulation of
deleterious mutations, it is expected that compensatory mutations on the nucleus may be positively
selected to maintain coadaptation between interacting genomes and cellular performance [9,12,16,17].
However, the evolutionary dynamics of cytoplasmic genomes and the subsequent cytonuclear
co-evolution might be more complex than expected. Analyses of mitochondrial and nuclear genomes in
Drosophila melanogaster and Homo sapiens [22], mammal mitochondrial and proteobacteria genomes [23],
suggest that despite their low Ne, mitochondrial genomes exhibit similar efficacy of purifying selection
as nuclear ones. This could be explained by a stronger constraint on organellar complexes, due to
the high number of protein-protein interactions and/or the additional layer of selection acting on
mitochondrial genomes at the individual level, through the reduction of the number of mitochondrial
genomes that occurs in the transmission from mother to offspring. A recent theoretical study shows that
the way cytoplasmic genomes are transmitted not only slows down the accumulation of deleterious
mutations, but also favors the fixation of beneficial ones [24].

Detection of Coevolution

Coevolution between two genes can be detected by looking at the encoded polypeptides.
When mutual selective pressure exists between these genes, changes of amino acid in one polypeptide
will lead to corresponding changes in the other one, resulting in correlated evolutionary rates [25].
Coevolution between genomes can be studied using different methods, based on phylogenies combined
with the analysis of the rate of non-synonymous (NS) substitutions (reviewed in [26]). Under the
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hypothesis of coevolution, NS substitutions of interacting proteins should occur concurrently or
sequentially in the phylogeny [15,25].

The generally low rate of evolution of the plastid genome makes it difficult to select a proper
set of genes or taxa to study CN coevolution [25,27]. Nevertheless, in some independent lineages,
accelerated plastid genome evolution has been detected, leading to faster CN coevolution [16,20,28–30].
For example, Geraniaceae exhibit accelerated rates of sequence evolution in plastid genes encoding SUs
of the RNA polymerase complex [25]. Evolutionary rates of nuclear genes encoding SUs of this complex
were thus estimated [25]. A correlation of the rates of non-synonymous substitutions (dN) was found
between two nuclear genes and all the four plastid genes of this complex [25]. Conversely, no correlation
was identified for the rate of synonymous substitution (dS), suggesting that this correlation is not
due to the background mutation rate and very likely reflects coevolution signatures. Sloan et al.
(2014) observed fast evolution of the nuclear genes encoding SUs of the organellar ribosomes in
Arabidopsis, despite a low mutation rate of the organelle genomes [18]. This pattern was even more
evident for Silene species with an accelerated rate of organellar genome evolution [18]. Interestingly,
in these species, nuclear-encoded cytosolic ribosomal proteins, as well as control nuclear genes not
involved in organellar function, did not show any sign of accelerated evolution. This suggests that the
accelerated rate of organellar genome evolution and the subsequent compensatory mutation in the
nuclear compartment resulted in accelerated rates of sequence evolution of the nuclear genes involved
in organellar protein complexes [18].

Evidence of coevolution can also be assessed by searching for signatures of positive selection on
one of the interactors, i.e., the genes that are involved in the interaction. In response to mutations in
the sequence of one interactor (generally, the organellar one), compensatory mutations will arise in the
other (generally the nuclear one) and will be positively selected, as it allows the maintenance of the
coadaptation and proper cell function. Thus, detecting positive selection in the sequence of nuclear
genes encoding SUs of organellar protein complexes can be a sign of coevolution. The detection of
positive selection is possible by analyzing the ratio dN/dS, which is used as a measure of selection
(Box 1). The study of coevolution between plastid and nuclear genes was conducted on two plastid
complexes (not involved in the photosynthetic process): Clp and ACCase. Clp complex is required
for proper plastid function as it stabilizes the plastome (i.e., plastid genome), but its precise function
remains unclear. ACCase is involved in fatty acid biosynthesis. Both complexes are composed of one
plastid-encoded SU and several nuclear-encoded SUs [14,31]. Generally, the gene sequences of accD and
clpP1 (plastid genes) are relatively conserved among angiosperms but, in some independent lineages,
evolution rates were found to be accelerated (quoted by [14]). Nearly all the nuclear encoded SUs of
the Clp complex of the fast-evolving Silene species showed signatures of positive selection [14,20]. The
greatest increase in substitution rate for the Clp complex was observed in the nuclear-encoded SU that
is in direct interaction with the plastid SU. There was an enrichment of substitutions in the protein
domain intimately interacting with this SU [14]. This pattern was less striking for ACCase, as accD does
not evolve as fast as clpP1 in the fast-evolving lineages. Thus, coevolution between nuclear-encoded
and plastid-encoded SUs of Clp and ACCase complexes is suggested by signature of positive selection
for compensatory mutations in Silene nuclear genes of these complexes [14]. Williams et al. (2019)
conducted a study on the Clp complex across a broad range of angiosperms and observed correlated
rates of accelerated evolution in the plastid-encoded and nuclear-encoded SUs [31]. Given these results,
nuclear genes encoding SUs of plastid complex seem to experience positive selection to maintain
coadaptation with their fast-evolving plastid genes.

A study on plastid ribosomes in Geraniaceae species found that signs of positive selection
were detected on plastid genes, while the nuclear genes exhibited relaxed purifying selection [15].
Both nuclear and plastid genes exhibited accelerated dN compared to the rest of the genes studied
(i.e., nuclear genes encoding other functions, including cytosolic ribosomes), but no sign of accelerated
dS suggesting again that increased substitution rate was independent from the background mutation
rate [15]. Here, the coevolution pattern seems to work in the opposite way and is unlikely to be due to
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the compensatory evolution of the nuclear interacting genes. This highlights the diversity of cytonuclear
coevolution patterns [15,32]. Coevolution signals in plants were mostly found in protein complexes
involving plastid genes with accelerated evolution, such as genes encoding essential plastidic factors
(ycf1 and ycf2 [29]), RNA polymerase SU, ribosomal proteins [18], accD [14] and clpP1 [28,31]. Concerning
the genes encoding components of the photosynthetic apparatus, this coevolution pattern was less
evident, due to their high sequence conservation and low rate of sequence evolution [11,12,14,28].

Similar studies on the possible interaction between mitochondrial and nuclear genomes are scarce,
due mainly to the low mutation rate of the mitochondrial genome in plants [21]. However, a study on
Oxidative Phosphorylation (OXPHOS) complexes, for which SUs are encoded by both mitochondrial
and nuclear genes, was conducted on Silene by taking advantage of the occurrence of species with
fast-evolving mitochondrial genomes. These fast-evolving species exhibited faster sequence evolution
for the nuclear genes encoding SUs of OXPHOS complexes, in response to higher mitochondrial
mutation rates, indicating a strong coevolution signal between nuclear and mitochondrial genes of
these complexes [33]. Positive selection was also detected in the nuclear genes encoding SUs of the
OXPHOS complexes, while none was detected for the control genes (i.e., nuclear genes not targeted
to mitochondria) [34]. In addition, the strength of this signal depended on the complex analyzed:
the strongest compensatory signal was observed for the complexes with the highest proportion of
mtDNA proteins (i.e., OXPHOS complexes III & IV) [33]. Mitochondrial mutation rate seems to play a
role in determining the rate of sequence evolution of the nuclear interactors, imposing strong selection
pressure for compensatory changes on nuclear-encoded proteins interacting with mitochondrial
gene products [34]. This was further confirmed through the analysis of the sequence evolution of
mitochondrial and nuclear OXPHOS genes of 84 eukaryotes with various mitochondrial mutation
rates [35]. Interestingly, the structural analysis of the mito-nuclear pairs in Silene systems showed
that the nuclear substitutions in fast-evolving Silene species were preferentially found at residues in
direct contact with mutated mitochondrial residue, suggesting a structurally mediated coevolution [33].
Other studies identified a potential influence of protein residues contact on the coevolution pattern [14],
but this influence was not always detected, like in the Geraniaceae studies [15,25]. Further analyses,
including the structural modelling of organellar complexes, should be carried out to better understand
the involvement of direct contact in shaping patterns of coevolution and rates of sequence evolution.

CN coadaptation can also be revealed when crosses disrupt it, as in the case of F2 hybrids
from Arabidopsis thaliana crosses, where reduced germination capacity was observed for certain CN
combinations [36].

2.2. Cytonuclear Incompatibilities

In isolated populations or different species, the divergence of gene sequences (in nuclear or
organellar genomes) occurs through the independent accumulation of mutations. Coadaptation
and coevolution are lineage-specific: each lineage will have nuclear and organellar combination
with coadapted gene sequences. When hybridization occurs between these lineages, organelles are
exchanged, breaking the intergenomic combinations and disrupting the coadaptation between genomes.
These mismatches between genomes may lead to CN incompatibilities (CNIs) [16].

CNIs appear to be widespread among taxa and genera, between and within species [12,37].
They often lead to altered phenotypes due to impaired organellar functions [38] and affect several
fitness-related traits, such as viability and fertility of the hybrids [39]. These CNIs are often expressed
directly in F1 hybrids [9,10,37] and often lead to asymmetrical decrease in fitness in reciprocal crosses,
i.e., hybrids having the same hybrid nuclear background but different cytoplasms [40]. To further
confirm CNI, backcrosses are often conducted (i) to partially restore or further disturb the parental CN
combination and generate striking phenotypes [41,42], but also (ii) to disentangle the cytoplasm effect
from the maternal one [43].
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2.2.1. CNIs Are the Result of Disrupted Coadaptation between Organellar and Nuclear Genes

Several studies of hybrid incompatibilities and CNIs provide insight on the mechanisms at play.
Most of them concern plastid-nuclear incompatibilities (PNIs), which have been frequently observed
in flowering plants and often result in chlorosis/virescence or variegation [41], due to a decrease in
photosynthetic function [37,44].

In Pisum, PNI was identified in hybrids from crosses between P. sativum elatius (wild type—VIR320)
and cultivated peas lines [45,46]. Anomalies in leaf pigmentation and pollen inactivation, among
others, resulted in a reduction of hybrid fitness [45]. This reduction was asymmetric: almost all of the
F1 hybrids were sterile and displayed chlorophyll deficiency when VIR320 was the maternal parent,
while hybrids had normal phenotypes when VIR320 was the paternal parent [45]. Bogdanova et al.
(2009) identified two unlinked loci potentially involved in this PNI: Scs1 and Scs2 [46]. Thus, for Pisum
species, PNI was likely due to plastid complex malfunction (i.e., hybrid bleaching) resulting from a
disrupted coadaptation.

PNIs can also emerge from other mechanisms. Many of the organellar genes require RNA
editing (RNAe) of their transcripts which usually concerns C to U conversion [47]. RNAe sites can
be species-specific [47,48] and the majority of the RNAe factors are pentatricopeptide repeat (PPR)
proteins, encoded by nuclear genes and targeted to edit specific organellar genes [49]. Albino cybrids
(i.e., ‘artificial’ hybrids generated by protoplast fusion and combining only one parental nuclear
genome with only one plastid genome of another parent [44]) containing the nuclear genome of
Atropa belladonna and the plastid genome of Nicotiana tabacum (i.e., Ab(Nt) cybrids) were reported [48].
Albinism seems to be due to a defect in RNAe of the transcript of atpA (plastid-gene encoding SU of
the ATP synthase complex). In the Ab(Nt) cybrids, RNAe does not occur, due to the lack of specific
RNAe factors in the A. belladonna nuclear genome, leading to impaired function of this complex [48].
CNI through editing disruption could also involve mitochondrial complexes, as editing is thought to
be an important feature of the mitochondrial transcriptome [50].

Coevolution between organellar and nuclear genomes can also be disrupted in polyploids.
Polyploidy results from nuclear whole genome doubling, leading to an increased number of nuclear
genome copies. This phenomenon could disrupt CN interactions due to stoichiometry imbalance [51].
Allopolyploidization could make the maintenance of CN interaction even more challenging, as nuclear
genome doubling results from hybridization. The allopolyploid individuals will thus contain biparental
nuclear chromosomes and uniparental organellar genome inherited from different species, potentially
resulting in CNI [51]. Several mechanisms are hypothesized to maintain coordination between
organellar and nuclear genomes (reviewed in [51]): down-regulating the expression of the nuclear
genes targeted to organelles (of both nuclear genomes or by the preferential expression of the organellar
donor), or up-regulating the expression of organellar genes [52]. The study of allopolyploidization
influence on CN interactions has mostly been studied on the Rubisco-encoding genes that revealed
that maternal genes were preferentially expressed (reviewed in [51]). More recently, De Carvalho et al.
(2019) studied the effect of recent and past allopolyploidization on the cytonuclear coadaptation in
Brassica. In this study, no preferential transcription was identified. Rather, nuclear genes encoding
SUs involved in plastid complexes were retained in duplicate or triplicate copies, while the genes
encoding for cytosolic proteins were mostly found in single copy. Here the maintenance of CN
coadaptation in allopolyploid Brassica seems due to the retention in multiple copies of the nuclear
genes involved in plastid complexes, without any clear explanation of why the retention of multiple
copies prevents CN maladaptation [13]. However, this study highlights the interest of conducting
such approaches on a larger set of plant species, in order to have a better understanding of the
consequence of polyploidization on CN interactions, polyploidization being an important feature of
plant diversification [53].
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2.2.2. Acceleration of Organellar Genome Evolution Enhances the Propensity of CNIs

Accelerated rate of plastid evolution increases the propensity for CNI as it leads to a faster
coevolution of organellar and nuclear genomes within populations [20,54,55]. Indeed, as nuclear and
plastid genomes are coadapted and in tight coevolution, an increased rate of nucleotide substitution
accelerates the local coevolution of these two genomes [28]. The variation in evolution rates of
organellar genomes results in asymmetries in CNI: CNI will be stronger when the organellar donor
comes from the population with the highest relative rate of organelle evolution [10].

Campanulastrum americanum exhibits accelerated evolution of its plastid genome [28]. A former
study identified a plastid gene of the small plastid ribosome SU as a good candidate for the generation
of PNI, as it exhibited elevated levels of NS substitution and its interacting nuclear gene encoding a SU
of the same complex showed evidence of compensatory substitutions [28]. Post-zygotic reproductive
isolation (RI) was observed between isolated populations, along with chlorotic hybrids (exhibiting
chlorophyll deficiency), suggesting the presence of PNIs [28,41]. Further investigations of RI between
populations of C. americanum, examining fitness-related traits in F1 hybrids from intra- and inter-clades
crosses and backcrosses, demonstrated a reduction in survival, germination and pollen viability for
chlorotic plants [41]. RI was asymmetric and dependent on the direction of the crosses and backcrosses,
for all the measured traits [41]. The plastid genetic distance seemed to determine the strength of
the RI: even if the populations were in a narrow geographical area, hybrid fitness decreased more
when hybrids originated from more genetically divergent populations [56]. The accelerated rate of
plastome evolution, influencing plastid genetic distances between populations, drove the evolution
and strength of PNI [28,55,56]. Male sterility was also observed among Mountain lineages of this
species, with a probable cytoplasmic contribution [56]. This kind of cytoplasmic-induced male-sterility
is a phenomenon known as cytoplasmic male-sterility (CMS) and is the result of a conflict between the
nuclear and mitochondrial genomes [7,57,58].

2.2.3. CNIs as the Result of Intergenomic Conflict—the CMS Case

CMS is often the result of intergenomic conflict between the mitochondrial and the nuclear
genomes [8,57,58]. Male-sterility mitochondrial genes will be selected as soon as they favor their own
transmission via better seed production (their only way of transmission). This can be reached if the
energy not devoted to pollen production is allocated towards seed production. Selection pressure will
act on the nuclear genome for the emergence and fixation of the nuclear restorer of fertility (Rf ) to
re-establish the transmission through the pollen, by blocking the spread and expression of the CMS
genes [59]. While this can lead to sexual polymorphism in populations, with the co-occurrence of
hermaphrodites and females [60,61], CMS and Rf loci can also spread to fixation within a population,
leading to ‘cryptic’ CMS, all individuals being hermaphrodite [62,63]. In this case, CMS will only
be revealed in crosses involving populations that do not contain the proper nuclear Rf locus [62,63].
Thus, in case of hybridization between populations/species, CNI can be the result of CMS-Rf systems
disruption among hybrids containing mismatched CMS genes and nuclear Rf [12,64]. Rf genes are
often part of the PPR gene family which encodes proteins targeted to organelles and involved in
organellar biogenesis, transcription regulation and RNAe [65].

In flowering plants, the mitochondrial genome is very fluid in terms of structure as it varies in
size, non-coding and repetitive DNA content, and structural rearrangement [66]. CMS often arises
from these frequent structural rearrangements, which produce chimeric open-reading-frames (orf )
co-transcribed with essential genes [67]. These ORFs will be directly toxic for pollen or lead to reduce
mitochondrial function, compromising the high energy demands of pollen development [40]. Nuclear
Rf acts by post-transcriptional processing of these chimeric orf transcripts or proteins [40]. As most of
the flowering plants are hermaphrodite, male sterility seems to be rarely expressed, even if CMS genes
are likely common (i.e., often observed in interspecific crosses) [40,65]. It results in various outcomes,
ranging from complete failure to develop male floral organs to arrest of pollen development at different
stages [68].
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Several cases of cryptic CMS have been identified and in particular the well-studied case of
the Mimulus species. In hybrids between species of this genus, one-fourth of F2 hybrids bearing
Mimulus guttatus cytoplasm were male sterile, while F2 hybrids bearing the cytoplasm of M. nasutus
were all male fertile [40]. Crosses revealed that male fertility could be restored by the dominant
allele of M. guttatus at a single locus. Under the hypothesis that CMS genes are co-transcribed with
essential genes and that Rf genes modify the sequence size and/or stability of mt transcripts associated
with sterility, nad6 was identified as a potential candidate [65]. Further analyses suggest that the Rf
locus identified in M. guttatus is composed of two linked loci: Rf1 and Rf2 both occurring in a cluster
of tandemly repeated PPR genes, both dominant in this species [69]. They could act in two ways:
(i) cleave the transcript portion associated with the sterility and prevent its expression or (ii) alter the
transcription of start sites to prevent the production of longer transcripts potentially containing the CMS
genes [65]. The sterilizing cytoplasm is present in only one population of M. guttatus, suggesting that:
(i) this CMS has a limited dispersion, (ii) this population is where the CMS arose (iii) the coevolution of
CMS and Rf genes was local [65]. Consistent with this hypothesis, the two Rf loci identified exhibit
several signs of localized selection (i.e., distinct haplotype structure, signs of selective sweep in the
Rf region containing these loci . . . ) [62]. Mitochondrial CMS loci and their nuclear restorers seem to
have coevolved, under strong positive selection and according to a model of conflictual coevolution,
leading to a highly localized CMS-Rf system [62]. Another well-studied case of cryptic CMS concerns
Arabidopsis thaliana, for which former studies identified CMS in crosses between two distant accession:
Sha and Mr-0 [70,71]. The F1 hybrids plants containing Sha cytoplasm were sterile and unable to
produce pollen, while F1s with the Mr-0 cytoplasm produced viable seeds [71]. The Sha lineages
appeared to contain CMS factors and the nuclear Rf to restore male fertility [70].

CNI can arise through the disruption of coadaptation in major organellar complexes and
intergenomic conflict between mitochondrial and nuclear genes. Much still needs to be done
in order to understand the mechanisms of coevolution between genomes and which cellular functions
are mainly affected by disruption of coadaptation. Databases on protein-protein but also RNA-protein
or DNA-protein interactions could be useful to further investigate and identify nuclear and organellar
interacting partners, coupled with the analysis of whole organellar genome diversity and functional
validation [72]. The calculation of CN linkage disequilibrium (i.e., cnLD, representing the non-random
association of organellar and nuclear alleles) could also help identify coadapted couples of nuclear and
organellar genes [73].

2.3. Cytonuclear Coevolution and Environment

In animals, mitochondrial genomes can be involved in adaption to climate or altitudinal
variation [74]. A growing number of studies are focusing on the influence of cytoplasmic variation and
its potential impact on environmental adaptation in plants (reviewed in [12,75]), and point out the
potential role of organellar genomes in local adaptation.

Transplantation experiments were conducted with two Helianthus species, living in mesic
(H. annuus) or xeric (H. petiolaris) habitats. They revealed that the cytoplasms of these species
were adapted to each specific habitat, suggesting that variation in the organellar genome could
contribute to local adaptation and ecological differentiation [76]. Potential cytoplasmic introgression
driven by selection among Helianthus species was also reported, leading to widespread CN discordance
in genealogies [77]. Selection might shape the pattern of organellar variation for some specific genes,
resulting in adaptive introgression of the plastid genomes favoring local adaptation [77]. Cytoplasmic
genomes can be important capacitors for the generation of novel phenotypes in specific environments,
as shown in a study on Arabidopsis thaliana [42]. In addition, in this species, several adaptive traits
seemed to be influenced and even shaped by CN interactions (around 80%) and organellar genome
variation [38]. In A. thaliana, germination experiments on 64 cytolines were conducted among
populations from different geographical locations. A significant effect of the cytoplasm genotype
on seed germination efficiency was identified, suggesting a role of the selection on the plasmotype
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geographical distribution and its role in A. thaliana populations adaptation [36]. Another study
conducted on the same cytolines concluded that cytonuclear interactions and coevolution had an
impact on adaptive traits linked to seed vigor [78]. For example, the creation of novel CN combinations
in cytolines, leading to the disruption of CN coadaptation, had a deleterious effect on adaptive
dormancy and germination, consistent with a contribution of CN co-adaptation and cytoplasmic
variation on complex traits involved in plant adaptation [78].

Plastid genes encode components of essential functions in plant cells such as photosynthesis,
a process that is influenced by many environmental factors and often associated with fitness
differences [12,37,38]. The extreme degree of conservation of the genes encoding photosynthetic
apparatus suggests that they evolve under genetic drift and/or strong purifying selection [11,12]. Yet,
positive selection was identified for some specific genes and in particular lineages, pointing out a
potential role of these genes on local adaptation [11,12,31]. For example, positive selection was found in
the photosynthetic rbcL plastid gene, encoding a SU of the essential Rubisco enzyme [12,77]. Another
study reported that the nuclear genes involved in photosystem I (PSI) had a very low absolute rate
of substitution (as was expected given that this complex is slowly evolving), but also a significant
excess of NS divergence between lineages. This demonstrates that some NS substitutions could be
adaptive and spread under positive selection rather than fixation through genetic drift [14]. Positive
selection for certain plastid genes was also discovered in the Helianthus species, suggesting the adaptive
value of these genes [77]. In the peculiar case of anthropogenic environments, the plastid was directly
involved in the adaptation to herbicide: a unique substitution in plastid psbA gene conferred resistance
to Triazine in wild populations of Arabidopsis thaliana [79]. Selection could shape plastid sequence
variation, depending on environmental factors and drive coevolution pattern between locally adapted
plastid genes and the nuclear counterparts. These genes could also have adaptive value in relation to
photosynthetic performance and colonization ability (see [76,79]).

If such a relation between organellar variation and local adaptation exists, then it could also
drive the emergence of CNIs between locally adapted genes [76]. Indeed, specific environment can
generate specific conditions leading to the selection for a particular mutation in the plastome and favor
the compensatory mutation in the nuclear partner. This would lead to CN coadaptation driven by
environmental conditions and the creation of CNIs among hybrids from populations coming from
different environments [12]. In C. americanum, PNI could be due to local adaptation of one particular
clade: reduced germination was observed in all crosses involving this clade, while there was none
when it was absent from the crosses. This clade is geographically and environmentally distinct from
the others and thus, its local adaptation could particularly contribute to disrupted CN coadaptation
and PNI [41,56].

2.4. CNI Can Contribute to Speciation

Several factors can impulse the generation of CNIs, such as an accelerated rate of organellar
genome evolution or the involvement of organellar genomes in local adaptation [9,28,40]. As CNIs often
result in reduced survival or germination and hybrid breakdown, it is very likely that both organellar
genomes and CNI play a role in speciation through the development of barriers to gene flow between
lineages [9,36,37]. CNIs are part of the genetic incompatibilities fitting the BDMI model [9,37,41]
and are thought to be among the earliest genetic incompatibilities to arise in speciation, and play
an important role in the emergence of post-zygotic barriers to reproduction [9,16,37,40,55,76]. Their
contribution to such a process depends on several factors, such as the evolutionary history of the
interaction (i.e., selfish cytoplasmic coevolution or neutral/adaptive coevolution), genetic characteristics
of the parental species and the loci under consideration [32,40]. The strength of post-zygotic barriers
due to CNIs also appears to be strongly associated with the degree of cytoplasmic divergence [9,37].

The possible involvement of CMS in post-zygotic reproductive isolation is still unclear [5,7,12].
Due to its strong initial impact on individual fitness, CMS could represent a barrier to introgression,
even more if the CMS-Rf system is geographically localized and when sterility is selected against
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in hybrids [40]. However, this effect will be short term, as the cost of male sterility might not be
high enough to prevent the introgression of a CMS cytotype (conferring a better seed production
to females) into a non-CMS population [62]. CMS participation in RI is even more unlikely if the
matched nuclear restorer is also transmitted, as this system could increase introgression in secondary
hybridizing populations [40]. Nevertheless, CMS-Rf systems can lead to a rapid genetic divergence
between populations: a selective sweep due to CMS mutation will carry associated mitochondrial
variation and impact mitochondrial divergence between populations, with consequences for organellar
function. In the coadapted nuclear Rf, the responding sweep will alter the dynamic of linked nuclear
variation and promote divergence between populations for relatively large regions of the nuclear
genome [62]. Thus, local CMS-Rf dynamics is likely to generate species-wide incompatibilities and
contribute to the establishing post-zygotic barriers during the early stage of speciation; even more
so if its emergence is linked to specific ecological conditions [62,65]. Differences in mating system
between the two hybridizing species and the fitness costs of the nuclear restorer alleles, depending on
environment, could enhance the impact of this kind of CNI on the speciation process [62].

The nuclear component of CNIs could also play a role in speciation process. For example,
the nuclear genes potentially involved in PNIs between Pisum exhibit high variability between lineages,
even within the same geographical area [80]. This variability leads to different degrees of incompatibility
and these genes could be viewed as ‘speciation genes’ [80], i.e., genes involved in RI as they contribute
to the gene flow barrier between lineages [13].

The potential role of cytoplasmic variation and CN interactions in local adaptation could be
an important driver of speciation, as it could maintain species-specific ecological differences [76].
This would generate associations between genes involved in ecological divergence and genes
contributing to maladaptive CN interactions in hybrids. These associations would facilitate the
origin and maintenance of species in presence of gene flow [76]. Ecological selection on a cytoplasm
should limit its introgression and the introgression of the nuclear alleles interacting with it, maintaining
the phenotype of the species despite hybridization [76].

Multiple genetic incompatibilities generally play a role in the reproductive isolation for several
traits, during the entire plant life cycle [41,81]. For example, in C. americanum, the number of
incompatibilities and the strength of the reproductive isolation is variable depending on the lineages
crossed. The post-zygotic reproductive isolation identified in Mimulus hybrids (M. guttatus×M. nasutus)
seems to be controlled by different hybrid incompatibilities, also depending on the populations
crossed [81].

Organellar genome pattern of inheritance could impact CN dynamics and the role of CNIs in
speciation. Indeed, biparental inheritance could be selected to avoid CNIs and reduce the involvement
of CNIs in speciation.

3. Can Pattern of Organelle Inheritance Influence CNIs?

3.1. Inheritance Patterns of the Organellar Genomes

Unlike the nuclear genome, inherited biparentally and following Mendelian segregation,
the organellar genomes are mostly uniparentally inherited, usually maternally [19]. Uniparental
inheritance can lead to severe evolutionary consequences (see Section 2.1), but also confer several
evolutionary benefits. For example, it will favor the avoidance of deleterious interactions between
co-existing organelle genomes potentially leading to disruption of CN coadaptation [12,19,37]. It will
also limit within individual organellar diversity, since organellar genomes will go through a genetic
bottleneck in the germline. This will limit the spread of selfish elements (mitochondrial) and lead to
homoplasmy and the elimination of malfunctioning genotypes by selection [19,82]. The predominance
of maternal inheritance remains largely unclear. It is likely due to the higher mutational load in the
paternal gamete (the smaller one), more severe oxidative damages and more pronounced genetic drift,
especially if the number of organellar DNA copies in the sperm cell is small. This mutational load
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will favor the evolution of gamete-controlled organelle exclusion mechanisms (“Killing one’s own
cytoplasm”) and will result in maternal inheritance of organellar genomes [19].

Uniparental transmission of organelle genome has been repeatedly lost and restored over
evolutionary timeframes. Mutational meltdown can be erased temporarily or over longer periods of
sexual recombination between organelles through biparental transmission [19].

3.2. Heteroplasmy: Evidences and Consequences

Biparental transmission has arisen multiple times within the angiosperms and about 20% of
the angiosperm species have the potential for biparental inheritance [55,64,83]. Accidental paternal
transmission of organellar genomes (i.e., paternal leakage) can occur in crosses of divergent populations
or species, due to a breakdown of mechanisms preventing biparental transmission [19,64,82]. In
this case, paternal organellar DNA can endure different fates: it can be (i) destroyed within the
sperm cell, (ii) physically excluded from the egg cell during fertilization or (iii) successfully replicated
and maintained in the zygote after fertilization [39,64,82]. The latter case will lead to heteroplasmic
individuals with two organellar haplotypes. Evolutionary consequences of heteroplasmy through
paternal leakage will depend on the level of heteroplasmy (the ratio of paternal/maternal cytoplasms)
at which the organellar genome has been paternally transmitted, but also the context in which it
occurs. We can expect that, if the paternal organellar genome is in low frequency, it has a good
chance of being lost during cell multiplication and organellar sorting out. Conversely, substantial
levels of heteroplasmy may provide sufficient genetic variation for selection to act upon. In the case
of mitochondrial genomes, it can even lead to genotypic novelty via recombination. In the case of
paternal leakage of the plastid genome, the two plastid genomes will not fuse and thus will not
undergo recombination. This will lead to competition between the two parental plastids. Their ability
to compete against each other partially depends on the lipid composition of the plastid membrane, as
it determines plastid stability and division rate [83].

In hybrids resulting from crosses between divergent population or species, biparental inheritance
and the paternal leakage of plastids can result in leaf variegation. Hybrids will have variegated leaves
or fully green/white ones, as a result of sorting-out the two plastid types during ontogenesis [83,84].
It indicates that one of the two parental plastids is unable to develop and undergo normal differentiation
under the hybrid nuclear background, potentially because it is incompatible, while the other one is
not [37,84–87], leading to chlorophyll-deficiency leaf sectors (i.e., white or yellowish sectors) [64,85].

Evidence of heteroplasmy and variegation exists in literature. For example, a study of Yao et al.
(1995) identified that crosses between Zantedeschia odorata and two other species (Z. elliottiana and
Z. aethiopica) resulted in hybrid variegation [88]. Heteroplasmy and hybrid variegation was also
observed from crosses with Pelargonium species [84]. The analysis of the parental origin of the plastids
in the green and white sectors of the variegated hybrids leaves revealed that in the green sectors, plastid
DNA (ptDNA) of Pelargonium zonale ‘Roseum’ was present, while ptDNA of P. zonale hort. ‘Stadt Bern’
was present in the white tissue [84]. This suggests heteroplasmy and sorting out of the plastid types,
the ‘Stadt Bern’ one being incompatible with the hybrid nuclear background. Weihe et al. (2009)
also analysed the inheritance pattern of both organellar genomes in the progeny of reciprocal crosses
between P. zonale × P. inquinans. They observed biparental transmission of the two organellar genomes
and hybrid plants exhibited variegation with the P. inquinans plastid bleaching out, potentially due to
its incompatibility with the hybrid nuclear genome [85].

3.3. Paternal Leakage Rescues from Cytonuclear Incompatibilities

While hybridization between species can lead to biparental transmission of organelles and result
in variegated hybrids, biparental transmission can also favor the restoration of compatibility between
the plastid and nuclear genomes, leading to hybrid fitness recovery [64]. This rescuing could be
due to several reasons. First, in crosses resulting in CNIs, occurrence of biparental inheritance could
increase the likelihood that hybrids inherit an organellar genome compatible with the hybrid nuclear
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background. Second, as biparental transmission introduces genetic variation among organelles,
selection can occur and could lead to the loss of the incompatible organellar genome [55]. Biparental
transmission also seems to maintain the linkage disequilibrium between compatible cytoplasmic and
nuclear genomes (cnLD) and thus favor the maintenance of adapted combinations between nuclear
and organellar genomes [73]. Ramsey et al. (2019) showed that in gynodioecious species Daucus carota,
hybrids from two distant populations exhibited lower fitness when parents were homoplasmic than
when they were heteroplasmic [73]. Heteroplasmy could mitigate the negative effects of CNIs and
maintain individual fitness, by providing cytoplasmic alternative allelic variants that potentially ‘match’
better with nuclear alleles [73].

Paternal leakage and heteroplasmy frequently occur in taxa that exhibit CNIs. Several studies
showed that biparental inheritance could indeed increase the fitness of hybrids experiencing
CNIs [55]. In crosses between Pisum sativum ssp. elatius wild species and cultivated peas forms,
hybridization resulted in hybrid variegation. Paternal leakage occurred in crosses associated with
PNI (i.e., chlorophyll deficiency): the fully green sectors of the variegated leaves contained paternally
inherited plastids, suggesting that paternal plastid genome led to the recovery of normal photosynthetic
performance [87,89]. Concerning the mitochondrial genome of pea, it appeared to be of maternal
origin, indicating that paternal leakage was potentially driven by the presence of PNIs in hybrids [87].

Crosses in C. americanum revealed that biparental inheritance was constitutive in the species and
did not depend on the level of genetic divergence between populations [55]. Biparental transmission
led to an increased survival of F1 hybrids by enabling the selection against the incompatible plastid
genome [55]. As F1 hybrids with heteroplasmy displayed better fitness, they contributed to the majority
of surviving F2 hybrids, which enforced the loss of the incompatible plastid. This phenomenon was
stronger in crosses between divergent clades, suggesting that the level of CNI triggered the hybrid
fitness recovery [55]. This phenomenon could lead to a counter-intuitive result: since CNI is stronger
for hybrids from crosses between isolated populations, it could favour introgression and lead to the
collapse of reproductive isolation through heteroplasmy. Paternal leakage and heteroplasmy could
thus slow down the speciation process, by rescuing from strong incompatibility, resulting in weaker
reproductive barriers [55]. Given this, accelerated plastid genome evolution, which enhances the
propensity for PNI, could also indirectly influence the level of paternal leakage [55]. Interestingly,
several taxa exhibiting biparental inheritance also exhibit accelerated rates of plastid evolution [28].

CN interactions could regulate the paternal organellar DNA transmission and its selective
replication in hybrids, in order to overcome CN dysfunction [39]. In a study of crosses between
barley and wheat, Aksyonova et al. (2005) [39] reported the occurrence of a biparental transmission of
organellar DNA and revealed a shift toward the paternal organelle DNA during repeated backcrosses.
This shift indicated that paternal organellar DNA was transmitted through pollen and successfully
replicated in the zygotes. Plastid transient heteroplasmy likely occurred as only paternal copies of
wheat were detected in the stable self-fertile and vigorous lines obtained in the backcross generations.
The increase in wheat paternal ptDNA content was correlated with fertility and restoration of vigor
in these lines. Barley nuclear chromosomes were undetected and apparently replaced by wheat
chromosomes. These results suggest that (i) the paternal wheat ptDNA was transmitted and selectively
replicated, resulting in hybrid fitness recovery and (ii) that the wheat nuclear genome encoded for
effective replication and retention of its corresponding ptDNA. Most likely, repeated backcrosses with
wheat parents led to the replacement of the nuclear barley chromosomes and promoted the selective
amplification of the paternal wheat organellar DNA copies [39].

4. How Could Mating Systems Favor or Limit CNI?

Mating systems are known to shape intra- and interspecific genetic variation [90], affect the
efficacy of selection [91] and introduce selective forces in hybrid zones, where RI is incomplete [92].
The emergence of post-zygotic barriers to reproduction can be influenced by disruption of CN
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coadaptation. Studies are emerging about the impact of mating systems on the maintenance of
coadaptation between interacting partners from different cellular compartments.

Mating systems can influence the degree to which cytonuclear allele combinations are inherited [93].
For example, selfing rate increases the heritability of CN allele combinations. The higher the selfing
rate, the more CN allele combinations will tend to be inherited as single units [93]. This will allow
direct selection of CN allele combinations, favoring the beneficial and eliminating the deleterious ones.
Selfing will be more efficient than random mating or separate sex species [93]. Therefore, it is expected
that crosses between distant populations of selfing species will disrupt such co-adapted CN units and
thus generate strong CNIs. Studies on crosses in selfer Arabidopsis thaliana are in concordance with this
expectation [36].

Transfer of organellar genes to the nuclear genome could also impact the level of CN coadaptation.
Such transfers will not have the same probability of occurring, with regards to the mating system of
the species. Selfing species will have an increased rate and probability of gene transfer compared to an
outcrossing species, even more so if the transfer is adaptive [93,94]. In highly selfing species, the loss of
the functional duplicated organellar copy will have no deleterious fitness consequences, as the nuclear
functional gene copies will remain associated with the organellar genome. However, for outcrossing
species, the organellar genome lacking the duplicate gene function will have a selective disadvantage
compared to genomes with functional copies, since its function must be rescued by ‘association’ with a
functional nuclear copy. In this context, as interspecies hybridization between an outcrosser and a
selfer species will preferentially imply that the outcrosser is the pollen donor [95], it is expected that
hybrids will exhibit CNIs, since the nucleus from the outcrosser will lack the gene(s) missing on the
selfer organellar genome.

The presence of sex chromosomes may further reinforce genetic conflicts that might lead to
segregation distortion [92]. Segregation distorters and their suppressors coevolve independently
within a species and their interactions in hybrids could be a source of CNIs [92]. A shift in nuclear
chromosomal distribution of the nuclear genes encoding gene products targeted to the organelles
could also be observed, to maintain CN coadaptation (quoted in [96]). This chromosomal distribution
is thought to be influenced by the inheritance pattern of organellar genes [96]. Male sex-chromosomes
are often heterogametic (i.e., XY) and the female ones, homogametic (i.e., XX). Thus, the genes located
on the X-chromosomes spend 2/3 time in females. Organellar DNAs are co-transmitted with 1/2 of
the autosomal genes, 2/3 of the X-linked ones and none of the Y-linked ones [17] As X-linked genes
have a higher probability of co-transmission with organellar genes, selection for coadaptation could
result in the overrepresentation of nuclear interacting genes on X chromosomes compared to the
others [17,96]. In cases of sex-specific CN coadaptation disruption, this could induce chromosomal
incompatibilities following Haldane’s rule [97] (i.e., reduced fitness of the heterogametic sex in hybrids
between species or divergent populations [10,98]). Another theory exists, named the sexual conflict
hypothesis, for which the opposite chromosomal distribution is expected: more CN interactions
involving autosomes to reduce the mutational load in males [99]. So far, in the only plant case
studied (Rumex hastatulus), no evidence for over- or under- representation of genes interacting with
organelles on X chromosomes has been found [96]. This could be due to the relatively young age of
its sex-chromosomes, leaving no time for selection to act on coadaptation or sexual antagonism [96].
The development of new protocols for sex-determination on non-model species should enable to tackle
these hypotheses on a larger scale, with a gradient of sex chromosome age [100].

Last, CNIs could impact the evolution of mating systems. In particular, in certain conditions,
CMS can generate gynodioecy (females and hermaphrodites in populations) that can be seen
as a stable mating system over time through balancing selection, an evolutionary dynamic that
maintains old cytoplasms. This could favor the accumulation of genetic incompatibilities on organellar
genomes, as suggested in the gynodioecious Silene nutans which revealed cryptic speciation [101,102].
Interestingly, gynodioecy can also be a transitory step towards separate sexes (dioecy) [103,104].
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Box 1. Acceleration pattern and selective forces acting on the organellar genomes.

Acceleration pattern is expressed as an increased rate of nucleotide substitution and an excess of
non-synonymous (NS) substitutions compared to synonymous (S) ones, leading to an elevated dN/dS (annotated
ω, with dN as the NS substitution rate and dS as the S substitution rate). This acceleration can reveal either
positive selection or relaxed purifying selection, due to the reduced Ne of the organellar genome [14,20,28].
Determination of selection forces generally relies on the estimation and analyses of ω: ω < 1 indicates purifying
selection,ω=1 neutral evolution,ω>1 indicates positive selection. It is an effective way to disentangle the effect
of higher mutation rate or changes in selective pressure. S substitutions being considered as neutral, dS likely
reflects the underlying mutation rate, while dN is impacted by the underlying mutation rate and selection [28].
Thus, changes in dN gives insight into changes in selection [28]. Other statistics exist for the detection of positive
selection, such as the Tajima’ D and the Fu’s Fs which are useful to detect deviation from neutral variation or the
McDonald and Kreitman test (MKT), which specifically tests for positive selection [77].

Distinguishing between positive selection and relaxed purifying selection is difficult, as they lead to the
same pattern of increase of dN/dS ratio [31]. Looking at the variation of intra- and interspecific sequences
can be a promising approach, since in the case of positive selection, the fixation of NS substitutions leads to
an increase inω between species (i.e., interspecific divergence), compared to intraspecific polymorphism [18].
It must be noted that molecular tests for selection detection face several limits, for example limited power
if the sequence variation is low and thus the inability to perform such tests on very closely related taxa [77].
Moreover, in the majority of these tests, dS is the reference against which selection is measured, but selection
could also occur on S substitutions, leading to a potential contribution of these substitutions on differential fitness
between individuals [77]. A molecular test can be used to detect relaxed selection on molecular sequence data:
RELAX [105]. It has often been used in coevolution studies [15,31,34] and is based on a comparative phylogenetic
framework, comparing gene-wide selection intensity across phylogenetic branches (see [105] for details).
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Glossary

Chlorosis loss of the green coloration of the plant leaves due to chlorophyll deficiency.

Cytonuclear Linkage Disequilibrium
(cnLD)

represents the non-random association of nuclear and cytoplasmic alleles and is influenced by several
factors, such as the inheritance pattern of organellar genome, hybridization, selective forces, mating
system . . . Its evolutionary significance will depend on its magnitude and how stable CN interactions
are [73,96].

Effective size (Ne)

the effective size of a population is a parameter that is used in population genetics to quantify the
effect of genetic drift on the genetic diversity of a population. As the effective size decreases, the effect
of genetic drift will be stronger and the efficacy of selection lower. This concept can be applied at the
population level, but also at the genome or gene levels. For example, Ne is affected by the mode of
inheritance: due to uniparental inheritance, Ne is lower for organellar genes than for autosomal ones
which are transmitted biparentally [106].

Functional gene transfer
transfer of an organellar gene and its function to the nucleus. The new nuclear gene will be targeted
back to the organelle and the redundant organellar gene will be eventually lost [94].

Genetic drift
Evolutionary process represented by the random sampling of alleles. It leads to changes in allele
frequencies in a population over generation and influence population genetic diversity and
divergence among populations.

Heteroplasmy
co-occurrence of two or more different organelle genotypes within an individual, which can be the
result of biparental transmission.

Intergenomic coevolution involves reciprocal effects of selection on interacting molecules from two genomes [16].
Non-Synonymous substitutions (NS) single-nucleotide mutations leading to changes of amino-acid in the encoded polypeptide.
Paternal leakage occasional transmission of paternal organellar genome.
Synonymous substitutions (S) single-nucleotide mutations that do not result into changes of amino-acid in the encoded polypeptide.

Variegation
presence of different colors, from green to white, on sectors on the same leaves or on different leaves of
the same plant.
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