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RANDOM DYNAMICS ON REAL AND COMPLEX PROJECTIVE SURFACES

SERGE CANTAT AND ROMAIN DUJARDIN

ABSTRACT. We initiate the study of random iteration of automorphisms of real and complex
projective surfaces, as well as compact Kähler surfaces, focusing on the fundamental problem
of classification of stationary measures. We show that, in a number of cases, such stationary
measures are invariant, and provide criteria for uniqueness, smoothness and rigidity of invariant
probability measures. This involves a variety of tools from complex and algebraic geometry,
random products of matrices, non-uniform hyperbolicity, as well as recent results of Brown and
Rodriguez Hertz on random iteration of surface diffeomorphisms.

CONTENTS

1. Introduction 2
2. Hodge index theorem and Minkowski spaces 9
3. Examples and classification 18
4. Glossary of random dynamics, I 28
5. Furstenberg theory in H1,1pX;Rq 29
6. Limit currents 38
7. Glossary of random dynamics, II 47
8. Stable manifolds and limit currents 60
9. No invariant line fields 65
10. Stiffness 73
11. Subgroups with parabolic elements 80
12. Measure rigidity 87
Appendix A. General compact complex surfaces 93
Appendix B. Strong laminarity of Ahlfors currents 94
Appendix C. Proof of Theorem 11.11 96
References 101

1



2 SERGE CANTAT AND ROMAIN DUJARDIN

1. INTRODUCTION

1.1. Random dynamical systems. Consider a compact manifold M and a probability measure
ν on DiffpMq; to simplify the exposition we assume throughout this introduction that the support
Supppνq is finite. The data pM,νq defines a random dynamical system, obtained by randomly
composing independent diffeomorphisms with distribution ν. In this paper, these random dy-
namical systems are studied from the point of view of ergodic theory, that is, we are mostly
interested in understanding the asymptotic distribution of orbits.

Let us first recall some basic vocabulary. A probability measure µ on M is ν-invariant if
f˚µ “ µ for ν-almost every f P DiffpMq, and it is ν-stationary if it is invariant on average:
ş

f˚µdνpfq “ µ. A simple fixed point argument shows that stationary measures always exist.
On the other hand, the existence of an invariant measure should hold only under special circum-
stances, for instance when the group Γν generated by Supppνq is amenable, or has a finite orbit,
or preserves an invariant volume form.

According to Breiman’s law of large numbers, the asymptotic distribution of orbits is de-
scribed by stationary mesures. More precisely, for every x P M and νN-almost every pfjq P
DiffpMqN, every cluster value of the sequence of empirical measures

(1.1)
1

n

n´1
ÿ

j“0

δfj˝¨¨¨˝f0pxq

is a stationary measure. Thus a classification of stationary measures gives an essentially com-
plete understanding of the asymptotic distribution of such random orbits, as n goes to `8.

When Γν is a cyclic group, the set of invariant measures is typically too large to be amenable
to a complete description. On the other hand a number of recent works have shown that station-
ary measures, even if they always exist, tend to satisfy some rigidity properties when Γν is large.
Our goal in this article is to combine tools from algebraic and holomorphic dynamics together
with these recent results from random dynamics to study the case when M is a real or complex
projective surface and the action is by algebraic diffeomorphisms. Before describing the state of
the art and stating a few precise results, let us highlight a nice geometric example to which our
techniques can be applied.

1.2. Randomly folding pentagons. Let `0, . . . , `4 be five positive real numbers such that there
exists a pentagon with side lengths `i. Here a pentagon is just an ordered set of points paiqi“0,...,4

in the Euclidean plane, such that distpai, ai`1q “ `i for i “ 0, . . . , 4 (with a5 “ a0 by defini-
tion); pentagons are not assumed to be convex, and two distincts sides rai, ai`1s and raj , aj`1s

may intersect at a point which is not one of the ai’s.
Let Pentp`0, . . . , `4q be the set of pentagons with side lengths `i. Note that Pentp`0, . . . , `4q

may be defined by polynomial equations of the form distpai, ai`1q
2 “ `2i , so it is naturally

a real algebraic variety. For every i, ai is one of the two intersection points tai, a1iu of the
circles of respective centers ai´1 and ai`1 and radii `i´1 and `i. The transformation exchanging
these two points ai and a1i, while keeping the other vertices fixed, defines an involution si of
Pentp`0, . . . , `4q. It commutes with the action of the group SO2pRq˙R2 of positive isometries
of the plane, hence, it induces an involution σi on the quotient space

(1.2) Pent0p`0, . . . , `4q “ Pentp`0, . . . , `4q{pSO2pRq ˙R2q.
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Each element of Pent0p`0, . . . , `4q admits a unique representative with a0 “ p0, 0q and a1 “

p`0, 0q, so as before Pent0p`0, . . . , `4q is a real algebraic variety, which is easily seen to be of
dimension 2 (see [44, 111]). When it is smooth, this is an example of K3 surface, and the
five involutions σi act by algebraic diffeomorphisms on this surface, preserving a canonically
defined area form (see §3.2); and for a general choice of lengths, the group generated by these
involutions generates a rich dynamics. Now, start with some pentagon P and at every unit of
time, apply randomly one of the σi. This creates a random sequence of pentagons, and our results
explain how this sequence is asymptotically distributed on Pent0p`0, . . . , `4q. (The dynamics of
the folding maps acting on plane quadrilaterals was studied for instance in [60, 11].)

1.3. Stiffness. Let us present a few landmark results that shape our understanding of these
problems. First, suppose that ν is a finitely supported probability measure on SL2pCq, which we
view as acting by projective linear transformations on M “ P1pCq. Suppose that the group Γν
generated by the support of ν is non-elementary, that is, Γν is non-compact and acts strongly
irreducibly on C2 (in the non-compact case, this simply means that Γν does not have any orbit
of cardinality 1 or 2 in P1pCq). Then, there is a unique ν-stationary probability measure µ on
P1pCq, and this measure is not invariant. This is one instance of a more general result due to
Furstenberg [66].

Temporarily leaving the setting of diffeomorphisms, let us consider the semigroup of trans-
formations of the circle R{Z generated by m2 and m3, where mdpxq “ dx mod 1. Since
the multiplications by 2 and 3 commute, the so-called Choquet-Deny theorem asserts that any
stationary measure is invariant. Furstenberg’s famous “ˆ2ˆ3 conjecture” asserts that any atom-
less probability measure µ invariant under m2 and m3 is the Lebesgue measure (see [67]). This
question is still open so far, and has attracted a lot of attention. Rudolph [109] proved that the
answer is positive when µ is of positive entropy with respect to m2 or m3.

Back to diffeomorphisms, let ν be a finitely supported measure on SL2pZq, and consider the
action of SL2pZq on the torus M “ R2{Z2.

In that case, the Haar measure dx ^ dy of R2{Z2, as well as the atomic measures equidis-
tributed on finite orbits Γνpx, yq, for px, yq P Q2{Z2, are examples of Γν-invariant measures.
By using Fourier analysis and additive combinatorics techniques, Bourgain, Furman, Linden-
strauss and Mozes [23] proved that if Γν is non-elementary, then every stationary measure µ
on R2{Z2 is Γν-invariant, and furthermore it is a convex combination of the above mentioned
invariant measures. This can be viewed as an affirmative answer to a non-Abelian version of
the ˆ2ˆ 3 conjecture. This property of automatic invariance of stationary measures was called
stiffness (or more precisely ν-stiffness) by Furstenberg [68], who conjectured it to hold in this
setting. Soon after, Benoist and Quint [12] gave an ergodic theoretic proof of this result, which
allowed them to extend the stiffness property to certain actions of discrete groups on homoge-
neous spaces. They also derived the following equidistribution result for the action of SL2pZq
on the torus: for every px, yq R Q2{Z2, the random trajectory of px, yq determined by ν almost
surely equidistributes towards the Haar measure.

Finally, Brown and Rodriguez-Hertz [24], building on the work of Eskin and Mirzakhani [61],
managed to recast these measure rigidity results in terms of smooth ergodic theory to obtain a
version of the stiffness theorem of [23] for general C2 diffeomorphisms of compact surfaces.
We shall describe their results in due time, so for the moment we will content ourselves with one
illustrative consequence of [24]. As above, let ν “

ř

αjδfj be a finitely supported probability
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measure on SL2pZq and consider perturbations tfi,εu of the fi in the group Diff2
volpR

2{Z2q

of C2 diffeomorphisms of R2{Z2 preserving the Haar measure. Set νε “
ř

αjδfj,ε . Then,
for sufficiently small perturbations, stiffness still holds, that is: any νε-stationary measure on
R2{Z2 is invariant, and is a combination of the Haar measure and measures supported on finite
Γνε-orbits.

In this paper, we obtain a new generalization of the stiffness theorem of [23], for algebraic
diffeomorphisms of real algebraic surfaces. Before entering into specifics, let us emphasize that
the article [24], by Brown and Rodriguez-Hertz, is our main source of inspiration and a key
ingredient for some of our main results.

1.4. Sample results: stiffness, classification, and rigidity. Let X be a smooth complex pro-
jective surface, or more generally a compact Kähler surface. Denote by AutpXq its group of
holomorphic diffeomorphisms, referred to in this paper as automorphisms. WhenX Ă PN pCq
is defined by polynomial equations with real coefficients, the complex conjugation induces an
anti-holomorphic involution s : X Ñ X , whose fixed point set is the real part of X: XpRq “
Fixpsq Ă X. We denote by XR the surface X viewed as an algebraic variety defined over R,
and by AutpXRq the group of automorphisms defined over R; AutpXRq coincides with the
subgroup of AutpXq that centralizes s. When XpRq ‰ H, the elements of AutpXRq are the
real-analytic diffeomorphisms of XpRq admitting a holomorphic extension to X . Note that in
stark contrast with groups of smooth diffeomorphisms, the groups AutpXRq and AutpXq are
typically discrete and at most countable.

The group AutpXq acts on the cohomology H˚pX;Zq. By definition, a subgroup Γ Ă

AutpXq is non-elementary if its image Γ˚ Ă GLpH˚pX;Cqq contains a non-Abelian free
group; equivalently, Γ˚ is not virtually Abelian. When Γ is non-elementary, there exists a pair
pf, gq P Γ2 generating a free group of rank 2 such that the topological entropy of every ele-
ment in that group is positive (see Lemma A.1). Pentagon foldings provide examples for which
AutpXRq is non-elementary.

Let ν be a finitely supported probability measure on AutpXq. As before we denote by Γν the
subgroup generated by Supppνq.

Theorem A. Let XR be a real projective surface and ν be a finitely supported symmetric prob-
ability measure on AutpXRq. If Γν preserves an area form on XpRq, then every ergodic ν-
stationary measure µ on XpRq is either invariant or supported on a proper Γν-invariant sub-
variety. In particular if there is no Γν-invariant algebraic curve, the random dynamical system
pX, νq is stiff.

This theorem is mostly interesting when Γν is non-elementary and we will focus on this case
in the remainder of this introduction.

Stationary measures supported on invariant curves are rather easy to analyse (see §10.4).
Moreover, it is always possible to contract all Γν-invariant curves, creating a complex analytic
surface X0 with finitely many singularities. Then on X0pRq, stiffness holds unconditionally.

This result applies to many interesting examples, because Abelian, K3, and Enriques surfaces,
which concentrate most of the dynamically interesting automorphisms on compact complex
surfaces, admit a canonical AutpXq-invariant 2-form. In particular, it applies to the dynamics
of pentagon foldings. Note also that linear Anosov maps on R2{Z2 fall into this category, so
Theorem A contains the stiffness statement of [23]. While not directly covered by this article,
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the character variety of the once punctured torus (or the four times punctured sphere) should be
amenable to the same strategy (see [29, 69, 70]).

Once stiffness is established, the next step is to classify invariant measures. When X is a
K3 surface and Γν contains a parabolic automorphism, Γν-invariant measures were classified
by the first named author in [28]. A parabolic automorphism acts by translations along the fiber
of some genus 1 fibration with a shearing property between nearby fibers (see below §11.1 for
details). An example is given by the composition of the foldings σi and σi`1 of two adjacent ver-
tices in the space of pentagons. In a companion paper [33] we generalize and make more precise
the results of [28]. A nice consequence is that for a non-elementary group of AutpXRq con-
taining parabolic elements and preserving an area form, any invariant measure is either atomic,
or concentrated on a Γν-invariant algebraic curve, or is the restriction of the area form on some
open subset of XpRq bounded by a piecewise smooth curve.

For random pentagon foldings, these results give a complete answer to the equidistribu-
tion problem raised in §1.1. Indeed, assume for simplicity that the group generated by the
five involutions σi of Pent0p`0, . . . , `4q does not preserve any proper Zariski closed set, and
that Pent0p`0, . . . , `4q is connected. Then the stiffness and classification theorems imply that
the only stationary measure is the canonical area form. Therefore by Breiman’s law of large
numbers, for every initial pentagon P P Pent0p`0, . . . , `4q and almost every sequence pmjq P

t0, . . . , 4uN, the random sequence Pn “ pσmn´1 ˝ ¨ ¨ ¨ ˝ σm0qpP q equidistributes with respect to
the area form. Thus, quantities like the asymptotic average of the diameter are given by explicit
integrals of semi-algebraic functions, independently of the starting pentagon P .

Another example widely studied in the literature is the family of Wehler surfaces. These are
the smooth surfaces X Ă P1ˆP1ˆP1 defined by an equation of degree p2, 2, 2q. Then for each
index i P t1, 2, 3u, the projection πi : X Ñ P1 ˆ P1 which “forgets the variable xi” has degree
2, so that there is an involution σi of X that permutes the two points in the generic fiber of πi.

Corollary. Let XR Ă P1 ˆ P1 ˆ P1 be a real Wehler surface such that XpRq is non empty. If
XR is generic, then:

(1) the surfaceX is a K3 surface and there is a unique (up to choosing an orientation ofXpRq)
algebraic 2-form volXR

on XpRq such that
ş

XpRq volXR
“ 1;

(2) the group AutpXRq is generated by the three involutions σi and coincides with AutpXq;
furthermore it preserves the probability measure defined by volXR

;
(3) if ν is finitely supported and Γν has finite index in AutpXRq then pXpRq, νq is stiff: the

only ν-stationary measures on XpRq are convex combinations of the probability measures
defined by volXR

on the connected components of XpRq.

Here by generic we mean that the equation of X belongs to the complement of at most count-
ably many hypersurfaces in the set of polynomial equations of degree p2, 2, 2q (see §3.1 for
details). This result follows from Theorem A together with Proposition 3.3 and Corollary 11.5.
Actually in Assertion (3), it is only shown in this paper that the ν-stationary measures are convex
combinations of volume forms on components of XpRq, together with measures supported on
finite orbits. The generic non-existence of finite orbits will be established in a forthcoming paper
[34] dedicated to this topic.

Without assuming the existence of parabolic elements in Γν we establish a measure rigidity
result in the spirit of Rudolph’s theorem on the ˆ2ˆ 3 conjecture.
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Theorem B. LetXR be a real projective surface and Γ a non-elementary subgroup of AutpXRq.
If all elements of Γ preserve a probability measure µ supported on XpRq and if µ is ergodic
and of positive entropy for some f P Γ, then µ is absolutely continuous with respect to any area
measure on XpRq.

In particular if Γ is a group of area preserving automorphisms, then up to normalization
µ will be the restriction of the area form on some Γ-invariant set. Kummer examples are a
generalization of linear Anosov diffeomorphisms of tori to other projective surfaces (see [35, 39]
for more on such mappings). When Γ contains a real Kummer example, we can derive an exact
analogue of the classification of invariant measures of [23], that is the assumption “µ has positive
entropy” can be replaced by “µ has no atoms” (Theorem 12.5). We also obtain a version of
Theorem B for polynomial automorphisms of the affine plane A2

R(see Theorem 12.6).

1.5. Some ingredients of the proofs. The proofs of Theorems A and B rely on the deep re-
sults of Brown and Rodriguez-Hertz [24]. To be more precise, recall that an ergodic stationary
measure µ on X admits a pair of Lyapunov exponents λ`pµq ě λ´pµq, and that µ is said hy-
perbolic if λ`pµq ą 0 ą λ´pµq. In this case the (random) Oseledets theorem shows that for
µ-almost every x and νN-almost every ω “ pfjqjPN in AutpXqN, there exists a stable direction
Esωpxq Ă TxXR. In [24], stiffness is established for area preserving C2 random dynamical
systems on surfaces, under the condition that the stable direction Esωpxq Ă TxXR depends
non-trivially on the random itinerary ω “ pfjqjPN, or equivalently that stable directions do not
induce a measurable Γν-invariant line field. One of our main contributions is to take care of this
possibility in our setting: for this we study the dynamics on the complex surface X .

Theorem C. Let X be a complex projective surface and ν be a finitely supported probability
measure on AutpXq. If Γν is non-elementary, then any hyperbolic ergodic ν-stationary measure
µ on X satisfies the following alternative:

(a) either µ is invariant, and its fiber entropy hµpX; νq vanishes;
(b) or µ is supported on a Γν-invariant algebraic curve;
(c) or the field of Oseledets stable directions of µ is not Γν-invariant; in other words, it gen-

uinely depends on the itinerary pfjqjě0 P AutpXqN.

As opposed to Theorems A and B, this result holds in full generality, without assuming the
existence of an invariant volume form nor an invariant real structure. Understanding this some-
what technical result requires a substantial amount of material from the smooth ergodic theory
of random dynamical systems, which will be introduced in due time. When µ is not invari-
ant, nor supported by a proper Zariski closed subset, Assertion (c) precisely says that the above
mentioned condition on stable directions used in [24] is satisfied. This is our key input towards
Theorems A and B.

The arguments leading to Theorem C involve an interesting blend of Hodge theory, pluripo-
tential analysis, and Pesin theory. They rely on the following well-known principle in higher
dimensional holomorphic dynamics: if µ is an ergodic hyperbolic stationary measure, µ-almost
every point admits a Pesin stable manifold biholomorphic to C; then, according to a classical
construction going back to Ahlfors and Nevanlinna, to any immersion φ : CÑ X is associated
a (family of) closed positive p1, 1q-current(s) describing the asymptotic distribution of φpCq in
X , hence also a cohomology class in H2pX,Rq. These currents provide a link between the
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infinitesimal dynamics along µ, more precisely its stable manifolds, and the action of Γν on
H2pX;Rq, which itself can be analyzed by combining tools from complex algebraic geometry
with Furstenberg’s theory of random products of matrices.

Theorem D. Let X be a compact projective surface and ν be a finitely supported probability
measure on AutpXq, such that Γν is non-elementary. Let κ0 be a fixed Kähler form on X .

(1) If κ is any Kähler form on X , then for νN-almost every ω :“ pfjqjě0 P AutpXqN the limit

T sω :“ lim
nÑ`8

1
ş

X κ0 ^ pfn ˝ ¨ ¨ ¨ ˝ f0q
˚κ
pfn ˝ ¨ ¨ ¨ ˝ f0q

˚κ

exists as a closed positive p1, 1q-current. Moreover this current T sω does not depend on κ
and has Hölder continuous potentials.

(2) If the ν-stationary measure µ is ergodic, hyperbolic and not supported on a Γν-invariant
proper Zariski closed set, then for µ-almost every x and νN-almost every ω, the only
Ahlfors-Nevanlinna current of mass 1 (with respect to κ0) associated to the stable mani-
fold W s

ωpxq coincides with T sω.

The right setting for such a statement is certainly that of a compact Kähler surface. We
actually show in §3.6 that any compact Kähler surface supporting a non-elementary group of
automorphisms is projective (see also Appendix A for the non-Kähler case). The algebraicity
of X is, in fact, a crucial technical ingredient in the proof of assertion (2), because we use
techniques of laminar currents which are available only on projective surfaces. Theorem D
enters the proof of Theorem C as follows: since Γν is non-elementary, Furstenberg’s description
of the random action onH2pX,Rq implies that the cohomology class rT sωs depends non-trivially
on ω; therefore for µ-almost every x, W s

ωpxq also depends non-trivially on ω.

Remark 1.1. Beyond finitely supported measures, Theorem A, B, C, and D hold under optimal
moment conditions on ν (this adds several technicalities, notably in Sections 5 and 6).

1.6. Organization of the article. Let X be a compact Kähler surface and ν be a probability
measure on AutpXq.

– In Section 2 we describe the action of AutpXq on H˚pX;Zq, in particular on the Dolbeault
cohomology group H1,1pX;Rq. The Hodge index theorem endows it with a Minkowski
structure, which is essential in our understanding of the dynamics of Γν acting on the coho-
mology. This section prepares the ground for the analysis of random products of matrices
done in Section 5. A delicate point to keep in mind is that the action of a non-elementary
subgroup of AutpXq on H1,1pX;Rq may be reducible.

– Section 3 describes several classes of examples, including pentagon foldings and Wehler’s
surfaces. It is also shown there that a compact Kähler surface with a non-elementary group
of automorphims is necessarily projective (see Theorem E in §3.6).

– After a short Section 4 introducting the vocabulary of random products of diffeomorphisms,
Furstenberg’s theory of random products of matrices is applied in Section 5 to the study of
the action on H1,1pX;Rq. This, combined with the theory of closed positive currents, leads
to the proof of the first assertion of Theorem D in Section 6. The continuity of the potentials
of the currents T sω, which plays a key role in the subsequent analysis of Section 8, relies on a
recent result of Gouëzel and Karlsson [71].
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– Pesin theory enters into play in Section 7, in which the basics of the smooth ergodic theory
of random dynamical systems (specialized to complex surfaces) are described in some de-
tail. This is used in Section 8 to relate the Pesin stable manifolds to the currents T sω, using
techniques of laminar currents.

– Theorem C is proven in Section 9 by combining ideas of [24] with Theorem D and an ele-
mentary fact from local complex geometry inspired by a lemma from [8].

– Theorem A is finally established in Section 10. When Γν is non-elementary (Theorem 10.10)
it follows rather directly from [24], Theorem C, and a result of Avila and Viana [2]. Ele-
mentary groups are handled separately by using the classification of automorphism groups of
compact Kähler surfaces (see Theorems 10.3 and Proposition 10.5). Note that the symmetry
of ν is used only in the elementary case.

– Sections 11 and 12 are devoted to the classification of invariant measures. In Section 11,
after recalling the results of [28, 33], we show that when Γν contains a parabolic element,
any invariant measure giving no mass to subvarieties is hyperbolic. Our approach is inspired
by the work of Barrientos and Malicet [6]. This provides an interesting connection with some
classical problems in conservative dynamics (see §11.3 for a discussion). In Section 12 we
prove Theorem B, as well as several related results. This relies on a measure rigidity theorem
of [24], together with ideas similar to the ones involved in the proof of Theorem C.

This article is part of a series of papers dedicated to the dynamics of groups of automorphisms
of compact Kähler surfaces, notably K3 and Enriques surfaces. The article [33] is focused on
the classification of invariant measures in presence of parabolic elements. In [34] we study the
existence of finite orbits for non-elementary group actions; tools from arithmetic dynamics are
used to study the case where X and its automorphisms are defined over a number field. In
a forthcoming work, we plan to extend the techniques of Brown and Rodriguez-Hertz to the
complex setting; with Theorem C at hand, this would extend Theorem A from the real to the
complex case.

1.7. Conventions. Throughout the paper C stands for a “constant” which may change from
line to line, independently of some asymptotic quantity that should be clear from the context
(typically an integer n corresponding to the number of iterations of a dynamical system). Using
this convention, we write a À b if a ď Cb and a — b if a À b À a. All complex manifolds are
considered to be connected, so from now on “complex manifold” stands for “connected complex
manifold”. For a random dynamical system on a disconnected complex manifold, there is a finite
index sugbroup Γ1 of Γν which stabilizes each connected component, and an induced measure
ν 1 on Γ1 with properties qualitatively similar to those of ν (see §10.2), so the problem is reduced
to the connected case.

1.8. Acknowledgments. We are grateful to Sébastien Gouëzel, François Ledrappier, and Fran-
çois Maucourant for interesting discussions and insightful comments. The first named author
was partially supported by a grant from the French Academy of Sciences (Del Duca foundation),
and the second named author by a grant from the Institut Universitaire de France.
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2. HODGE INDEX THEOREM AND MINKOWSKI SPACES

In this section we define the notion of a non-elementary group of automorphisms of a compact
Kähler surfaceX . We study the action of such a group on the cohomology ofX , and in particular
the question of (ir)reducibilty. We refer to Appendix A for a discussion of the non-Kähler case.

2.1. Cohomology.

2.1.1. Hodge decomposition. Denote by H˚pX;Rq the cohomology of X with coefficients in
the ring R; we shall use R “ Z, Q, R or C. The group AutpXq acts on H˚pX;Zq, and
AutpXq˚ will denote the image of AutpXq in GLpH2pX;Zqq.The Hodge decomposition

(2.1) HkpX;Cq “
à

p`q“k

Hp,qpX;Cq

is AutpXq-invariant. On H0,0pX;Cq and H2,2pX;Cq, AutpXq acts trivially. Throughout the
paper we denote by rαs the cohomology class of a closed differential form (or current) α.

The intersection form on H2pX;Zq will be denoted by x¨ | ¨y; the self-intersection xa|ay of a
class a will also be denoted by a2 for simplicity. This intersection form is AutpXq-invariant. By
the Hodge index theorem, it is positive definite on the real part of H2,0pX;Cq ‘ H0,2pX;Cq
and it is non-degenerate and of signature p1, h1,1pXq ´ 1q on H1,1pX;Rq.

Lemma 2.1. The restriction of AutpXq˚ to the subspace H2,0pX;Cq (resp. H0,2pX;Cq) is
contained in a compact subgroup of GLpH2,0pX;Cqq (resp. GLpH0,2pX;Cqq).

Proof. This follows from the fact that x¨|¨y is positive definite on the real part of H2,0pX;Cq ‘
H0,2pX;Cq. An equivalent way to describe this argument it to identify H2,0pX;Cq with the
space of holomorphic 2-forms on X . Then, there is a natural, AutpXq-invariant, hermitian form
on this space: given two holomorphic 2-forms Ω1 and Ω2, the hermitian product is the integral

(2.2)
ż

X
Ω1 ^ Ω2.

Thus, the image of AutpXq in GLpH2,0pX;Cqq is relatively compact. �

The Néron-Severi group NSpX;Zq is, by definition, the discrete subgroup of H1,1pX;Rq
defined by NSpX;Zq “ H1,1pX;Rq X H2pX;Zq; more precisely, it is the intersection of
H1,1pX;Rq with the image of H2pX;Zq in H2pX;Rq, i.e. with the torsion free part of the
Abelian group H2pX;Zq. The Lefschetz theorem on p1, 1q-classes identifies NSpX;Zq with
the subgroup of H1,1pX;Rq given by Chern classes of line bundles on X . The Néron-Severi
group is AutpXq-invariant, as well as NSpX;Rq :“ NSpX;Zq bZ R for R “ Q, R, or C. The
dimension of NSpX;Rq is the Picard number ρpXq.

2.1.2. Norm of f˚. Let |¨| be any norm on the vector space H˚pX;Cq. If L is a linear transfor-
mation of H˚pX;Cq we denote by }L} the associated operator nom and if W Ă H˚pX;Cq is
an L-invariant subspace of H˚pX;Cq, we denote by }L}W the operator norm of L|W .

If u is an element of H1,0pX;Cq, then u ^ u is an element of H1,1pX;Rq such that |u|2 ď
C |u^ u| for some constant C that depends only on the choice of norm on the cohomology;
in particular, the norm of f˚ on H1,0pX;Cq is controlled by the norm of f˚ on H1,1pX;Cq.
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Using complex conjugation, the same results hold on H0,1pX;Cq; by Poincaré duality we also
control }f˚}Hp,qpX;Cq for p` q ą 2. Together with Lemma 2.1, we obtain:

Lemma 2.2. Let X be a compact Kähler surface. There exists a constant C0 ą 1 such that

C´1
0 }f˚}H˚pX;Cq ď }f

˚}H1,1pX;Rq ď }f
˚}H˚pX;Cq

for every automorphism f P AutpXq.

2.2. The Kähler, nef, and pseudo-effective cones. (See [20, 86] for details on the notions
introduced in this section.)

Let KahpXq Ă H1,1pX;Rq be the Kähler cone, i.e. the cone of classes of Kähler forms. Its
closure KahpXq is a salient, closed, convex cone, and

(2.3) KahpXq Ă KahpXq Ă tv P H1,1pX;Rq ; xv | vy ě 0u.

The intersection NSpX;RqXKahpXq is the ample cone AmppXq, while NSpX;RqXKahpXq
is the nef cone NefpXq. They are all invariant under the action of AutpXq on H1,1pX;Rq. We
shall also say that the elements of KahpXq are nef classes, but the notation NefpXq will be
reserved for NSpX;Rq XKahpXq. The set of classes of closed positive currents is the pseudo-
effective cone PsefpXq. This cone is an AutpXq-invariant, salient, closed, convex cone. It is
dual to KahpXq for the intersection form (see [20, Lem. 4.1]):

(2.4) KahpXq “ tu P H1,1pX;Rq ; xu | vy ě 0 @v P PsefpXqu

and vice-versa.
We fix once and for all a reference Kähler form κ0 with rκ0s

2 “
ş

κ0 ^ κ0 “ 1. Then we
define the mass of a pseudo-effective class a by Mpaq “ xa | rκ0sy, or equivalently the mass
of a closed positive current T by MpT q “

ş

T ^ κ0; we may also extend this definition to any
class, pseudo-effective or not (but then Mpaq “ xa | rκ0sy may be negative). The compactness
of the set of closed positive currents of mass 1 implies that, for any norm |¨| on H1,1pX,Rq,
there exists a constant C such that

(2.5) @a P PsefpXq, C´1 |a| ďMpaq ď C |a| .

If v is an element of PsefpXq and v2 ě 0, then by the Hodge index theorem we know
that xu | vy ě 0 for every class u P H1,1pX;Rq such that u2 ě 0 and xu | rκ0sy ě 0 (see
Equation (2.7)). So, in Equation (2.4), the most important constraints come from the classes
v P PsefpXq with v2 ă 0. If v is such a class, its Zariski decomposition expresses v as a sum
v “ ppvq ` npvq with the following properties (see [20]):

(1) this decomposition is orthogonal: xppvq |npvqy “ 0;
(2) ppvq is a nef class, i.e. ppvq P KahpXq;
(3) npvq is negative: it is a sum npvq “

ř

i airDis with positive coefficients ai P R˚` of
classes of irreducible curves Di Ă X such that the Gram matrix pxDi |Djyq is negative
definite.

Proposition 2.3. If a ray R`v of the cone PsefpXq is extremal, then either v2 ě 0 or R`v “
R`rDs for some irreducible curve D such that D2 ă 0. The cone PsefpXq contains at most
countably many extremal rays R`v with v2 ă 0.

Let u be an isotropic element of KahpXq. If R`u is not an extremal ray of PsefpXq, then u
is proportional to an integral class u1 P NSpX;Zq.
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Proof. If R`v is extremal, the Zariski decomposition v “ ppvq ` npvq involves only one term.
If v “ ppvq then v2 ě 0. Otherwise v “ npvq and by extremality npvq “ arDs for some
irreducible curve D with D2 ă 0. The countability assertion follows, because NSpX;Zq is
countable. For the last assertion, multiply u by xu|rκ0sy

´1 to assume xu|rκ0sy “ 1 and write u
as a convex combination u “

ş

v dαpvq, where α is a probability measure on PsefpXq such that
α-almost every v satisfies

– xv|rκ0sy “ 1,
– R`v is extremal in PsefpXq and does not contain u.

Since u is nef, xu | vy ě 0 for each v; and u being isotropic, we get v P uKzRu for α-almost
every v. By the Hodge index theorem, v2 ă 0 almost surely. Now, the first assertion of this
proposition implies that v P R`rDvs for some irreducible curve Dv Ă X with negative self-
intersection; there are only countably many classes of that type, thus α is purely atomic, and u
belongs to VectprDvs;αpvq ą 0q, a subspace of NSpX;Rq defined over Q. On this subspace,
qX is semi-negative, and by the Hodge index theorem its kernel is Ru. Since VectprDvs;αpvq ą
0q and qX are defined over Q, we deduce that u is proportional to an integral class. �

2.3. Non-elementary subgroups of AutpXq. When X is a compact Kähler surface, the action
of AutpXq on H1,1pX,Rq is subject to several constraints: the Hodge index theorem implies
that it must preserve a Minkowski structure and in addition it preserves the lattice given by the
Neron-Severi group. In this section we review the first consequences of these constraints.

2.3.1. Isometries of Minkowski spaces. Consider the Minkowski space Rm`1, endowed with
its quadratic form q of signature p1,mq defined by

(2.6) qpxq “ x2
0 ´

m
ÿ

i“1

x2
i .

The corresponding bilinear form will be denoted x¨|¨y. For future reference, note the following
reverse Schwarz inequality:

(2.7) if qpxq ě 0 and qpx1q ě 0 then xx |x1y ě qpxq1{2qpx1q1{2

with equality if and only if x and x1 are collinear. We say that a subspace W Ă Rm`1 is of
Minkowski type if the restriction q|W is non-degenerate and of signature p1,dimpW q ´ 1q.

In this section, we review some well-known facts concerning isometries of R1,m “ pRm`1, qq
(see e.g. [104, 78, 64] for details). We denote by |¨| the Euclidean norm on Rm`1, and by
P : Rm`1zt0u Ñ PpRm`1q the projection on the projective space PpRm`1q “ PmpRq.

The hyperboloid tx ; qpxq “ 1u has two components, and we denote by O`1,mpRq the sub-
group of the orthogonal group O1,mpRq that preserves the component Q “ tqpxq “ 1 ; x0 ą

0u. Endowed with the distance dHpx, yq “ cosh´1xx | yy, Q is a model of the real hyper-
bolic space Hm of dimension m. The boundary at infinity of Hm will be identified with
BPpQq Ă PpRm`1q and will be denoted by BHm. It is the set of isotropic lines of q.

Any isometry γ of Hm is induced by an element of O`1,mpRq, and extends continuously to
BHm: its action on BHm is given by its linear projective action on PpRm`1q. Isometries are
classified in three types, according to their fixed point set in Hm Y BHm:

– γ is elliptic if γ has a fixed point in Hm;
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– γ is parabolic if γ has no fixed point in Hm and a unique fixed point in BHm;
– γ is loxodromic if γ has no fixed point in Hm and exactly two fixed points in BHm.

A subgroup Γ of O`1,mpRq is non-elementary if it does not preserve any finite subset of Hm Y

BHm. Equivalently Γ is non-elementary if and only if it contains two loxodromic elements with
disjoint fixed point sets.

The group O`1,mpRq admits a Cartan or KAK decomposition (see [64, §I.5]). To state it,
denote by e0 “ p1, 0, . . . , 0q the first vector of the canonical basis of Rm`1; this vector is
an element of Hm, and its stabilizer Stabpe0q in O`1,mpRq is a maximal compact subgroup,
isomorphic to Om´1pRq.

Lemma 2.4. Every γ P O`1,mpRq can be written (non-uniquely) as γ “ k1ak2, where ki P
Stabpe0q and a is a matrix of the form

¨

˝

cosh r sinh r 0
sinh r cosh r 0

0 0 idm´1

˛

‚

with r “ dHpe0, γe0q.

Proof. Note that K :“ Stabpe0q acts transitively on the set of hyperbolic geodesics through e0.
Denote by L the hyperbolic geodesic Hm X Vectpe0, e1q, where e1 “ p0, 1, 0, . . . , 0q is the
second element of the canonical basis of Rm`1. If γpe0q “ e0 then γ belongs to K and
we are done. Otherwise choose k1, k2 P K such that k´1

1 pγpe0qq P L, k2pγ
´1pe0qq P L,

and e0 lies in between k2pγ
´1pe0qq and k´1

1 pγpe0qq; then e0 is in fact the middle point of
rk2pγ

´1pe0qq, k
´1
1 pγpe0qqs because dHpe0, γpe0qq “ dHpe0, γ

´1pe0qq ą 0. The isometry a :“

k´1
1 γk´1

2 maps k2pγ
´1pe0qq P L to e0 and e0 to k´1

1 pγpe0qq P L. It follows that a is a hyper-
bolic translation along L of translation length dHpe0, k

´1
1 pγpe0qq “ dHpe0, γpe0qq. To conclude,

change a into a ˝ k´1 and k2 into k ˝ k2 where k is the element of K that preserves e1 and acts
like a on the orthogonal complement of Vectpe0, e1q. �

Corollary 2.5. If }¨} denotes the operator norm associated to the euclidean norm in Rm`1, then
}γ} “ }a}, where γ “ k1ak2 is any Cartan decomposition of γ. In particular }γ} “

›

›γ´1
›

› and

}γ} — cosh dHpe0, γpe0qq — |γe0| .

Furthermore for every e P Hm and any γ P O`1,mpRq

}γ} — cosh dHpe, γpeqq,

where the implied constant depends only on the base point e.

This is an immediate corollary of the previous lemma.

2.3.2. Irreducibility. A non-elementary subgroup of O`1,mpRq does not need to act irreducibly
on Rm`1. Proposition 2.8, below, clarifies the possible situations.

Lemma 2.6. Let Γ be a non-elementary subgroup of O`1,mpRq (resp. γ be an element of
O`1,mpRq). Let W be a subspace of R1,m.

(1) If W is Γ-invariant, then either pW, q|W q is a Minkowski space and Γ|W is non-elementary,
or q|W is negative definite and Γ|W is contained in a compact subgroup of GLpW q.
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(2) If W is γ-invariant and contains a vector w with qpwq ą 0, then γ|W has the same type
(elliptic, parabolic, or loxodromic) as γ; in particular, W contains the γ-invariant isotropic
lines if γ is parabolic or loxodromic.

Proof. The restriction q|W is either a Minkowski form or is negative definite. Indeed, it cannot
be positive definite, because W would then be a Γ-invariant line intersecting the hyperbolic
space Hm in a fixed point; and it cannot be degenerate, since otherwise its kernel would give a
Γ-invariant point on BHm. If q|W is a Minkowski form and Γ|W is elementary, then Γ preserves
a finite subset of pHm Y BHmq X V and Γ itself is elementary. This proves the first assertion.
The proof of the second one is similar. �

Let Γ be a non-elementary subgroup of O`1,mpRq. Let ZarpΓq Ă O1,mpRq be the Zariski
closure of Γ, and

(2.8) G “ ZarpΓqirr

the neutral component of ZarpΓq, for the Zariski topology. Note that the Lie group GpRq is not
necessarily connected for the euclidean topology.

Lemma 2.7. The group Γ X GpRq has finite index in Γ. If Γ0 is a finite index subgroup of Γ,
then ZarpΓ0q

irr “ G.

Proof. The index of G in ZarpΓq is equal to the number ` of irreducible components of the
algebraic variety ZarpΓq, and the index of Γ X GpRq in Γ is at most `. Now, let Γ0 be a finite
index subgroup of Γ. Then, Γ0 X GpRq has finite index in Γ X GpRq, and we can fix a finite
subset tα1, . . . , αku Ă ΓXGpRq such that ΓXGpRq “

Ť

j αjpΓ0 XGpRqq. So

(2.9) ZarpΓXGpRqq Ă
ď

j

αjZarpΓ0 XGpRqq Ă GpRq.

Because Γ X GpRq is Zariski dense in the irreducible group G we find G “ ZarpΓ0 X GpRqq.
So G Ă ZarpΓ0q and the Lemma follows as G “ ZarpΓqirr. �

Proposition 2.8. Let Γ Ă O`1,mpRq be non-elementary.

(1) The representation of ΓXGpRq (resp. ofGpRq) on R1,m splits as a direct sum of irreducible
representations, with exactly one irreducible factor of Minkowski type:

R1,m “ V` ‘ V0;

here V` is of Minkowski type, and V0 is an orthogonal sum of irreducible representations
V0,j on which the quadratic form q is negative definite.

(2) The restriction G|V` coincides with SOpV`; q|V`q.
(3) The subspaces V` and V0 are Γ-invariant, and the representation of Γ on V` is strongly

irreducible.

Proof. A group Γ is non-elementary if and only if any of its finite index subgroups is non-
elementary. So, we can apply Lemma 2.6 to Γ X GpRq: if W Ă R1,m is a non-trivial pΓ X
GpRqq-invariant subspace, q|W is non-degenerate. As a consequence, R1,m is the direct sum
W ‘WK, where WK is the orthogonal complement of W with respect to q. This implies that
the representation of Γ X GpRq on R1,m splits as a direct sum of irreducible representations,
with exactly one irreducible factor of Minkowski type, as asserted in (1).
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The group G preserves this decomposition, and by Proposition 1 of [10], the restriction G|V`
coincides with SOpV`; q|V`q; this group is isomorphic to the almost simple group SO1,kpRq,
with 1` k “ dimpV`q. This proves the second assertion.

Since G is normalized by Γ, we see that for any γ P Γ, γV ` is a G-invariant subspace of
the same dimension as V ` and on which q is of Minkowski type. Hence V`, as well as its
orthogonal complement V0 are Γ-invariant. By Lemma 2.7, the action of Γ on V` is strongly
irreducible; indeed, if a finite index subgroup Γ0 in Γ preserves a non-trivial subspace of V`
then, by Zariski density of Γ0 X GpRq in GpRq, this subspace must be V` itself. On V0, Γ
permutes the irreducible factors V0,j . �

Now, set V “ R1,m and assume that there is a lattice VZ Ă V such that

(i) VZ is Γ-invariant;
(ii) the quadratic form q is an integral quadratic form on VZ.

In other words, there is a basis of V with respect to which q and the elements of Γ are given
by matrices with integer coefficients. In particular, V has a natural Q-structure, with V pQq “
VZ bZ Q. This situation naturally arises for the action of automorphisms of compact Kähler
surfaces on NSpX;Rq. The next lemma will be useful in [34].

Lemma 2.9. If Γ contains a parabolic element, the decomposition V` ‘ V0 is defined over Q,
Γ|V0 is a finite group, and G is the subgroup SOpV`; qq ˆ tidV0u of OpV ; qq.

Proof. If γ P Γ is parabolic, it fixes pointwise a unique isotropic line, therefore this line is
defined over Q. In addition it must be contained in V` because pγnpuqqně0 converges to the
boundary point determined by this line for every u P Hm. So, V` contains at least one non-zero
element of VZ. Since the action of Γ on V` is irreducible, the orbit of this vector generates V`
and is contained in VZ, so V` is defined over Q. Its orthogonal complement V0 is also defined
over Q, because q itself is defined over Q. As a consequence, Γ|V0 preserves the lattice V0XVZ
and the negative definite form q|V0 ; hence, it is finite. Thus G|V0 is trivial and the last assertion
follows from the above mentioned equality G|V` “ SOpV`; q|V`q. �

Example 2.10. The purpose of this example is to show that the existence of a parabolic element
in Γ is indeed necessary in Lemma 2.9, even for a group of automorphisms of a K3 surface.

Let a be a positive square free integer, for instance a “ 7 or 15. Let α be the positive square
root

?
a, K be the quadratic field Qpαq, and η be the unique non-trivial automorphism of K,

sending α to its conjugate α :“ ηpαq “ ´
?
a. We view η as a second embedding of K in C.

Let OK be the ring of integers of K.
Let ` be an integer ě 2. Consider the quadratic form in `` 1 variables defined by

(2.10) q`px0, x1, . . . , x`q “ αx2
0 ´ x

2
1 ´ ¨ ¨ ¨ ´ x

2
` .

It is non-degenerate and its signature is p1, `q. The orthogonal group Opq`;OKq is a lattice in
the real algebraic group Opq`,Rq. The conjugate quadratic form q` “ αx2

0 ´ x2
1 ´ ¨ ¨ ¨ ´ x2

` is
negative definite.

Embed O``1
K into R2``2 by the map pxiq ÞÑ pxi, ηpxiqq, to get a lattice Λ Ă R2``2 and

consider the quadratic form Q` :“ q` ‘ q`. Then embed Opq`;OKq into OpQ`;Rq by the
homomorphism A P Opq`,OKq ÞÑ A ‘ ηpAq; we denote its image by Γ˚` Ă OpQ`;Rq. It is
shown in [100], Chapter 6.4, that
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– Q` is defined over Z with respect to Λ,
– Γ˚` Ă OpQ`;Zq (with respect to this integral structure),
– the group G “ ZarpΓ˚` q

irr coincides with SOpq`;Rq ˆ SO0pq`;Rq (and the group
ηpOpq`;OKqq is dense in the compact group Opq`;Rq).

Now, assume 2 ď ` ď 4, so that 2`` 2 ď 10, and change Q` into 4Q`: it is an even quadratic
form on the lattice Λ » Z2``2. According to [101, Corollary 2.9], there is a complex projective
K3 surface X for which pNSpX;Zq, qXq is isometric to pΛ, 4Q`q. On such a surface, the self-
intersection of every curve is divisible by 4 and consequently there is no p´2q-curve. So, by the
Torelli theorem for K3 surfaces (see [7]), AutpXq˚

|NSpX;Zq has finite index in Op4Q`;Zq.

Since Op4Q`;Zq “ OpQ`;Zq we can view Γ˚` as a subgroup of Op4Q`;Zq. Set Γ˚ “
AutpXq˚ X Γ˚` and let Γ denote its pre-image in AutpXq. Then, Γ is a subgroup of AutpXq for
which the decomposition NSpX;Rq` ‘ NSpX;Rq0 is non-trivial (here, both have dimension
`` 1) while the representation is irreducible over Q.

2.3.3. The hyperbolic space HX . Let X be a compact Kähler surface. By the Hodge index
theorem, the intersection form on H1,1pX,Rq has signature p1, h1,1pXq ´ 1q. The hyperboloid

 

u P H1,1pX,Rq, xu |uy
(

“ 1

has two connected components, one of which intersecting the Kähler cone. The hyperbolic
space HX is by definition this connected component, which is thus a model of the hyperbolic
space of dimension h1,1pXq ´ 1. We denote by dH the hyperbolic distance, which is defined as
before by coshpdHpu, vqq “ xu | vy. From Lemma 2.2 and Corollary 2.5 we see that if }¨} is any
norm on H˚pX,Cq, then }f˚} —

›

›pf˚q´1
›

› — xrκ0s | f
˚rκ0sy (here κ0 is the fixed Kähler form

introduced in Section 2.2).
According to the classification of isometries of hyperbolic spaces, there are three types of

automorphisms: elliptic, parabolic and loxodromic. An important fact for us is that the type of
isometry is related to the dynamics on X; for instance, every parabolic automorphism preserves
a genus 1 fibration, every loxodromic automorphism has positive topological entropy (see [30]
for more details). A subgroup Γ of AutpXq is said non-elementary if its action on HX is non-
elementary. As we shall see below, the existence of such a subgroup forces X to be projective:

Theorem 2.11. If X is a compact Kähler surface such that AutpXq is non-elementary, then X
is projective.

For expository reasons, the proof of this result is postponed to §3.6.2, Theorem E.

2.3.4. Automorphisms and Néron-Severi groups. Let X be a compact Kähler surface and Γ be
a non-elementary subgroup of AutpXq. Let Γ˚p,q be the image of Γ in GLpHp,qpX;Cqq, and Γ˚

be its image in GLpH2pX;Cqq. If we combine Proposition 2.8 together with Lemma 2.1 for
Γ˚1,1, we get an invariant decomposition

(2.11) H1,1pX;Rq “ H1,1pX;Rq` ‘H
1,1pX;Rq0.

Denote by H2pX;Rq0 the direct sum of H1,1pX;Rq0 and of the real part of H2,0pX;Cq ‘
H0,2pX;Cq; then

(2.12) H2pX;Rq “ H1,1pX;Rq` ‘H
2pX;Rq0
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and Γ˚|H2pX;Rq0 is contained in a compact group (see Lemma 2.1). The Néron-Severi group is
Γ-invariant, and since X is projective it contains a vector with positive self-intersection. Then
Proposition 2.8 and Lemma 2.6 imply:

Proposition 2.12. Let X be a compact Kähler surface and Γ be a non-elementary subgroup of
AutpXq. Then H1,1pX;Rq` “ NSpX;Rq` is a Minkowski space, and the action of Γ on this
space is non-elementary and strongly irreducible.

Since non-elementary groups of isometries of Hm occur only for m ě 2, we get:

Corollary 2.13. Under the assumptions of Proposition 2.12, the Picard number ρpXq is greater
than or equal to 3. If equality holds then NSpX;Rq` “ NSpX;Rq and the action of Γ on
NSpX;Rq is strongly irreducible.

From now on we set:

(2.13) ΠΓ :“ H1,1pX;Rq` “ NSpX;Rq`.

This is a Minkowski space on which Γ acts strongly irreducibly; the intersection form is negative
definite on the orthogonal complement

(2.14) ΠKΓ Ă H1,1pX;Rq.

Moreover by Proposition 2.8.(2) the group G “ ZarpΓqirr satisfies GpRq|ΠΓ
“ SOpΠΓq. If

Γ contains a parabolic element, then ΠΓ is rational with respect to the integral structures of
NSpX;Zq and H2pX;Zq, and GpRq “ SOpΠΓq ˆ tidΠKΓ

u (see Lemma 2.9).

2.3.5. Invariant algebraic curves I. Assume that Γ is non-elementary and let C Ă X be an ir-
reducible algebraic curve with a finite Γ-orbit. Then the action of Γ on VectZ tf

˚rCs; f P Γu Ă
NSpX;Zq factors through a finite group. From Propositions 2.8 and 2.12 we deduce that the
intersection form is negative definite on VectZpΓ ¨ rCsq, thus VectRpΓ ¨ rCsq is one of the ir-
reducible factors of NSpX,Rq0. This argument, together with Grauert’s contraction theorem,
leads to the following result (we refer to [30, 80] for a proof; the result holds more generally for
subgroups containing a loxodromic element):

Lemma 2.14. Let X be a compact Kähler surface and Γ be a non-elementary group of au-
tomorphisms on X . Then, there are at most finitely many Γ-periodic irreducible curves. The
intersection form is negative definite on the subspace of NSpX;Zq generated by the classes of
these curves. There is a compact complex analytic surface X0 and a Γ-equivariant bimeromor-
phic morphismX Ñ X0 that contracts these curves and is an isomorphism in their complement.

The next result follows from [49].

Proposition 2.15. Let X be a compact Kähler surface and Γ a non-elementary subgroup of
AutpXq. Then any Γ-periodic curve has arithmetic genus 0 or 1.

Note if C is Γ-periodic, this result applies to rC “ Γ ¨ C, which is invariant. Then, the
normalization of any irreducible component of rC has genus 0 or 1, and the incidence graph of
the components of rC obeys certain restrictions (see [30, §4.1] for details). If furthermore X is a
K3 or Enriques surface, each component is a smooth rational curve of self-intersection ´2.
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2.3.6. The limit set. Let Γ Ă AutpXq be non-elementary. The limit set of Γ is the closed subset
LimpΓq Ă BHX Ă P

`

H1,1pX;Rq
˘

defined by one of the following equivalent assertions:

(a) LimpΓq is the smallest, non-empty, closed, and Γ-invariant subset of PpHXq;
(b) LimpΓq Ă BHX is the closure of the set of fixed points of loxodromic elements of Γ in

BHX (these fixed points correspond to isotropic lines on which the loxodromic isometry
act as a dilation or contraction);

(c) LimpΓq is the accumulation set of any Γ-orbit ΓpPpvqq Ă PpH1,1pX;Rqq, for any
v R ΠKΓ .

We refer to [78, 104] for a study of such limit sets. From the second characterization we get:

Lemma 2.16. The limit set LimpΓq of a non-elementary group is contained in PpΠΓq X BHX .

From the third characterization, LimpΓq is contained in the closure of ΓpPprκsqq for every
Kähler form κ on X . Since X must be projective, we can chose rκs in NSpX;Zq. As a conse-
quence, LimpΓq is contained in NefpXq:

Lemma 2.17. LetX be a compact Kähler surface. If Γ is a non-elementary subgroup of AutpXq
its limit set satisfies LimpΓq Ă PpNefpXqq Ă PpNSpX;Rqq.

2.4. Parabolic automorphisms. We collect a few basic facts on parabolic automorphisms: they
will be used in the next section to describe explicit examples, and then in Sections 10 and 11.

Let f be a parabolic automorphism of a compact Kähler surface. Then f˚ preserves a unique
point on BHX , and f preserves a unique genus 1 fibration πf : X Ñ B onto some Riemann
surface B. The fixed point of f˚ on BHX is given by the class rF s of any fiber of πf (see [30]).
The fibers of πf are the elements of the linear system |F |, πf is uniquely determined by rF s,
and if g is another automorphism of X that preserves a smooth fiber of πf (resp. the point
PrF s P PNSpX;Rq), then g preserves the fibration and is either elliptic or parabolic.

Lemma 2.18. Let X be a K3 or Enriques surface, and π : X Ñ B be a genus 1 fibration. If
g P AutpXq maps some fiber F of π to a fiber of π, then g preserves the fibration and either g is
parabolic or it is periodic of order ď 66.

Proof. Since g maps F to some fiber F 1, it maps the complete linear system |F | to |F 1|, but both
linear systems are made of the fibers of π. So g preserves the fibration and is not loxodromic. If
g is not parabolic it is elliptic, and its action on cohomology has finite order since it preserves
H2pX,Zq. On a K3 or Enriques surface every holomorphic vector field vanishes identically, so
AutpXq0 is trivial and the kernel of the homomorphism AutpXq Q f ÞÑ f˚ is finite (see [30,
Theorem 2.6]); as a consequence, any elliptic automorphism has finite order. The upper bound
on the order of g was obtained in [81]. �

Proposition 2.19. Let X be a compact Kähler surface and let f be a parabolic automorphism
of X , preserving the genus 1 fibration τ : X Ñ B. Consider the group AutpX; τq :“ tg P
AutpXq ; DgB P AutpBq, τ ˝ g “ gB ˝ τu, and assume that the image of the homomorphism
g P AutpX; τq Ñ gB P AutpBq is infinite. Then, X is a torus.

This result directly follows from the proof of Proposition 3.6 in [36]. In particular the auto-
morphism fB P AutpBq such that πf ˝f “ fB ˝πf has finite order whenX is a K3, an Enriques,
or a rational surface. The dynamics of these automorphisms is described in Section 11.1.
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Lemma 2.20. If Γ is a subgroup of AutpXq containing a parabolic automorphism g, then Γ
is non-elementary if and only if it contains another parabolic automorphism h such that the
invariant fibrations πg and πh are distinct. Then, the tangency locus of the two fibrations is
either empty or a curve, and there are positive integers m, n such that gm and hn generate a
free group of rank 2.

Proof. Let F be a fiber of πg. If Γ is non-elementary, there is an element f in Γ that does not
fix rF s; in particular f does not preserve πg. Then, h :“ f´1 ˝ g ˝ f is another parabolic
automorphism with a distinct invariant fibration, namely πh “ πg ˝ f . Being distinct, πg and πh
have a tangency locus of codimension ě 1.

Conversely, if Γ contains two parabolic automorphisms with distinct fixed point in BHX , then
the ping-pong lemma proves that there are powers m, n ě 1 such that xgm, hny is a free group
of rank 2; in particular, Γ is non-elementary. (See [30] for more precise results.) �

3. EXAMPLES AND CLASSIFICATION

This section may be skipped in a first reading. It describes a few examples, and proves that a
compact Kähler surface X is projective when its automorphism group is non-elementary.

3.1. Wehler surfaces (see [38, 106, 116, 117]). Consider the variety M “ P1 ˆ P1 ˆ P1 and
let π1, π2, and π3 be the projections on the first, second, and third factor: πipz1, z2, z3q “ zi.
Denote by Li the line bundle π˚i pOp1qq and set

(3.1) L “ L2
1 b L

2
2 b L

2
3 “ π˚1 pOp2qq b π˚2 pOp2qq b π˚3 pOp2qq.

Since KP1 “ Op´2q, this line bundle L is the dual of the canonical bundle KM . By definition,
|L| » PpH0pM,Lqq is the linear system of surfaces X Ă M given by the zeroes of global
sections P P H0pM,Lq. Using affine coordinates px1, x2, x3q on M “ P1 ˆ P1 ˆ P1, such
a surface is defined by a polynomial equation P px1, x2, x3q “ 0 whose degree with respect to
each variable is ď 2 (see [27, 98] for explicit examples). These surfaces will be referred to as
Wehler surfaces or (2,2,2)-surfaces; modulo AutpMq, they form a family of dimension 17.

Fix k P t1, 2, 3u and denote by i ă j the other indices. If we project X to P1 ˆ P1 by
πij “ pπi, πjq, we get a 2 to 1 cover (the generic fiber is made of two points, but some fibers
may be rational curves). As soon as X is smooth the involution σk that permutes the two points
in each (general) fiber of πij is an involutive automorphism of X; indeed X is a K3 surface and
any birational self-map of such a surface is an automorphism.

Proposition 3.1. There is a countable union of proper Zariski closed subsets pWiqiě0 in |L|
such that

(1) if X is an element of |L|zW0, then X is a smooth K3 surface and X does not contain any
fiber of the projections πij;

(2) if X is an element of |L|zp
Ť

iWiq, the restriction morphism PicpMq Ñ PicpXq is surjec-
tive. In particular its Picard number is ρpXq “ 3.

From the second assertion, we deduce that for a very general X , PicpXq is isomorphic to
PicpMq: it is the free Abelian group of rank 3, generated by the classes

(3.2) ci :“ rpLiq|Xs.
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The elements of |pLiq|X | are the curves of X given by the equations zi “ α for some α P P1.
The arithmetic genus of these curves is equal to 1: in other words the projection pπiq|X : X Ñ P1

is a genus 1 fibration. Moreover, for a general choice ofX in |L|, pπiq|X has 24 singular fibers of
type I1, i.e. isomorphic to a rational curve with exactly one simple double point. The intersection
form is given by c2

i “ 0 and xci|cjy “ 2 if i ‰ j, so that its matrix is given by

(3.3)

¨

˝

0 2 2
2 0 2
2 2 0

˛

‚.

Proof of Proposition 3.1. By Bertini’s theorem, X is smooth as soon as it is in the complement
of some proper Zariski closed subset W0 Ă |L|. Now, let us assume that X is smooth. The
adjunction formula implies that the canonical bundle KX is trivial. From the hyperplane section
theorem of Lefschetz [99], we know thatX is simply connected. So,X is a K3 surface (see [7]).
Write the equation of X as Apx1, x2qx

2
3 ` Bpx1, x2qx3 ` Cpx1, x2q “ 0. Then, X contains a

fiber π´1
12 pa1, a2q if and only if the three curves given by A “ 0, B “ 0, and C “ 0 contain the

point pa1, a2q. This imposes a non-trivial algebraic condition on X; hence, enlarging W0, the
first assertion is satisfied.

For the second assertion, we apply a general form of the Noether-Lesfchetz theorem [115,
Théorème 15.33]. We know that L is very ample, that H2,0pXq is isomorphic to C. Indeed X is
a K3 surface, and H2,0pXq is contained in the vanishing cohomology since X may degenerate
on six copies of P1 ˆ P1 (taking the equation px2

1 ´ 1qpx2
2 ´ 1qpx2

3 ´ 1q “ 0). So, the Noether-
Lefschetz theorem says precisely that the restriction morphism is surjective for a very general
choice of X P |L|. �

Lemma 3.2. Assume thatX does not contain any fiber of the projection πij . Then, the involution
σ˚k preserves the subspace Zc1 ‘ Zc2 ‘ Zc3 of NSpX;Zq and

σ˚kci “ ci, σ
˚
kcj “ cj , σ

˚
kck “ ´ck ` 2ci ` 2cj .

Equivalently, the action of σ˚k on VectRpc1, c2, c3q preserves the classes ci and cj and acts as
a reflexion with respect to the hyperplane Vectpci, cjq Ă NSpX;Rq. In other words, σkpvq “
v ` 1

2xv|ukyuk for all v in Zc1 ‘ Zc2 ‘ Zc3.

Proof. Since σk preserves πij it preserves the fibers of πi and πj , hence σ˚k fixes ci and cj . Now,
consider a fiber C “ tzk “ wu Ă X of πk. Then, σkpCq Y C “ π´1

ij pπijpCqq because there
is no curve in the fibers of πij . On the other hand, πijpCq Ă P1 ˆ P1 is a (2,2)-curve so it is
rationally equivalent to the union of two vertical and two horizontal projective lines. This gives
σ˚kck “ ´ck ` 2ci ` 2cj . �

Combining this lemma with the previous proposition, we see that a very general Wehler sur-
face has Picard number 3, HX has dimension 2, NSpX;Zq “ VectZpc1, c2, c3q and the matrices
of the σ˚i in the basis pciq are

(3.4) σ˚1 “

¨

˝

´1 0 0
2 1 0
2 0 1

˛

‚, σ˚2 “

¨

˝

1 2 0
0 ´1 0
0 2 1

˛

‚, σ˚3 “

¨

˝

1 0 2
0 1 2
0 0 ´1

˛

‚.

Proposition 3.3. If X is a very general Wehler surface then:
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(1) X is a smooth K3 surface with Picard number 3;
(2) AutpXq is equal to xσ1, σ2, σ3y, it is a free product of three copies of Z{2Z, and AutpXq˚

is a finite index subgroup in the group of integral isometries of NSpX;Zq;
(3) AutpXq˚ acts strongly irreducibly on NSpX;Rq;
(4) AutpXq does not preserve any algebraic curve D Ă X;
(5) the limit set of AutpXq˚ is equal to BHX ;
(6) the compositions σi ˝σj and σi ˝σj ˝σk are respectively parabolic and loxodromic for every

triple pi, j, kq with ti, j, ku “ t1, 2, 3u.

Proof. The first three assertions follow from Proposition 3.1, [27, §1.5] and [38, Thm 3.6]. For
the fourth one, note that any invariant curve D would yield a non-trivial fixed point rDs in
NSpX;Zq, contradicting assertion (3). The fifth one follows from the second because the limit
set of a lattice in IsompNSpX;Rqq is always equal to BHX . To prove the last assertion, it suffices
to compute the corresponding product of matrices given in Equation (3.4) (see [27]). �

Remark 3.4. In [5], Baragar gives examples of smooth surfaces X P |L| for which ρpXq ě 4
and the limit set of AutpXq˚ in BHX is a genuine fractal set.

3.2. Pentagons. The dynamics on the space of pentagons with given side lengths, introduced in
§1.2, shares important similarities with the dynamics on Wehler surfaces. A pentagon with side
lengths `0, . . . , `4 modulo translations of the plane is the same as the data of a 5-tuple of vectors
pviqi“0,...,4 in R2 (identified with C) of respective length `i such that

ř

i vi “ 0. Write vi “ `iti
with |ti| “ 1. Then the action of SO2pRq can be identified to the diagonal multiplicative action
of U1 “ tα P C ; |α| “ 1u on the ti:

(3.5) α ¨ pt0, . . . , t4q “ pαt0, . . . αt4q.

Now, following Darboux [45], we consider the surface X in P4
C defined by the equations

(3.6)

#

`0z0 ` `1z1 ` `2z2 ` `3z3 ` `4z4 “ 0

`0{z0 ` `1{z1 ` `2{z2 ` `3{z3 ` `4{z4 “ 0

where rz0 : . . . : z4s is some fixed choice of homogeneous coordinates, and the second equation
must be multiplied by z0z1z2z3z4 to obtain a homogeneous equation of degree 4.

Remark 3.5. This surface is isomorphic to the Hessian of a cubic surface (see [53, §9]). More
precisely, consider a cubic surface S Ă P3

C whose equation F can be written in Sylvester’s
pentahedral form that is, as a sum F “

ř4
i“0 λiF

3
i for some complex numbers λi and linear

forms Fi with
ř4
i“0 Fi “ 0. By definition, its Hessian surfaceHF is defined by detpBiBjF q “ 0.

Then, using the linear forms Fi to embed HF in P4
C, we obtain the surface defined by the pair

of equations
ř4
i“0 zi “ 0 and

ř4
i“0

1
λizi

“ 0. Thus, HF is our surface X , for `2i “ λi. We refer
to [52, 46, 51, 108] for an introduction to these surfaces and their birational transformations.

For completeness, we prove some of its basic properties.

Lemma 3.6. Let ` “ p`0, . . . , `4q be an element of pC˚q5. The surface X Ă P4
C defined by

the system (3.6) has 10 singularities at the points qij determined by the system of equations
`izi ` `jzj “ 0, zk “ zl “ zm “ 0 with i ă j and ti, j, k, l,mu “ t0, 1, 2, 3, 4u. In the
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complement of these ten isolated singularities, X is smooth if and only if

(3.7)
4
ÿ

i“0

εi`i ‰ 0 @εi P t˘1u .

Proof. We first look for singularities in the complement of the hyperplanes zi “ 0, and work
in the chart z0 “ 1. Then z4 “ ´p`0 ` `1z1 ` `2z2 ` `3z4q{`4 and we replace in the second
equation of (3.6) to obtain an affine equation of X in this chart, namely:

(3.8)
`1
z1
`
`2
z2
`
`3
z3
´

`24
`0 ` `1z1 ` `2z2 ` `3z3

` `0 “ 0.

Singularities are determined by the system of equations z2
1 “ z2

2 “ z2
3 “ `´2

4 p`0``1z1``2z2`

`3z3q
2. So, by symmetry, at a singularity where none of the coordinates vanishes we must have

zi “ εiz for some εi “ ˘1 and a common factor z ‰ 0; this is precisely Condition (3.7).
Looking for singularities with one coordinate equal to 0, say z1 “ 0 in the chart z0 “ 1, we

obtain the system of equations

(3.9)

$

’

&

’

%

0 “ p`0z2z3 ` `3z2 ` `2z3qp`0 ` `2z2 ` `3z3q ` p`
2
1 ´ `

2
4qz2z3

0 “ `1z3p`0 ` 2`2z2 ` `3z3q

0 “ `1z2p`0 ` `2z2 ` 2`3z3q

together with `0 ` `2z2 ` `3z3 ` `4z4 “ 0 and `1z2z3z4 “ 0 (in particular, z2, z3 or z4 must
vanish). The solutions of this system are given by z1 “ z2 “ z3 “ 0, which gives the point
q04 “ r`4 : 0 : 0 : 0 : ´`0s, or z1 “ z2 “ 0 and `0 ` `3z3 “ 0, which corresponds to
q03 “ r`3 : 0 : 0 : ´`0 : 0s, or z1 “ z3 “ 0 which gives q02, or z1 “ z4 “ 0 but then either
z2 “ 0 or z3 “ 0 and we end up again with q02 and q03. The result follows by symmetry. �

Lemma 3.7. If ` P pC˚q5 satisfies Condition (3.7), then the ten singularities are simple nodes
(Morse singularities) and the surface X is a (singular) K3 surface: a minimal resolution X̂ of
X is a K3 surface, which is obtained by blowing-up its ten nodes, thereby creating ten rational
p´2q-curves.

Proof. Working in the chart z0 “ 1 and replacing z4 by ´p`0 ` `1z1 ` `2z2 ` `3z3q{`4, the
quadratic term of the equation of X at the singularity pz1, z2, z3q “ p0, 0, 0q is p´`0{`4qQ,
where

(3.10) Qpz1, z2, z3q “ `1z2z3 ` `2z1z3 ` `3z1z2

is a non-degenerate quadratic form (its determinant is 2`1`2`3 ‰ 0). So locally X is holomor-
phically equivalent to the quadratic cone tQ “ 0u, hence to a quotient singularity pC2, 0q{η
with ηpx, yq “ p´x,´yq. The minimal resolution of such a singularity is obtained by a simple
blow-up of the ambient space, the exceptional divisor being a p´2q-curve in the smooth sur-
face X̂ . The adjunction formula shows that there is a holomorphic 2-form ΩX on the regular
part of X; locally, ΩX lifts to an η-invariant form Ω1X on C2zt0u, which by Hartogs extends
at the origin to a non-vanishing 2-form. To recover X̂ , one can first blow-up C2 at the origin
and then take the quotient by (the lift of) η: a simple calculation shows that Ω1X determines a
non-vanishing 2-form on X̂ . After such a surgery is done at the ten nodes, X̂ is a smooth surface
with a non-vanishing section of KX̂ ; since it contains at least ten rational curves, it can not be
an Abelian surface, so it must be a K3 surface. �
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Remark 3.8. Let Lij be the line defined by the equations zi “ 0, zj “ 0, `0z0`¨ ¨ ¨` `4z4 “ 0;
each of these ten lines is contained in X , each of them contains 3 singularities ofX (namely qkl,
qlm, qkm with obvious notations), and each singularity is contained in three of these lines. If one
projects them on a plane, the ten lines Lij form a Desargues configuration (see [51, 52]).

All this works for any choice of complex numbers `i ‰ 0. Now, since the `i are real, X is en-
dowed with two real structures. First, one can consider the complex conjugation c : rzis ÞÑ rzis
on P4pCq and restrict it to X: this gives a first antiholomorphic involution cX . Another one
is given by sX : rzis ÞÑ r1{zis. To be more precise, consider first, the quartic birational in-
volution J P BirpP4

Cq defined by Jprzisq “ r1{zis; J preserves X , it determines a birational
transformation JX P BirpXq, and on X̂ it becomes an automorphism because every birational
transformation of a K3 surface is regular. Thus, sX “ JX ˝ cX determines a second antiholo-
morphic involution sX̂ of X̂ . In what follows, we denote by pX, sXq this real structure (even if
it would be better to study it on X̂); its real part is the fixed point set of sX , i.e. the set of points
in XpCq with coordinates of modulus 1: the real part does not contain any of the singularities
of X , this is why we prefer to stay in X rather than lift everything to X̂ . Thus, with the real
structure defined by sX , the real part of X coincides with Pent0p`0, . . . , `4q if p`iq P pR˚`q

5.

Remark 3.9. When `i ą 0 for all indices i P t0, . . . , 4u, a complete description of the possible
homeomorphism types for the real locus (in the smooth and singular cases) is given in [44]: in
the smooth case, it is an orientable surface of genus g “ 0, . . . , 4 or the union of two tori.

Remark 3.10. The involution J preservesX and the two real structures pX, cXq and pX, sXq. It
lifts to a fixed point free involution ĴX on X̂ , and X̂{ĴX is an Enriques surface. On pentagons,
J corresponds to the symmetry px, yq P R2 ÞÑ px,´yq that reverses orientation. Thus we see
that the space of pentagons modulo affine isometries is an Enriques surface. When X acquires
an eleventh singularity which is fixed by JX , then X̂{ĴX becomes a Coble surface: see [51, §5]
for nice explicit examples. This happens for instance when all lengths are 1, except one which
is equal to 2 (this corresponds to t “ 1{4 in [51, §5.2]).

Finally, let us express the folding transformations in coordinates. Given i ‰ j in t0, . . . , 4u
(consecutive or not) we define an involution pti, tjq ÞÑ pt1i, t

1
jq preserving the vector `iti``jtj by

taking the symmetric of ti and tj with respect to the line directed by `iti ` `jtj . In coordinates,
t1k “ u{tk for some u of modulus 1, and equating `iti ` `jtj “ `it

1
i ` `jt

1
j one obtains

(3.11) pt1i, t
1
jq “

ˆ

u

ti
,
u

tj

˙

, with u “
`iti ` `jtj

`it
´1
i ` `jt

´1
j

.

Observe that these computations also make sense when the `i are complex numbers, or when we
replace the ti by the complex numbers zi. This defines a birational involution σij : X 99K X ,

(3.12) σijrz0 : . . . : z4s “ rz
1
0 : . . . : z14s

with z1k “ zk if k ‰ i, j, z1i “ vzj , and z1j “ vzi with v “ p`izi ` `jzjq{p`izj ` `jziq.
Again, since every birational self-map of a K3 surface is an automorphism, these involutions
σij are elements of AutpX̂q that commute with the antiholomorphic involution sX̂ ; hence, they
generate a subgroup of AutpX̂; sX̂q. Thus we have constructed a family of projective surfaces
X̂ , depending on a parameter ` P P4pCq, endowed with a group of automorphisms generated by



RANDOM DYNAMICS ON COMPLEX SURFACES 23

involutions. Note that this group can be elementary: for instance when the five lengths are all
equal the group is finite because in that case pz1i, z

1
jq “ pzj , ziq. When j “ i ` 1 modulo 5, σij

corresponds to the folding transformation described in the introduction.

Remark 3.11. Pick a singular point qij , and project X from that point onto a plane, say the
plane tzi “ 0u in the hyperplane P “ t`0z0 ` ¨ ¨ ¨ ` `4z4 “ 0u. One gets a 2 to 1 cover
X Ñ P2

C, ramified along a sextic curve (this curve is the union of two cubics, see [108]). The
involution σij permutes the points in the fibers of this 2 to 1 cover: if x is a point of X , the line
joining qij and x intersects X in the third point σijpxq. The singularity qij is an indeterminacy
point, mapped by σij to the opposite line Lij .

Proposition 3.12. For a general parameter ` P P4pCq:

(1) X is a K3 surface with ten nodes, with two real structures cX and sX when ` P P4pRq;
(2) if i, j “ i ` 1, k “ i ` 2 are distinct consecutive indices (modulo 5), then σij ˝ σjk is a

parabolic transformation on X̂;
(3) if i, j, k, and l are four distinct indices (modulo 5), then σij commutes to σkl.
(4) the group Γ generated by the involutions σij is a non-elementary subgroup of AutpX̂; sX̂q

that does not preserve any algebraic curve.

In [51], Dolgachev computes the action of σij on NSpX̂q. This contains a proof of this
proposition. He also describes, up to finite index, the Coxeter group generated by the σij . The
automorphism groups of X̂ and of the Enriques surface X̂{ĴX are described in [52] and [110].

Proof. We already established Assertion (1) in the previous lemmas. For Assertion (2), denote
by l,m the indices for which ti, j, k, l,mu “ t0, . . . , 4u, and consider the linear projection
πlm : P5pCq 99K P1pCq defined by rz0 : . . . : z4s ÞÑ rzl : zms. The fibers of πlm are the
hyperplanes containing the plane tzl “ zm “ 0u, which intersects X on the line Llm. This line
is a common component of the pencil of curves cut out by the fibers of πlm onX , and the mobile
part of this pencil determines a fibration πlm|X : X Ñ P1 whose fibers are the plane cubics

(3.13) p`lzl``mzmqp`mzl``lzmqzizjzk “ zlzmp`izjzk``jzizk``kzizjqp`izi``jzj``kzkq,

with rzl : zms fixed. The general member of this fibration is a smooth cubic, hence a curve of
genus 1.

Then σij and σjk preserve πlm|X , and along the general fiber of πlm|X each of them is de-
scribed by Remark 3.11; for instance, σijpxq is the third point of intersection of the cubic with
the line pqij , xq. Thus, writing such a cubic as C{Λrzl:zms, σij acts as z ÞÑ ´z ` bij , for some
bij P C{Λrzl:zms that depends on rzl : zms and the parameter `; it has four fixed points on the
cubic curve, which are the points of intersection of the cubic (3.13) with the hyperplanes zi “ zj
and zi “ ´zj ; equivalently, the line pqij , xq is tangent to the cubic at these four points.

By Lemma 2.18, either σij ˝ σjk is of order ď 66 (in fact of order ď 12 because it preserves
πlm|X fiber-wise), or it is parabolic. Due to this bound on the order, and the fact that there do
exist pentagons for which σij ˝σjk is of infinite order (indeed, this reduces to the corresponding
fact for quadrilaterals, see the example below), σij ˝ σjk is parabolic for general `.

Example 3.13. Take ` “ 1 and m “ 2, and normalize our pentagons to assume that t0 “ 1,
which means that the first vertices are a0 “ p0, 0q and a1 “ p`0, 0q; in homogeneous coordinates
this corresponds to the normalization r1 : z1 : z2 : z3 : z4s with zi “ ti. Now, the pentagon in a
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fiber of π12|X have three fixed vertices, namely a0, a1 and a2. The remaining vertices a3 and a4

move on the circles centered at a2 and a0 and of respective radii `2 and `4, with the constraint
a3a4 “ `3. The circles are two conics, the fiber is a 2 to 1 cover of each of these two conics, and
the automorphisms σ23 and σ34 preserve these fibers. Forgetting the vertex a1, and looking at
the quadrilateral pa0, a2, a3, a4q, one recovers the involutions described in [11]. The fixed points
of σ23 correspond to configurations with tangent circles, i.e. a3 on the segment ra2, a4s.

Assertion (3) follows directly from the fact that σij changes the coordinates zi and zj but
keeps the other three fixed.

Finally, for a general parameter `, Γ contains two such parabolics associated to distinct fibra-
tions πlm and πl1m1 so it is non-elementary (see Lemma 2.20). In addition Γ does not preserve
any curve in X̂ . Indeed, let E Ă X̂ be a Γ-periodic irreducible curve, and denote by F its
image in P4

C under the projection X̂ Ñ X . If F is a point, it is one of the singularities qij , and
changing E into its image under (the lift of) σij the curve F becomes the line Lij . So, we may
assume that F is an irreducible curve. Now, the orbit of F is periodic under the action of the
parabolic automorphisms gi “ σij ˝σjk with k “ j`1 and j “ i`1. Since the invariant curves
of a parabolic automorphisms are contained in the fibers of its invariant fibration, we deduce that
F is contained in the fibers of each of the projections πlm; this is obviously impossible. �

3.3. Enriques surfaces (see [42, 54]). Enriques surfaces are quotients of K3 surfaces by fixed
point free involutions. According to Horikawa and Kondō ([76, 77, 84]), the moduli space
ME of complex Enriques surfaces is a rational quasi-projective variety of dimension 10. An
Enriques surface X is nodal if it contains a smooth rational curve; such rational curves have
self-intersection ´2, and are called nodal-curves or p´2q-curves. Nodal Enriques surfaces form
a hypersurface in ME .

For any Enriques surfaceX , the lattice pNSpX;Zq, qXq is isomorphic to the orthogonal direct
sum E10 “ U kE8p´1q, (1). Let WX Ă OpNSpX;Zqq be the subgroup generated by reflexions
about classes u such that u2 “ ´2, and WXp2q be the subgroup of WX acting trivially on
NSpX;Zq modulo 2. Both WX and WXp2q have finite index in OpNSpX;Zqq. The following
result is due independently to Nikulin and Barth and Peters (see [54] for details and references).

Theorem 3.14. If X is an Enriques surface which is not nodal, the homomorphism AutpXq Q
f ÞÑ f˚ P GLpH2pX,Zqq is injective, and its image satisfies WXp2q Ă AutpXq˚ ĂWX .

In particular, for any unnodal Enriques surface, AutpXq is non-elementary, contains parabolic
elements, and acts irreducibly on NSpX;Rq; thus, it does not preserve any curve.

3.4. Examples on rational surfaces: Coble and Blanc. Closely related to Enriques surfaces
are the examples of Coble, obtained by blowing up the ten nodes of a general rational sextic
curve C0 Ă P2. The result is a rational surface X with a large group of automorphisms. To
be precise, consider the canonical class KX Ă NSpX;Zq; its orthogonal complement KK

X is a
lattice of dimension 10, isomorphic to E10, and we define WXp2q exactly in the same way as
for Enriques surfaces. Then, AutpXq˚ preserves the decomposition KX ‘ KK

X , and AutpXq˚

1Here, U is the standard 2-dimensional Minkowski lattice, pZ2, x1x2q, and E8 is the root lattice given by the
corresponding Dynkin diagram; so E8p´1q is negative definite, and E10 has signature p1, 9q (see [42, Chap. II]).
Also, recall that in this paper NSpX;Zq denotes the torsion free part of the Néron-Severi group, which is sometimes
denoted by NumpX;Zq in the literature on Enriques surfaces.
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contains WXp2q when X does not contain any smooth rational curve of self-intersection ´2
(see [32], Theorem 3.5). Also, Coble surfaces may be thought of as degeneracies of Enriques
surfaces: an interesting difference is that rKXs is non trivial; in particular, NSpX;Zq0 is always
non-trivial, for any Γ Ă AutpXq. There is a holomorphic section of ´2KX vanishing exactly
along the strict transform C Ă X of the rational sextic curve C0; this means that there is a
meromorphic section ΩX “ ξpx, yqpdx ^ dyq2 of Kb2

X that does not vanish and has a simple
pole along C. Thus, the formula

(3.14) volXpUq “

ż

U
|ξpx, yq| dx^ dy ^ dx^ dy “

ż

U
|ξpx, yq| pidx^ dxq ^ pidy ^ dyq

determines a finite measure(2) volX “ “ Ω
1{2
X ^Ω

1{2
X ”, which we may assume to be a probability

after multiplying ΩX by some adequate constant; this measure is AutpXq-invariant (because
volX is uniquely determined by the complex structure; see also Remark 3.15 below).

Another family of examples has been described by Blanc in [15]. One starts with a smooth
cubic curve C0 Ă P2. If q1 is a point of C0, there is a unique birational involution s1 of P2 that
fixes C0 pointwise and preserves the pencil of lines through q1. The indeterminacy points of s1

are q1 and the four tangency points ofC0 with this pencil (one of them may be “infinitely near q1”
and in that case it corresponds to the tangent direction ofC0 at q1); thus the indeterminacies of s1

are resolved by blowing-up points of C0 (or points of its strict transform). After such a sequence
of blow-ups s1 becomes an automorphism of a rational surface X1 that fixes pointwise the strict
transform of C0. So, if we blow-up other points of this curve, s1 lifts to an automorphism of the
new surface. In particular, we can start with a finite number of points qi P C0, i “ 1, . . . , k, and
resolve simultaneously the indeterminacies of the involutions si determined by the qi. The result
is a surface X , with a subgroup Γ :“ xs1, . . . , sky of AutpXq. Blanc proves that (1) there are no
relations between these involutions, that is, Γ is a free product xs1, . . . , sky » ˚k

i“1 Z{2Z, (2)
the composition of two distinct involutions si ˝ sj is parabolic, and (3) the composition of three
distinct involutions is loxodromic. There is a meromorphic section ΩX of KX with a simple
pole along the strict transform of C0, but the form volX :“ ΩX ^ ΩX is not integrable.

Remark 3.15. If Γ Ă AutpXq is generated by involutions and there is a meromorphic form Ω
such that f˚Ω “ ξpfqΩ for every f P Γ, then ξpfq “ ˘1: this is the case for Blanc’s examples
or general Coble surfaces, since WXp2q is also generated by involutions (see [54]).

3.5. Real forms. For each of the examples described in Sections 3.1 to 3.4, we may ask for the
existence of an additional real structure onX , and look at the group of automorphisms AutpXRq

that preserve the real structure (automorphisms commuting with the anti-holomorphic involution
describing the real structure). Note that if X is a smooth projective variety with a real structure,
then XpRq is either empty or a compact, smooth, and totally real surface in X .

IfX is a Wehler surface defined by a polynomial equation P px1, x2, x3qwith real coefficients
the σi are automatically defined over R. If X is a Blanc surface for which C0 is defined over R
and the points qi are chosen in C0pRq, then again xs1, . . . , sky Ă AutpXRq. Real Enriques and
Coble surfaces provide also many examples for which AutpXRq is non-elementary (see [47]).

2if locally C “ tx “ 0u then ξpx, yq “ ηpx, yq{x where η is regular; thus, |ξ| “ |η| |x|´1 is locally integrable
because 1

rα
is integrable with respect to rdrdθ when α ă 2
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3.6. Surfaces admitting non-elementary groups of automorphisms. The surfaces in the pre-
vious examples are all projective. This is a general fact, which we prove in this paragraph: we
rely on the Kodaira-Enriques classification to describe compact Kähler surfaces which support
a non-elementary group of automorphisms and prove Theorem 2.11.

3.6.1. Minimal models. We refer to Theorem 10.1 of [30] for the following result:

Theorem 3.16. If X is a compact Kähler surface with a loxodromic automorphism, then

– either X is a rational surface, and there is a birational morphism π : X Ñ P2
C;

– or the Kodaira dimension ofX is equal to 0, and there is an AutpXq-equivariant bimero-
morphic morphism π : X Ñ X0 such that X0 is a compact torus, a K3 surface, or an
Enriques surface.

In particular, h2,0pXq equals 0 or 1.

Remark 3.17. If X is a torus or K3 surface, there is a holomorphic 2-form ΩX on X that does
not vanish and satisfies

ş

X ΩX^ΩX “ 1. It is unique up to multiplication by a complex number
of modulus 1. A consequence of utmost importance to us is that the volume form

(3.15) ΩX ^ ΩX

is AutpXq-invariant. Furthermore for every f we can write f˚ΩX “ JpfqΩX , where the Jaco-
bian f P AutpXq ÞÑ Jpfq P U1 is a unitary character on the group AutpXq. Since H2,0pX;Cq
is generated by rΩXs, we obtain

(3.16) f˚w “ Jpfqw @w P H2,0pX;Cq.

If Y is an Enriques surface, and X Ñ Y is its universal cover, then X is a K3 surface: the
volume form ΩX ^ ΩX is invariant under the group of deck transformations, and determines
an AutpY q-invariant volume form on Y . So, if X is not rational, the dynamics of AutpXq
is conservative: it preserves a canonical volume form which is uniquely determined by the
complex structure of X .

It follows from Theorem 3.16 that, in most cases, AutpXq is countable (see [30, Rmk 3.3]).

Proposition 3.18. Let X be a compact Kähler surface. If AutpXq contains a loxodromic el-
ement, then the kernel of the homomorphism AutpXq Ñ AutpXq˚ Ă GLpNSpX;Zqq is finite
unless X is a torus. So, if AutpXq is non-elementary, then AutpXq is discrete or X is a torus.

3.6.2. Projectivity.

Theorem E. Let X be a compact Kähler surface and Γ be a non-elementary subgroup of
AutpXq. Then X is projective, and is birationally equivalent to a rational surface, an Abelian
surface, a K3 surface, or an Enriques surface.

From the discussion in §§3.1–3.4 we see that there exist examples with a non-elementary
group of automorphisms for each of these four classes of surfaces. Theorem E is a direct conse-
quence of Theorem 3.16 and the following lemmas.

Lemma 3.19. Let f be a loxodromic automorphism of a compact Kähler surface X . The fol-
lowing properties are equivalent:

(1) on H2,0pX;Cq, f˚ acts by multiplication by a root of unity;
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(2) X is projective.

If X supports a loxodromic automorphism, then dimpH2,0pX;Cqq ď 1; and with notation as
in Remark 3.17, the first assertion is equivalent to

(1’) either H2,0pX;Cq “ 0 or Jpfq is a root of unity.

Proof of Lemma 3.19. The characteristic polynomial χf of f˚ : H2pX;Zq Ñ H2pX;Zq is a
monic polynomial with integer coefficients. Since f is loxodromic, f˚ has a real eigenvalue
λpfq ą 1. Besides λpfq and λpfq´1, all other roots of χf have modulus 1, so λpfq is a
reciprocal quadratic integer or a Salem number (see § 2.4.3 of [30] for more details). Thus, the
decomposition of χf into irreducible factors can be written as

(3.17) χf ptq “ Sf ptq ˆRf ptq “ Sf ptq ˆ
m
ź

i“1

Cf,iptq

where Sf is a Salem polynomial or a reciprocal quadratic polynomial, and the Cf,i are cyclo-
tomic polynomials. In particular if ξ is an eigenvalue of f˚ and a root of unity, we see that ξ is
a root of Rf ptq but not of Sf ptq.

The subspace H2,0pCq Ă H2pX;Cq is f˚-invariant and, by Lemma 2.1, all eigenvalues of
f˚ on that subspace have modulus 1; if an eigenvalue of f˚|H2,0pX;Cq is not a root of unity, then
it is a root of Sf .

Assume that all eigenvalues of f˚ on H2,0pX;Cq are roots of unity. Then KerpSf pf
˚qq Ă

H2pX;Rq is a f˚-invariant subspace of H1,1pX;Rq. This subspace is defined over Q and is
of Minkowski type; in particular, it contains integral classes of positive self-intersection, and by
the Kodaira embedding theorem, X is projective. Conversely, assume that X is projective. The
Néron-Severi group NSpX;Qq Ă H1,1pX;Rq is f˚-invariant and contains vectors of positive
self-intersection, so by Proposition 2.8 it contains all isotropic lines associated to loxodromic
automorphisms. Now any f˚ invariant subspace defined over Q and containing the eigenspace
associated to λpf˚q contains KerpSf pf

˚qq, so we deduce that KerpSf pf
˚qq Ă NSpX;Qq. In

particular, KerpSf pf
˚qq does not intersectH2,0pX;Cq, which is invariant, and we conclude that

all eigenvalues of f˚ on H2,0pX;Cq are roots of unity. �

Lemma 3.20. Let X be a compact Kähler surface. If X is not projective, then AutpXq˚ is
virtually Abelian and if it contains a loxodromic element it is virtually cyclic.

Proof. Assume that AutpXq˚ is not virtually Abelian, or that it contains a loxodromic element
without being virtually cyclic. According to Theorem 3.2 of [30], AutpXq˚ contains a non-
Abelian free group Γ such that all elements of Γztidu are loxodromic; from Theorem 3.16, ei-
ther h2,0pXq “ 0 or X is the blow-up of a torus or a K3 surface. In the first case, H2pX;Rq “
H1,1pX;Rq so, by the Hodge index theorem, H1,1pX;Rq contains an integral class with pos-
itive self-intersection; then, the Kodaira embedding theorem shows that X is projective. In the
second case, by uniqueness of the minimal model, the morphism X Ñ X0 onto the minimal
model ofX is AutpXq-equivariant, so we can assume thatX “ X0 is minimal and h2,0pXq “ 1.
Consider the homomorphism J : AutpXq Ñ U1, as in Remark 3.17. Since U1 is Abelian
kerpJ |Γq contains loxodromic elements: indeed if f, g P Γ and f ‰ g then rf, gs “ fgf´1g´1

is loxodromic and Jprf, gsq “ 1. From Lemma 3.19 we deduce that X is projective. �
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4. GLOSSARY OF RANDOM DYNAMICS, I

We now initiate the random iteration by introducing a probability measure on AutpXq. In this
section we introduce a first set of ideas from the theory of random dynamical systems, as well
as some notation that will be used throughout the paper.

4.1. Random holomorphic dynamical systems. LetX be a compact Kähler surface, such that
AutpXq is non-elementary. Note that AutpXq is locally compact for the topology of uniform
convergence –in many interesting cases it is actually discrete (see Proposition 3.18)– so it admits
a natural Borel structure. We fix some Riemannian structure on X , for instance the one induced
by the Kähler form κ0. For f P AutpXq, we denote by }f}C1 the maximum of }Dfx} where the
norm of Dfx : TxM Ñ TfpxqM is computed with respect to this Riemannian metric.

We consider a probability measure ν on AutpXq satisfying the moment condition (or inte-
grability condition)

(4.1)
ż

´

log }f}C1pXq ` log
›

›f´1
›

›

C1pXq

¯

dνpfq ă `8.

The norm } ¨ }C1pXq is relative to our choice of Riemannian metric, but the finiteness of the
integral in (4.1) does not depend on this choice. In many interesting situations the support of ν
will be finite, in which case the integrability (4.1), as well as stronger moment conditions which
will appear later (see Conditions (5.26) and (5.27)), are obviously satisfied.

Lemma 4.1. The measure ν satisfies the moment condition (4.1) if and only if it satisfies the
higher moment conditions

(4.2)
ż

´

log }f}CkpXq ` log
›

›f´1
›

›

CkpXq

¯

dνpfq ă 8,

for all k ě 1.

Here the Ck norm is relative to the expression of f in a system of charts (we don’t need to be
precise here because only the finiteness in (4.2) matters). This lemma follows from the Cauchy
estimates. In particular, if ν satisfies (4.1), then it satisfies a similar moment condition for the
C2 norm, a property required to apply Pesin’s theory.

Given ν, we shall consider independent, identically distributed sequences pfnqně0 of random
automorphisms of X with distribution ν, and study the dynamics of random compositions of the
form fn´1˝ ¨ ¨ ¨ ˝f0. The data pX, νq will be referred to as a random holomorphic dynamical
system on X . Many properties of pX, νq depend on the properties of the subgroup

(4.3) Γ “ Γν :“ xSupppνqy

generated by (the support of) ν in AutpXq. If in addition Γν is non-elementary, we say that
pX, νq is non-elementary.

4.2. Invariant and stationary measures. Let G be a topological group and ν be a probability
measure on G. Consider a measurable action of G on some measurable space pM,Aq. Every
f P G determines a push-forward operator µ ÞÑ f›µ, acting on positive (resp. probability)
measures µ on pM,Aq. By definition, a probability measure µ on pM,Aq is ν-stationary if

(4.4)
ż

f›µdνpfq “ µ,
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and it is ν-almost surely invariant if f›µ “ µ for ν-almost every f . Let us stress that we only
deal with probability measures in this definition; slightly abusing terminology, most often we
drop the mention to ν and the mention that µ is a probability. A stationary measure is ergodic if
it is an extremal point of the closed convex set of stationary measures (see [13, §2.1.3]).

If µ is almost surely invariant then it is stationary but the converse is generally false. If M
is compact, the action G ˆM Ñ M is continuous, and A is the Borel σ-algebra, the Kaku-
tani fixed point theorem implies the existence of at least one stationary measure. On the other
hand the existence of an invariant measure is a very restrictive property. For instance, proximal,
strongly irreducible linear actions on projective spaces have no (almost surely) invariant proba-
bility measure (see Sections 1.3 and 5.3). Following Furstenberg [68] we say that an action is
stiff (or ν-stiff) if any ν-stationary measure is ν-almost surely invariant.

We shall consider several measurable actions of AutpXq: its tautological action on X , but
also its action on the projectivized tangent bundle PpTXq, on cohomology groups of X and
their projectivizations, on spaces of currents, etc. In all cases, M will be a locally compact
space and A its Borel σ-algebra, which will be denoted by BpMq.

Remark 4.2. SinceX is compact and the action AutpXqˆX Ñ X is continuous, a probability
measure µ on pX,BpXqq is ν-almost surely invariant if and only if it is invariant under the action
of the closure of Γν in AutpXq; this follows from the dominated convergence theorem.

4.3. Random compositions. Set Ω “ AutpXqN, endowed with its product topology. The
associated Borel σ-algebra coincides with the product σ-algebra, and it is generated by cylinders
(see § 7.1). We endow Ω with the product measure νN. Choosing a random element in Ω
with respect to νN is equivalent to choosing an independent and identically distributed random
sequence of automorphisms in AutpXq with distribution ν. For ω P Ω, we let fω “ f0 and
denote by fnω the left composition of the n first terms of ω, that is

(4.5) fnω “ fn´1 ˝ ¨ ¨ ¨ ˝ f0

for n ą 0. By definition f0
ω “ id. Let us record for future reference the following consequence

of the Borel-Cantelli lemma. We denote by σ : Ω Ñ Ω the unilateral shift, i.e. the continuous
transformation defined by σpf0, f1, . . .q “ σpf1, f2, . . .q.

Lemma 4.3. If pX, νq is a random dynamical system satisfying the moment condition (4.1), then
for νN-almost every sequence ω “ pfnq P Ω,

1

n

`

log }fn}C1 ` log
›

›f´1
n

›

›

C1

˘

ÝÑ
nÑ8

0.

Remark 4.4. We are not considering the most general version of random holomorphic dynam-
ical systems: one might consider compositions fϑn´1pξq ˝ ¨ ¨ ¨ ˝ fϑpξq ˝ fξ where ϑ : Σ Ñ Σ is
some measure preserving transformation of a probability space and Σ Q ξ ÞÑ fξ P AutpXq is
measurable. The methods developed below do not apply to this more general setting.

5. FURSTENBERG THEORY IN H1,1pX;Rq

Consider a non-elementary random holomorphic dynamical system pX, νq on a compact
Kähler surface, satisfying the moment condition (4.1). The main purpose of this section is
to analyze the linear action of pX, νq on H1,1pX,Rq by way of the theory of random products
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of matrices. Basic references for this subject are the books by Bougerol and Lacroix [21] and by
Benoist and Quint [13].

5.1. Moments and cohomology. We start with a general discussion on the dilatation of co-
homology classes under smooth transformations. Let M be a compact connected manifold of
dimensionm, endowed with some Riemannian metric g. If f : M ÑM is a smooth map, }f}C1

denotes the maximum norm of its tangent action, computed with respect to g (see Section 4.1).
Thus, f is a Lipschitz map with Lippfq “ }f}C1 for the distance determined by g; in particular
}f}C1 ě 1 whenever f is onto. Fix a norm |¨|Hk on each cohomology group HkpM ;Rq, for
0 ď k ď m.

Lemma 5.1. There is a constant C ą 0, that depends only on M , g, and the norms |¨|Hk ,
such that |f˚rαs|Hk ď Ck Lippfqk |rαs|Hk for every class rαs P HkpM ;Rq and every map
f : M Ñ M of class C1. In other words, the operator norm }f˚}Hk is controlled by the
Lipschitz constant:

}f˚}Hk ď Ck Lippfqk ď Ck}f}kC1 .

Proof. Pick a basis of the homology group HkpM ;Rq » HkpM ;Rq˚ given by smoothly im-
mersed, compact, k-dimensional manifolds ιi : Ni Ñ M , and a basis of HkpM ;Rq given by
smooth k-forms αj . Then, the integral

ş

Ni
ι˚i pf

˚αjq is bounded from above by Ck}f}kC1 for
some constant C, because

(5.1) |pf˚αjqxpv1, . . . , vkq| “ |αjpf˚v1, . . . , f˚vkq| ď cj}f}
k
C1

k
ź

`“1

|v`|g

for every point x PM and every k-tuple of tangent vectors v` P TxM ; here, cj is the supremum
of the norm of the multilinear map pαjqx over x PM . �

If ν is a probability measure on DiffpMq satisfying the moment condition (4.1), then

(5.2) @1 ď k ď m,

ż

DiffpMq
log p}f˚}Hkq ` log

`›

›pf´1q˚
›

›

Hk

˘

dνpfq ă `8.

If we specialize this to automorphisms of compact Kähler surfaces we get

(5.3)
ż

AutpXq
log p}f˚}H1,1q ` log

`›

›pf´1q˚
›

›

H1,1

˘

dνpfq ă `8,

which is actually equivalent to (5.2) by Lemma 2.2. We saw in §2.3.3 that }f˚}H1,1 —
›

›pf´1q˚
›

›

H1,1 ,
so this last condition is in turn equivalent to

(5.4)
ż

AutpXq
log p}f˚}H1,1q dνpfq ă `8.

5.2. Cohomological Lyapunov exponent. From now on we denote by |¨| a norm onH1,1pX,Rq
and by }¨} the associated operator norm. The linear action induced by the random dynamical
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system pX, νq on H1,1pX,Rq defines a random product of matrices. Since the moment condi-
tion (5.4) is satisfied, we can define the upper Lyapunov exponent λH1,1 (or λH1,1pνq) by

λH1,1 “ lim
nÑ8

1

n

ż

logp}pfnω q
˚}qdνNpωq(5.5)

“ lim
nÑ`8

1

n
log }pfnω q

˚}(5.6)

where the second equality holds almost surely, i.e. for νN-almost every ω P Ω. This conver-
gence follows from Kingman’s subadditive ergodic theorem, since }¨} being an operator norm,
pω, nq ÞÑ logp}pfnω q

˚}q defines a subadditive cocycle (see [13, Thm 4.28] or [21, Thm I.4.1]).
Note that pfnω q

˚ “ f˚0 ˝¨ ¨ ¨˝f
˚
n´1, so we are dealing with right compositions instead of the usual

left composition. However since f˚0 ˝ ¨ ¨ ¨ ˝ f
˚
n´1 has the same distribution as f˚n´1 ˝ ¨ ¨ ¨ ˝ f

˚
0 , the

Lyapunov exponent in (5.5) corresponds to the usual definition of the upper Lyapunov exponent
of the random product of matrices. We refer to [21, 88] for the definition and main properties of
the subsequent Lyapunov exponents (see also [13, §10.5]).

Proposition 5.2. Let pX, νq be a non-elementary holomorphic dynamical system on a compact
Kähler surface, satisfying the moment condition (4.1), or more generally (5.4). Then the coho-
mological Lyapunov exponent λH1,1 is positive and the other Lyapunov exponents of the linear
action on H1,1pX,Rq are ´λH1,1 , with multiplicity 1, and 0, with multiplicity h1,1pXq ´ 2.

Proof. Consider the Γν-invariant decomposition ΠΓν‘ΠKΓν given by Proposition 2.12 and Equa-
tion (2.13). Since the intersection form is negative definite on ΠKΓν , the group Γ˚ν |ΠKΓν is bounded
and all Lyapunov exponents of Γ˚ν |ΠKΓν vanish. The linear action of Γν on ΠΓν is strongly ir-
reducible and non-elementary, hence not relatively compact. Therefore Furstenberg’s theorem
asserts that λH1,1 ą 0 (see e.g. [21, Thm III.6.3] or [13, Cor 4.32]), and the remaining proper-
ties of the Lyapunov spectrum on ΠΓν follow from the KAK decomposition in O`1,mpRq, with
1`m “ dimpΠΓν q (see Lemma 2.4). �

Lemma 5.3. If a P H1,1pX;Rq satisfies a2 ą 0, for instance if a is a Kähler class, then

lim
nÑ`8

1

n
log |pfnω q

˚a| “ λH1,1

for νN-almost every ω.

Proof. Corollary 2.5 implies that if a P HX then for every f P AutpXq, |f˚a| — }f˚}, where
the implied constants depend only on a. Thus the result follows from Equation (5.6). �

Remark 5.4. It is natural to expect that Lemma 5.3 holds for any a P ΠΓz t0u; this is true under
the more stringent moment assumption (5.26) (see the proof of Proposition 5.15 below).

If the order of compositions is reversed (which is less natural from the point of view of iterated
pull-backs), then Lemma 5.3 indeed holds for any a in ΠΓν (see [21, Cor. III.3.4.i]):

Lemma 5.5. For any a P ΠΓν and for νN-almost every ω “ pfnqně0 P Ω we have

lim
nÑ`8

1

n
log |f˚n ¨ ¨ ¨ f

˚
1 a| “ λH1,1 .
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5.3. The measure µB. By Furstenberg’s theory the linear projective action of the random dy-
namical system pX, νq on PΠΓν Ă PH1,1pX;Rq admits a unique stationary measure µPΠΓν

;
this measure does not charge any proper projective subspace of PΠΓν . Recall that the mass of a
class a is defined by Mpaq “ xa|rκ0sy (see § 2.2).

Lemma 5.6. For νN-almost every ω, there exists a unique nef class epωq such that Mpepωqq “ 1
and

(5.7)
1

Mppfnω q
˚aq
pfnω q

˚a ÝÑ
nÑ8

epωq

for any pseudo-effective class a with a2 ą 0 (in particular for any Kähler class). In addition,
the class epωq is almost surely isotropic and Ppepωqq is a point of the limit set LimpΓνq Ă BHX .

Before starting the proof, note that Γ˚ν |ΠΓν
is proximal, in the sense of [13, §4.1]; equivalently,

Γ˚ν |ΠΓν
is contracting, in the sense of [21, Def III.1.3]. In other words, there are sequences of

elements gn P Γν such that }g˚n}
´1g˚n|ΠΓν

converges to a matrix of rank 1: for instance one can
take gn “ fn, where f P Γν is any loxodromic automorphism.

Proof. For f P AutpXq, we use the notation f˚ for its action on PH1,1pX;Rq. Since the action
of Γν on ΠΓν is strongly irreducible and proximal, its projective action satisfies the following
contraction property (see [21, Thm III.3.1]): there is a measurable map ω P Ω ÞÑ epωq P PΠΓν

such that for almost every ω, any cluster value Lpωq of

(5.8)
1

}f˚0 ¨ ¨ ¨ f
˚
n}
f˚0 ¨ ¨ ¨ f

˚
n

in EndpΠΓν q is an endomorphism of rank 1 whose range is equal to Repωq.
Let epωq be the unique vector of mass 1 in the line Repωq. If a P ΠΓν satisfies a2 ą

0 and Mpaq ą 0, then any cluster value of Mppfnω q
˚aq´1pfnω q

˚a must coincide with epωq
because by Corollary 2.5 the mass Mppfnω q

˚aq is comparable to the norm }f˚0 ¨ ¨ ¨ f
˚
n}. Thus, the

convergence (5.7) is satisfied. Furthermore epωq is nef, because we can apply this convergence
to a nef class a and AutpXq preserves the nef cone. Also, epωq belongs to LimpΓνq, hence it is
isotropic. Now, let a and a1 be two classes of HX with a P ΠΓν . Since the hyperbolic distance
between pfnω q

˚paq and pfnω q
˚pa1q remains constant and the convergence (5.7) holds for a, it

also holds for a1. This concludes the proof, for every class with positive self-intersection is
proportional to a unique class in HX . �

Remark 5.7. As in Remark 5.4, under the exponential moment condition (5.26), the conver-
gence in Equation (5.7) holds for any a P ΠΓz t0u and almost every ω P Ω; to be precise,

1
Mppfnω q

˚aqpf
n
ω q
˚a converges towards epωq or its opposite. Then, we actually get the conver-

gence for any a P H1,1pX;RqzΠKΓ (write a “ a` ` a0 and use that Γν acts by isometries on
ΠKΓ )

Here is a summary of the properties of the stationary measure µPΠΓν
; from now on, we view

it as a measure on PH1,1pX;Rq and rename it as µB because it is supported on BHX .

Theorem 5.8. The probability measure defined on PH1,1pX;Rq by

(5.9) µB “

ż

δPpepωqq dν
Npωq



RANDOM DYNAMICS ON COMPLEX SURFACES 33

is ν-stationary and ergodic. It is the unique stationary measure on PH1,1pX;Rq such that
µBpPpΠKΓν qq “ 0. The measure µB has no atoms and is supported on LimpΓνq; in particular, if
Λ1 Ă LimpΓνq is such that µBpΛ1q ą 0 then Λ1 is uncountable.

The top Lyapunov exponent satisfies the so-called Furstenberg formula:

λH1,1 “

ż

log

ˆ

|f˚ũ|

|ũ|

˙

dνpfq dµBpuq,(5.10)

where ũ P H1,1pX,Rqz t0u denotes any lift of u P LimpΓνq Ă PH1,1pX,Rq.

Proof. The ergodicity of µB “ µPΠΓν
as well as its representation (5.9) follow from the proper-

ties of the action of Γν on PpΠΓq (see [21, Chap. III]). Also, we know that λH1,1 is equal to the
top Lyapunov exponent of the restriction of the action to PpΠΓν q, so the formula (5.10) follows
from the strongly irreducible case (see [21, Cor III.3.4]).

Let now µ be a stationary measure on PH1,1pX;Rq such that µpPΠKΓν q “ 0. A martingale
convergence argument shows that pfn

ω
q˚µ converges to some measure µω for almost every ω

(see [21, Lem. II.2.1]). Since Γν preserves the decomposition ΠΓν ‘ ΠKΓν and }pfnω q
˚} tends to

infinity while ‖ pfnω q˚|ΠKΓν ‖ stays uniformly bounded, we get that pfnω q
˚u converges to PΠΓν for

µ-almost every u and νN-almost every ω; thus µω is almost surely supported on PΠΓν . Since by
stationarity µ “

ş

µωdν
Npωq we conclude that µ gives full mass to PpΠΓν q, hence µ “ µB. �

Remark 5.9. If Supppνq generates Γν as a semi-group, then SupppµBq “ LimpΓνq, otherwise
the inclusion can be strict: take a Schottky group Γ “ xf, gy Ă PSLp2,Rq and ν “ pδf ` δgq{2.

Remark 5.10. Since LimpΓνq Ă PsefpXq, for every u P LimpΓνq there exists a unique ũ such
that Pũ “ u and xũ | rκ0sy “Mpũq “ 1. Then the following formula holds:

λH1,1 “

ż

log pMpf˚ũqq dνpfq dµBpuq “

ż

log

ˆ

Mpf˚ũq

Mpũq

˙

dνpfq dµBpuq.(5.11)

Indeed set rpwq “Mpwq{ |w|. On the limit set this function satisfies 1{C ď rpũq ď C, where
C is the positive constant from Equation (2.5). Then, for allm ě 1,the stationarity of µB implies
ż

log

ˆ

rpf˚ũq

rpũq

˙

dνpfq dµBpuq “

ż

log

ˆ

rpf˚m ¨ ¨ ¨ f
˚
0 ũq

rpf˚m´1 ¨ ¨ ¨ f
˚
0 ũq

˙

dνpfmq ¨ ¨ ¨ dνpf0q dµBpuq.

Summing from m “ 0 to n´ 1, telescoping the sum, and dividing by n gives
ż

log

ˆ

rpf˚ũq

rpũq

˙

dνpfq dµBpuq “
1

n

ż

log

ˆ

rpf˚n´1 ¨ ¨ ¨ f
˚
0 ũq

rpũq

˙

dνpfn´1q ¨ ¨ ¨ dνpf0q dµBpuq.

Finally since 1{C ď r ď C, the right hand side tends to zero as n Ñ 8. Hence the integral of
logpr ˝ f˚{rq vanishes, and (5.11) follows from Furstenberg’s formula. �

Proposition 5.11. The point Ppepωqq is νN-almost surely extremal in PpKahpXqq and in PpPsefpXqq.

Proof. The class epωq almost surely belongs to KahpXq and to the isotropic cone. By the Hodge
index theorem –more precisely, by the case of equality in the reverse Schwarz Inequality (2.7)–
epωq cannot be a non-trivial convex combination of classes with non-negative intersection and
mass 1; so Ppepωqq is an extremal point of the convex set PpKahpXqq Ă PH1,1pX;Rq.
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From Proposition 2.3, there are at most countably many points Ppuq in PpKahpXqq such that
u2 “ 0 and Ppuq is not extremal in PpPsefpXqq. Therefore the second assertion follows from
the fact that µB is atomless. �

5.4. Some estimates for random products of matrices.

5.4.1. Sequences of good times. We now describe a theorem of Gouëzel and Karlsson, spe-
cialized to our specific context. Fix a base point e0 in the hyperbolic space HX , for instance
e0 “ rκ0s with κ0 a fixed Kähler form (as in Section 2.2). Consider the two functions of
pn, ωq P Nˆ Ω defined by

(5.12) T pn, ωq “ dHpe0, pf
n
ω q
˚e0q, Npn, ωq “ log }pfnω q

˚}.

They satisfy the subadditive cocycle property

(5.13) apn`m,ωq ď apn, ωq ` apm,σnpωqq,

where σ is the unilateral shift on Ω (see § 4.3). Let apn, ωq be such a subadditive cocycle; if
ap1, ωq is integrable the asymptotic average is defined to be the limit

(5.14) A “ lim
nÑ`8

1

n

ż

apn, ωq dνNpωq;

it exists in r´8,`8q, and we say it is finite if A ‰ ´8. The functions T and N are examples
of ergodic subadditive cocycles and from Theorem 5.8, Remark 5.10, and Corollary 2.5, we
deduce that the asymptotic average of each of these cocycles is equal to λH1,1 .

Following [71], we say that apn, ωq is tight along the sequence of positive integers pniq if
there is a sequence of real numbers pδ`q “ pδ`pωqq`ě0 such that

(i) δ` converges to 0 as ` goes to `8;
(ii) for every i, and for every 0 ď ` ď ni,

ˇ

ˇ

ˇ
apni, ωq ´ apni ´ `, σ

`pωqq ´A`
ˇ

ˇ

ˇ
ď `δ`;

(iii) for every i and for every 0 ď ` ď ni

apni, ωq ´ apni ´ `, ωq ě pA´ δ`q`.

Theorem 5.12 (Gouëzel and Karlsson [71]). Let apn, ωq be an ergodic subadditive cocycle, with
a finite asymptotic averageA. Then, for almost every ω, the cocycle is tight along a subsequence
pnipωqq of positive upper density.

Recall that the (asymptotic) upper density of a subset S of N is the non-negative number
defined by denspSq “ lim supkÑ`8

`

1
k |S X r0, k ´ 1s|

˘

. A sequence pniqiě0 is said to have
positive upper density if the set of its values S “ tni ; i ě 0u satisfies denspSq ą 0.

Proof. Let us explain how this result follows from [71]. First, fix a small positive real number
ρ ą 0, and apply Theorem 1.1 and Remark 1.2 of [71] to get a set Ωρ of measure 1 ´ ρ such
that the first two properties (i) and (ii) are satisfied for every ω P Ωρ with respect to a sequence
pδ`q that does not depend on ω, and for a sequence of times pnipωqq of upper density ě 1 ´ ρ.
To get (iii), we apply Lemma 2.3 of [71] to the sub-additive cocycle apn, ωq (not to the cocycle
bpn, ωq “ apn, σ´npωqq as done in [71]). For every ε ą 0, there is a subset Ω1ε Ă Ω and a
sequence pδ1`q`ě0 such that
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(a) νNpΩ1εq ą 1´ ε, and δ1` converges towards 0 as ` goes to `8;
(b) for every ω P Ω1ε, there is a set of bad times Bpωq Ă N such that for every k ě 0

|Bpωq X r0, k ´ 1s| ď εk, and for every n R Bpωq and every 0 ď ` ď n,

apn, ωq ´ apn´ `, ωq ě pA´ δ1`q`.

If ω belongs to Ωρ XΩ1ε, the set of indices i for which nipωq R Bpωq is infinite. More precisely,
the set Spωq “ tnjpωq ; njpωq R Bpωqu has asymptotic upper density ě 1 ´ ρ ´ ε. Along
this subsequence, the three properties (i), (ii), and (iii) are satisfied. Since this holds for all
ω P Ω1ε X Ωρ and the measure of this set is ě 1´ ρ´ ε, this holds for νN-almost every ω. �

Corollary 5.13. For νN-almost every ω P AutpXqN, there is an increasing sequence of integers
pnipωqq going to `8 and a real number Apωq such that

nipωq
ÿ

j“0

›

›

`

f jω
˘˚›
›

›

›

`

f
nipωq
ω

˘˚›
›

ď Apωq and
nipωq
ÿ

j“0

›

›

`

f
nipωq´j

σjpωq

˘˚›
›

›

›

`

f
nipωq
ω

˘˚›
›

ď Apωq

for all indices i ě 0.

Proof. Apply Theorem 5.12 to the subadditive cocyle Npn, ωq and note that

(5.15)
nipωq
ÿ

j“0

›

›

`

f jω
˘˚›
›

›

›

`

f
nipωq
ω

˘˚›
›

“

nipωq
ÿ

`“0

›

›

`

fni´`ω

˘˚›
›

›

›

`

fniω
˘˚›
›

“

nipωq
ÿ

`“0

eNpni´`,ωq

eNpni,ωq
ď

nipωq
ÿ

`“0

e´`pλH1,1´δ`q

which is bounded as nipωq Ñ 8. The second estimate is similar. �

5.4.2. A mass estimate for pull-backs. Assume that pX, νq is non-elementary and satisfies the
condition (4.1). Recall from Lemma 5.5 that Mppfnω q

˚aq´1pfnω q
˚a converges to the pseudo-

effective class epωq for almost every ω and every Kähler class a. Thus, on a set of total νN-
measure, this convergence holds for all σkpωq, k ě 0. Since Mpepωqq “ 1, we obtain

(5.16) f˚0 epσωq “Mpf˚0 epσωqqepωq;

more generally, for every k ě 1,

(5.17) pfkωq
˚epσkωq “Mppfkωq

˚epσkωqqepωq.

Lemma 5.14. For νN-almost every ω, we have
1

n
logMppfnω q

˚epσnωqq ÝÑ
nÑ8

λH1,1 .

This does not follow from Lemma 5.3 because epσnωq depends on n. Our argument relies on
Theorem 5.12 for convenience but other strategies could certainly be applied.

Proof. For almost every ω, for every k ě 1, and for every Kähler class a, we have

(5.18) epσkωq “ lim
nÑ8

f˚k ¨ ¨ ¨ f
˚
n´1a

Mpf˚k ¨ ¨ ¨ f
˚
n´1aq

.

So

(5.19) f˚0 ¨ ¨ ¨ f
˚
k´1epσ

kpωqq “

ˆ

lim
nÑ8

Mpf˚0 ¨ ¨ ¨ f
˚
n´1aq

Mpf˚k ¨ ¨ ¨ f
˚
n´1aq

˙

epωq “: ζpk, ωqepωq
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where ζpk, ωq is both equal to Mppfkωq
˚epσkpωqqq and to the limit

(5.20) ζpk, ωq “ lim
nÑ8

Mpf˚0 ¨ ¨ ¨ f
˚
n´1aq

Mpf˚k ¨ ¨ ¨ f
˚
n´1aq

“ lim
nÑ8

Mppfnω q
˚aq

Mppfn´k
σkpωq

q˚aq
.

We want to show that, νN-almost surely, p1{kq log ζpk, ωq converges to λH1,1 .

Before starting the proof, note that ζ is a multiplicative cocycle: ζpk, ωq “
śk
`“1 ζp1, σ

`ωq;
in particular, log ζpk, ωq is equal to the Birkhoff sum

řk
`“1 log ζp1, σ`ωq. Since

(5.21) C´1
›

›pf´1
0 q˚

›

›

H1,1 ďMpf˚0 epσpωqqq ď C}f˚0 }H1,1 ,

our moment condition shows that logpζp1, ωqq is integrable. So, by the ergodic theorem of
Birkhoff, limk

1
k log ζpk, ωq exists νN-almost surely.

Pick a sequence pniq of good times for ω, as in Theorem 5.12. If we compute the limit in
Equation (5.20) along the subsequence pniq we see that ζpk, ωq ě C expppλH1,1 ´ δpkqqkq for
some constant C ą 0, and some sequence δpkq converging to 0 as k goes to `8. This gives

(5.22) lim sup
kÑ`8

1

k
log ζpk, ωq ě λH1,1 .

Now, consider the linear cocycle Υ : ΩˆH1,1pX,Rq Ñ ΩˆH1,1pX,Rq defined by

(5.23) Υpω, uq “ pσpωq, pf1
ωq˚uq

and let PΥ be the associated projective cocycle on Ω ˆ PH1,1pX,Rq. The Lyapunov expo-
nents of Υ are ˘λH1,1 , each with multiplicity 1, and 0, with multiplicity h1,1pXq ´ 2. Since
Pppf1

ωq
˚epσpωqqq “ Ppepωqq, the measurable section tpω,Ppepωqqq ; ω P Ωu is PΥ-invariant.

Therefore, by ergodicity of σ with respect to νN, m “
ş

δPpepωqq dν
Npωq defines an invariant

and ergodic measure for PΥ. It follows from the invariance of the decomposition into character-
istic subspaces in Oseledets’ theorem that epωq is contained in a given characteristic subspace
of the cocycle Υ; thus, if λ denotes the Lyapunov exponent of Υ in that characteristic subspace,
we get (as in Remark 5.10) that

λ “

ż

log

ˇ

ˇpf1
ωq˚u

ˇ

ˇ

|u|
dmpω, uq “

ż

log
Mppf1

ωq˚pepωqq

Mpepωqq
dνNpωq(5.24)

“

ż

log ζp1, ωq´1 dνNpωq(5.25)

(see Ledrappier [88, §1.5]). Birkhoff’s ergodic theorem implies that limk
1
k log ζpk, ωq “ ´λ,

with λ P t˘λH1,1 , 0u, therefore the Inequality (5.22) concludes the proof. �

5.4.3. Exponential moments. The result of this section will only be used in Theorem 6.17 so
this paragraph may be skipped on a first reading. Consider the exponential moment condition

(5.26) Dτ ą 0,

ż

`

}f}C1 `
›

›f´1
›

›

C1

˘τ
dνpfq ă `8.

As in Section 5.1, this upper bound implies the cohomological moment condition

(5.27) Dτ ą 0,

ż

`

}f˚}H1,1 `
›

›pf´1q˚
›

›

H1,1

˘τ
dνpfq ă `8.
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Proposition 5.15. Assume that ν satisfies the Condition (5.26). Let D : AutpXq Ñ R` be a
measurable function such that

ş

Dpfqτ
1

dνpfq ă 8 for some τ 1 ą 0. Then, there is a measurable
function B : Ω Ñ R` satisfying

ż

log`pBpωqq dνNpωq ă 8

such that for νN-almost every ω “ pfnq and every n ě 0

n´1
ÿ

j“1

Dpfj´1q

›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

ď Bpωq, and
n´1
ÿ

j“1

Dpfjq

›

›f˚0 ¨ ¨ ¨ f
˚
j´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

ď Bpωq.

This is a refined version of Corollary 5.13. The result is stated in our setting, but it holds for
more general random products of matrices.

Proof. We are grateful to Sébastien Gouëzel for explaining this argument to us. We temporarily
use the notation Pp¨q for probability with respect to νn or νN (so, here, P does not denote
projectivisation).

First Estimate.– We start with the first estimate:
řn´1
j“1 Dpfj´1q

›

›f˚j ¨¨¨f
˚
n´1

›

›

}f˚0 ¨¨¨f
˚
n´1}

ď Bpωq.

Step 1.– For every 0 ă ε ă λH1,1 there exists constants c, C ą 0 such that

(5.28) P p|pfnω q˚b| ď eεnq ď Ce´cn.

for every b P ΠΓ with |b| “ 1. This large deviation result, which is uniform in n and b, follows
from condition (5.27) (see for instance [21, §V.6], and [13, §12]).

Step 2.– Let us prove that

(5.29) P

˜
›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

ą e´εj

¸

ď Ce´cj .

For this, fix fj , . . . , fn´1. Then, there is a point a P ΠΓ with |a| “ 1 such that
›

›

›
f˚j ¨ ¨ ¨ f

˚
n´1

›

›

›
“

ˇ

ˇ

ˇ
f˚j ¨ ¨ ¨ f

˚
n´1a

ˇ

ˇ

ˇ
. Hence, if

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

› ă
›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›eεj , we infer that

(5.30)
ˇ

ˇf˚0 ¨ ¨ ¨ f
˚
n´1a

ˇ

ˇ ă
›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›eεj “
ˇ

ˇf˚j ¨ ¨ ¨ f
˚
n´1a

ˇ

ˇeεj .

Thus, if we set

(5.31) b “
1

ˇ

ˇf˚j ¨ ¨ ¨ f
˚
n´1a

ˇ

ˇ

f˚j ¨ ¨ ¨ f
˚
n´1a,

we obtain that
ˇ

ˇ

ˇ
f˚0 ¨ ¨ ¨ f

˚
j´1b

ˇ

ˇ

ˇ
ă eεj ; this happens with (conditional) probability ď Ce´cj (rela-

tive to ν˚j), for the uniform constants given in Step 1. Averaging over fj , . . . , fn´1, we get the
result.

Step 3.– The moment condition satisfied by D and Markov’s inequality imply PpD ą Kq ď

C1K
´τ 1 for some constant C1 ą 0. Fix ε P R˚` small with respect to λH1,1 and τ 1. Then, on a

set Ωpε, Jq of measure

(5.32) νNpΩpε, Jqq ě 1´ C2pe
´pετ 1{2qJ ` e´εcJq,
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for some C2 “ C2pεq ą 0, we have both Dpfj´1q ď eεj{2 and }
f˚j ¨¨¨f

˚
n´1}

}f˚0 ¨¨¨f
˚
n´1}

ď e´εj for all j ě J .

For ω “ pfnq in Ωpε, Jq, we get
n´1
ÿ

j“1

Dpfj´1q

›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

ď

J
ÿ

j“1

Dpfj´1q

›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

`

n´1
ÿ

j“J`1

e´εj{2(5.33)

ď

J
ÿ

j“1

Dpfj´1q

›

›

›
pf´1
j´1q

˚ ¨ ¨ ¨ pf´1
0 q˚

›

›

›
` C3

“ C3 `

J´1
ÿ

j“0

}f˚0 } ¨ ¨ ¨
›

›f˚j
›

›Dpfjq.

The moment condition (5.26) gives Pp}f˚} ą Kq ď C4K
´τ and as already noticed, we also

have PpDpfq ą Kq ď C1K
´τ 1 . So, with η “ minpτ, τ 1q, there is a set of probability at least

1´ C5JK
´η on which

(5.34)
J´1
ÿ

j“0

Dpfjq}f
˚
0 } ¨ ¨ ¨

›

›f˚j
›

› ď C6JK
J`2.

Taking K “ J3{η, we have JK´η “ J´2, and we obtain

(5.35) P

˜

J´1
ÿ

j“0

Dpfjq}f
˚
0 } ¨ ¨ ¨

›

›f˚j
›

› ą J1`3pJ`2q{η

¸

ď C7J
´2.

Also, note that J1`p3J`6q{η ď exp
`

CJ3{2
˘

.
By the Borel-Cantelli lemma, the sum in (5.33) is almost surely bounded by some constant

Bpωq which satisfies P
`

logB ą J3{2
˘

ď CJ´2; in particular E
`

log`B
˘

ă 8.

Second Estimate.– To obtain the second estimate of Proposition 5.15, we apply the above
proof to the reversed random dynamical system, induced by ν̌ : f ÞÑ νpf´1q. Indeed, the core
of the argument is the inequality (5.33) which is not sensitive to the order of compositions. �

6. LIMIT CURRENTS

Our goal in this section is to prove the counterpart of the convergence (5.7) at the level of
closed positive currents on X . Throughout this section we fix a non-elementary random holo-
morphic dynamical system pX, νq satisfying the moment condition (4.1), so that all results of
§5 apply. We refer the reader to [74] (in particular Chapter 8) for basics on pluripotential theory
on compact Kähler manifolds (see also [48]).

6.1. Potentials and cohomology classes of positive closed currents. Let us fix once and for
all a family of Kähler forms pκiq1ďiďh1,1pXq such that rκis2 “ 1 and the rκis form a basis of
H1,1pX;Rq; in addition we require that the κi satisfy

(6.1) κ0 “ β
ÿ

i

κi

for some β ą 0, where κ0 is the Kähler form chosen in Section 2.2 (note that necessarily
β ă 1). We also fix a smooth volume form volX on X , normalized by

ş

X vol “ 1. On tori, K3
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and Enriques surfaces, we choose volX to be the canonical AutpXq-invariant volume form (see
Remark 3.17). It is convenient to assume in all cases that volX is also the volume form associated
with the Kähler metric κ0 (up to scaling). On tori, K3 and Enriques surfaces this implies that
κ0 is the unique Ricci-flat Kähler metric in its Kähler class; its existence is guaranteed by Yau’s
theorem (see [63] for the interest of such a choice in holomorphic dynamics).

Unless otherwise specified, the currents we shall consider will be of type p1, 1q. The action
of a current T on a test form ϕ will be denoted by xT, ϕy or

ş

T ^ ϕ. If T is closed, we denote
its cohomology class by rT s; so, if ϕ is a closed form, xT, ϕy “ xrT s | rϕsy. By definition the
mass of a current is the quantity MpT q “

ş

T ^ κ0; so MpT q “ xrT s|rκ0sy when T is closed.

6.1.1. Normalized potentials. If a is an element ofH1,1pX;Rq, we denote by pcipaqq1ďiďh1,1pXq

its coordinates in the basis prκisq, so that a “
ř

i cipaqrκis. Then, we set

(6.2) Θpaq “
ÿ

i

cipaqκi.

Likewise, given a closed p1, 1q-form α or a closed current of bidegree p1, 1q, we set cipαq “
ciprαsq and Θpαq “ Θprαsq; hence, rΘpαqs “ rαs. It is worth keeping in mind that some
coefficients cipαq can be negative and Θpαq need not be semi-positive, even if α is a Kähler
form. If T is a closed positive current of bidegree p1, 1q onX we define its normalized potential
to be the unique function uT P L1pXq such that

(6.3) T “ ΘpT q ` ddcpuT q and
ż

X
uT vol “ 0

(see [74, §8.1]). The function uT is locally given as the difference v ´ w of a psh potential v of
T and a smooth potential w of ΘpT q.

Lemma 6.1. There is a constant A ą 0 such that the following properties are satisfied for every
closed positive current T of mass 1

(1) ´A ď cipT q ď A for all 1 ď i ď h1,1pXq, and ´Aκ0 ď ΘpT q ď Aκ0.
(2) the function uT is pAκ0q-psh: ddcpuT q `Aκ0 is a positive current.

Proof. Since the coefficients T ÞÑ cipT q are continuous functions on the space of currents and
closed positive currents of mass 1 form a compact set K, the functions |ci| are bounded by
some uniform constant A1 on K. Setting A “ A1β´1, with β as in Equation (6.1), we get
´Aκ0 ď ΘpT q ď Aκ0 for all T P K. Then ddcuT “ T ´ΘpT q ě ´Aκ0 and (2) follows. �

Corollary 6.2. The set of potentials tuT | T is a closed positive current of mass 1 on Xu is a
compact subset of L1pX; volq.

Proof. Since this is a set of pAκ0q-psh functions which are normalized with respect to a smooth
volume form, the result follows from Proposition 8.5 and Remark 8.6 in [74]. �

Remark 6.3. Another usual normalization imposes the condition supxPX uT pxq “ 0; by com-
pactness this would only change uT by some uniformly bounded constant. However since many
of our dynamical examples preserve a natural volume form it is more convenient for us to nor-
malize as in (6.3).
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6.1.2. The diameter of a pseudo-effective class. For a class a P PsefpXq we define

(6.4) Curpaq “ tT ; T is a closed positive current with rT s “ au,

This is a compact convex subset of the space of currents. If S and T are two elements of Curpaq,
then ΘpSq “ ΘpT q “ Θpaq and T ´ S “ ddcpuT ´ uSq. We set

(6.5) distpS, T q “

ż

X
|uS ´ uT | vol .

This is a distance that metrizes the weak topology on Curpaq: this follows for instance from the
fact that by Corollary 6.2 pCurpaq,distq is compact. By definition, the diameter of a is

(6.6) Diampaq “ DiampCurpaqq “ suptdistpS, T q ; S, T in Curpaqu,

If a P PsefpXq, then Diampaq is a non-negative real number which is finite by Corollary 6.2.
If Curpaq “ H, we set Diampaq “ ´8. Note that Diam is homogeneous of degree 1:
Diamptaq “ tDiampaq for every a P PsefpXq and t ą 0.

Example 6.4. Let π : X Ñ B be a fibration of genus 1. Let a be the cohomology class of
any fiber Xw “ π´1pwq, w P B. Then, to every probability measure µB on B corresponds a
closed positive current TµB P Curpaq, defined by xTµB , ϕy “

ş

B

ş

Xw
ϕdµBpwq, and any closed

positive current in Curpaq is of this form. In this case Diampaq ą 0. Now, assume that f
is a loxodromic automorphism of X , and denote by θf the unique p1, 1q-class of mass 1 that
satisfies f˚θf “ λfθf , where λf is the spectral radius of f˚ P GLpH1,1pX;Rqq; then Curpθf q

is represented by a unique closed positive current T`f and Diampθf q “ 0. For generic Wehler
surfaces, these two types of classes, given by eigenvectors of loxodromic automorphisms and
classes of genus 1 fibrations, are dense in the boundary of HX XNSpX;Rq (see [30]).

Lemma 6.5. On PsefpXq, a ÞÑ Diampaq is upper semi-continuous, hence measurable.

Proof. Let panq be a sequence of pseudo-effective classes converging to a. For every n we
choose a pair of currents pSn, Tnq in Curpanq

2 such that distpSn, Tnq ě Diampanq ´ 1{n.
The masses of Sn and Tn are uniformly bounded because they depend only on an. By Corol-
lary 6.2, we can extract a subsequence such that Sn and Tn converge towards closed positive
currents S, T P Curpaq, and uSn and uTn converge towards their respective potentials uS and
uT in L1pX, volq. Then, distpS, T q “

ş

X |uS ´ uT |vol “ limn distpSn, Tnq, which shows that
Diampaq ě lim supn pDiampanqq. �

6.2. Action of AutpXq.

6.2.1. A volume estimate. Let X be a compact, complex manifold, and let vol be a C0-volume
form on X with volpXq “ 1. If f is an automorphism of X , let Jacpfq : X Ñ R denote its
Jacobian determinant with respect to the volume form vol: f˚vol “ Jacpfqvol. The following
lemma is a variation on well-known ideas in holomorphic dynamics (see for instance [73]).

Lemma 6.6. Let κ be a hermitian form on X . Let h be a κ-psh function on X such that
ş

X h vol “ 0, and let f be an automorphism of X . Then,
ż

X
|h ˝ f | vol ď C logpC

›

›Jacpf´1q
›

›

8
q

for some positive constant C that depends on pX,κq but neither on f nor on h.
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Proof. We first observe that there is a constant c ą 0 such that volt|h| ě tu ď c expp´t{cq; this
follows from Lemma 8.10 and Theorem 8.11 in [74], together with Chebychev’s inequality (see
Remark 6.3 for the normalization). Then, we get

ż

X
|h ˝ f | vol “

ż 8

0
volt|h ˝ f | ě tudt(6.7)

“

ż 8

0
volpf´1t|h| ě tuqdt

ď

ż s

0
volpXqdt`

›

›Jacpf´1q
›

›

8

ż 8

s
c expp´t{cqdt

ď s volpXq `
›

›Jacpf´1q
›

›

8
c2 expp´s{cq(6.8)

where the inequality in the third line follows from the change of variable formula. Now, we
minimize (6.8) by choosing s “ c logpc

›

›Jacpf´1q
›

›

8
{volpXqq and we infer that

(6.9)
ż

X
|h ˝ f | vol ď c volpXq

˜

1` log

˜

c
›

›Jacpf´1q
›

›

8

volpXq

¸¸

.

Since the total volume is invariant, }Jacpfq}8 ě 1, and the asserted estimate follows. �

6.2.2. Equivariance. Let us come back to the study of pX, νq. If f is an automorphism of
X , then f˚Curpaq “ Curpf˚paqq for every class a P H1,1pX,Rq. If a P PsefpXq and
T P Curpaq, then T “ Θpaq ` ddcpuT q and

(6.10) f˚T “ f˚Θpaq ` ddcpuT ˝ fq “ Θpf˚aq ` ddcpuf˚Θpaq ` uT ˝ fq.

This shows that the normalized potential of f˚T is given by

(6.11) uf˚T “ uf˚Θpaq ` uT ˝ f ` Epf, T q

where Epf, T q P R is the constant for which the integral of uf˚T vanishes; since uf˚Θpaq has
mean 0, we get

(6.12) Epf, T q “ ´

ż

X

`

uf˚Θpaq ` uT ˝ f
˘

vol “ ´

ż

X
uT ˝ f vol.

Remark 6.7. If vol is f -invariant, for instance if it is the canonical volume on a K3 or Enriques
surface, then Epf, T q “ 0, which simplifies a little bit the analysis of the potentials below.

Lemma 6.8. On the set of closed positive currents of mass 1, the function pf, T q ÞÑ Epf, T q
satisfies

|Epf, T q| ď C log
`

C
›

›Jacpf´1q
›

›

8

˘

where the implied positive constant C depends neither on f nor on T .

Proof. From Lemma 6.1, the potentials uT are uniformly pAκ0q-psh, so the conclusion follows
from Equation (6.12) and Lemma 6.6. �

Lemma 6.9. There exists a constant C such that if a is any pseudo-effective of mass 1, and f is
any automorphism of X , then

Diampf˚aq ď C log
`

C
›

›Jacpf´1q
›

›

8

˘

.
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Proof. Indeed, if S and T belong to Curpaq, by Equation (6.11) we have uf˚T ´ uf˚S “
puT ´ uSq ˝ f ` Epf, T q ´ Epf, Sq, so

(6.13) distpf˚T, f˚Sq ď

ż

|uT ˝ f | vol`

ż

|uS ˝ f | vol` |Epf, T q| ` |Epf, Sq| ;

and the result follows from Lemmas 6.6 and 6.8, since uS and uT are uniformly pAκ0q-psh. �

6.2.3. An estimate for canonical potentials.

Lemma 6.10. For any Kähler form κ on X there exists a positive constant Cpκq such that for
every f P AutpXq,

›

›uf˚κ
›

›

C1 ď Cpκq}f}2C1 .

In addition Cpκq ď C 1}κ}8, where }κ}8 is the sup norm of the coefficients of κ in a system of
coordinate charts, and C 1 depends only on X (and the choice of these coordinate charts).

Recall the choice of Kähler forms pκiq from § 6.1 and the definition of Θp¨q from § 6.1.1.

Corollary 6.11. If κ “
ř

i ciκi in Lemma 6.10, then the constant Cpκq satisfies Cpκq ď
C2Mpκq. Likewise,

›

›uf˚Θpaq

›

›

C1 ď C3Mpaq}f}2C1 for all a P PsefpXq.

Indeed Cpκq ď C 1}κ}8 ď C2
ř

i |ci| and uf˚Θpaq “
ř

cipaquf˚κi .

Proof of Lemma 6.10. By definition f˚κ´Θpf˚κq “ ddc
`

uf˚κ
˘

. The desired estimate will be
obtained by constructing a solution φ to the equation

(6.14) ddcφ “ f˚κ´Θpf˚κq

which satisfies }φ}C1 ď C}f}2C1 . Then, since uf˚κ and φ differ by a constant and uf˚κ is
known to vanish at some point, it follows that uf˚κ satisfies the same estimate. To construct
the potential φ, we follow the method of Dinh and Sibony [50, Prop. 2.1] which is itself based
on [19] (we keep the notation from [50]). Let α be a closed p2, 2q-form on X ˆ X which is
cohomologous to the diagonal ∆. In [19], Bost, Gillet and Soulé construct an explicit p1, 1q-
form K on X ˆX such that ddcK “ r∆s ´ α; they refer to it as the “Green current”. It is C8

outside the diagonal, and along ∆, it satisfies the estimates

(6.15) Kpx, yq “ O

ˆ

log |x´ y|

|x´ y|2

˙

and ∇Kpx, yq “ O

ˆ

log |x´ y|

|x´ y|3

˙

(here we mean that these estimates hold for the coefficients of K and ∇K in local coordinates).
These estimates are easily deduced from the explicit expression ofK as π˚ppϕη´βq given in [50,
Prop. 2.1], where π : {X ˆX Ñ XˆX is the blow-up of the diagonal, η and β are smooth (1,1)
forms on {X ˆX and pϕ is a function with logarithmic singularities along the proper transform
of ∆ in X ˆX . It is shown in [50, Prop. 2.1] that a solution to Equation (6.14) is given by

(6.16) φpxq “

ż

yPX
Kpx, yq ^ pf˚κpyq ´Θpf˚κqpyqq

(in the notation of [50], f˚κ and Θpf˚κq correspond to Ω` and Ω´ respectively). The co-
efficients of the smooth p1, 1q-forms f˚κ and Θpf˚κq have their uniform norms bounded by
C}f}2C1 , whereC “ Cpκq ď C 1}κ}8. The first estimate in (6.15) implies that the coefficients of
K belong toLploc for p ă 2, so it follows from the Hölder inequality that }φ}C0 ď C2}κ}8}f}

2
C1
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(for some constant C2 depending only on X). A similar estimate for ∇φ is obtained from
derivation under the integral sign and the fact that ∇K P Lploc for p ă 4{3. This concludes the
proof. �

6.3. Convergence and extremality.

Theorem 6.12. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surface X , satisfying the moment condition (4.1). Then for µB-almost every
point a P LimpΓq, the following properties hold:

(1) there is a unique nef and isotropic class a P H1,1pX;Rq of mass 1 with Ppaq “ a;
(2) the convex set Curpaq is a singleton tTau;
(3) the class a is an extremal point of PpKahpXqq and of PpPsefpXqq;
(4) the current Ta is extremal in the convex set of closed positive currents of mass 1.

Combining this result with Lemma 5.6 and Equation (5.9) we obtain the first and second
assertions of the following corollary; the third assertion follows from the first one and the equiv-
ariance relation (5.16).

Corollary 6.13. The following properties are satisfied for νN-almost every ω:

(1) there exists a unique closed positive current T sω in the cohomology class epωq;
(2) for every Kähler form κ,

1

M ppfnω q
˚κq

pfnω q
˚κ ÝÑ

nÑ8
T sω.

(3) the currents T sω satisfy the equivariance property

pfωq
˚T sσpωq “

Mppfωq
˚T sσpωqq

MpT sωq
T sω “Mppfωq

˚T sσpωqqT
s
ω.

Proof of Theorem 6.12. The first and third properties were already established, respectively in
Lemma 2.16 and 2.17 and Proposition 5.11. Property (4) follows from (2) and (3). It remains
to prove (2). For this, we denote by f˚ the projective action of f˚ on PH1,1pX;Rq. For
a P LimpΓq, let us set diam paq “ Diampaq, where a is the unique pseudo-effective class of
mass 1 such that Ppaq “ a; this defines a measurable function on LimpΓq, by Lemma 6.5. Our
purpose is to show that diam paq “ 0 for µB-almost every a. The stationarity of µB reads

(6.17)
ż

diam paq dµB paq “

żż

diam
`

f˚ paq
˘

dνpfqdµB paq

and iteratingthis relation gives

(6.18)
ż

diam paq dµB paq “

ż

diam
´

f˚
n
¨ ¨ ¨ f˚

1
paq

¯

dνpf1q ¨ ¨ ¨ dνpfnqdµB paq

(notice the order of compositions chosen here). Since the diameter is upper-semicontinuous it is
uniformly bounded on LimpΓq. So, if we prove that

(6.19) lim
nÑ`8

diam
`

f˚
n
¨ ¨ ¨ f˚

1
paq

˘

“ 0
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for νN-almost every pfnq and every a, then we can apply the dominated convergence theorem
to infer that diam paq “ 0 µB-almost surely. To derive the convergence (6.19), note that

(6.20) diam
´

f˚
n
¨ ¨ ¨ f˚

1
paq

¯

“
Diam pf˚n ¨ ¨ ¨ f

˚
1 aq

M pf˚n ¨ ¨ ¨ f
˚
1 aq

because Diam is homogeneous. Applying Lemma 6.9 and the multiplicativity of the Jacobian
we get that

(6.21) diam
´

f˚
n
¨ ¨ ¨ f˚

1
paq

¯

ď
C log

`

C
›

›Jacpf1 ˝ ¨ ¨ ¨ ˝ fnq
´1
›

›

8

˘

M pf˚n ¨ ¨ ¨ f
˚
1 aq

ď C

řn´1
i“0 log

›

›f´1
i

›

›

C1

Mpf˚n ¨ ¨ ¨ f
˚
1 aq

.

We conclude with two remarks. Firstly, the moment condition (4.1) implies that the sequence
1
n

řn´1
i“0 log

›

›f´1
i

›

›

C1 is almost surely bounded. Secondly, Lemma 5.5 shows that Mpf˚n ¨ ¨ ¨ f
˚
1 aq

goes exponentially fast to infinity for νN-almost every ω “ pfnq (this is where the order of
compositions matters). Thus diam

`

f˚
n
¨ ¨ ¨ f˚

1
paq

˘

Ñ 0 almost surely, and we are done. �

Remark 6.14. The uniqueness of Ta in its cohomology class implies that Ta depends measur-
ably on a. Indeed there is a set E Ă LimpΓq of full measure along which the map a ÞÑ Ta is
continuous (recall that the space Cur1pXq of positive closed currents of mass 1 on X is a com-
pact metrizable space). This implies that a ÞÑ Ta is a measurable map from LimpΓq, endowed
with the µB-completion of the Borel σ-algebra, to Cur1pXq, endowed with its Borel σ-algebra.

6.4. Continuous potentials. We now study the limit currents T sω introduced in Corollary 6.13.

Theorem 6.15. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surface X , satisfying the moment condition (4.1). Then for νN-a.e. ω the
current T sω has continuous potentials.

Lemma 6.16. Let κ be any Kähler form onX . For νN-almost every ω, there exists an increasing
sequence of integers pniqiě0 “ pnipωqq such that

(1) the potentials Mppfniω q
˚κq´1u

pf
ni
ω q

˚
κ

are uniformly bounded;

(2) the potentials Mppfniω q
˚κq´1u

pf
ni
ω q˚κ

are uniformly bounded too.

If the exponential moment condition (5.26) holds, these assertions hold for all n (i.e. extracting a
subsequence pniq is not necessary); in addition the function ω ÞÑ log`

›

›uT sω
›

›

8
is νN-integrable.

Proof of the Lemma. Recall the notation ω “ pfnqně0. First,

f˚n´1κ “ f˚n´1Θpκq ` ddc puκ˝fn´1q(6.22)

“ Θpf˚n´1κq ` dd
c
´

uf˚n´1Θpκq ` uκ˝fn´1

¯

(For the moment, we do not introduce the constants Epfn;κq in the computation). We obtain

f˚n´2f
˚
n´1κ “ f˚n´2Θpf˚n´1κq ` dd

c
´

uf˚n´1Θpκq˝fn´2 ` uκ˝pfn´1˝fn´2q

¯

“ Θpf˚n´2f
˚
n´1κq ` dd

c
´

uf˚n´2Θpf˚n´1κq
` uf˚n´1Θpκq˝fn´2 ` uκ˝pfn´1˝fn´2q

¯

.
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Setting Gj,k “ fk´1˝ ¨ ¨ ¨ ˝fj , for j ď k ´ 1, (so in particular G0,j “ f jω for all j ě 1) and
Gj,j “ idX , we get

pfnω q
˚κ “ Θppfnω q

˚κq ` ddc

˜

uκ˝f
n
ω `

n´1
ÿ

j“0

uf˚j ΘpG˚j`1,nκq
˝G0,j

¸

.(6.23)

Let un denote the function in the parenthesis. We want to estimate the sup-norm }un}8. Lemma
6.10 and Corollary 6.11 provide successively the following upper bounds

›

›

›
uf˚j ΘpG˚j`1,nκq

›

›

›

8
ď C}fj}

2
C1MpG

˚
j`1,nκq ď CMpκq}fj}

2
C1

›

›G˚j`1,n

›

›,(6.24)

(6.25)
›

›

›

›

1

Mppfnω q
˚κq

un

›

›

›

›

8

ď
}uκ}8

Mppfnω q
˚κq

` CMpκq
n´1
ÿ

j“0

}fj}
2
C1

›

›

›
G˚j`1,n

›

›

›

Mppfnω q
˚κq

.

To estimate this sum we apply Theorem 5.12 to the subadditive cocycle Npn, ωq “ log }pfnω q
˚},

as we did for Corollary 5.13: there exists a sequence pδjq of positive numbers converging to 0,
an increasing sequence ni “ nipωq of integers, and a constant C 1pωq such that

(6.26)

›

›G˚j`1,ni

›

›

Mppfniω q˚κq
—

›

›f˚j`1 ¨ ¨ ¨ f
˚
ni´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
ni´1

›

›

ď C 1 expp´pλ1 ´ δjqjq

for all i ě 1 and all 0 ď j ď ni. Fix any real number εwith 0 ă ε ă λ1. Then from Lemma 4.3,
we know that, for almost every ω, there is a constant C2pωq such that }fj}

2
C1 ď C2 exppεjq. So

from (6.25) we get

(6.27)
›

›

›

›

1

Mppfniω q˚κq
uni

›

›

›

›

8

ď
}uκ}8

Mppfniω q˚κq
` C3pωqMpκq

ni´1
ÿ

j“0

expp´pλ1 ´ ε´ δpjqqjq

This inequality shows that
›

›Mppfniω q
˚κq´1uni

›

›

8
is uniformly bounded.

Now, note that upfnω q˚κ “ un ` En with En “ ´
ş

unvol. Since
›

›Mppfniω q
˚κq´1uni

›

›

8
is

uniformly bounded, so is Mppfniω q
˚κq´1Eni , and the first assertion of the lemma is established.

The second assertion is proved exactly in the same way, except that the expressions of the
form f˚j ΘpG˚j`1,nκq must be replaced by pf´1

n´jq
˚Θppf´1

0 ˝¨ ¨ ¨˝f´1
n´j´1q

˚κq; then we use the
second estimate in Corollary 5.13, and the fact that for every f P AutpXq, }f˚} —

›

›pf´1q˚
›

›.
If the exponential moment condition (5.26) holds, we follow the same argument and apply

Proposition 5.15 – instead of Theorem 5.12 – to (6.25), with Dpfq “ }f}2C1 . �

Proof of Theorem 6.15. First, we prove that the normalized potential uT sω is bounded, for νN-
almost every ω. To see this, recall that Mppfnω q

˚κq´1pfnω q
˚κ converges to T sω as n Ñ 8.

From Lemma 6.16, we know that the normalized potentials Mppfnω q
˚κq´1upfnω q

˚κ of the cur-
rents Mppfnω q

˚κq´1 pfnω q
˚ κ are uniformly bounded along some subsequence ni “ nipωq. These

potentials are Aκ0-psh functions on X so, by compactness, they converge to uT sω in L1pX; volq.
Thus, uT sω is essentially bounded. We conclude that uT sω is bounded because quasi-plurisubhar-
monic functions are use and have a value (in RY t´8u) at every point.
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Now, we show that uT sω is continuous. Here, the argument is similar to the one used to prove
Theorem 6.12. If T is a positive closed current with bounded potential on X , we define

(6.28) JumppT q “ max
xPX

ˆ

lim sup
yÑx

uT pyq ´ lim inf
yÑx

uT pyq

˙

.

Then 0 ď JumppT q ď 2}uT }8, and JumppT q “ 0 if and only if uT is continuous. In addition
Jumppf˚T q “ JumppT q for every f P AutpXq because f˚T “ Θpf˚aq`ddcpuf˚Θpaq`uT ˝
fq and uf˚ΘprT sq is continuous (see Equation (6.10)). From the equivariance relation

(6.29) T sω “
1

M
`

pfnω q
˚ T sσnω

˘T sσnω,

which follows from the third assertion of Corollary 6.13, we get

(6.30) Jump pT sωq “
1

M
`

pfnω q
˚ T sσnω

˘Jump pT sσnωq .

Remark 6.14 says that ω ÞÑ T sω is measurable; hence, ω ÞÑ uT sω is measurable. If C is large
enough, the first step of the proof gives a subset ΩC Ă Ω such that νpΩCq ą 0 and

›

›uT sω
›

›

8
ď C

for all ω P ΩC . By ergodicity of the shift, σnω P ΩC for almost every ω and infinitely many n;
for such an n,

›

›uT sσnω

›

›

8
ď C and Jump pT sσnωq ď 2C. By Lemma 5.14, M

`

pfnω q
˚ T sσnω

˘

goes
to infinity almost surely. So, Jump pT sωq “ 0, and the proof is complete. �

Theorem 6.17. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surfaceX , satisfying the exponential moment condition (5.26). Then there exists
θ ą 0 such that for νN-almost every ω the potential uT sω is Hölder continuous of exponent θ.

The proof is a variation on the following well-known fact, applied to u “ uT sω : let un be a
sequence of continuous functions converging uniformly to u : M Ñ R on some metric space
M . If }un ´ u}8 ď An and Lippunq ď Bn with A ă 1 ă B, then u is a Hölder continuous
function for the exponent α “ ´ logpAq{plogpBq ´ logpAqq.

Proof. The initial computations are similar (but not identical) to those used to reach Lemma 6.16.
Keeping the notation Gj,n “ fn´1 ˝ ¨ ¨ ¨ ˝ fj , a descending induction starting from

(6.31) f˚n´1T
s
σnω “ Θpf˚n´1T

s
σnωq ` dd

c
´

uf˚n´1ΘpT sσωq
` uT sσnω ˝ fn´1

¯

yields

pfnω q
˚T sσnω “ Θ ppfnω q

˚T sσnωq ` dd
c

˜

n´1
ÿ

j“0

uf˚j ΘpG˚j`1,nT
s
σnωq

˝ f jω ` uT sσnω ˝ f
n
ω

¸

.(6.32)

Thus, there is a constant of normalization E “ Epω;nq such that

(6.33) uT sω “
1

Mppfnω q
˚pT sσnωqq

˜

n´1
ÿ

j“0

uf˚j ΘpG˚j`1,nT
s
σnωq

˝ f jω ` uT sσnω ˝ f
n
ω

¸

` E.

Note that the additional termE does not affect the modulus of continuity of uT sω . Since Lippfjq ď

}fj}C1 for all j, Lemma 6.10 and Corollary 6.11 imply Lippuf˚j Θpaqq ď C}fj}
2
C1Mpaq for every
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class a P PsefpXq; hence

Lip
´

uf˚j ΘpG˚j`1,nT
s
σnωq

¯

ď C}fj}
2
C1MpG

˚
j`1,nT

s
σnωq ď C}fj}

2
C1

›

›G˚j`1,n

›

›(6.34)

ď C}fj}
2
C1

n´1
ź

`“j`1

}f˚` }H1,1 ď C
n´1
ź

`“j

}f`}
2
C1 .(6.35)

Finally, since 1 ď Lippfjq for every 0 ď j ď n´ 1, we obtain

Lip
´

uf˚j ΘpG˚j`1,nT
s
σnωq

˝ f jω

¯

ď Lip
´

uf˚j ΘpG˚j`1,nT
s
σnωq

¯

j´1
ź

`“0

Lippf`q ď C
n´1
ź

`“0

}f`}
2
C1 .(6.36)

Denoting the modulus of continuity by modcpu, rq “ supdpx,x1qďr |upxq ´ upx
1q|, we infer from

Equation (6.33) that

(6.37) modcpuT sω , rq ď
1

M ppfnω q
˚pT sσnωqq

˜

Cn
n´1
ź

`“0

}f`}
2
C1 ¨ r `

›

›uT sσnω

›

›

8

¸

.

To ease notation set λ “ λH1,1 . Fix a small ε ą 0. By Lemma 5.14, for almost every ω there
exists C “ Cεpωq such that M ppfnω q

˚pT sσnωqq
´1
ď Ce´npλ´εq for every n. Fix M larger than

but close to exp pE plog }f}C1qq. Applied to the νN-integrable function ω “ pfnq ÞÑ log }f0}C1 ,
the Birkhoff ergodic theorem gives

(6.38)
n´1
ź

`“0

}f`}
2
C1 ď CMn as well as n

n´1
ź

`“0

}f`}
2
C1 ď CMn

for some C “ CM pωq (increase M to deduce the second inequality from the first). Thus,

(6.39) modcpuT sω , rq ď C1e
´npλ´εq

´

Mnr `
›

›uT sσnω

›

›

8

¯

for some C1 ą 0. By Lemma 6.16, ω ÞÑ log`
›

›uT sω
›

›

8
is integrable, so for almost every ω there

exists C2 “ Cεpωq such that
›

›uT sσnω

›

›

8
ď C2e

εn holds for all n, and we infer that

(6.40) modcpuT sω , rq ď C3e
´npλ´εqpMnr ` eεnq “ C3e

´npλ´2εq
`

pMe´εqnr ` 1
˘

.

Choosing n so that r — pMe´εq´n we get modcpuT sω , rq ď C4r
θ with θ “ λ´2ε

logM`ε and the
proof of the theorem is complete. �

7. GLOSSARY OF RANDOM DYNAMICS, II

In this section we consider a random holomorphic dynamical system pX, νq on a compact
Kähler surface, satisfying the moment condition (4.1). Our goal is to collect a number of facts
from the ergodic theory of random dynamical systems, including the construction of associ-
ated skew products, fibered entropy and Lyapunov exponents of stationary measures, stable and
unstable manifolds, and various measurable partitions. Here the group Γν may a priori be el-
ementary; also, the compactness assumption on X can be dropped in most of these results (in
this case (4.1) should be strengthened to a C2-moment condition). Since some subsequent ar-
guments rely on the work [24] of Brown and Rodriguez-Hertz, we have tried to make notation
consistent with that paper as much as possible.
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7.1. Skew products and stationary measures associated to pX, νq. Define:

– Ω “ AutpXqN, whose elements are denoted by ω “ pfnqně0. On Ω, the one-sided shift
is denoted by σ : Ω Ñ Ω.

– Σ “ AutpXqZ, whose elements are denoted by ξ “ pfnqnPZ. On Σ, the two-sided shift
is denoted by ϑ : Σ Ñ Σ.

– X “ Σ ˆ X and X` “ Ω ˆ X , whose elements are denoted by x “ pξ, xq and
x “ pω, xq respectively. The natural projections are denoted by πΣ : X Ñ Σ (resp.
πΩ : X` Ñ Ω) and πX : X Ñ X (resp. πX : X` Ñ X , using the same notation).

Recall that the product σ-algebra on Ω (resp. Σ) is generated by cylinders (3), and that it
coincides with the Borel σ-algebra BpΩq (resp. BpΣq) (see [17, Lem. 6.4.2]).

7.1.1. Skew products. For ω P Ω and n ě 1, fnω is the left composition fnω “ fn´1 ˝ ¨ ¨ ¨ ˝ f0; in
particular, f1

ω “ f0 (see § 4.3). For n “ 0, we set f0
ω “ id. This is consistent with the notation

used in the previous sections. The same notation fnξ is used for ξ P Σ and n ě 0. When n ă 0,
we set fnξ “ pfnq

´1˝¨ ¨ ¨˝pf´1q
´1. With this definition the cocycle formula fn`mξ “ fnϑmξ ˝f

m
ξ

holds for all pm,nq P Z2 and ξ P Σ. By definition, the skew products induced by the random
dynamical system pX, νq are the transformations F` : X` Ñ X` and F : X Ñ X defined by

F` : pω, xq ÞÝÑ pσω, f1
ωpxqq(7.1)

F : pξ, xq ÞÝÑ pϑξ, f1
ξ pxqq.(7.2)

If $ : X Ñ X` denotes the natural projection, then $ ˝ F “ F` ˝$. Note that F is invertible,
with F´1px q “ pϑ´1ξ, f´1

θ´1ξ
pxqq, but F` is not; indeed pX , F q is the natural extension of

pX`, F`q.

Lemma 7.1. The measure µ on X is stationary if and only if the product measure

m` :“ νN ˆ µ

on X` is invariant under F`.

Proof of Lemma 7.1. The invariance of m` is equivalent to the equality

(7.3) m`pF
´1
` pC ˆAqq “ m`pC ˆAq “

˜

N
ź

j“0

νpCjq

¸

¨ µpAq,

for all cylinders C “ C0 ˆ ¨ ¨ ¨ ˆ CN in Ω and Borel sets A Ă X . By definition

(7.4) F´1
` pC ˆAq “ tpω, xq P ΩˆX ; fN P CN´1, . . . , f1 P C0, f0pxq P Au ,

so clearly it is enough to check (7.3) for N “ 1. Now by Fubini’s theorem

pν ˆ µq ptpf0, xq ; f0pxq P Auq “

ż ż

1f´1
0 pAqpxq dνpf0q dµpxq

“

ż ż

µpf´1
0 pAqq dνpf0q(7.5)

and the result follows. �

3Cylinders are products C “
ś

Cj of Borel sets, all of which are equal to AutpXq except finitely many of them.
For simplicity, we denote a cylinder by C “

śN
j“0 Cj if Ck “ AutpXq for |k| ą N .
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A stationary measure is said ergodic if it is an extremal point in the convex set of stationary
measures; hence, µ is ergodic if and only if m` is F`-ergodic. Actually µ is ergodic if and only
if every ν-almost surely invariant measurable subset A Ă X (that is a measurable subset such
that for ν-almost every f , µpA∆f´1pAqq “ 0) has measure µpAq “ 0 or 1. This is by no means
obvious since F`-invariant sets have no reason to be of product type. This statement is part of
the so-called random ergodic theorem (see Propositions 1.8 and 1.9 in [13]).

Proposition 7.2. There exists a unique F -invariant probability measure m on X projecting on
m` under the natural projection X Ñ X`. Moreover,

(1) the measure m is equal to the weak-‹ limit

m “ lim
nÑ8

pFnq›
`

νZ ˆ µ
˘

.

(2) the projections pπΣq˚m and pπXq˚m are respectively equal to νZ and µ;
(3) the equality m “ νZ ˆ µ holds if and only if µ is f -invariant for ν-almost every f ;
(4) pX , F,mq is ergodic if and only if pX`, F`,m`q is.

The existence and uniqueness of m, as well as the characterization of its ergodicity, follow
from the fact that pX , F q is the natural extension of pX`, F`q (see [83, §1.2] for a detailed
explanation).

Proof of (1), (2), (3). Let us prove directely that the limit in (1) does exist, and show that this
limit m satisfies (2) and (3). Since $›

`

νZ ˆ µ
˘

“ νN ˆ µ “ m` and $ ˝ F “ F` ˝$, the
F`-invariance of m` gives $›pFnq›

`

νZ ˆ µ
˘

“ m` for every n P Z. So if we prove that
the limit limnÑ8pF

nq›
`

νZ ˆ µ
˘

exists, then this limit m will be an F -invariant probability
measure projecting on m` under $; hence it will coincide with the invariant measure m.

To prove this convergence, we consider a cylinder C “
śN
j“´N Cj in Σ and a Borel set

A Ă X , and we show that pνZ ˆ µqpF´npC ˆ Aqq stabilizes for n ą N . Arguing as in
Lemma 7.1, we see that the set F´npC ˆ Aq is equal to the set of points x “ pξ, xq satisfying
the constraints pθnξqj P Cj for ´N ď j ď N and x P pfnξ q

´1pAq; for n ą N , these constraints
are independent, and

`

νZ ˆ µ
˘

pF´npC ˆAqq is equal to

νZpθ´npCqq ˆ pνn ˆ µq ptpf0, . . . , fn´1, xq ; fn´1 ˝ ¨ ¨ ¨ ˝ f0pxq P Auq .(7.6)

Then the invariance of νZ under the shift and the the stationarity of µ give (see Equation (7.5))
`

νZ ˆ µ
˘

pF´npC ˆAqq “ νZpCq ˆ

ż

µ
`

f´1
0 ˝ ¨ ¨ ¨ ˝ f´1

n´1A
˘

νpf0q ¨ ¨ ¨ νpfn´1q(7.7)

“ νZpCq ˆ µpAq.

This proves Assertions (1) and (2). For Assertion (3) it will be enough for us to consider the
case where Γ is discrete. By Assertion (1) we see that νZ ˆ µ is F -invariant if and only if
m “ νZ ˆ µ. Now assume m “ νZ ˆ µ and let us show that µ is Γν-invariant. The reverse
implication is similar. Fix f0 P Supppνq and consider the cylinder C “ C0 “ tf0u (in 0th

position). If A Ă X is a Borel subset we have

(7.8)
`

νZ ˆ µ
˘

pF pC ˆAqq “
`

νZ ˆ µ
˘

pC ˆAq “ ν pC0q ˆ µpAq.

On the other hand F pC ˆAq “ ϑpCqˆ f0pAq so the left hand side of (7.8) is equal to ν pC0qˆ

µpf0pAqq. Thus, µpf0pAqq “ µpAq, which proves that µ is Γν-invariant. �
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7.1.2. Past, future, and partitions. Let F denote the σ-algebra on X obtained by taking the m-
completion of BpΣq b BpXq. It will often be important to detect objects depending only on the
“future” or on the “past”. To formalize this, we define two σ-algebras on Σ:

– F̂` is the νZ-completion of the σ-algebra generated by the cylinders C “
śN
j“0Cj .

– F̂´ is the νZ-completion of the σ-algebra generated by the cylinders C “
ś´1
j“´N Cj .

To formulate it differently, we define local stable and unstable sets for the shift ϑ:

(7.9) Σs
locpξq “ tη P Σ ; @i ě 0, ηi “ ξiu and Σu

locpξq “ tη P Σ ; @i ă 0, ηi “ ξiu .

Then a subset of Σ is F̂`-measurable (resp. F̂´ measurable) if, up to a set of zero νZ-measure,
it is Borel and saturated by local stable sets Σs

locpξq (resp. unstable sets Σu
locpξq). The σ-algebra

F` on X will be the m-completion of F̂` b BpXq. An F`-measurable object should be
understood as “depending only on the future”, thus it makes sense on X and on X`. Actually F`
coincides with the completion of the pull-back of BpX`q under $ : X Ñ X`. The σ-algebra
F´ of “objects depending only on the past” is defined analogously. Consider the partition into
the subsets F´px q :“ Σu

locpξq ˆ txu (each of them can be naturally identified to Ω). Then,
modulo m-negligible sets, the elements of F´ are saturated by this partition.

For ξ P Σ we set Xξ “ tξu ˆ X “ π´1
Σ pξq, which can be naturally identified with X via

πX . The disintegration of the probability measure m with respect to the partition into fibers of
πΣ gives rise to a family of conditional probabilities mξ such that m “

ş

mξ dν
Zpξq, because

pπΣq˚m “ νZ.

Lemma 7.3. The conditional measure mξ on Xξ satisfies νZ-almost surely

mξ “ lim
nÑ`8

pf´1 ˝ ¨ ¨ ¨ ˝ f´nq›µ “ lim
nÑ`8

pfnϑ´nξq›µ.

In particular, the family of measures ξ ÞÑ mξ is F´-measurable.

Proof. It follows from the martingale convergence theorem that the limit

(7.10) µ̃ξ :“ lim
nÑ`8

pf´1 ˝ ¨ ¨ ¨ ˝ f´nq›µ

exists almost surely (see e.g. [13, §2.5] or [21, §II.2]). Now Fn maps Xϑ´nξ to Xξ and
Fn|Xϑ´nξ “ f´1 ˝ ¨ ¨ ¨ ˝ f´n, so

(7.11)
`

pFnq›pν
Z ˆ µq

˘

p ¨ |Xξq “ pf´1 ˝ ¨ ¨ ¨ ˝ f´nq›µ.

Identify µ̃ξ with a measure on Xξ. For every continuous function φ on X the dominated conver-
gence theorem gives

`

pFnq›pν
Z ˆ µq

˘

pϕq “

ż

˜

ż

Xξ

ϕpxq dpf´1 ˝ ¨ ¨ ¨ ˝ f´nq›µpxq

¸

dνZpξq(7.12)

ÝÑ
nÑ8

ż

˜

ż

Xξ

ϕpxq dµ̃ξpxq

¸

dνZpξq.(7.13)

But
`

pFnq›pν
Z ˆ µq

˘

pϕq converges to mpϕq, and the marginal of m with respect to the projec-
tion πΣ : X Ñ Σ is νZ, so we get the result. �
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Since ξ ÞÑ mξ is F´-measurable, the conditional measures of m on the atoms F´px q “
Σu

locpξq ˆ txu of the partition generating F´ are induced by the lifts of the conditionals of νZ

on the Σu
locpξq, via the natural projection πΣ : X Ñ Σ. In addition we can simultaneously

identify Σu
locpξq to Ω and νZp ¨ | Σu

locq to νN. In this way we get

(7.14) mp ¨ | F´px qq “ νZp ¨ | Σu
locpξqq ˆ δx » νN

for m-almost every x “ pξ, xq P X . This corresponds to Equation (9) in [24]. By [24, Prop.
4.6], this implies that F` X F´ is equivalent, modulo m-negligible sets, to tH,Σu b BpXq.

7.2. Lyapunov exponents. Let µ be a stationary measure for pX, νq; assume that µ (or equiva-
lently m or m`) is ergodic. The upper and lower Lyapunov exponents λ` ě λ´ are respectively
defined by the almost sure limits

(7.15) λ` “ lim
nÑ8

1

n
log }Dxf

n
ω } and λ´ “ lim

nÑ8

1

n
log

›

›

›
pDxf

n
ω q
´1
›

›

›

´1
;

the existence of these limits is guaranteed by Kingman’s subadditive ergodic theorem, thanks
to the moment condition (4.1), and the convergence also holds on average. Let us now ap-
ply the Oseledets theorem successively to the tangent cocycle defined by the fiber dynamics
pX`, F`,m`q, and then to the cocycle associated to pX , F,mq.

7.2.1. The non-invertible setting. Define the tangent bundles TX` :“ Ω ˆ TX and TX :“
ΣˆTX , and denote by DF and DF` the natural tangent maps, that is Dpξ,xqF : tξuˆTxX Ñ

tϑξu ˆ TfξpxqX is induced by Dxf
1
ξ :

(7.16) Dpξ,xqF pvq “ Dxf
1
ξ pvq p@v P TxXξ “ TxXq

For the non-invertible dynamics on X`, the Oseledets theorem gives: for m`-almost every
pω, xq, there exists a non-trivial complex subspace V ´pω, xq of tωu ˆ TxX such that

@v P V ´pω, xqzt0u, lim
nÑ`8

1

n
log }Dxf

n
ω pvq} “ λ´(7.17)

@v R V ´pω, xq, lim
nÑ`8

1

n
log }Dxf

n
ω pvq} “ λ`.(7.18)

The field of subspaces V ´ is measurable and almost surely invariant. Two cases can occur:
either λ´ ă λ` and V ´pω, xq is almost surely a complex line, or λ´ “ λ` and V ´pω, xq “
tωu ˆ TxX .

7.2.2. The invertible setting. For the dynamical system F : X Ñ X , the statement is:

– if λ´ “ λ` then for m-almost every x “ pξ, xq, for every non-zero v P TxXξ » TxX ,

(7.19) lim
nÑ˘8

1

n
log

›

›Dxf
n
ξ pvq

›

› “ λ´;

– if λ´ ă λ` then for m-almost every x there exists a decomposition TxXξ “ E´pξ, xq‘
E`pξ, xq such that for ‹ P t´,`u and every v P E‹pξ, xqz t0u,

(7.20) lim
nÑ˘8

1

n
log

›

›Dxf
n
ξ pvq

›

› “ λ‹.
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Furthermore the line fields E˘ are measurable and invariant, and log |=pE´, E`q| is
integrable (here, the “angle” =pE´px q, E`px qq is the distance between the two lines
E´px q and E`px q in PpTx X q).

7.2.3. Hyperbolicity. It can happen that λ´ and λ` have the same sign. If λ´ and λ` are both
negative, the conditional measures mξ are atomic: this can be shown by adapting a classical
Pesin-theoretic argument (see e.g. [79, Cor. S.5.2]) to the fibered dynamics of F on X (see [87,
Prop. 2] for a direct proof and an example where the mξ have several atoms). Such random dy-
namical systems are called proximal. For instance, generic random products of automorphisms
of P2pCq, that is of matrices in PGLp3,Cq, are proximal; in such examples the stationary mea-
sure is not invariant. Other examples are given by contracting iterated function systems.

When λ` and λ´ are both non-negative, we have the so-called invariance principle:

Theorem 7.4. Let pX, νq be a random holomorphic dynamical system satisfying the integrability
condition (4.1), and let µ be an ergodic stationary measure. If λ`pµq ě λ´pµq ě 0 then µ is
almost surely invariant.

This result was proven by Crauel, building on ideas of Ledrappier described below in §11.4
(see Theorem 5.1, Corollary 5.3 and Remark 5.6 in [43], and also Avila-Viana [2, Thm B]).

Remark 7.5. If λ´ and λ` are both positive then µ is atomic. Indeed, since µ is almost surely
invariant we get m “ νZ ˆ µ. Reversing time, the Lyapunov exponents of m become negative,
so as explained above the measures mξ are atomic. By invariance mξ “ µ, so µ is atomic too.

By definition, µ is hyperbolic if λ´ ă 0 ă λ`. In this case we rather use the conventional
superscripts s{u instead of ´{` for stable and unstable objects. We also have Es “ V s in this
case (and more generally when λ´ ă λ`); so, it follows that the complex line field Es on TX
is F`-measurable. Conversely the unstable line field Eu is F´-measurable.

7.3. Invariant volume forms. Let us start with a well-known result.

Lemma 7.6. Let pX, νq be a random holomorphic dynamical system satisfying the integrability
condition (4.1), and µ be an ergodic stationary probability measure. Then

λ´ ` λ` “

ż

log |Jac fpxq| dµpxqdνpfq,

where Jac denotes the Jacobian determinant relative to any smooth volume form on X .

We omit the proof, since this result is a corollary of Proposition 7.8 below. When X is an
Abelian, or K3, or Enriques surface, Remark 3.17 provides an AutpXq-invariant volume form
on X . Thus, we obtain:

Corollary 7.7. Assume that X is an Abelian, or K3, or Enriques surface. Let ν be a probability
measure on AutpXq satisfying the integrability condition (4.1), and µ be an ergodic ν-stationary
measure. Then λ´ ` λ` “ 0.

Let η be a non-trivial meromorphic 2-form on the surface X . There is a cocycle Jacη, with
values in the multiplicative group MpXqˆ of non-zero meromorphic functions, such that

(7.21) f˚η “ Jacηpfqη
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for every f P AutpXq. We say that η is almost invariant if |Jacηpfqpxq| “ 1 for every x P X
and ν-almost every f P AutpXq (in particular Jacηpfq is a constant). We refer to §3.4 for
examples with an invariant meromorphic 2-form.

Proposition 7.8. Let pX, νq be a random holomorphic dynamical system satisfying the integra-
bility condition (4.1), and µ be an ergodic stationary measure. Let η be a non-trivial meromor-
phic 2-form on X such that

(i)
ż

log` | Jacηpfqpxq|dµpxqdνpfq ă `8;

(ii) µ gives zero mass to the set of zeroes and poles of η.

Then
λ´ ` λ` “

ż

logp|Jacη fpxq|
2
qdµpxqdνpfq;

in particular λ´ ` λ` “ 0 if η is almost invariant.

Proof. Fix a trivialization of the tangent bundle TX , given by a measurable family of linear
isomorphisms Lpxq : TxX Ñ C2 such that (a) detpLpxqq “ 1 and (b) 1{C ď }Lpxq} `
›

›Lpxq´1
›

› ď C, for some constant C ą 1; here, the determinant is relative to the volume
form vol on X and the standard volume form dz1 ^ dz2 on C2, and the norm is with respect
to the Kähler metric pκ0qx on TxX and the standard euclidean metric on C2. For pξ, xq P X
and n ě 0, the differential Dxf

n
ξ is expressed in this trivialization as a matrix Apnqpξ, xq “

Lpfnξ pxqq ˝ Dxf
n
ξ ˝ Lpxq

´1. Let χ´n pξ, xq ď χ`n pξ, xq be the singular values of Apnqpξ, xq.
Then m-almost surely, 1

n logχ˘n pξ, xq Ñ λ˘ as nÑ `8.
The form η^η can be written η^η “ ϕpxqvol for some function ϕ : X Ñ r0,`8s. Locally,

one can write η “ hpxqdx1 ^ dx2 where px1, x2q are local holomorphic coordinates and h is
a meromorphic function; then ϕpxqvol “ |hpxq|2 dx1 ^ dx2 ^ dx1 ^ dx2. The jacobian Jacη
satisfies

(7.22) | Jacηpfqpxq|
2 “

ϕpfpxqq

ϕpxq
Jacvolpfqpxq

for every f P AutpXq and x P X . Using detpLpxqq “ 1, we get

(7.23) detpApnqpξ, xqq “ Jacvolpf
n
ξ qpxq,

and then

(7.24)
1

n
logχ´n pξ, xq `

1

n
logχ`n pξ, xq “

2

n
log

ˇ

ˇJacη f
n
ξ pxq

ˇ

ˇ´
1

n
logpϕpfnξ pxqq{ϕpxqq.

By the Oseledets theorem, the left hand side of (7.24) converges almost surely to λ´`λ`. Since
the Jacobian Jacη is multiplicative along orbits, i.e. Jacη f

n
ξ pxq “

śn´1
k“0 Jacη fϑkξpf

k
ξ xq, the

integrability condition and the ergodic theorem imply that, almost surely,

lim
nÑ8

1

n
log

ˇ

ˇJacη f
n
ξ pxq

ˇ

ˇ “

ż

log
ˇ

ˇJacη f
1
ξ pxq

ˇ

ˇ dmpξ, xq(7.25)

“

ż

log
ˇ

ˇJacη f
1
ωpxq

ˇ

ˇ dm`pω, xq

“

ż

log |Jacη fpxq| dµpxqdνpfq.
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Let divpηq be the set of zeroes and poles of η. Since µ is ergodic and does not charge divpηq, we
deduce that for m-almost every pξ, xq, there is a sequence pnjq such that fnjξ pxq stays at positive
distance from divpηq; along such a sequence, log |ϕpf

nj
ξ pxqq{ϕpxq| stays bounded, and the right

hand side of (7.24) tends to 2
ş

log |Jacη fpxq| dµpxqdνpfq. This concludes the proof. �

7.4. Intermezzo: local complex geometry. Recall thatX is endowed with a Riemannian struc-
ture, hence a distance, induced by the Kähler metric κ0. For x P X , we denote by eucx the
translation-invariant Hermitian metric on TxX (which is considered here as a manifold in its
own right) associated to the Riemannian structure induced by pκ0qx. Given any orthonormal
basis pe1, e2q of TxX for this metric, we obtain a linear isometric isomorphism from TxX to
C2, endowed respectively with eucx and the standard euclidean metric; we shall implicitly use
such identifications in what follows.

We denote by Dpz; rq the disk of radius r around z in C, and set Dprq “ Dp0; rq.

7.4.1. Hausdorff andC1-convergence. LetU Ă C be a domain. If γ : U Ñ X is a holomorphic
curve, we can lift it canonically to a curve γp1q : U Ñ TX by setting γp1qpzq “ pγpzq, γ1pzqq P
TγpzqX , where γ1pzq denotes the velocity of γ at z. The Riemannian metric κ0 induces a Rie-
mannian metric and therefore a distance distTX on TX . We say that two parametrized curves
γ1 and γ2 are δ-close in the C1-topology if distTXpγ

p1q
1 pzq, γ

p1q
2 pzqq ď δ uniformly on U . This

implies that γ1pUq and γ2pUq are δ-close in the Hausdorff sense, but the converse does not hold
(take U “ Dp1q, γ1pzq “ pz, 0q, and γ2pzq “ pz

k, εz`q with k and ` large while ε is small).

7.4.2. Good charts. Let R0 be the injectivity radius of κ0. We fix once and for all a family of
charts Φx : Ux Ă TxX Ñ X with the following properties (for some constant C0):

(i) Φxp0q “ x and pDΦxq0 “ idTxX ;
(ii) Φx is a holomorphic diffeomorphism from its domain of definition Ux to an open subset

Vx contained in the ball of radius R0 around x;
(iii) on Ux, the Riemannian metrics eucx and Φ˚x satisfy C´1

0 ď eucx{Φ˚x κ0 ď C0;
(iv) the family of maps Φx depends continuously on x.

With r0 ď R0{p
?

2C0q, we can add:

(v) for every orthonormal basis pe1, e2q of TxX , the bidisk Dpr0qe1 `Dpr0qe2 is contained in
Ux; in particular, the ball of radius r0 centered at the origin for eucx is contained in Ux.

To make assertion (iv) more precise, fix a continuous family of orthonormal basis pe1pxq, e2pxqq
on some open set V of X: Assertion (iv) means that, if we compose Φx with the linear isomor-
phism pz1, z2q P C2 ÞÑ z1e1pxq ` z2e2pxq P TxX we obtain a continuous family of maps. If
needed, we can also add the following property (see [72, pp. 107-109]):

(iii’) eucx osculates Φ˚x κ0 up to order 2 at x.

7.4.3. Families of disks. A holomorphic disk ∆ Ă X containing x is said to be a disk of size
(at least) r at x (resp. of size exactly r at x), for some r ă r0, if there is an orthonormal basis
pe1, e2q of TxX such that Φ´1

x p∆q contains (resp. is) the graph tze1 ` ϕpzqe2 ; z P Dprqu for
some holomorphic map ϕ : Dprq Ñ Dprq. By the Koebe distortion theorem if ∆ has size r at
x, then its geometric characteristics around x at scale smaller than r{2, say, are comparable to
that of a flat disk. An alternative definition for the concept of disks of size ě r could be that
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∆ contains the image of an injective holomorphic map γ : Dprq Ñ X such that γpBDprqq Ă
XzBXpx; rq and }γ1} ď D, for some fixed constant D. Then, if ∆ contains a disk of size r for
one of these definitions, it contains a disk of size ε0r for the other definition, for some uniform
ε0 ą 0; in particular, there is a constant C depending only on pX,κ0q such that a disk of size r
at x contains an embedded submanifold of BXpx;Crq.

Let pxnq be a sequence converging to x inX , and let r be smaller than the radius r0 introduced
in Assertion (v), § 7.4.2. Let ∆n be a family of disks of size at least r at xn and ∆ be a disk of
size at least r at x. We say that ∆n converges towards ∆ as a sequence of disks of size r, if
there is an orthonormal basis pe1, e2q of TxX for eucx such that

(i) Φ´1
x p∆q contains the graph tze1 ` ϕpzqe2; z P Dprqu for some holomorphic function

ϕ : Dprq Ñ Dprq;
(ii) for every s ă r, if n is large enough, the disk Φ´1

x p∆nq contains the graph tze1 `

ϕnpzqe2; z P Dpsqu of a holomorphic function ϕn : Dpsq Ñ Dprq;
(iii) for every ε ą 0, we have |ϕpzq ´ ϕnpzq| ă ε on Dpsq if n is large enough.

By the Cauchy estimates, the convergence then holds in theC1-topology (see § 7.4.1). It follows
from the usual compactness criteria for holomorphic functions that the space of disks of size r
on X is compact (for the topology induced by the Hausdorff topology in X). Likewise, if a
sequence of disks of size r converges in the Hausdorff sense, then it also converges in the C1

sense, at least as disks of size s ă r, because two holomorphic functions ϕ and ψ from Dprq to
Dprq whose graphs are ε-close are also εpr ´ sq´1-close in the C1-topology.

It may also be the case that the ∆n are contained in different fibers Xξn of X . By definition,
we say that the sequence ∆n converges to ∆ Ă Xξ if ξn converges to ξ and the projections of
∆n converge to ∆ in X .

7.4.4. Entire curves. An entire curve in X is, by definition, a holomorphic map ψ : C Ñ X .
The curve is immersed if its velocity ψ1 does not vanish. Our main examples of immersed
curves will, in fact, be injective and immersed entire curves. If ψ1 and ψ2 are two immersed
entire curves with the same image, there exists a holomorphic diffeomorphism of C, i.e. a non-
constant affine map A : z ÞÑ az ` b, such that ψ2 “ ψ1 ˝ A. If ψ is an immersed entire curve
and |ψ1| ě η on Dpz0, sq, its image contains a disk of size Cs at ψpz0q, for some C ą 0 that
depends only on η and κ0.

7.5. Stable and unstable manifolds. By Lemma 4.1, Condition (4.1) implies similar moment
conditions for higher derivatives, so Pesin’s theory applies. The following proposition summa-
rizes the main properties of Pesin local stable and unstable manifolds. Recall that a function h
is ε-slowly varying, relatively to some dynamical system g, if e´ε ď hpgpxqq{hpxq ď eε for
every x. We view the stable manifold of x “ pξ, xq as contained in Xξ; it can also be viewed
as a subset of X: whether we consider one or the other point of view should be clear from the
context. If x “ pξ, xq and y “ pξ, yq are points of the same fiber Xξ, we denote by distXpx , y q
the Riemannian distance between x and y computed in X .

Proposition 7.9. Let pX, νq be a random holomorphic dynamical system, and µ be an er-
godic and hyperbolic stationary measure. Then, for every δ ą 0, there exists measurable
positive δ-slowly varying functions r and C on X (depending on δ) and, for m-almost every
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x “ pξ, xq P X , local stable and unstable manifolds W s
rpx qpx q and W u

rpx qpx q in Xξ such that
m-almost surely:

(1) W s
rpx qpx q and W u

rpx qpx q are holomorphic disks of size at least 2rpx q at x respectively tan-
gent to Espx q and Eupx q;

(2) for every y PW s
rpx qpx q and every n ě 0,

distXpF
npx q, Fnpy qq ď Cpx q expppλs ` δqnq;

likewise for every y PW u
rpx qpx q and every n ě 0

distXpF
´npx q, F´npy qq ď Cpx q expp´pλu ´ δqnq;

(3) F pW s
rpx qpx qq ĂW s

rpF px qqpF px qq and F´1pW u
rpF px qqpF px qqq ĂW u

r px q.

By Lusin’s theorem, for every ε ą 0 we can select a compact subset Rε Ă X with mpRεq ą

0 on which rpx q and Cpx q can be replaced by uniform constants (respectively denoted by r and
C) and the following additional property holds:

(4) on Rε the local stable and unstable manifolds W s{u
r px q vary continuously for the C1-

topology (in the sense of § 7.4.1 and 7.4.3).

The subsets Rε are usually called Pesin sets, or regular sets. We also denote the local stable or
unstable manifolds by W s{u

loc px q, or by W s{u
r px q when x is in a Pesin set on which rp¨q ě r. On

several occasions we will have to deal with measurability issues for W s{u
loc px q as a function of x :

this will be done by exhausting Rε by Pesin sets and using their continuity on Rε.
The global stable and unstable manifolds of x are respectively defined by the following in-

creasing unions:

(7.26) W spx q “
ď

ně0

F´n
´

W s
rpx qpF

npx qq
¯

and W upx q “
ď

ně0

Fn
´

W u
rpx qpF

´npx qq
¯

.

In particular, they are injectively immersed holomorphic curves in Xξ. Pesin theory shows that:

W spx q “
"

pξ, yq P Xξ ; lim sup
nÑ8

1

n
log distXpF

npξ, yq, Fnpξ, xqq ă 0

*

(7.27)

W upx q “
"

pξ, yq P Xξ ; lim sup
nÑ´8

1

|n|
log distXpF

npξ, yq, Fnpξ, xqq ă 0

*

.(7.28)

Proposition 7.10. Under the assumptions of Proposition 7.9, W spx q and W upx q are biholo-
morphic to C for m-almost every x .

More precisely, W spx q is parametrized by an injectively immersed entire curve ψsx : CÑ X
such that ψsx p0q “ x and this parametrization is unique, up to an homothety z ÞÑ az of C.
Likewise, W spx q is parametrized by such an entire curve ψux .

Proof. By (7.26) and Proposition 7.9.(3), W spx q is an increasing union of disks and is there-
fore a Riemann surface homeomorphic to R2; so, it is biholomorphic to C or D. Let A Ă X
be a set of positive measure on which r ě r0 and C ď C0. By Proposition 7.9.(2), there
exists n0 P N and m0 ą 0 such that if n ě n0 and if x and Fnpx q belong to A, then
W s
r pF

npξ, xqqz pFnW s
r pξ, xqq is an annulus of modulusě m0. Now for m-almost every x P X
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there is an infinite sequence pkjq such that F kj px q P A and kj`1 ´ kj ą n0. For such an x ,
W spx qzW s

r px q contains an infinite nested sequence of annuli of modulus at least m0, namely
the F´kj`1pW s

r pF
kj`1px qqzF kj`1´kj pW s

r pF
kj px qq. Thus, W spx q is biholomorphic to C. �

If we are only interested in stable manifolds, there is a simplified version of Proposition 7.9
which takes place on X:

Proposition 7.11. Let pX, νq be a random holomorphic dynamical system and µ an ergodic
stationary measure, whose Lyapunov exponents satisfy λ´ ă 0 ď λ`. Then for m`-almost
every pω, xq the stable set

W spω, xq “

"

y P X ; lim sup
nÑ8

1

n
log distXpf

n
ω pyq, f

n
ω pxqq ă 0

*

is an injectively immersed entire curve in X .

Indeed, stable manifolds can be obtained from a purely “one-sided” construction, that is,
by considering only positive iterates (see [94, Chap. III]). This also shows that local stable
manifolds in X are F`-measurable, and may be viewed as living in X`.

7.6. Fibered entropy. Here we recall the definition of the metric fibered entropy of a station-
ary measure µ (see [83, §2.1] or [94, Chap. 0 and I] for more details). If η is a finite measurable
partition of X , its entropy relative to µ is Hµpηq “ ´

ř

CPη µpCq logµpCq. Then, we set

hµpX, ν; ηq “ lim
nÑ8

1

n

ż

Hµ

˜

n´1
ł

k“0

´

fkξ

¯´1
pηq

¸

dνNpξq,(7.29)

hµpX, νq “ sup thµpX, ν; ηq ; η a finite measurable partition of Xu .(7.30)

Actually hµpX, ν; ηq can be interpreted as a conditional (or fibered) entropy for the skew-
products F` on X` and F on X . Indeed, the so-called Abramov-Rokhlin formula holds [18]:

hµpX, νq “ hνNˆµpF`|ηΩq “ hm`pF`q ´ hνNpσq(7.31)

“ hmpF |ηΣq “ hmpF q ´ hνZpϑq,(7.32)

where ηΩ (resp. ηΣ) denotes the partition into fibers of the first projection πΩ : X` Ñ Ω (resp.
πΣ : X Ñ Σ) and in the second and fourth equalities we assume hνNpσq “ hνZpϑq ă 8. The
next result is the fibered version of the Margulis-Ruelle inequality.

Proposition 7.12. Let pX, νq be a random holomorphic dynamical system satisfying the moment
condition (4.1) and µ be an ergodic stationary measure. If hµpX, νq ą 0 then µ is hyperbolic
and minpλu,´λsq ě 1

2hµpX, νq.

Proof. See [3] or [94, Chap. II] for the inequality λu ě 1
2hµpX, νq. For ´λs ě 1

2hµpX, νq, we
use the fact that hmpF |ηΣq “ hmpF

´1|ηΣq (see e.g. [94, I.4.2]) and apply the Margulis-Ruelle
inequality to F´1. Beware that there is a slightly delicate point here: pF´1,mq is not associated
to a random dynamical system in our sense; fortunately, the statement of the Margulis-Ruelle
inequality in [3] (see also [94, Appendix A]) covers this situation. �
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7.7. Unstable conditionals and entropy. Assume µ is ergodic and hyperbolic. By definition,
an unstable Pesin partition ηu on X is a measurable partition of pX ,F , µq with the following
properties:

– η is increasing: F´1ηu refines ηu;
– for m-almost every x , ηupx q is an open subset of W upx q and

(7.33)
ď

ně0

Fn
`

ηupF´npx qq
˘

“W upx q;

– ηu is a generator, i.e.
Ž8
n“0 F

´npηuq coincides m-almost surely with the partition into
points.

Here, as usual, ηupx q denotes the atom of ηu containing x , and F´1ηu is the partition defined
by pF´1ηuqpx q “ F´1pηupF px qqq. The definition of a stable Pesin partition ηs is similar. A
neat proof of the existence of such a partition is given by Ledrappier and Strelcyn in [91], which
easily adapts to the random setting (see [94, §IV.2]).

Lemma 7.13. There exists a stable Pesin partition whose atoms are F`-measurable, that is,
saturated by local stable sets Σs

loc ˆ txu.

Proof. To justify the existence of such a partition, we briefly review the proof of Ledrappier
and Strelcyn [91] and show that it can be rendered F`-measurable. Let E be a set of positive
measure in X such that (a) πXpEq is contained in a ball of radius r0, (b) for every x “ pξ, xq P
E, and every 0 ă r ď 2r0, W spx q contains a disk of size exactly r at x , denoted by ∆spx , rq
and (c) for every 0 ă r ď 2r0, E Q x ÞÑ ∆spx , rq is continuous for the C1 topology. Then for
0 ă r ă r0 we define a measurable partition ηr whose atoms are the ∆spx , rq for x P E as well
as X z

Ť

xPE ∆spx , rq. Since stable manifolds are F`-measurable, we can further require that
for every ξ1 P Σs

locpξq, with x 1 “ pξ1, xq, we have ∆spx 1, rq “ ∆spx , rq. The argument of [91]
shows that for Lebesgue-almost every r P r0, r0s, the partition ηs “

Ž8
n“0 F

´npηrq is a Pesin
stable partition. Thus with x and x 1 as above we infer that

(7.34) ηspx 1q “
č

ně0

F´nηrpF
npx 1qq “

č

ně0

F´nηrpF
npx qq “ ηspx q

where the middle equality comes from the fact that ϑnξ1 P Σs
locpϑ

nξq, and we are done. �

The existence of unstable partitions enables us to give a meaning to the unstable conditionals
of m. Indeed, first observe that if ηu and ζu are two unstable Pesin partitions, then m-almost
surely mp¨|ηuq and mp¨|ζuq coincide up to a multiplicative factor on ηupx q X ζupx q. Further-
more, there exists a sequence of unstable partitions ηun such that for almost every x , if K is a
compact subset ofW upx q for the intrinsic topology (i.e. the topology induced by the biholomor-
phism W upx q » C) then K Ă ηunpx q for sufficiently large n: indeed by (7.33), the sequence of
partitions Fnηu does the job. Hence almost surely the conditional measure of m on W upx q is
well-defined up to scale; we define mu

x by normalizing so that mu
x pη

upx qq “ 1.
The next proposition is known as the (relative) Rokhlin entropy formula, stated here in our

specific context.

Proposition 7.14. Let pX, νq be a random holomorphic dynamical system satisfying the moment
condition (4.1), and µ be an ergodic and hyperbolic stationary measure. Let ηu be an unstable
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Pesin partition. Then

hµpX, νq “ HmpF
´1ηu| ηuq :“

ż

log Jηupx qdmpx q,

where Jηupx q is the “Jacobian” of F relative to ηu, that is

Jηupx q “ m
`

F´1 pηupF px qqq | ηupx q
˘´1

.

Sketch of proof. The argument is based on the following sequence of equalities, in which ηΣ is
the partition into fibers of πΣ, as before:

hµpX, νq “ hmpF |ηΣq “ hmpF
´1|ηΣq

“ hmpF
´1|ηu _ ηΣq(7.35)

:“ Hmpη
u|Fηu _ ηΣq “ Hmpη

u|Fηuq “ HmpF
´1ηu|ηuq

The equalities in the first and last line follow from the general properties of conditional entropy:
see [94, Chap. 0] for a presentation adapted to our context (note that the conditional entropy
would be denoted by hηΣ

m there) or Rokhlin [107] for a thorough treatment. On the other hand
the equality (7.35) is non-trivial. If ηu were of the form

Ž`8
n“0 η, where η is a 2-sided generator

with finite entropy, this equality would follow from the general theory. For a Pesin unstable
partition the result was established for diffeomorphisms in [92, Cor 5.3] and adapted to random
dynamical systems in [94, Cor. VI.7.1]. �

Remark 7.15. It is customary to present the Rokhlin entropy formula using unstable partitions,
mostly because entropy is associated to expansion. Nonetheless, a similar formula holds in the
stable direction:

hµpX, νq “

ż

log Jηspx qdmpx q where Jηspx q “ m
`

F
`

ηspF´1px qq
˘

| ηspx q
˘´1

.

The proof is identical to that of Proposition 7.14, applied to F´1, with however the same caveat
as in Proposition 7.12: pF´1,mq is not associated to a random dynamical system in our sense.
The only non-trivial point is to check that the key equality (7.35) holds in this case. Fortunately,
the main purpose of [4] is to explain how to adapt [94, Chap. VI], hence the equality (7.35), to a
more general notion of “random dynamical system” which covers the case of pF´1,mq (see in
particular the last lines of [4, §5] for a short discussion of the Rokhlin formula).

Corollary 7.16. Under the assumptions of the previous proposition, the following assertions are
equivalent:

(a) hµpX, νq “ 0;
(b) mp¨|ηupx qq “ δx for m-almost every x ;
(c) mp¨|ηupx qq is atomic for m-almost every x .

The same result holds for the stable Pesin partition ηs.

Proof. In view of the definition of Jηu , the entropy vanishes if and only if for m-almost every x ,
mp¨|ηupx qq is carried by a single atom of the finer partitionF´1ηu. Now sinceHmpF

´1ηu| ηuq “
1
nHmpF

´nηu| ηuq, the same is true for F´nηu, and finally since pF´nηuq is generating, we
conclude that (a)ô(b). That (c) implies (a) follows from the same ideas but it is slightly more
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delicate, see [114, §2.1-2.2] for a clear exposition in the case of the iteration a single diffeomor-
phism, which readily adapts to our setting.

The result for the stable Pesin partition ηs follows by changing F to F´1 (see Remark 7.15).
�

A further result is that if the fiber entropy vanishes there is a set of full m-measure which
intersects any global unstable leaf in only one point. This was originally shown for individual
diffeomorphisms in [92, Thm. B].

8. STABLE MANIFOLDS AND LIMIT CURRENTS

Let as before pX, νq be a non-elementary random holomorphic dynamical system on a com-
pact Kähler (hence projective) surface, and assume µ is an ergodic stationary measure admitting
exactly one negative Lyapunov exponent, as in Proposition 7.11. Our purpose in this section is
to relate the stable manifolds W spω, xq to the stable currents T sω constructed in §6. According
to Proposition 7.11, the stable manifolds are parametrized by injective entire curves; the link be-
tween these curves and the stable currents will be given by the well-known Ahlfors-Nevanlinna
construction of positive closed currents associated to entire curves.

8.1. Ahlfors-Nevanlinna currents. We denote by tV u the integration current on a (possibly
non-closed, or singular) curve V . Let φ : C Ñ X be an entire curve. By definition, if α is a
test 2-form, xφ˚ tDp0, tqu , αy “

ş

Dp0,tq φ
˚α, which accounts for possible multiplicities coming

from the lack of injectivity of φ; φ˚ tDp0, tqu “ tφpDp0, tqqu when φ is injective. Set

(8.1) ApRq “

ż

Dp0,Rq
φ˚κ0 and T pRq “

ż R

0
Aptq

dt

t
.

for R ą 0. When φ is an immersion, ApRq is the area of φpDp0, Rqq; in all cases, ApRq is the
mass of φ˚tpDpRqqu.

Proposition 8.1 (see Brunella [25, §1]). If φ : C Ñ X is a non-constant entire curve, there
exist sequences of radii pRnq increasing to infinity such that the sequence of currents

NpRnq “
1

T pRnq

ż Rn

0
φ˚ tDp0, tqu

dt

t

converges to a closed positive current T . If furthermore φpCq is Zariski dense, and T is
such a closed current, the class rT s P H1,1pX,Rq is nef. In particular xrT s | rT sy ě 0 and
xrT s | rCsy ě 0 for every algebraic curve C Ă X .

Such limit currents T will be referred to as Ahlfors-Nevanlinna currents associated to the
entire curve φ : C Ñ X . If φpCq is not Zariski dense then φpCq is a (possibly singular) curve
of genus 0 or 1; if φ is injective, then φpCq is rational.

8.2. Equidistribution of stable manifolds. If µ is hyperbolic, or more generally if it admits
exactly one negative Lyapunov exponent, then, for m`-almost every x “ pω, xq P X`, the stable
manifold W spx q, which is viewed here as a subset of X as in Proposition 7.11, is parametrized
by an injectively immersed entire curve. Then we can relate the Ahlfors-Nevanlinna currents to
the limit currents T sω; here are the three main results that will be proved in this section.
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Theorem 8.2. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surface, satisfying (4.1). Let µ be an ergodic stationary measure such that
λ´pµq ă 0 ď λ`pµq. Then exactly one of the following alternative holds.

(a) For m`-almost every x , the stable manifoldW spx q is not Zariski dense. Then µ is supported
on a Γν-invariant curve Y Ă X and for m`-almost every x , W spx q Ă Y . In addition every
component of Y is a rational curve, and the intersection form is negative definite on the
subspace of H1,1pX;Rq generated by the classes of components of Y .

(b) For m`-almost every x the stable manifoldW spx q is Zariski dense and the only normalized
Ahlfors-Nevanlinna current associated to W spx q is T sω.

Corollary 8.3. Under the assumptions of Theorem 8.2, if in addition µ is hyperbolic and non-
atomic, then the Alternative (b) is equivalent to

(b’) µ is not supported on a Γν-invariant curve.

Corollary 8.4. Under the assumptions of Theorem 8.2, assume furthermore that ν satisfies the
exponential moment condition (5.26). Then in Alternative (b) there exists θ ą 0 such that for
m`-almost every x P X` the Hausdorff dimension of W spx q equals 2` θ.

8.3. Proof of Theorem 8.2 and its corollaries. We work under the assumptions of Theo-
rem 8.2.

Lemma 8.5. If there exists a proper Zariski closed subset of X with positive µ-measure, then:

– either µ is the uniform counting measure on a finite orbit of Γν;
– or µ has no atom and it is supported on a Γν-invariant algebraic curve, which is the

Γν-orbit of an irreducible algebraic curve.

Proof. Consider the real number δ0
maxpµq “ maxxPX µ ptxuq. If δ0

maxpµq ą 0, there is a non-
empty finite set F Ă X for which µ ptxuq “ δ0

maxpµq. By stationarity, F is Γν-invariant, and by
ergodicity µ is the uniform measure on F . Now, assume that µ has no atom. Let δ1

maxpµq be the
maximum of µpDq among all irreducible curves D Ă X . If µpZq ą 0 for some proper Zariski
closed subset Z Ă X , then δ1

maxpµq ą 0. Since two distinct irreducible curves intersect in at
most finitely many points and µ has no atom, there are only finitely many irreducible curves E
such that µpEq “ δ1

maxpµq. To conclude, we argue as in the zero dimensional case. �

If V Ă X is a smooth curve, possibly with boundary, if T is a closed positive p1, 1q-current
on X with a continuous normalized potential uT (as in § 6.1.1), then by definition

(8.2) xT ^ tV u , ϕy “

ż

V
ϕΘT `

ż

V
ϕddcpuT |V q,

for every test function ϕ. Here is the key relation between stable manifolds and limit currents:

Lemma 8.6. For m`-almost every x “ pω, xq, if ∆ is a disk contained in W spx q, then T sω ^
t∆u “ 0.

Proof. With no loss of generality we assume that the boundary of the disk ∆ in W spx q » C is
smooth. We consider points x “ pω, xq P X` which are generic in the following sense: they are
regular from the point of view of Pesin’s theory, and T sω satisfies the conclusions of §6.
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By Pesin’s theory, for every ε ą 0, there is a set Aε Ă N of density larger than 1 ´ ε, such
that for n in Aε, the local stable manifold W s

r pF
n
`px qq is a disk of size r “ rpεq at fnω pxq and

fnω p∆q is a disk contained in an exponentially small neighborhood of fnω pxq. We have

(8.3) MpT sσnω ^ tf
n
ω p∆quq “

ż

W s
r pF

n
`px qq

1fnω p∆qΘT sσnω
`

ż

W s
r pF

n
`px qq

1fnω p∆qdd
cuT sσnω .

Since MpT sσnωq “ 1, Lemma 6.1 shows that ΘT sσnω
is bounded by Aκ0; so the first integral

on the right hand side of (8.3) is bounded by a constant times the area of fnω p∆q, which is
exponentially small. By ergodicity, there exists A1ε Ă Aε of density at least 1 ´ 2ε such that if
n P A1ε, }uT sσnω}8 is bounded by some contant Dε ą 0. For such an n, let χ be a test function
in W s

locpF
n
`px qq such that χ “ 1 in W s

r{2pF
n
`px qq. We write

ż

W s
r pF

n
`px qq

1fnω p∆qdd
cuT sσnω ď

ż

W s
r pF

n
`px qq

χddcuT sσnω

“

ż

W s
r pF

n
`px qq

uT sσnωdd
cχ(8.4)

ď Cprq}χ}C2

›

›uT sσnω

›

›

8

whereCprq bounds the area ofW s
r pF

n
`px qq; this last term is uniformly bounded because n P A1ε.

Thus we conclude that MpT sσnω ^ tf
n
ω p∆quq is bounded along such a subsequence.

On the other hand, the relation pfnω q
˚T sσnω “Mppfnω q

˚T sσnωqT
s
ω gives

(8.5) T sσnpωq ^ tf
n
ω p∆qu “M

´

pfnω q
˚T sσnpωq

¯

pfnω q˚pT
s
ω ^ t∆uq.

The mass Mppfnω q˚pT
s
ω ^ t∆uqq is constant, equal to the mass of the measure T sω ^ t∆u; so

(8.6) M
´

T sσnpωq ^ tf
n
ω p∆qu

¯

“Mppfnω q
˚T sσnpωqqMpT

s
ω ^ t∆uq.

By Lemma 5.14, Mppfnω q
˚T sσnpωqq goes exponentially fast to infinity. Since the left hand side is

bounded, this shows that MpT sω ^ t∆uq “ 0, as desired. �

With Lemma 2.14, the following statement takes care of the first alternative in Theorem 8.2.

Lemma 8.7. If there is a Borel subset A Ă X` of positive measure such that for every x P A,
the stable manifold W spx q is contained in an algebraic curve, then µ is supported on a Γν-
invariant algebraic curve. In addition, for m`-almost every x , W spx q is an irreducible rational
curve of negative self-intersection.

Proof. For x P A, let Dpx q be the Zariski closure of W spx q. Discarding a set of measure zero
if needed, W spx q is biholomorphic to C so Dpx q is a (possibly singular) irreducible rational
curve, and Dpx qzW spx q is reduced to a point. By Lemma 8.6, T sω ^ t∆u “ 0 for every
disk ∆ Ă W spx q. Since T sω has continuous potentials, T sω ^ tDpx qu gives no mass to points
(see e.g. [35, Lem. 10.13] for the singular case). It follows that T sω ^ tDpx qu “ 0, hence
xepωq | rDpx qsy “ 0.

By the Hodge index theorem, either rDpx qs2 ă 0 or rDpx qs is proportional to epωq, however
this latter case would contradict the fact that epωq is νN-almost surely irrational (see Theo-
rem 5.8; one could also use that Curpepωqq is reduced to T sω). Thus, rDpx qs2 ă 0.
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An irreducible curve with negative self-intersection is uniquely determined by its cohomology
class; since NSpX;Zq is countable, there are only countably many irreducible curves pDkqkPN
with negative self intersection. Since W s

locpx q Ă Dk if and only if Dpx q “ Dk, and since
local stable manifolds vary continuously on the Pesin regular set Rε for every ε ą 0, we infer
that tx P A ; Dpx q “ Dku is measurable for every k. Hence there exists an index k such that
m` ptx P A ; rDpx qs “ rDksuq ą 0. Since x belongs to W s

locpx q, Fubini’s theorem implies
that µpDkq ą 0, and Lemma 8.5 shows that µ is supported on the Γν-orbit of Dk.

Finally, this argument shows that the property W s
locpx q Ă

Ť

kPNDk, or equivalently that
W s

locpx q is contained in a rational curve of negative self intersection, is invariant and measurable,
so by ergodicity of m` it is of full measure. The proof is complete. �

We are now ready to conclude the proof of Theorem 8.2. Let A be the set of Pesin regular
points such that W spx q is contained in an algebraic curve. From the proof of Lemma 8.7, x
belongs to A if and only if W s

locpx q is contained in one of the countably many irreducible curves
Dk Ă X of negative self-intersection. This condition determines a countable union of closed
subsets in the Pesin sets Rε, hence A is Borel measurable. By Lemma 8.7, if A has positive
m`-measure then Alternative (a) holds. So, if (a) is not satisfied,W spx q is almost surely Zariski
dense. Pick such a generic x , which further satisfies the conclusion of Lemma 8.6, and let N be
an Ahlfors-Nevanlinna current associated to W spx q. By Proposition 8.1, rN s is a nef class so
rN s2 ě 0. Thus, if we are able to show that xrN s | rT sωsy “ 0, we deduce from the Hodge index
theorem and MpNq “ 1 that rN s “ rT sωs “ epωq, hence N “ T sω by Theorem 6.12. So, it only
remains to prove that xrN s | rT sωsy “ 0, or equivalently

(8.7) N ^ T sω “ 0.

This is intuitively clear because N is an Ahlfors-Nevanlinna current associated to the entire
curve W spx q and T sω ^ t∆u “ 0 for every bounded disk ∆ Ă W spx q. However, there is a
technical difficulty to derive (8.7) from T sω ^ t∆u “ 0, even if W spx q is an increasing union of
such disks ∆.

At least two methods were designed to deal with this situation: the first one uses the geometric
intersection theory of laminar currents (see [8, 56]), and the second one was developed by Dinh
and Sibony in the preprint version of [50] (details are published in [35, §10.4]). Unfortunately
these papers only deal with the case of currents of the form limn

1
ApRnq

φpDp0, Rnqq, instead of
the Ahlfors-Nevanlinna currents introduced in Section 8.1, which were designed to get the nef
property stated in Proposition 8.1. So, we have to explain how to adapt the formalism of [8, 56]
to the Ahlfors-Nevanlinna currents of Proposition 8.1.

Following [59] we say that T is an Ahlfors current if there exists a sequence p∆nq of unions
of smoothly bounded holomorphic disks such that lengthpB∆nq “ o pMp∆nqq and T is the limit
as nÑ 8 of the sequence of normalized integration currents 1

Mp∆nq
t∆nu; here, lengthpB∆nq

is by definition the sum of the lengths of the boundaries of the disks constituting ∆n, lengths
which are computed with respect to the Riemannian metric induced by κ0. We say furthermore
that T is an injective Ahlfors current if the disks constituting ∆n are disjoint or intersect
along subsets with relative non-empty interior. By discretizing the integral defining the currents
NpRnq in Proposition (8.1) we see that any Ahlfors-Nevanlinna current is an injective Ahlfors
current.
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Strongly approximable laminar currents are a class of positive currents introduced in [56]
with geometric properties which are well suited for geometric intersection theory. In a nutshell, a
current T is a strongly approximable laminar current if for every r ą 0, there exists a uniformly
laminar current Tr (non closed in general) made of disks of size r, and such that MpT ´ Trq “
Opr2q. This mass estimate is crucial for the geometric understanding of wedge products of such
currents. Since these notions have been studied in a number of papers, we refer to [8, 56, 30]
for definitions, the basic properties of these currents, and technical details. This presentation in
terms of disks of size r is from [57, §4]. The next lemma is a mild generalization of the methods
of [8, §7], [27, §4.3] and [56, §4]. For completeness we provide the details in Appendix B.

Lemma 8.8. Any injective Ahlfors current T on a projective surface X is a strongly approx-
imable laminar current: if T “ limn

1
Mp∆nq

t∆nu where the disks ∆n have smooth boundaries
and lengthpB∆nq “ o pMp∆nqq, one can construct a family of uniformly laminar currents Tr,
whose constitutive disks are limits of pieces of the ∆n, and such that if S is any closed positive
current with continuous potential on X , then S ^ Tr increases to S ^ T as r decreases to 0.

With this lemma at hand, let us conclude the proof of Theorem 8.2. Since X is projective,
we can apply the previous lemma to any Ahlfors-Nevanlinna current N associated to W spx q. In
this way we get a family of currents Nr such that Nr ^ T sω increases to N ^ T sω as r decreases
to 0. On the other hand, by Lemma 8.6, the intersection of T sω with every disk contained in
W spx q vanishes, so again using the fact that T sω has a continuous potential, we infer that if ∆ is
any disk subordinate to Nr, T sω ^ t∆u “ 0. Hence Nr ^ T sω “ 0 for every r ą 0, and finally
N ^ T sω “ 0, as desired. �

Proof of Corollary 8.3. Since (b’) and (a) are contradictory, (b’) implies (b). Conversely assume
that µ is hyperbolic, non atomic and supported on a Γν-invariant curve C. Since µ has no atom,
it gives full mass to the regular set of C, hence Σˆ T pRegpCqq defines a DF -invariant bundle,
and by the Oseledets theorem the ergodic random dynamical system pC, ν, µq must either have
a positive or a negative Lyapunov exponent. If this exponent were positive then µ would be
atomic, as observed in Section 7.2.3. Hence, the Lyapunov exponent tangent to C is negative
and W spx q is contained in C for m`-almost every x . So (b) implies (b’). �

Proof of Corollary 8.4. Since ν satisfies an exponential moment condition, Theorem 6.17 pro-
vides a θ ą 0 such that uT sω is Hölder continuous of exponent θ for νN-almost every ω. This
implies that T sω gives mass 0 to sets of Hausdorff dimension ă 2 ` θ (see [112, Thm 1.7.3]).
Since for m`-almost every x, SupppT sωq ĂW spx q, we infer that HDim

`

W spx q
˘

ě 2` θ.

To conclude the proof it is enough to show that x ÞÑ HDim
`

W spx q
˘

is constant on a set of
full m`-measure. Indeed, x ÞÑ HDim

`

W spx q
˘

defines an F`-invariant function, defined on
the full measure set R of Pesin regular points. If we show that this function is measurable, then
the result follows by ergodicity. This is a consequence of the following two facts:

(1) the assignment x ÞÑW spx q defines a Borel map from R to the space KpXq of compact
subsets of X;

(2) the function KpXq Q K ÞÑ HDimpKq is Borel (see [97, Thm 2.1]).

In both cases KpXq is endowed with the topology induced by the Hausdorff metric. For the first
point, observe that R is the increasing union of the compact sets Rε so it is Borel; then, on a
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Pesin set Rε, x ÞÑ W s
r px q is continuous, so x ÞÑ F´n

`

W s
r pF

npx qq
˘

is continuous as well.
Since F´n

`

W s
r pF

npx qq
˘

converges to W spx q in the Hausdorff topology, we infer that x ÞÑ

W spx q is a pointwise limit of continuous maps on Rε, hence Borel, and finally x ÞÑ W spx q is
Borel on R, as claimed. �

9. NO INVARIANT LINE FIELDS

As above, let pX, νq be a random holomorphic dynamical system satisfying the moment con-
dition (4.1), and µ be an ergodic hyperbolic stationary measure. From §7.2 and §7.5, the local
stable manifolds and stable Oseledets directions are F`-measurable; so, Espξ, xq is naturally
identified to Espω, xq under the projection pξ, xq P X ÞÑ pω, xq P X`, and the same property
holds for stable manifolds. Then, m`-almost every x P X` has a Pesin stable manifold W spx q
(resp. direction Espx q). Let V px q “ V pω, xq be such a measurable family of objects (stable
manifolds, or stable directions, etc); we say that V px q is non-random if for µ-almost every x,
V pω, xq does not depend on ω, that is, there exists V pxq such that Vωpxq “ V pxq for νN-almost
every ω. If V is not non-random, we say that V depends non-trivially on the itinerary. Since
stable directions depend only on the future, the random versus non-random dichotomy can be
analyzed in X` or in X . Our purpose in this section is to establish the following result.

Theorem 9.1. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surface satisfying the Condition (4.1). Let µ be an ergodic and hyperbolic
stationary measure, not supported on a Γν-invariant curve. Then the following alternative holds:

(a) either the Oseledets stable directions depend non-trivially on the itinerary;
(b) or µ is ν-almost surely invariant and hµpX, νq “ 0.

We shall see that (a) often implies that µ is invariant (see §10). In (b), the almost-sure in-
variance implies that µ is in fact Γν-invariant (see Remark 4.2). It turns out that (a) and (b) are
mutually exclusive. Indeed the main argument of [24] (4) implies that the fiber entropy is posi-
tive if the Oseledets stable directions depend non-trivially on the itinerary (see [24, Rmk 12.3]).
So we get the following:

Corollary 9.2. Let pX, ν, µq be as in Theorem 9.1. If µ is not ν-almost surely invariant, then its
fiber entropy is positive.

To motivate the following pages, let us give a heuristic explanation for the fact that hµpX, νq “
0 when the stable directions are non-random. Fix a stable Pesin partition ηs; according to Corol-
lary 7.16, we have to show that the conditional measures mp¨|ηspx qq are atomic. Since the
stable directions are non-random, the stable manifolds W s

locpξ, xq and W s
locpξ

1, xq are generi-
cally tangent at x. For simplicity, assume that they are tangent for µ-almost all x and for all
pairs pξ, ξ1q, and that W s

locpξ, xq depends continuously on pξ, xq. Take such a generic point x;
if mp¨|ηspξ, xqq is not atomic, there is a sequence of generic points xj P W s

locpξ, xq converging
to x in X » Xξ. Fix ξ1 ‰ ξ. Then by continuity W s

locpξ
1, xjq converges towards W s

locpξ
1, xq, is

disjoint from W s
locpξ

1, xq, and is tangent to W spξ, xq at xj . This contradicts the following local
geometrical result: if C andD are local smooth irreducible curves through the origin in D2, with

4This actually requires checking that the whole proof of [24] can be reproduced in our complex setting: we will
come back to this issue in a forthcoming paper. Since we are just using this remark here in Corollary 9.2 we take the
liberty to anticipate on that research.
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an order of contact equal to k, and if Dn Ă D2 is a sequence of curves such that Dn XD “ H

but Dn converges towards D in D2, then for n sufficiently large, Dn intersects C transversally
in k points.

9.1. Intersection multiplicities. Let us start with some basics on intersection multiplicities for
curves. If V1 and V2 are germs of curves at 0 P C2, with an isolated intersection at 0, the
intersection multiplicity inter0pV1, V2q is, by definition, the number of intersection points of
V1 and V2 ` u in N for small generic u P C2, where N is a neighborhood of 0 such that
V1 X V2 XN “ t0u (see [40, §12]). It is a positive integer, and inter0pV1, V2q “ 1 if and only
if V1 and V2 are transverse at 0. We extend this definition by setting inter0pV1, V2q “ 0 if V1

or V2 does not contain 0 and inter0pV1, V2q “ 8 if 0 is not an isolated point of V1 X V2, that
is locally V1 and V2 share an irreducible component. The intersection multiplicity extends to
analytic cycles (that is, formal integer combinations of analytic curves).

Lemma 9.3. The multiplicity of intersection inter0p¨, ¨q is upper semi-continuous for the Haus-
dorff topology on analytic cycles.

In our situation we will only apply this result to holomorphic disks with multiplicity 1, in
which case the topology is just the usual local Hausdorff topology.

Proof. Assume inter0pV1, V2q “ k and V1,n Ñ V1 (resp. V2,n Ñ V2) as cycles; we have to
show that lim sup inter0pV1,n, V2,nq ď k. If k “ 8 there is nothing to prove. Otherwise, t0u is
isolated in V1 X V2, so we can fix a neighborhood U of 0 such that V1 X V2 X U “ t0u; then,
the result follows from [40, Prop 2 p.141] (stability of proper intersections). �

9.2. Generic intersection multiplicity of stable manifolds. Recall from §7.5 that for m-almost
every x “ pξ, xq P X there exists a local stable manifoldW s

rpx qpx q Ă Xξ » X , depending mea-
surably on x ; we might simply denote it by W s

locpx q.
Let us cover a subset of full measure in X by Pesin subsets Rεn . Take a point x P X ,

and consider the set of points ppξ, xq, pζ, xqq P Rεn ˆ Rεm , for some fixed pair of indices
pn,mq; Lemma 9.3 shows that the intersection multiplicity interx pW

s
locpξ, xq,W

s
locpζ, xqq is an

upper semi-continuous function of ppξ, xq, pζ, xqq on that compact set. Thus, the intersection
multiplicity interx pW

s
locpξ, xq,W

s
locpζ, xqq is a measurable function of pξ, ζq. Recall that

– the σ-algebra F´ on X is generated, modulo m-negligible sets, by the partition into
subsets of the form Σu

locpξq ˆ txu (see § 7.1, Equation (7.9));
– ξ ÞÑ mξ is F´-measurable, i.e mξ “ mζ almost surely when ζ P Σu

locpξq;
– the conditional measures of m with respect to this partition satisfy (see Equation (7.14))

(9.1) mp ¨ | F´px qq “ νZp ¨ | Σu
locpξqq ˆ δx.

The next lemma can be seen as a complex analytic version of [24, Lemma 9.9].

Lemma 9.4. Let k ě 1 be an integer. Exactly one of the following assertions holds:

(a) for m-almost every x “ pξ, xq and for mp ¨ | F´pξ, xqq-almost every η

interx pW
s
locpξ, xq,W

s
locpη, xqq ě k ` 1;

(b) for m-almost every x “ pξ, xq and for mp ¨ | F´pξ, xqq-almost every η

interx pW
s
locpξ, xq,W

s
locpη, xqq ď k.
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Proof. The relation defined on X by pξ, xq »k pη, yq if x “ y and W s
locpξ, xq and W s

locpη, yq
have order of contact at least k ` 1 at x is an equivalence relation which defines a partition
Qk of X . We shall see below that Qk is a measurable partition. Since F : X Ñ X acts by
diffeomorphisms on the fibers X of X , we get that F pQkpx qq “ QkpF px qq for almost every
x P X . Then, the proof of [24, Lemma 9.9] applies verbatim to show that if

(9.2) m
` 

x ; mpQkpx q|F´px qq ą 0
(˘

ą 0,

then

(9.3) m
` 

x ; mpQkpx q|F´px qq “ 1
(˘

“ 1.

This is exactly the desired statement. (This assertion says more than the mere ergodicity of m,
which only implies that m ptx , mpQkpx q|F´px qq ą 0uq “ 1.)

It remains to explain why Qk is a measurable partition. For this, we have to express the atoms
of Qk as the fibers of a measurable map to a Lebesgue space. As for the measurability of the
intersection multiplicity, we consider an exhaustion of X by countably many Pesin sets; then, it
is sufficient to work in restriction to some compact set K Ă X on which local stable manifolds
have uniform size and vary continuously. Taking a finite cover ofX by good charts (see § 7.4.2),
and restricting K again to keep only those local stable manifolds which are graphs over some
fixed direction, we can also assume that πXpKq is contained in the image of a chart Φx0 : Ux0 Ñ

Vx0 Ă X and there is an orthonormal basis pe1, e2q such that for every y P K the local stable
manifold πXpW s

locpy qq is a graph tze1`ψ
s
y pzqe2u in this chart, for some holomorphic function

ψsy on Dprq. Now the map from K to C2 ˆCk defined by

(9.4) x ÞÝÑ
´

Φ´1
x0
pπXpx qq, pψsx q

1p0q, . . . , pψsx q
pkqp0q

¯

is continuous. Since the fibers of this map are precisely the (intersection with K of the) atoms
of Qk, we are done. �

The previous lemma is stated on X because its proof relies on the ergodic properties of F .
However, since stable manifolds depend only on the future, it admits the following more ele-
mentary formulation on X:

Corollary 9.5. Let k ě 1 be an integer. Exactly one of the following assertions holds:

(a) for µ-almost every x P X and pνNq2-almost every pω, ω1q,

interx
`

W s
locpω, xq,W

s
locpω

1, xq
˘

ě k ` 1;

(b) or for µ-almost every x P X and pνNq2-almost every pω, ω1q,

interx
`

W s
locpω, xq,W

s
locpω

1, xq
˘

ď k.

Combined with results from the previous sections, this alternative leads to the existence of a
finite order of contact k0 between generic stable manifolds W s

locpω, xq and W s
locpω

1, xq:

Lemma 9.6. There exists a unique integer k0 ě 1 such that for µ-almost every x P X and
pνNq2-almost every pair pω, ω1q, interx pW

spω, xq,W spω1, xqq “ k0.

Proof. Fix a small ε ą 0 and consider a compact set Rε Ă X` with m`pRεq ě 1 ´ ε, along
which local stable manifolds have size at least rpεq and vary continuously. Since by Theorem 8.2
for m`-a.e. x , the only Nevanlinna current associated to W spx q is T sω, we can further assume
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that this property holds for every x P Rε. Let A Ă X be a subset of full µ-measure on which
the alternative of Corollary 9.5 holds for every k ě 1. In X`, consider the measurable partition
into fibers of the form Ω ˆ txu; it corresponds to the partition F´ in Lemma 9.4. Then, the
associated conditional measures m`p ¨ |Ω ˆ txuq are naturally identified with νN. Fix x P A
such that m`pRε|Ωˆtxuq ą 0. Since pX, νq is non-elementary, Theorems 5.8 and 6.12 provide
pairs pω1, ω2q in pπΩpRεqq

2 for which the currents T sω1
and T sω2

are not cohomologous. By
Theorem 8.2 these currents describe respectively the asymptotic distribution of W spω1, xq and
W spω2, xq so we infer that W spω1, xq ‰ W spω2, xq and by the analytic continuation principle
it follows that W s

locpω1, xq ‰ W s
locpω2, xq. Let k1 ă 8 be the intersection multiplicity of these

manifolds at x. Since the intersection multiplicity is upper semi-continuous, we infer that for
ω1j P Rε close to ωj , j “ 1, 2, interxpW

s
locpω

1
1, xq,W

s
locpω

1
2, xqq ď k1. Thus for k “ k1 we

are in case (b) of the alternative of Corollary 9.5. Applying then Corollary 9.5 successively for
k “ 1, . . . , k1, there is a first integer k0 for which case (b) holds, and since (a) holds for k0 ´ 1,
we conclude that generically interx pW

s
locpω, xq,W

s
locpω

1, xqq “ k0. �

9.3. Transversal perturbations. The key ingredient in the proof of Theorem 9.1 is the follow-
ing basic geometric lemma, which is a quantitative refinement of [8, Lemma 6.4].

Lemma 9.7. Let k be a positive integer. If r and ε are positive real numbers, then there are two
positive real numbers δ “ δpk, r, cq and α “ αpk, r, cq with the following property. Let M1 and
M2 be two complex analytic curves in Dprq ˆ Dprq Ă C2 such that

(i) M1 andM2 are graphs tpz, fjpzqq ; w P Dru of holomorphic functions fj : Dprq Ñ Dprq;
(ii) M1 XM2 “ tp0, 0qu, and interp0,0qpM1,M2q “ k;

(iii) the k-th derivative satisfies
ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ ě c.

If M3 Ă Dprq ˆ Dprq is a complex curve that does not intersect M1 but is δ-close to M1 in the
C1-topology , then M2 and M3 have exactly k transverse intersection points in Dpαrq ˆDpαrq
(i.e. with multiplicity 1).

Proof. Without loss of generality we may assume that δ ă 1.

Step 1.– We claim that there exists α1 “ α1pk, r, cq such that for every α ď α1 and every
z P Dpαrq the following estimates hold:

1

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

k!
|z|k ď |f1pzq ´ f2pzq| ď

3

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

k!
|z|k(9.5)

1

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

pk ´ 1q!
|z|k´1

ď
ˇ

ˇf 11pzq ´ f
1
2pzq

ˇ

ˇ ď
3

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

pk ´ 1q!
|z|k´1 .(9.6)

Indeed put g “ f1 ´ f2 “
ř

měk gmz
m. Assumptions (i) and (iii) give|gpzq| ď 2r on Dprq,

and gpkqp0q ‰ 0. By the Cauchy estimates, |gn| ď 2r1´n for all n ě 0. Then on Dpαrq we get
ˇ

ˇ

ˇ

ˇ

ˇ

gpzq ´
gpkqp0q

k!
zk

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2r

ˆ

|z|

r

˙k`1 ˆ

1´
|z|

r

˙´1

ď 2r1´k α

1´ α
|z|k .

There exists α1pk, r, cq such that as soon as α ď α1, the right hand side of this inequality
is smaller than c |z|k {2; hence Estimate (9.5) follows. The same argument applies for (9.6)
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because
ˇ

ˇ

ˇ

ˇ

ˇ

g1pzq ´
gpkqp0q

pk ´ 1q!
zk´1

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4pk ` 1q

ˆ

|z|

r

˙k ˆ

1´
|z|

r

˙´2

ď 4pk ` 1qr1´k α

p1´ αq2
|z|k´1 .

Step 2.– For every α ď α1, if δ ă cpαrqk{2k!,M2 andM3 have exactly k intersection points,
counted with multiplicities, in Dpαrq ˆ Dpαrq.

Indeed, the intersection points of M3 and M2 correspond to the solutions of the equation
f3 “ f2. To locate its roots, note that on the circle BDpαrq, the Inequality (9.5) implies

(9.7) |f1 ´ f2| ě
1

2

c

k!
pαrqk.

Since |f1 ´ f3| ă δ, the choice δ ă cpαrqk{2k! is tailored to assure that the hypothesis of the
Rouché theorem is satisfied in Dpαrq; so, counted with multiplicities, there are k solutions to
the equation f3 “ f2 on that disk. Furthermore by the Schwarz lemma |f2| ă αr on Dpαrq so
the corresponding intersection points between M2 and M3 are contained in Dpαrq ˆ Dpαrq.

If k “ 1 the proof is already complete at this stage, so from now on we assume k ě 2.

Step 3.– Set δ0 “ |f3p0q|, and note that δ0 ď δ. Then for every α ď 1{2, in Dpαrq we have

δ
1`α
1´α

0 ď |f1pzq ´ f3pzq| ď δ
1´α
1`α

0(9.8)
ˇ

ˇf 11pzq ´ f
1
3pzq

ˇ

ˇ ď
1

αr
δ

1´2α
1`2α

0 .(9.9)

For this, recall the Harnack inequality: for any negative harmonic function in D

(9.10)
1´ |ζ|

1` |ζ|
ď
upζq

up0q
ď

1` |ζ|

1´ |ζ|
.

Since f1 ´ f3 does not vanish and |f1 ´ f3| ď δ ă 1 in Dprq, the function log |f1 ´ f3| is
harmonic and negative there. Thus for α ď 1{2, the Harnack inequality can be applied to
ζ ÞÑ pf1 ´ f3qprζq in D: this gives (9.8). Likewise, we infer that

(9.11) δ
1`2α
1´2α

0 ď |f1pzq ´ f3pzq| ď δ
1´2α
1`2α

0

in Dp2αrq, and (9.9) follows from the Cauchy estimate }g1}Dpαrq ď pαrq
´1}g}Dp2αrq.

Step 4.– We now conclude the proof. Fix α “ αpk, r, cq such that α ď α1 and

(9.12) βpαq :“
1´ 2α

1` 2α
´
k ´ 1

k
ˆ

1` α

1´ α
ą 0.

(This will be our final choice for α.) Fix δ ă cpαrqk{2k! and consider a solution z0 of the
equation f2pzq “ f3pzq in Dpαrq provided by Step 2. The transversality of M2 and M3 at
pz0, f2pz0qq is equivalent to f 13pz0q ‰ f 12pz0q, so we only need

(9.13)
ˇ

ˇpf3 ´ f1q
1pz0q

ˇ

ˇ ă
ˇ

ˇpf2 ´ f1q
1pz0q

ˇ

ˇ .

Since pf1 ´ f3qpz0q “ pf1 ´ f2qpz0q, combining the right hand side of Inequality (9.5) and the
left hand side of Inequality 9.8, we get that

(9.14)
3

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

k!
|z0|

k
ě δ

1`α
1´α

0 ,
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thus

(9.15) |z0| ě δ
1
k

1`α
1´α

0

ˆ

2k!

3

˙
1
k
ˇ

ˇ

ˇ
pf1 ´ f2q

pkqp0q
ˇ

ˇ

ˇ

´ 1
k

Hence by (9.6) we get that

ˇ

ˇpf2 ´ f1q
1pz0q

ˇ

ˇ ě
1

2pk ´ 1q!

ˆ

2k!

3

˙
k´1
k

δ
k´1
k

1`α
1´α

0

ˇ

ˇ

ˇ
pf1 ´ f2q

pkqp0q
ˇ

ˇ

ˇ

1
k(9.16)

ě
1

2pk ´ 1q!

ˆ

2k!

3

˙
k´1
k

δ
k´1
k

1`α
1´α

0 c
1
k .

On the other hand by Estimate (9.9)

(9.17)
ˇ

ˇpf3 ´ f1q
1pz0q

ˇ

ˇ ď
1

αr
δ

1´2α
1`2α

0

Since δ0 ď δ, we only need to impose one more constraint on δ (together with δ ă cpαrqk{2k!),
namely

(9.18) δβpαq ă
1

2pk ´ 1q!

ˆ

2k!

3

˙
k´1
k

c
1
k rα,

to get the desired inequality |pf3 ´ f1q
1pz0q| ă |pf2 ´ f1q

1pz0q|. �

Let ∆1 and ∆2 be two disks of size r at x P X , which are tangent at x; let e1 P TxX be a
unit vector in Tx∆1 “ Tx∆2 and e2 a unit vector orthogonal to e1 for κ0. Then, in the chart Φx,
∆1 and ∆2 are graphs tze1 ` ψipzqe2u of holomorphic functions ψi : Dprq Ñ Dprq, i “ 1, 2,
such that ψip0q “ 0 and ψ1ip0q “ 0. If interxp∆1,∆2q “ k, then for j “ 1, . . . , k ´ 1 one has
ψ
pjq
1 p0q “ ψ

pjq
2 p0q and ψpkq1 p0q ‰ ψ

pkq
2 p0q. We define the k-osculation of ∆1 and ∆2 at x to be

(9.19) osck,x,rp∆1,∆2q “

ˇ

ˇ

ˇ
ψ
pkq
1 p0q ´ ψ

pkq
2 p0q

ˇ

ˇ

ˇ
.

If s ď r and we consider ∆1 and ∆2 as disks of size s, then osck,x,sp∆1,∆2q “ osck,x,rp∆1,∆2q.
Thus, osck,x,rp∆1,∆2q does not depend on r, so we may denote this osculation number by
osck,xp∆1,∆2q. With this terminology, Lemma 9.7 directly implies the following corollary.

Corollary 9.8. Let k be a positive integer, and r and c be positive real numbers. Then, there are
two positive real numbers δ and α, depending on pk, r, cq, satisfying the following property. Let
∆1 and ∆2 be two holomorphic disks of size r through x, such that interxp∆1,∆2q “ k and
osck,xp∆1,∆2qq ě c. Let ∆3 be a holomorphic disk of size r such that ∆3 is δ-close to ∆1 in
the C1-topology but ∆3 X∆1 “ H. Then ∆3 intersects ∆2 transversely in exactly k points in
BXpx, αrq.

The following lemma follows directly from the first step of the proof of Lemma 9.7.

Lemma 9.9. Let k be a positive integer, and r and c be positive real numbers. Then there exists
a constant β depending only on pr, k, cq such that if ∆1 and ∆2 are two holomorphic disks of
size r through x, such that k “ interxp∆1,∆2q and osck,xp∆1,∆2qq ě c, then x is the only
point of intersection between ∆1 and ∆2 in the ball BXpx, βrq.
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9.4. Proof of Theorem 9.1. Before starting the proof, we record the following two facts from
elementary measure theory:

Lemma 9.10. Let pΩ,F ,Pq be a probability space, and δ P p0, 1q.

(1) If ϕ is a measurable function with values in r0, 1s and such that
ş

ϕ dP ě 1´ δ, then

P
´!

x ; ϕpxq ě 1´
?
δ
)¯

ě 1´
?
δ.

(2) If Aj is a sequence of measurable subsets such that PpAjq ě 1 ´ δ for every j, then
Pplim supAjq ě 1´ δ.

Let us now prove Theorem 9.1. If the integer k0 of Lemma 9.6 is equal to 1, then Pesin stable
manifolds corresponding to different itineraries at a µ-generic point x P X are generically
transverse; hence, we are in case (a) of the theorem –note that the conclusion is actually stronger
than mere non-randomness. So, we now assume k0 ą 1 and we prove that µ is almost surely
invariant and that its entropy is equal to zero.

Step 1.– First, we construct a subset Gε of “good points” in X .
As described in Section 7.1.2, the atoms of F´ are the sets F´px q “ Σu

locpξq ˆ txu and the
measures mp ¨ |F´px qq can be naturally identified to νN under the natural projections F´px q „Ñ
Σu

locpξq
„
Ñ Ω. For notational simplicity we denote these measures by mF´

x .
For a small ε ą 0, let Rε Ă X be a compact subset with mpRεq ą 1´ ε, along which local

stable manifolds have size at least 2rpεq and vary continuously. Since
ş

mF´
x pRεq dmpx q ě

1´ ε, by Lemma 9.10 (1) we can select a compact subset R1ε Ă Rε with mpR1εq ě 1´
?
ε such

that for every x P R1ε one has mF´
x pRεq ě 1´

?
ε.

By assumption, interxpW
s
locpy1q,W

s
locpy2qq “ k0 for m-almost every x “ pξ, xq P R1ε and

for pmF´
x b mF´

x q-almost every pair of points py1, y2q P pF´px q X Rεq
2. Then there exists

R2ε Ă R1ε of measure at least 1´ 2
?
ε and a constant cpεq ą 0 such that

(9.20) osck0,x,rpεqpW
s
locpy1q,W

s
locpy2qq ě cpεq

for every x “ pξ, xq P R2ε and all pairs py1, y2q in a subset Aε,x Ă pF´x X Rεq
2 depending

measurably on x and of measure

(9.21) pmF´
x bmF´

x qpAε,x q ě 1´ 4
?
ε

(we just used pmF´
x bmF´

x qppF´x XRεq
2q ě p1´

?
εq2 ą 1´4

?
ε). Finally, Fubini’s theorem

and Lemma 9.10 (1) provide a set Gε Ă R2ε such that

(a) mpGεq ě 1´ 2ε1{4

(b) for every x P Gε, W s
locpx q has size 2rpεq;

(c) for every x P Gε, there exists a measurable set Gε,x Ă F´x with mF´
x pGε,x q ě 1 ´ 2ε1{4

such that for every y in Gε,x , W s
locpy q has size ě rpεq and, viewed as a subset of X ,

– it is tangent to W s
locpx q to order k0 at x,

– osck0,x,rpεqpW
s
locpx q,W

s
locpy qq ě cpεq.

Note that x R Rε,x : indeed, when the local stable manifolds vary continuously, one can think of
Aε,x as the complement of a small neighborhood of the diagonal in Ωˆ Ω.

Step 2.– To make the argument more transparent, we first show that the fiber entropy vanishes.
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W s
px q

W s
pζ, xjq

W s
pξj , xjq

x x

xj

W s
px q

FIGURE 1. On the left, a generic point x with the local stable manifolds W s
locpξi, xq

for distinct pξiqiě0 (see Step 1). On the right, the choice of the sequence pζ, xjq gives
a family of local stable manifolds (see Step 2).

Let ηs be a Pesin partition subordinate to local stable manifolds in X . By Corollary 7.16
it is enough to show that for m-almost every x , mp¨|ηspx qq is atomic (hence concentrated at
x). Assume by contradiction that this is not the case. Therefore for ε ą 0 small enough there
exists x “ pξ, xq P Gε such that mp¨|ηspx qq|ηspx qXGε is non-atomic, and there exists an infinite
sequence of points xj “ pξ, xjq in GεXηspx q converging to x . Then with Gε,‹ as in Property (c)
of the definition of Gε, we have mF´

xj pGε,xj q ě 1´ 2ε1{4 for every j.

Identifying all F´pxjq with Σu
locpξq, by Lemma 9.10 (2) we can find ζ P Σu

locpξq such that
pζ, xjq belongs to Gε,pζ,xjq for infinitely many j’s. Along this subsequence the local stable
manifolds W s

locpζ, xjq form a sequence of disks of uniform size r “ 2rpεq at xj . Two such local
stable manifolds are either pairwise disjoint or coincide along an open subset because they are
associated to the same itinerary ζ.

Let us now use the notation from Corollary 9.8 and Lemma 9.9. We know that W s
rpεqpζ, xjq

is tangent to W s
rpεqpξ, xq at xj to order k0, with osck0,xj ,rpεqpW

s
rpεqpx q,W

s
rpεqpζ, xjqq ě cpεq; so,

by Lemma 9.9, W s
rpεqpζ, xjq and W s

rpεqpζ, xj1q are disjoint as soon as distXpxj , xj1q ă βrpεq.
Finally, if j and j1 are large enough, then distXpxj , xj1q ă αrpεq and the C1 distance between
W s
rpεqpζ, xjq andW s

rpεqpζ, xj1q is smaller than δ; thus, Corollary 9.8 asserts thatW s
rpεqpζ, xjq and

W s
rpεqpζ, xj1q cannot both be tangent to W s

rpεqpξ, xq. This is a contradiction, and we conclude
that the fiber entropy of m vanishes.

Step 3.– We now prove the almost sure invariance.
As in [24, Eq. (11.1)] we consider a measurable partition P of X with the property that for

m-almost every pξ, xq,

(9.22) Σs
locpξq ˆW

s
rpξ,xqpξ, xq Ă Ppξ, xq Ă Σs

locpξq ˆW
spξ, xq.

The existence of such a partition is guaranteed, for instance, by Lemma 7.13. By [24, Prop
11.1](5), to show that µ is almost surely invariant it is enough to prove that:

(9.23) for m almost every ξ, mp ¨ |Ppξ, xqq is concentrated on Σs
locpξq ˆ txu .

5Brown and Rodriguez-Hertz make it clear that this result holds for an arbitrary smooth random dynamical system
on a compact manifold.
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By contradiction, assume that (9.23) fails. By contraction along the stable leaves, it follows that
almost surely Σs

locpξq ˆ txu is contained in

(9.24) Supp
´

mp¨|Ppξ, xqq|Ppξ,xqzΣslocpξqˆtxu

¯

(this is identical to the argument of Corollary 7.16). In particular for small ε we can find x “
pξ, xq P Gε and a sequence of points xj “ pξj , xjq P Gε such that xj belongs to Ppx q X Gε,
xj ‰ x and pxjq converges to x in X . We can also assume that the xj are all distinct. By
definition of Gε, mF´

xj

`

Gε,xj
˘

ě 1´ 2ε1{4 for every j. For pξ, ζq P Σ2, set

(9.25) rξ, ζs “ Σu
locpξq X Σs

locpζq;

that is, rξ, ζs is the itinerary with the same past as ξ and the same future as ζ. As above, iden-
tifying the atoms of the partition F´ with Ω, Lemma 9.10 (2) provides an infinite subsequence
pj`q and for every ` an itinerary ζj` P Σu

locpξj`q such that yj` :“ pζj` , xj`q belongs to Gε,xj` and
all the ζj` have the same future, that is ζj` is of the form rξj` , ζs for a fixed ζ. By definition,

interxj` pW
s
locpxj`q,W

s
locpyj`qq “ k0(9.26)

osck0,xj` ,rpεq
pW s

locpxj`q,W
s
locpyj`qq ě cpεq.(9.27)

In addition the disks πXpW s
locpyj`qq are pairwise disjoint or locally coincide because the xj`

are distinct and the ζj` have the same future. Moreover, since xj` belongs to Ppx q, W spxj`q
coincides with W spx q. Therefore, the πXpW s

locpyj`qq form a sequence of disjoint disks of size
2rpεq at xj , all tangent to πXpW s

locpx qq to order k0, with osculation bounded from below by
cpεq. Since this sequence of disks is continuous and pxjq converges towards x, Lemma 9.9 and
Corollary 9.8 provide a contradiction, exactly as in Step 2. This completes the proof of the
theorem. �

10. STIFFNESS

Here we study Furstenberg’s stiffness property for automorphisms of compact Kähler sur-
faces, thereby proving Theorem A. Our first results in §10.3 deal with elementary subgroups
of AutpXq. The argument relies on the classification of such elementary groups together with
general group-theoretic criteria for stiffness; these criteria are recalled in § 10.1 and 10.2. The-
orem 10.10 concerns the much more interesting case of non-elementary subgroups; its proof
combines all results of the previous sections with the work of Brown and Rodriguez-Hertz [24].

10.1. Stiffness. Following Furstenberg [68], a random dynamical system pX, νq is stiff if any
ν-stationary measure is almost surely invariant; equivalently, every ergodic stationary measure
is almost surely invariant. This property can conveniently be expressed in terms of ν-harmonic
functions on Γ. Indeed if ξ : X Ñ R is a continuous function and µ is ν-stationary, then
Γ Q g ÞÑ

ş

X ξpgxq dµpxq is a bounded, continuous, right ν-harmonic function on Γ; thus prov-
ing that µ is invariant amounts to proving that such harmonic functions are constant. Stiffness
can also be defined for group actions: a group Γ acts stiffly on X if and only if pX, νq is stiff for
every probability measure ν on Γ whose support generates Γ; in this definition, the measures ν
can also be restricted to specific families, for instance symmetric finitely supported measures, or
measures satisfying some moment condition. There are some general criteria ensuring stiffness
directly from the properties of Γ. A first case is when G is a topological group acting continu-
ously on X and Γ Ă G is relatively compact. Then Γ acts stiffly on X: this follows from the
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maximum principle for harmonic functions on Γ (see also [68, Thm 3.5]). Another important
case for us is that of Abelian and nilpotent groups.

Theorem 10.1. Let G be a locally compact, second countable, topological group. Let ν be a
probability measure on G. If G is nilpotent of class ď 2, then any measurable, ν-harmonic, and
bounded function ϕ : GÑ R is constant; thus, every measurable action of such a group is stiff.

This is due to Dynkin-Malyutov and to Guivarc’h; we refer to [75] for a proof (6). The case of
Abelian groups is the famous Blackwell-Choquet-Deny theorem. We shall apply Theorem 10.1
to subgroups A Ă AutpXq; what we implicitly do is first replace A by its closure in AutpXq to
get a locally compact group, and then apply the theorem to this group.

10.2. Subgroups and hitting measures. A basic tool is the hitting measure on a subgroup,
which we briefly introduce now (see [13, Chap. 5] for details). Let G be a locally compact
second countable topological group. A notion of length can be defined in this context as follows:
given a neighborhood U of the unit element, for any g P G, lengthU pgq is the least integer n ě 1
such that g P Un. By definition a probability measure ν on G has a finite first moment (resp. a
finite exponential moment) if

ş

lengthU pgq dνpgq ă 8 (resp. if
ş

exppα lengthU pgqq dνpgq ă
8 for some α ą 0). This condition does not depend on the choice of U .

Let ν be a probability measure on G, and consider the left random walk on G governed by ν.
Given a subgroup H Ă G, for ω “ pgiq P GN, define the hitting time

(10.1) T pωq “ THpωq :“ min tn ě 1 ; gn ¨ ¨ ¨ g1 P Hu .

If T is almost surely finite we say that H is recurrent and the distribution of gT pωq ¨ ¨ ¨ g1 is by
definition the hitting measure of ν on H , which will be denoted νH . The key property of νH
is that if ϕ : G Ñ R is a ν-harmonic function, then ϕ|H is also νH -harmonic. Therefore, if µ
is a ν-stationary measure, then it is also νH -stationary. Conversely, any bounded νH -harmonic
function h on H admits a unique extension rh to a bounded ν-harmonic function on G; this
extension is defined by the formula

(10.2) rhpxq “ ExphpgTx,Hpωq ¨ ¨ ¨ g1xqq “

ż

hpgTx,Hpωq ¨ ¨ ¨ g1xq dν
Npωq

where the stopping time Tx,H is defined by Tx,Hpωq “ min tn ě 0 ; gn ¨ ¨ ¨ g1x P Hu. The
uniqueness comes from Doob’s optional stopping theorem, which asserts that if pMtqtě0 is
a bounded martingale and T is a stopping time which is almost surely finite then EpMT q “

EpM0q. Thus, any bounded ν-harmonic function h on G satisfies Formula (10.2).
If rG : Hs ă 8 then H is recurrent and its stopping time admits an exponential moment. It

follows that νH has a finite first (resp. exponential) moment if and only if ν does.
Likewise, assume that H is a normal subgroup of G with G{H isomorphic to Z, and that

ν is symmetric with a finite first moment. Then, the projection ν of ν on G{H is symmetric
with a finite first moment, so the random walk governed by ν on G{H » Z is recurrent (see the
Chung-Fuchs Theorem in [58, §5.4] or [41]) and H is recurrent.

6The proof in [105] is not correct, because Lemma 2.5 there is false. But the proof works perfectly, and is quite
short, if the support of ν is countable or if the nilpotency class of the group is ď 2.
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Lemma 10.2. Let ν be a probability measure on AutpXq and Γ1 be a closed subgroup which is
recurrent for the random walk induced by ν. Let ν 1 be the induced measure on Γ1. If pX, ν1q is
stiff then pX, νq is stiff as well. This holds in particular if:

(i) either rΓν : Γ1s ă 8
(ii) or Γ1 is a normal subgroup of Γν with Γν{Γ

1 isomorphic to Z, and ν is symmetric with a
finite first moment.

Proof. Let µ be a ν-stationary measure on X . Then µ is ν 1-stationary, hence by stiffness it is
Γ1-invariant. Therefore for every Borel setB Ă X , the function Γ Q g ÞÑ µpg´1Bq is a bounded
ν-harmonic function which is constant on Γ1 so by the uniqueness of harmonic extension it is
constant, and ν is Γ-invariant. �

10.3. Elementary groups. Recall that AutpXq is a topological group for the topology of uni-
form convergence and is in fact a complex Lie group (with possibly infinitely many connected
components). Let AutpXq˝ be the connected component of the identity in AutpXq and

(10.3) AutpXq# “ AutpXq{AutpXq˝.

Let ρ : AutpXq Ñ GLpH˚pX;Zqq be the natural homomorphism; its image is AutpXq˚ “
ρpAutpXqq (see § 2.1.1); is kernel contains AutpXq˝ and a theorem of Lieberman [93] shows
that AutpXq˝ has finite index in kerpρq. If Γ is a subgroup of AutpXq, we set Γ˚ “ ρpΓq.

Theorem 10.3. Let X be a compact Kähler surface. Let ν be a symmetric probability measure
on AutpXq satisfying the moment condition (4.1). If Γν is elementary and Γ˚ν is infinite, then
pX, νq is stiff.

Note that stiffness can fail when Γ˚ν is finite: see Example 10.4 below. The proof relies on the
classification of elementary subgroups of AutpXq (see [30, Thm 3.2], [62]): if Γν is elementary
and Γ˚ν is infinite there exists a finite index subgroup A˚ Ă Γ˚ν which is

(a) either cyclic and generated by a loxodromic map;
(b) or a free Abelian group of parabolic transformations possessing a common isotropic line; in

that case, there is a genus 1 fibration τ : X Ñ S, onto a compact Riemann surface S, such
that Γν permutes the fibers of τ .

Denote by ρΓν : Γν Ñ Γ˚ν the restriction of ρ to Γν . We distinguish two cases.

Proof when the kernel of ρΓν is finite. Let A be the pre-image of A˚ in Γ; it fits into an exact
sequence 1 Ñ F Ñ A Ñ A˚ Ñ 0 with F finite, so a classical group theoretic lemma (see
Corollary 4.8 in [37]) asserts that A contains a finite index, free Abelian subgroup A0, such that
ρΓν pA0q has finite index in A˚. Since A0 is Abelian, Theorem 10.1 shows that the action of
pA0, νA0q on X is stiff. The index of A0 in Γ being finite, Lemma 10.2 concludes the proof. �

Proof when the kernel of ρΓν is infinite. In case (a), X is a torus C2{Λ and kerpρΓν q is a group
of translations of X (see Proposition 3.18). Let A Ă Γν be the pre-image of A˚; setting K “

kerpρΓν q, we obtain an exact sequence 0 Ñ K Ñ A Ñ A˚ Ñ 0, with A Ă Γν of finite index,
A˚ » Z generated by a loxodromic element, andK Ă X an infinite group of translations. Since
ν is symmetric, the measure νA is also symmetric; since νA satisfies the moment condition (4.1),
its projection on A˚ has a first moment (note that if f is loxodromic, then logp}pf˚qn}q — |n|).



76 SERGE CANTAT AND ROMAIN DUJARDIN

Since K is Abelian, its action on X is stiff; thus, as in Lemma 10.2.(ii), the action of A on X is
stiff. Since A has finite index in Γ, the action of Γ on X is stiff too by Lemma 10.2.(i).

In case (b), we apply Proposition 2.19. So, either X is a torus, or the action of Γν on the
base S of its invariant fibration τ : X Ñ S has finite order. In the latter case, a finite index
subgroup Γ0 of Γ preserves each fiber of τ ; then, Γ0 contains a subgroup of index dividing 12
acting by translations on these fibers. This shows that Γ is virtually Abelian; in particular, Γ
is stiff. The last case is when the image of Γ in AutpSq is infinite and X is a torus C2{ΛX .
Then, S “ C{ΛS is an elliptic curve and τ is induced by a linear projection C2 Ñ C, say the
projection px, yq ÞÑ x. Lifting Γ to C2, and replacing Γ by a finite index subgroup if necesssary,
its action is by affine transformations of the form

(10.4) f̃ : px, yq ÞÑ px` a, y `mx` bq

with m in C˚, and pa, bq in C2. This implies that Γ is a nilpotent group of length ď 2; by
Theorem 10.1 it also acts stiffly and we are done. �

Example 10.4. If X “ P2pCq, its group of automorphism is PGL3pCq and for most choices of
ν there is a unique stationary measure, which is not invariant; the dynamics is proximal, and this
is opposite to stiffness (see [68]). If X “ P1pCqˆC, for some algebraic curve C, then AutpXq
contains PGL2pCq ˆ AutpCq; if ν is a probability measure on PGL2pCq ˆ tidCu, then in most
cases the stationary measures are again non invariant.

Proposition 10.5. Let X be a complex projective surface, and Γ be a subgroup of AutpXq such
that Γ˚ is finite. If Γ preserves a probability measure, whose support is Zariski dense in X , then
the action of Γ on X is stiff.

The main examples we have in mind is when the invariant measure is given by a volume form,
or by an area form on the real part XpRq for some real structure on X , with XpRq ‰ H.

Proof. Replacing Γ by a finite index subgroup we may assume that Γ Ă AutpXq˝. Denote by
µ the invariant measure. Let G be the closure (for the euclidean topology) of Γ in the Lie group
AutpXq˝; then G is a real Lie group preserving µ.

Let αX : X Ñ AX be the Albanese morphism of X . There is a homomorphism of complex
Lie groups τ : AutpXq˝ Ñ AutpAXq

˝ such that αX ˝ f “ τpfq ˝ αX for every f in AutpXq˝.
Pick a very ample line bundle L onX , denote by PN pCq the projective space PpH0pX,Lq_q,

where N ` 1 “ h0pX,Lq, and by ΨL : X Ñ PN pCq the Kodaira-Iitaka embedding of X given
by L. By hypothesis, pΨLq˚µ is not supported by a hyperplane of PN pCq.

Step 1.— Suppose τpGq “ 1. Since Pic0pXq and AX are dual to each other, G acts trivially
on Pic0pXq and L is G-invariant, that is g˚L “ L for every g P G. Thus there is a homo-
morphism β : G Ñ PGLN`1pCq such that ΨL ˝ g “ βpgq ˝ ΨL for every g P L. If G is not
compact, there is a sequence of elements gn P G going to infinity in PGLN`1pCq: in the KAK
decomposition gn “ knank

1
n, the diagonal part an goes to8. Then, any probability measure on

PN pCq which is invariant under all gn is supported in a proper projective subspace of PN pCq,
and this contradicts our preliminary remark. So, G is compact in that case.

Step 2.— Now, assume that τpGq is infinite. Identifying AutpAXq
˝ with AX , τpAutpXq˝q is

a complex algebraic subgroup of the torus AX , of positive dimension since it contains τpGq. If
the kernel of τ is finite, then AutpXq˝ is compact and virtually Abelian; thus, we may assume
dimpkerpτqq ě 1. In particular the fibers of αX have positive dimension, dimpαXpXqq ď 1
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and αXpXq is a curve, which is elliptic because it is invariant under the action of τpAutpXq˝q.
Then, the universal property of the Albanese morphism implies αXpXq “ AX . In particular,
αX is a submersion, for its critical values form a proper, τpAutpXq˝q-invariant subset of AX .
Thus, X is a P1pCq-bundle over AX because the fibers of αX are smooth, are invariant under
the action of kerpτq, and can not be elliptic since otherwise X would be a torus. From [96, Thm
3] (see also [95, 103] for instance), there are two cases:

(1) either X “ AX ˆ P1pCq, AutpXq “ AutpAXq ˆ PGL2pCq and we deduce as in the
first step that G is a compact group;

(2) or AutpXq˝ is Abelian.

In both cases stiffness follows, and we are done. �

Remark 10.6. Pushing the analysis further, it can be shown that, under the assumptions Propo-
sition 10.5, Γ is relatively compact. Indeed in the last considered case, if Γ is not bounded it
can be deduced from [96, Thm 3] that there are elements with wandering dynamics: all orbits
in some Zariski open subset converge towards a section of αX . This contradicts the invariance
of µ.

10.4. Invariant algebraic curves II. Let us start with an example.

Example 10.7 (See also [33]). Consider an elliptic curve E “ C{Λ and the Abelian surface
A “ EˆE. The group GL2pZq determines a non-elementary group of automorphisms ofEˆE
of the form px, yq ÞÑ pax` by, cx` dyq. The involution η “ ´ id generates a central subgroup
of GL2pZq, hence PGL2pZq acts on the (singular) Kummer surface A{η. Each singularity gives
rise to a smooth P1pCq in the minimal resolution X of A{η, the group tB P PGL2pZq ; B ” id
mod 2u preserves each of these 16 rational curves, and its action on these curves is given by the
usual linear projective action of PGL2pZq on P1pCq. In particular, it is proximal and strongly
irreducible so it admits a unique, non-invariant, stationary measure.

The next result shows that when ν is symmetric, every non-invariant stationary measure is
similar to the previous example.

Proposition 10.8. Let pX, νq be a random holomorphic dynamical system, with ν symmetric.
Let µ be an ergodic ν-stationary measure giving positive mass to some proper Zariski closed
subset of X . Then µ is supported on a Γν-invariant proper Zariski closed subset and

(a) either µ is invariant;
(b) or the Zariski closure of Supppµq is a finite, disjoint union of smooth rational curves Ci,

the stabilizer of Ci in Γ induces a strongly irreducible and proximal subgroup of AutpCiq »
PGL2pCq, and µpCiq´1µ|Ci is the unique stationary measure of this group of Möbius trans-
formations.

Moreover, if pX, νq is non-elementary, the curves Ci have negative self-intersection and can be
contracted on cyclic quotient singularities.

Note that no moment assumption is assumed here. Before giving the proof, let us briefly
discuss the question of stiffness for Möbius actions on P1pCq. Let ν be a symmetric measure on
PGL2pCq. As already said, by Furstenberg’s theory, if Γν is strongly irreducible and unbounded
it admits a unique stationary measure, and this measure is not invariant. Otherwise, any ν-
stationary measure is invariant because
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– either Γν is relatively compact and stiffness follows from [68, Thm. 3.5];
– or Γν admits an invariant set made of two points, then Γν is virtually Abelian and stiff-

ness follows from Theorem 10.1;
– or Γν is conjugate to a subgroup of the affine group AffpCq with no fixed point.

In the latter case after conjugating Γν to a subgroup of AffpCq we can write any g P Γν as
gpzq “ apgqz ` bpgq. If apgq ” 1 then Γν is Abelian and we are done. Otherwise Γν is merely
solvable and we apply the following lemma which follows from a result of Bougerol and Picard
(see [22, Thm. 2.4] ).

Lemma 10.9. Let ν be a symmetric probability measure on AffpCq. If no point of C is fixed by
ν-almost every g, then the only ν-stationary probability on P1pCq is the point mass at8.

Proof. Assume by contradiction that there exists a stationary measure µ such that µpCq “ 1 and
µpt8uq “ 0. If Γν is abelian, it is made of translations because it has no fixed point in C; on the
other hand if Γν is not abelian, its derived subgroup contains a non-trivial translation. Thus, in
any case Γν contains a non-trivial translation, and we infer that Γν does not preserve any finite
measure on C. In particular µ is not invariant.

Let now rn be the right random walk associated to ν on AffpCq. Put ν8 “
ř8
k“0 2´k`1ν˚k.

A classical martingale convergence argument (see [21, Lem. II.2.1]) provides a measurable set
Ω0 with νNpΩ0q “ 1 such that, for all ω P Ω0,

– rnpωq˚µ converges toward a probability measure µω and µ “
ş

µωdν
Npωq;

– for ν8-almost every γ, rnpωq˚γ˚µ converges towards the same limit µω.

Since µ “
ş

µωdν
Npωq, we have µωpCq “ 1 almost surely. Now, assume that for some ω P Ω0,

rnpωq does not go to 8 in PGL2pCq. Extracting a convergent subsequence rnj pωq Ñ r, we
infer that γ˚µ “ γ1˚µ “ pr

´1q˚µω for pν8ˆ ν8q-almost-every pγ, γ1q; hence µ is Γν-invariant,
a contradiction. Thus rnpωq goes to8 in PGL2pCq for almost every ω.

Suppose that paprnpωqq, bprnpωqqq is unbounded in C2 for a subset Ω10 Ă Ω0 of positive
measure. Set

(10.5) r̃npωq “
1

maxp|aprnpωqq| , |bprnpωqq|q
rnpωq

and extract a subsequence nj so that r̃nj pωq Ñ `pωq, where `pωq is an affine endomorphism
of C. If `pωqpzq ‰ 0 then rnj pωqpzq Ñ 8. Since rnj pωq˚µÑ µω and µωpCq “ 1, we deduce
that µp`pωq´1t0uq “ 1. This is a contradiction because µ is not concentrated at a single point.
Thus, paprnpωqq, bprnpωqqq is almost surely bounded. Since rnpωq goes to 8 in PGL2pCq,
aprnpωqq goes to 0 almost surely, in contradiction with the symmetry of ν. This concludes the
proof. �

Proof of Proposition 10.8. If µ has an atom then, by ergodicity, µ is supported on a finite orbit
and it is invariant. So we now assume that µ is atomless. By ergodicity, µ gives full mass
to a Γν-invariant curve D; let C1, . . . , Cn be its irreducible components. Let Γ1 be the finite
index subgroup of Γν stabilizing each Ci and ν 1 be the hitting measure induced by ν on Γ1; it is
symmetric, µ is ν 1-stationary, and so are its restrictions µ|Ci , for each Ci.

If the genus of (the normalization of) C1 is positive, then Γ1|C1 Ă AutpC1q is virtually
Abelian, hence µ|C1 is Γ1-invariant. Since µ is ergodic, Γν permutes transitively the Ci, and
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arguing as in Lemma 10.2, we see that µ is ν-invariant as well. Now, assume that the normal-
ization Ĉ1 is isomorphic to P1pCq. If C1 is not smooth, or if it intersects another Γν-periodic
curve, then the image of Γ1 in AutpĈ1q » PGL2pCq is not strongly irreducible, and the discus-
sion preceding this proof shows that µ is Γ1-invariant. Again, this implies that µ is Γν-invariant.
The same holds if Γ1 is a bounded subgroup of AutpĈ1q. The only possibility left is that C1 is
smooth, disjoint from the other periodic curves, and Γ1 induces a strongly irreducible subgroup
of AutpC1q. Since Γν permutes transitively the Ci, conjugating the dynamics of the groups
Γ1|Ci , the same property holds for each Ci.

If Γν is non-elementary, Lemma 2.14 shows that C2
i “ ´m for some m ą 0, which does not

depend on i because Γν permutes the Ci transitively. Then, the Ci being disjoint, one can con-
tract them simultaneously, each of the contractions leading to a quotient singularity pC2, 0q{xηy
with ηpx, yq “ pαx, αyq for some root of unity α of order m (see [7, §III.5]). �

10.5. Non-elementary groups: real dynamics. We now consider general non-elementary ac-
tions. As explained in the introduction, so far our results are restricted to subgroups of AutpXq
preserving a totally real surface Y . We further assume that there exists a Γν-invariant volume
form on Y ; this is automatically the case if X is an Abelian, a K3, or an Enriques surface (see
Lemma 11.3). Note that, a posteriori, the results of §11 and 12 suggest that measures supported
on a totally real surface and invariant under a non-elementary subgroup of AutpXq tend to be
absolutely continuous, unless they are supported by a curve or a finite set. We saw in Exam-
ple 10.7 that stiffness can fail in presence of invariant rational curves along which the dynamics
is that of a proximal and strongly irreducible random product of Möbius transformations. The
next theorem shows that for actions preserving a totally real surface, this obstruction to stiffness
is the only one.

Theorem 10.10. Let pX, νq be a non-elementary random holomorphic dynamical system satisfy-
ing the moment condition (4.1). Assume that Y Ă X is a Γν-invariant totally real 2-dimensional
smooth submanifold such that the action of Γ on Y preserves a probability measure volY equiv-
alent to the Riemannian volume on Y . Then, every ergodic stationary measure µ on Y is:

(a) either almost surely invariant,
(b) or supported on a Γν-invariant algebraic curve.

In particular if there is no Γν-invariant curve then pY, νq is stiff. Moreover, if the fiber entropy
of µ is positive, then µ is the restriction of volY to a subset of positive volume.

Recall from Lemma 2.14 that Γν-invariant curves can be contracted. For the induced random
dynamical system on the resulting singular surface, stiffness holds unconditionally. If further-
more ν is symmetric then the result can be made more precise by applying Proposition 10.8.

Proof of Theorem 10.10. We split the proof in two steps.
Step 1.– Let µ be an ergodic stationary measure supported on Y . We assume that µ is not

invariant, and we want to prove that it is supported on a Γν-invariant curve. Since the action
is volume preserving, its Lyapunov exponents satisfy λ´ ` λ` “ 0 (see Lemma 7.6). The in-
variance principle (Theorem 7.4) shows that µ is hyperbolic: indeed µ is almost surely invariant
when λ´ ě 0. We can therefore apply Theorem 3.4 of [24] to obtain the following trichotomy:

(1) either µ has finite support, so it is invariant;
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(2) or the distribution of Oseledets stable directions is non-random;
(3) or µ is almost surely invariant and absolutely continuous with respect to volY : even

more, it is the restriction of volY to a subset of positive volume.

Since µ is not invariant, we are in case (2). Theorem 9.1 then implies that µ is supported on
an invariant algebraic curve. This concludes the proof of the first assertions in Theorem 10.10,
including the stiffness property when Γ has no periodic curve.

Step 2.– It remains to prove the last assertion. Let then µ be an ergodic stationary measure
with hµpX, νq ą 0. In the above trichotomy, (1) is now excluded. To exclude the alternative (2),
by Theorem 9.1, it suffices to show that µ is not supported on an invariant curve. By Proposition
7.12 (i.e. the fibered Margulis-Ruelle inequality), µ is hyperbolic. If µ is supported on an
algebraic curve, the proof of Corollary 8.3 leads to the following alternative: either µ is atomic
or the Lyapunov exponent along that curve is negative. In the latter case µ is proximal along
that curve and its stable conditionals are points. In both cases the fiber entropy would vanish, in
contradiction with our hypothesis, so µ is not supported on an algebraic curve, as desired. �

We conclude this section with a variant of Theorem 10.10 for singular volume forms; it may
be applied to Blanc’s examples (see § 3.4).

Theorem 10.11. Let pX, νq be a non-elementary random holomorphic dynamical system sat-
isfying the moment condition (4.1), and preserving a totally real 2-dimensional submanifold
Y Ă X . Assume that there exists a meromorphic 2-form η which is almost invariant under
every f P Γν (i.e. f˚η “ Jacηpfqη with |Jacηpfq| “ 1). Then every ν-stationary measure sup-
ported on Y is either supported on a Γν-invariant algebraic curve or almost surely invariant.

Proof. The proof is identical to that of Theorem 10.10, except that we use Proposition 7.8 instead
of Lemma 7.6. Indeed by ergodicity if µ is not supported on an invariant algebraic curve it gives
zero mass to the set of zeros and poles of Ω so, by Proposition 7.8, we have λ` ` λ´ “ 0. �

11. SUBGROUPS WITH PARABOLIC ELEMENTS

We say that Γ Ă AutpXq is twisting if it contains a parabolic automorphism (this terminology
is justified below). This section investigates the dynamics of pX, νq when Γν is non-elementary
and twisting. Under this assumption invariant measures can be classified (Theorem 11.4): they
are either hyperbolic or carried by some proper algebraic subset (Theorem 11.7).

Remark 11.1. In many examples for which AutpXq contains a non-elementary group, AutpXq
contains also a parabolic automorphism (see the examples in §§3.1–3.4). So, if we are interested
in random dynamical systems for which Γν has finite index in AutpXq, the twisting assumption
is quite natural. Also, if AutpXq is both twisting and non-elementary, then there are thin sub-
groups Γ Ă AutpXq with the same property: one can take two parabolics automorphisms g and
h generating a non-elementary group, and set Γ “ xgm, hny for large integers m and n.

11.1. Dynamics of parabolic automorphisms. Recall from §2.4 that if h is a parabolic auto-
morphism of a compact Kähler surface X , it preserves a unique genus 1 fibration, given by the
fibers of a rational map πh : X Ñ B. In particular there is an automorphism hB of B such that

(11.1) π ˝ h “ hB ˝ π.
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Moreover, if X is not a torus there exists an integer m ą 0 such that hm preserves every fiber of
π and acts by translation on every smooth fiber (Proposition 2.19). As shown in Lemma 11.2, h
behaves like a “complex Dehn twist”, acting by translations along the fibers of π, with a shearing
property in the transversal direction. This twisting property justifies the vocabulary introduced
for “twisting groups”. When X is rational, the invariant fibration comes from a Halphen pencil
of P2

C (see [31]); this is why parabolic automorphisms are also called Halphen twists.
Let h be a parabolic automorphism with hB “ idB . The critical values of π form a finite

subset Critpπq Ă B; we denote its complement by B˝. Each fiber Xw :“ π´1pwq, w P B˝, is
a smooth curve of genus 1, isomorphic to C{Lpwq for some lattice Lpwq “ Z ‘ Zτpwq; and
h induces a translation hwpzq “ z ` tpwq of Xw, for some tpwq P C{Lpwq. The points w for
which hw is periodic are characterized by the relation tpwq P Q‘Qτpwq. If

(11.2) tpwq ´ pa` bτpwqq P R ¨ pp` qτpwqq

for some pa, bq P Q2 and pp, qq P Z2, the closure of Ztpwq in C{Lpwq is an Abelian Lie group
of dimension 1, isomorphic to Z{kZ ˆR{Z for some k ą 0; then, the closure of each orbit of
hw is a union of k circles. Locally in B˝ this occurs along a countable union of analytic curves
pRjq. Otherwise, the orbits of hw are dense in Xw, and the unique hw invariant probability
measure is the Haar measure on Xw.

Now, assume that Y Ă X is a real analytic subset of X of real codimension 2, and that h
preserves Y ; for instance hmay preserve a real structure onX , and Y be a connected component
of XpRq. Then, πpY q Ă B is (locally) contained in the curves Rj . The smooth fibers π´1

|Y pwq,
for w P πpY qzCritpπq, are unions of circles along which the orbits of hw are either dense (for
most w P πpY q) or finite (for countably many w P πpY q).

Lemma 11.2. Assume that hB is the identity. Let U Ă B˝ be a simply connected open subset.
There is a countable union of analytic curves Rj Ă U , such that

(1) h acts by translation on each fiber Xw “ π´1pwq, w P U ;
(2) for w P Uz Yj Rj , the action of h in the fiber Xw is a totally irrational translation (it is

uniquely ergodic, and its orbits are dense in Xw);
(3) for w in some countable subset of U , the orbits of hw are finite;
(4) if the orbits of hw are neither dense nor finite, then w P YjRj and the closure of each orbit

of hw is dense in a finite union of circles;
(5) there is a finite subset Flatphq Ă U such that for x R π´1 pFlatphqq

lim
nÑ˘8

}Dxh
n} Ñ `8

locally uniformly in x; more precisely for every v P TxXzTxXπpxq, }Dhnxpvq} grows lin-
early while 1

nπ˚pDxh
npvqq converges to 0.

Moreover, if h preserves a 2-dimensional real analytic subset Y Ă X , then

(6) π induces on Y a singular fibration whose generic leaves are union of (one or two) circles,
and there exists an integer m P t1, 2u such that hm preserves these circles and is uniquely
ergodic along these circles except countably many of them.

This lemma is proven in [28, 33]; Property(5) is the above mentioned twisting property of h.
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11.2. Classification of invariant measures. In this paragraph, we review the classification of
invariant ergodic probability measures for twisting non-elementary groups of automorphisms;
we refer to [28, 33] for details and examples. If X is a real K3 or Abelian surface and XpRq ‰
H there is a unique section of the canonical bundle of X which, when restricted to XpRq, in-
duces a positive area form of total area 1; we denote this area form by volXpRq. The associated
probability measure is invariant under the action of AutpXRq, the subgroup of AutpXq preserv-
ing the real structure. In fact, such a smooth invariant probability measure exists on any totally
real invariant surface (see [33, §5]):

Lemma 11.3. Let X be an Abelian surface, or a K3 surface, or an Enriques surface with
universal cover X 1. Let Y Ă X be a (real) surface of class C1. Let AutpX;Y q be the subgroup
of AutpXq preserving Y . If Y is totally real, ΩX (resp. ΩX 1) induces a smooth AutpX;Y q-
invariant probability measure volY on Y .

Note that there indeed exists examples of subgroups preserving a totally real surface Y Ă X
which is not a real form of X (see [33, §6]). The classification of invariant measures then reads
as follows.

Theorem 11.4. Let X be a compact Kähler surface. Let Γ be a twisting non-elementary sub-
group of AutpXq. Let µ be a Γ-invariant ergodic probablity measure on X . Then, µ satisfies
one and only one of the following properties.

(a) µ is the average on a finite orbit of Γ;
(b) µ is supported by a Γ-invariant curve D Ă X;
(c) there is a Γ-invariant proper algebraic subset Z of X , and a Γ-invariant, totally real, real

analytic submanifold Y of XzZ such that (1) µpZq “ 0, (2) the support of µ is a union of
finitely many connected components of Y , (3) µ is absolutely continuous with respect to the
Lebesgue measure on Y , and (4) the density of µ with respect to any real analytic area form
on Y is real analytic;

(d) there is a Γ-invariant proper algebraic subset Z of X such that (1) µpZq “ 0, (2) the
support of µ is equal to X , (3) µ is absolutely continuous with respect to the Lebesgue
measure on X , and (4) the density of µ with respect to any real analytic volume form on X
is real analytic on XzZ.

If X is not a rational surface, then in case (c) (resp. (d)) we can further conclude that the
invariant measure is locally proportional to volY (resp. equal to volX ).

The reason why we say that µ is proportional to volY (and not equal to it) in the last sentence
is because µ may be equal to zero on some components of Y zZ. This theorem is a combination
of Theorem 1.1 and § 5.3 of [33]. Let us also point out the following corollary of the proof.

Corollary 11.5. Let Γ ď AutpXq be as in Theorem 11.4. Assume furthermore that X and Γ
are defined over R and Γ does not preserve any proper Zariski closed subset of X . Then any
Γ-invariant ergodic measure supported on XpRq is supported by a union XpRq1 “ YjXpRqj
of connected componentsXpRqj ofXpRq, and is locally given by positive real analytic 2-forms
on XpRq1. If X is not rational, µ is equal to the restriction of volXpRq to XpRq1, up to some
normalizing factor.
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Using this classification we can now sharpen the conclusion of Theorem 10.10 in the presence
of parabolic automorphisms. When Y “ XpRq, the statement can also be combined with
Corollary 11.5 to get an even more precise result.

Corollary 11.6. Let pX, νq be a random holomorphic dynamical system on a compact Kähler
surface, satisfying (4.1) and such that Γν is twisting and non-elementary. Let Y Ă X be a
Γν-invariant, smooth, totally real surface such that, on Y , Γν preserves a probability measure
volY equivalent to the Riemannian volume.

Then up to a positive multiplicative factor, every ergodic stationary measure µ supported on
Y is :

– either the counting measure on a finite orbit;
– or supported on a Γν-invariant algebraic curve;
– or the restriction of volY to a Γν-invariant open subset of Y whose boundary is piecewise

smooth.

In the last alternative, the boundary is obtained by intersecting an algebraic curve D Ă X
with Y ; it may have a finite number of singularities.

Proof. We just have to repeat the proof of Theorem 10.10, by incorporating the classification
given in Theorem 11.4. Note that Y is automatically real analytic in this case. �

11.3. Hyperbolicity of the invariant volume. It is a fundamental (and mostly open) problem
in conservative dynamics to show the typicality of non-zero Lyapunov exponents on a set of pos-
itive Lebesgue measure. In deterministic dynamics, a recent breakthrough is the work of Berger
and Turaev [14]. Adding some randomness makes such a hyperbolicity result easier to obtain:
see [16] for random perturbation of the standard map, and [6, 102] for random conservative
diffeomorphisms on (closed real) surfaces. The results of Barrientos and Malicet or Obata and
Poletti [6, 102] are perturbative in nature and do not give explicit examples. Here the high rigid-
ity of complex algebraic automorphisms will be sufficient to show that twisting, non-elementary,
random dynamical systems pX, νq automatically satisfy some non-uniform hyperbolicity with
respect to the volume.

Theorem 11.7. Let X be a compact Kähler surface, and let Γ be a non-elementary, twisting
subgroup of AutpXq. Let µ be an ergodic Γ-invariant measure giving no mass to proper Zariski
closed subsets of X (7). Then for every probability measure ν on AutpXq satisfying the moment
condition (4.1) and such that Γν “ Γ, µ is hyperbolic and the fiber entropy hµpX, νq is positive.

The same argument leads to a variant of this result when Γν contains a Kummer example.
Before stating our next result, let us recall the definition of classical Kummer examples (see
also Example 10.7, and [35, §1.3] for a more general definition). Let A “ C2{Λ be a complex
torus and let η be the involution given by ηpz1, z2q “ p´z1,´z2q, which has 16 fixed points.
Then A{xηy is a surface with 16 singular points, and resolving these singularities (each of them
requires a single blow-up) yields a so-called Kummer surface X: a K3 surface with 16 dis-
joint nodal curves. Let fA be a loxodromic automorphism of A which is induced by a linear
transformation of C2 preserving Λ; then fA commutes to η and descends to an automorphism f
of X; such automorphisms will be referred to as classical Kummer examples. Of course, they

7Hence by Theorem 11.4, µ is equivalent to volX or volY for some real analytic invariant surface with boundary.
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preserve the canonical volume volX . Notice that the Kummer surface X also supports automor-
phisms which are not coming from automorphisms of A (see [82] and [52] for instance).

Theorem 11.8. Let pX, νq be a non-elementary random dynamical system on a Kummer K3
surface satisfying (4.1) and such that Γν contains a classical Kummer example. Then any er-
godic Γν-invariant measure giving no mass to proper Zariski closed subsets of X is hyperbolic
and has positive fiber entropy.

In this statement we do not assume that Γν contains a parabolic element. In Theorem 12.5
below, we classify invariant probability measures which are supported on an invariant, real ana-
lytic, and totally real surface Y , when Γν contains a Kummer example.

Theorems 11.7 and 11.8 will be proven in §11.5.

11.4. Ledrappier’s invariance principle and invariant measures on PTX . This paragraph
contains preliminary results for the proof of Theorems 11.7 and 11.8. Our presentation is in-
spired by the exposition of [6]. It is similar in spirit to that of [102], which relies on the “pinch-
ing and twisting” formalism of Avila and Viana (see [113] for an introduction8). Most of this
discussion is valid for a random holomorphic dynamical system on an arbitrary complex surface
(not necessarily compact), satisfying (4.1).

Let µ be an ergodic ν-stationary measure. We introduce the projectivized tangent bundles
PTX` “ Ω ˆ PTX and PTX “ Σ ˆ PTX . The tangent bundles TX and PTX admit mea-
surable trivializations over a set of full measure. Consider any probability measure µ̂ on PTX
that is stationary under the random dynamical system induced by pX, νq on PTX and whose
projection on X coincides with µ, i.e. π˚µ̂ “ µ where π : PTX Ñ X is the natural projection.
Such measures always exist. Indeed the set of probability measures on PTX projecting to µ is
compact and convex, and it is non-empty since it contains the measures

ş

δrvpxqsdµpxq for any
measurable section x ÞÑ rvpxqs of PTX; thus, the operator

ş

PpDfq dνpfq has a fixed point in
that set. The stationarity of µ̂ is equivalent to the invariance of νN ˆ µ̂ under the transformation
pF` : Ωˆ PTX Ñ Ωˆ PTX defined by

(11.3) pF`pω, x, rvsq “ pσpωq, f
1
ωpxq,PpDxf

1
ωqrvsq

for any non-zero tangent vector v P TxX . We denote by µ̂x the family of probability measures
– on the fibers PTxX of π – given by the disintegration of µ̂ with respect to π; the conditional
measures of νN ˆ µ̂ with respect to the projection PTX Ñ X are given by µ̂ω,x “ νN ˆ µ̂x.

Remark 11.9. Even when µ is Γν-invariant, this construction only provides a stationary measure
on PTX . This is exactly what happens for twisting non-elementary subgroups: indeed we will
show in §11.5 that projectively invariant measures do not exist in this case.

The tangent action of our random dynamical system gives rise to a stationary product of
matrices in GLp2,Cq. To see this, fix a measurable trivialization P : TX Ñ X ˆC2, given by
linear isomorphisms Px : TxX Ñ C2, which conjugates the action of DF` to that of a linear
cocycleA : X`ˆC2 Ñ X`ˆC2 over pX`, F`, νNˆµq. In this context, Ledrappier establishes
in [89] the following “invariance principle”.

8Beware that the word “twisting” has a different meaning there.
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Theorem 11.10. If λ´pµq “ λ`pµq, then for any stationary measure µ̂ on PTX projecting to
µ, we have PpDxfq˚µ̂x “ µ̂fpxq for µ-almost every x and ν-almost every f .

From this point the second main ingredient of the proof is a classification of such projectively
invariant measures; this is where we follow [6]. To explain this result a bit of notation is required.
Let V and W be hermitian vector spaces of dimension 2. Endow the projective lines PpV q and
PpW q with their respective Fubini-Study metrics. If g : V ÑW is a linear isomorphism, set

(11.4) JgK “ }Ppgq}C1

where Ppgq : PpV q Ñ PpW q is the projective linear map induced by g and }¨}C1 is the maximum
of the norms of DzPpgq : TzPpV q Ñ TPgzqPpW q with respect to the Fubini-Study metrics. Let
us fix two isometric isomorphisms ιV : V Ñ C2 and ιW : W Ñ C2 to the standard hermitian
space C2. If we denote by ιW ˝ g ˝ ι´1

V “ k1ak2 the KAK decomposition of ιW ˝ g ˝ ι´1
V in

PSLp2,Cq, we get JgK “ }a}2 “
›

›ιW ˝ g ˝ ι´1
V

›

›

2where }¨} is the matrix norm in PSL2pCq “

SL2pCq{x˘ idy associated to the Hermitian norm in C2. In particular:

(a) JgK “ 1 if and only if Ppgq is an isometry from PpV q to PpW q;
(b) for a sequence pgnq of linear maps V Ñ W , JgnK tends to `8 as n goes to `8 if and

only if PpιW ˝ g ˝ ι´1
V q tends to8 in PSL2pCq.

We are now ready to state the classification of projectively invariant measures.

Theorem 11.11. Let pX, νq be a random dynamical system on a complex surface and let µ be
an ergodic stationary measure. Let µ̂ be a stationary measure on PTX such that π˚µ̂ “ µ
and pPDxfq˚µ̂x “ µ̂fpxq for µ-almost every x and ν-almost every f . Then, exactly one of the
following two properties is satisfied:

(1) For pνN ˆ µq-almost every x “ pω, xq, the sequence JDxf
n
ω K is unbounded and then:

(1.a) either there exists a measurable Γν-invariant family of lines Epxq Ă TxX such that
µ̂x “ δrEpxqs for µ-almost every x;

(1.b) or there exists a measurable Γν-invariant family of pairs of lines E1pxq, E2pxq Ă TxX
and positive numbers λ1, λ2 with λ1 ` λ2 “ 1 such that µ̂x “ λ1δrE1pxqs ` λ2δrE2pxqs

for µ-almost every x;
(2) The projectivized tangent action of Γν is reducible to a compact group, that is there exists a

measurable trivialization of the tangent bundle pPx : TxX Ñ C2qxPX , such that for every
f P Γν and every x, P

`

Pfpxq ˝Dxf ˝ P
´1
x

˘

belongs to the unitary group PU2pCq.

In assertion (1.b), the pair is not naturally ordered, i.e. there is no natural distinction of E1

and E2, the random dynamical system may a priori permute these lines. The proof is obtained
by adapting the arguments of [6] to the complex case. Details are given in Appendix C.

11.5. Proofs of Theorems 11.7 and 11.8.

11.5.1. Proof of Theorem 11.7. By Theorem 11.4, µ is either equivalent to the Lebesgue mea-
sure on X , or to the 2-dimensional Lebesgue measure on some components of an invariant
totally real surface Y Ă X . Let us assume, by contradiction, that µ is not hyperbolic. Hence its
Lyapunov exponents vanish, and by Theorem 11.10 and Theorem 11.11, there is a measurable
set X 1 Ă X with µpX 1q “ 1 such that one of the following properties is satisfied along X 1:

(a) there is a measurable Γν-invariant line field Epxq;
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(b) there exists a measurable Γν-invariant splitting Epxq ‘ E1pxq “ TxX of the tangent
bundle; here, the invariance should be taken in the following weak sense: an element f
of Γν maps Epxq to Epfpxqq or E1pfpxqq;

(c) there exists a measurable trivialization Px : TxX Ñ C2 such that in the corresponding
coordinates the projectivized differential PpDfxq, f P Γν , takes its values in PU2pCq.

Fix a small ε ą 0. By Lusin’s theorem, there is a compact set Kε with µpKεq ą 1 ´ ε such
that the data x ÞÑ Epxq, resp. x ÞÑ pEpxq, E1pxqq or x ÞÑ Px in the respective cases (a,b,c)
are continuous on Kε. In particular, in case (c), the norms of Px and P´1

x are bounded by some
uniform constant Cpεq on Kε; hence, if g P Γν and x and gpxq belong to Kε, JDgxK is bounded
by Cpεq2.

Fix a pair of Halphen twists g and h P Γν with distinct invariant fibrations πg : X Ñ Bg and
πh : X Ñ Bh respectively (see Lemma 2.20). In a first stage assume that X is not a torus: then
by Proposition 2.19 we may assume that g and h preserve every fiber of their respective invariant
fibrations (see Section 11.1).

First assume that µ is absolutely continuous with respect to the Lebesgue measure on X ,
with a positive real analytic density on the complement of some invariant, proper, Zariski closed
subset. Since the invariant fibration is holomorphic, the disintegration µb of µ is absolutely
continuous on almost every fiber π´1

h pbq. Thus, there exists a fiber π´1
h pbq such that (1) the

Haar measure of Kε X π
´1
h pbq is positive, (2) b R Flatphqq and (3) the dynamics of h in π´1

h pbq

is uniquely ergodic (see Lemma 11.2). Then we can pick x P π´1
h pbq such that phkpxqqkě0

visits Kε infinitely many times. The fifth assertion of Lemma 11.2 rules out case (c) because
the twisting property implies that the projectivized derivative JDhnxK tends to infinity, while it
should be bounded along the sequence of times n for which hnpxq P Kε. Case (b) is also
excluded: under the action of hn, tangent vectors projectively converge to the tangent space of
the fibers, so the only possible invariant subspace is kerpDπhq. Thus we are in case (a) and
moreover Epxq “ kerDxπh for µ-almost every x. But then, using g instead of h and the fact
that µ does not charge the algebraic curve along which the fibrations πg and πh are tangent, we
get a contradiction. This shows that alternative (a) does not hold either, and this contradiction
proves that µ is hyperbolic.

If µ is supported by a 2-dimensional real analytic subset Y Ă X , the same proof applies,
except that we disintegrate µ along the singular foliation of Y by circles induced by πh and use
the fact that a generic leaf is a circle along which h is uniquely ergodic (see Lemma 11.2.(6)).

If X is a torus, then its tangent bundle is trivial and the differential of an automorphism is
constant. In an appropriate basis, the differential of a Halphen twist h is of the form

(11.5)
ˆ

1 α
0 1

˙

with α ‰ 0.

Thus we are in case (a) with Epxq “ kerDxπh for µ-almost every x. Using another twist g
transverse to h we get a contradiction as before.

Since µ is invariant then the invariant measure m on X is equal to νZ ˆ µ. In both cases µ !
volX and µ ! volY . The absolute continuity of the foliation by local Pesin unstable manifolds
implies that the unstable conditionals of m cannot be atomic (see the classical argument showing
that an absolutely continuous invariant measure has the SRB property, as in [90]). Thus positivity
of the entropy follows from Corollary 7.16, and the proof of Theorem 11.7 is complete. �
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11.5.2. Proof of Theorem 11.8. The proof is similar to that of Theorem 11.7 so we only sketch
it. Assume by contradiction that µ is not hyperbolic; since X is a K3 surface, Corollary 7.7
shows that the sum of the Lyapunov exponents of µ vanishes; thus, each of them is equal to 0,
and one of the alternatives of Theorem 11.11 holds, referred to as (a), (b), (c) on page 85. By
assumption, Γν contains a map f which is uniformly hyperbolic in some Zariski open set U ,
which is thus of full µ-measure. We denote by x ÞÑ Euf pxq ‘ Esf pxq the associated splitting of

TX|U . Since f is uniformly expanding/contracting on Eu{sf , alternative (c) is not possible.
If alternative (a) holds, then Epxq being f -invariant on a set of full measure, it must coincide

with Euf or Esf , say with Euf . By continuity any g P Γν preserves Euf pointwise. On the
other hand, Euf is everywhere tangent to an f -invariant (singular) holomorphic foliation Fu,
induced by a linear foliation on the torus A given by the Kummer structure. Every leaf of that
foliation, except for a finite number of them, is biholomorphically equivalent to C, and the
Ahlfors-Nevanlinna currents of these entire curves are all equal to the unique closed positive
current T`f that satisfies MpT`f q “ 1 and f˚T`f “ λpfqT`f with λpfq ą 1. Now, pick any
element g of Γν . Since g preserves the line field Euf , g preserves Fu as well, hence also the ray
R`rT

`
f s, contradicting the non-elementary assumption.

Finally, if alternative (b) holds, any g P Γν preserves tEuf pxq, E
s
f pxqu on a set of full measure

so by the continuity of the hyperbolic splitting it must either preserve or swap these directions.
Passing to an index 2 subgroup both directions are preserved, and we are back to case (a). �

12. MEASURE RIGIDITY

In view of the results of Sections 10 and 11, it is natural to wonder whether a classification
of invariant measures is possible without assuming the existence of parabolic elements in Γ.
The results in this section belong to a thread of measure rigidity results starting with Rudolph’s
theorem [109] on Furstenberg’s ˆ2 ˆ 3 conjecture. If µ is a probability measure on X , we
denote by AutµpXq the group of automorphisms of X preserving µ.

Theorem 12.1. Let f be an automorphism of a compact Kähler surface X , preserving a totally
real and real analytic surface Y Ă X . Let µ be an ergodic f -invariant measure on Y with
positive entropy. Then

(a) either µ is absolutely continuous with respect to the Lebesgue measure on Y ;
(b) or AutµpXq is virtually cyclic.

If in addition the Lyapunov exponents of f with respect to µ satisfy λspf, µq ` λupf, µq ‰ 0,
then case (a) does not occur, so AutµpXq is virtually cyclic.

This result, and its proof, may be viewed as a counterpart, in our setting, to Theorems 5.1
and 5.3 of [24]; again the possibility of invariant line fields is ruled out by using the complex
structure. As before the typical case to keep in mind is when X is a projective surface defined
over R and Y “ XpRq. Observe that by ergodicity, if f preserves a smooth volume volY , then
in case (a) µ will be the restriction of volY to an AutµpXq-invariant Borel set of positive volume.

Proof of Theorem 12.1. Since it admits a measure of positive entropy, f is a loxodromic trans-
formation. By the Ruelle-Margulis inequality µ is hyperbolic with respect to f and it does not
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charge any point, nor any piecewise smooth curve: indeed, the entropy of a homeomorphism of
the circle or the interval is equal to zero.

We first assume that X is projective; non-projective surfaces will be studied at the end of
the proof. For µ-almost every x P X , the stable manifold W spf, xq is an entire curve in X
which is either transcendental or contained in a periodic rational curve (see [30, Thm. 6.2]).
Since f has only finitely many invariant algebraic curves (see [30, Prop. 4.1]) and µ gives no
mass to curves, W spf, xq is µ-almost surely transcendental; then, the only Ahlfors-Nevanlinna
current associated to W spf, xq is T`f ; similarly, the Ahlfors-Nevanlinna currents of the unstable
manifolds give T´f . (This is the analogue in deterministic dynamics of Theorem 8.2.) Fix
g P AutµpXq and set Γ :“ xf, gy. Our first goal is to prove the following:

Alternative: either Γ˚ is virtually cyclic and preserves tPrT`f s,PrT
´
f su Ă BHX ; or µ is abso-

lutely continuous with respect to the Lebesgue measure on Y .

Let Y 1 Ă Y be the union of the connected components of Y of positive µ-measure. The mea-
sure µ does not charge any analytic subset of Y of dimensionď 1; thus, by analytic continuation,
any h P Γ preserves Y 1. So, without loss of generality we can replace Y by Y 1.

We divide the argument into several cases according to the existence or non-existence of
certain Γ-invariant line fields. In the first two cases we will conclude that Γ is elementary. In
the third case, µ will be absolutely continuous with respect to the Lebesgue measure on Y ; then
by the Pesin formula its Lyapunov exponents satisfy λupf, µq “ ´λspf, µq “ hµpfq so when
λupf, µq ` λspf, µq ‰ 0, Case 3 is actually impossible.

Case 1.– There exists a Γ-invariant measurable line field. Specifically, we mean a measurable
field of complex lines x ÞÑ Epxq P PpTxXq, defined on a set of full µ-measure, such that
DxhpEpxqq “ Ephpxqq for every h P Γ and almost every x P X; since µ is supported on
the totally real surface Y , the field of real lines Epxq X TxY Ă TxY is also invariant, and
determines Epxq. Now, µ being ergodic and hyperbolic for f , the Oseledets theorem shows that
either Epxq “ Esf pxq µ-almost everywhere or Epxq “ Euf pxq µ-almost everywhere. Changing
f into f´1 if necessary, we may assume that Epxq “ Esf pxq.

Consider the automorphism h “ g´1fg P AutµpXq. Since h is conjugate to f , µ is also
ergodic and hyperbolic for h. Thus, either Eshpxq “ Esf pxq for µ-almost every x or Euhpxq “
Esf pxq for µ-almost every x.

Lemma 12.2. If there is a measurable set A of positive measure along which Eshpxq “ Esf pxq

(resp. Euhpxq “ Esf pxq), then W spf, xq “W sph, xq for almost every x in A (resp. W uph, xq “

W spf, xq).

Let us postpone the proof of this lemma and conclude the argument. Suppose first that
Eshpxq “ Esf pxq on a subset A with µpAq ą 0. Then T`f “ T`h because for µ-almost every
x, the unique Ahlfors-Nevanlinna current associated to the (complex) stable manifold W spf, xq
(resp. W sph, xq) is T`f (resp. T`h ). Since T`h “ Mpg˚T`f q

´1g˚T`f , we see that g, and there-
fore Γ itself, preserve the line RrT`f s Ă H1,1pXq. Since rT`f s

2 “ 0, Γ fixes a point PrT`f s
of the boundary BHX , so it is elementary. Since in addition Γ contains a loxodromic element,
Theorem 3.2 of [30] shows that Γ˚ is virtually cyclic.
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Now, suppose that Euhpxq “ Esf pxq on A. Then, T´h “ T`f and the group generated by f
and h is elementary. Since it contains a loxodromic element [30, Thm 3.2] says that xf˚, h˚y
is virtually cyclic and fixes also PrT´f s P BHX . This implies that g, hence Γ, preserves the
pair of boundary points tPrT`f s,PrT

´
f su Ă BHX . Thus, in both cases Γ˚ is virtually cyclic and

preserves tPrT`f s,PrT
´
f su Ă BHX .

Proof of Lemma 12.2. The argument is similar to that of Theorem 9.1, in a simplified setting,
so we only sketch it. For µ-almost every x, W spf, xq and W sph, xq are tangent at x. Assume
by contradiction that there exists a measurable subset A1 of A of positive measure such that
W spf, xq ‰ W sph, xq for every x P A1. Then for small ε ą 0 there exists two positive
constants r “ rpεq and c “ cpεq, an integer k ě 2, and a measurable subset Gε Ă A1 such that
µpGεq ą 0 and

- W s
locpf, xq and W s

locph, xq are well defined and of size r for every x P Gε,
- W s

locpf, xq and W s
locph, xq depend continuously on x on Gε Ă X ,

- interxpW
s
locpf, xq,W

u
locpf, xqq “ k for every x P Gε,

- and oscpk,x,rqpW
s
r pf, xq,W

s
r ph, xqq ě c for every x P Gε.

Indeed, to get the first and second properties, one intersects A1 with a large Pesin set Rε. On
A1XRε the multiplicity of intersection x ÞÑ interxpW

s
locpf, xq,W

u
locpf, xqq is semi-continuous,

so we can find k ě 2 and a subset R1ε Ă pA1 XRεq of positive measure such that

(12.1) interxpW
s
locpf, xq,W

u
locpf, xqq “ k

for every x P R1ε. Thus, the k-th osculation number is well defined, and the last property holds
on a subset Gε Ă R1ε of positive measure if c is small.

Let ηs be a Pesin partition subordinate to the local stable manifolds of f . Since hµpfq ą
0 the conditional measures µp¨|ηsq are non-atomic. Thus there exists x P Gε such that x is
an accumulation point of Supp

`

µp¨|ηspxqq|GεXηspxq
˘

. Fix a neighborhood N of x such that
W s
r pf, xq XW

s
r ph, xq XN “ txu, and then pick a sequence pxjq of points in Gε X ηspxq XN

converging to x. The local stable manifolds W s
r ph, xjq form a sequence of disks of size r at xj ,

each of them tangent to W s
r pf, xq (at xj), and all of them disjoint from W s

r ph, xq (because xj
does not belong to W s

r ph, xq). This contradicts Corollary 9.8, and the proof is complete. �

Case 2.– There is a pair of distinct measurable line fields tE1pxq, E2pxqu invariant under Γ.
Again by the Oseledets theorem applied to f , necessarily tE1pxq, E2pxqu “ tE

s
f pxq, E

u
f pxqu.

For µ-almost every x, gptEsf pxq, E
u
f pxquq “ tE

s
f pgpxqq, E

u
f pgpxqqu. As before, consider h “

g´1fg P AutµpXq. Since h is conjugate to f , it is hyperbolic and ergodic with respect to µ, and
tEsf pxq, E

u
f pxqu “ tE

s
hpxq, E

u
hpxqu for almost every x. Replacing h by h´1 if necessary, there

exists a set A of positive measure for which Eshpxq “ Esf pxq, and we conclude as in Case 1.

Case 3.– There is no Γ-invariant line field or pair of line fields. In other words, Cases 1 or 2
are now excluded. This part of the argument is identical to the proof of [24, Thm 5.1.a].

First, we claim that there exists g1, g2 P Γ and a subset A of positive measure such that
Dxg1pE

s
f pxqq R tE

s
f pg1pxqq, E

u
f pg1pxqqu and Dxg2pE

u
f pxqq R tE

s
f pg2pxqq, E

u
f pg2pxqu for ev-

ery x inA. Indeed since we are not in Case 2 (possibly switchingEuf andEsf ) there exists g1 P Γ

and a set A of positive measure such that for x P A, Dxg1pE
s
f pxqq Ć Esf pg1pxqq Y Euf pg1pxqq.
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Since we are not in Case 1, there exists g P Γ and a set B of positive measure such that for
x P B, DxgpE

u
f pxqq ‰ Euf pgpxqq. If DxgpE

s
f pxqq P tE

s
f pgpxqq, E

u
f pgpxqqu on a subset B1

of B of positive measure, then choose k ą 0 and ` ą 0 such that µpf `pAq X B1q ą 0 and
µpfkpgpf `pAqqq X Aq ą 0 and define g2 “ g1f

kgf `; otherwise, set g2 “ gf ` with ` such that
µpf `pAq XBq ą 0. Then change A into A “ AX f´`pB1q (resp. AX f´`pBq).

Denote by ∆ the simplex
 

pa, b, c, dq P pR˚`q
4 ; a` b` c` d “ 1

(

. For α “ pa, b, c, dq
in ∆, let να be the probability measure να “ aδf ` bδf´1 ` cδg ` dδg´1 . Then µ is να-
stationary and since µ is f -ergodic and ναptfuq ą 0, it is also ergodic as a να-stationary measure
(see [13, §2.1.3]). Since we are not in Cases 1 or 2 and µ is hyperbolic for f , Theorems 11.10
and 11.11 imply that the Lyapunov exponents of µ, viewed as a να-stationary measure, satisfy
λ´α pµq ă λ`α pµq.

Lemma 12.3. There exists a choice of α P ∆ such that µ is a hyperbolic να-stationary measure,
i.e. λ´α pµq ă 0 ă λ`α pµq

Proof. This is automatic when f and g are volume preserving because λ´α pµq “ ´λ
`
α pµq in that

case. For completeness, let us copy the proof given in [24, §13.2.4]. The assumptions of Case 3
and the strict inequality λ´pµq ă λ`pµq imply that

(12.2) α P ∆ ÞÑ pλ´α pµq, λ
`
α pµqq P R

2

is continuous (see [24, Prop. 13.7] or [113, Chap. 9]). Since λ´α pµq ă λ`α pµq for every α P ∆,
one of λ´α and λ`α is non zero. Furthermore, µ being invariant, the involution pa, b, c, dq ÞÑ
pb, a, d, cq interchanges the Lyapunov exponents. It follows that P “ tα P ∆, λ`α ą 0u andN “

tα P ∆, λ´α ă 0u are non-empty open subsets of ∆ such that P YN “ ∆. The connectedness
of ∆ implies P XN ‰ H, as was to be shown. �

Fix α P ∆ such that µ is hyperbolic as a να-stationary measure. The assumptions of Case 3
imply that the stable directions depend on the itinerary so the main result of [24] shows that µ
is fiberwise SRB (on the surface Y ), that is, the unstable conditionals of the measures µx (here
µx “ µ) are given by the Lebesgue measure (in some natural affine parametrizations of the
unstable manifolds by the real line R). Since µ is invariant, we can revert the stable and unstable
directions by applying the argument to F´1, and we conclude that the stable conditionals are
given by the Lebesgue measure as well. The absolute continuity property of the stable and
unstable laminations then implies that µ is absolutely continuous with respect to the Lebesgue
measure on Y .

Conclusion.– Let us assume that µ is not absolutely continuous with respect to the Lebesgue
measure on Y . The above alternative holds for all subgroups Γ “ xf, gy, with g P AutµpXq
arbitrary. Therefore, if X is projective, we deduce that AutµpXq

˚ preserves tPrT`f s,PrT
´
f su Ă

BHX , which implies that AutµpXq
˚ is virtually cyclic. By Lemma 3.20, AutµpXq

˚ is also vir-
tually cyclic when X is not projective. So the only remaining issue is to prove that AutµpXq
itself is virtually cyclic. If this is not the case, then AutpXq˝ is infinite, X must be a torus
C2{Λ (see Proposition 3.18), and AutµpXq X AutpXq˝ is a normal subgroup of AutµpXq con-
taining infinitely many translations. This group is a closed subgroup of the compact Lie group
AutpXq˝ “ C2{Λ; thus, the connected component of the identity of AutµpXq X AutpXq˝ is
a (real) torus H Ă C2{Λ of positive dimension. This torus is invariant under the action of f
by conjugacy. Since X “ C2{Λ, f is a complex linear Anosov diffeomorphism of X , and it
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follows that dimRpHq ě 2. Being H-invariant, µ is then absolutely continuous with respect to
the Lebesgue measure of Y ; this contradiction completes the proof. �

Remark 12.4. Theorem 12.1 can be extended to the case of singular analytic subsets Y , after
minor adjustments of the proof, because µ cannot charge its singular locus.

It is natural to expect that the positive entropy assumption in Theorem 12.1 could be replaced
by a much weaker assumption, namely, “µ gives no mass to proper Zariski closed subsets”. In
full generality this seems to exceed the scope of techniques of this paper, however we are able
to deal with a special case.

Theorem 12.5. Let f be a Kummer example on a compact Kähler surface X . Let µ be an
atomless, f -invariant, and ergodic probability measure that is supported on a totally real, real
analytic surface Y Ă X . If g P AutpXq preserves µ, then:

(a) either µ is absolutely continuous with respect to volY ;
(b) or xf, gy is virtually isomorphic to Z.

Thus, as in the case of subgroups containing parabolic transformations, the stiffness Theorem
10.10 takes a particularly strong form when Supppνq contains a Kummer example.

Proof. Let us start with a preliminary remark. Assume that µpCq ą 0 for some irreducible curve
C Ă X; since µ does not charge any point the support of µ|C is Zariski dense in C, and C is an
f -periodic curve. But f being a Kummer example, such a curve is a rational curve C » P1pCq
(obtained by blowing-up a periodic point of a linear Anosov map on a torus), on which f has a
north-south dynamics; thus, all f -invariant probability measures on C are atomic, and we get a
contradiction. This means that the assumption “µ has no atom” is equivalent to the assumption
“µ gives no mass to proper Zariski closed subsets of X”.

Now, we follow step by step the proof of Theorem 12.1, only insisting on the points requiring
modification. Since µ does not charge any curve, we can contract all f -periodic curves, and lift
pf, µq to pf̃ , µ̃q, where f̃ is a linear Anosov diffeomorphism of some compact torus C2{Λ and
µ̃ is an f̃ -invariant probability measure (see [39] for details on Kummer examples). We deduce
that µ̃ is hyperbolic for f̃ and then, coming back to X , that µ is hyperbolic for f . Case 3 of the
proof of Theorem 12.1 only requires hyperbolicity of µ so it carries over in this case without
modification. In Cases 1 and 2 we have to show that if Γ “ xf, gy preserves a measurable
line field or a pair of measurable line fields then Γ˚ is elementary. In either case we consider
h “ gfg´1 and up to possibly replacing Euf by Esf and h by h´1, we have that Esf pxq “ Eshpxq
on a set of positive measure. But now f and h are Kummer examples so their respective stable
foliations Fs

f and Fs
h are (singular) holomorphic foliations. From the previous reasoning Fs

f and
Fs
h are tangent on a set of positive µ-measure, so, since µ gives no mass to subvarieties we infer

that Fs
f “ Fs

h and we conclude exactly as in Theorem 11.8. �

Unlike most results in this paper, Theorem 12.1 can be extended to a rigidity theorem for
polynomial automorphisms of R2 with essentially the same proof.

Theorem 12.6. Let f be a polynomial automorphism of R2. Let µ be an ergodic f -invariant
measure with positive entropy supported on R2. If g P AutpR2q satisfies g˚µ “ µ, then:

(a) either f and g are conservative and µ is the restriction of LebR2 to a Borel set of positive
measure invariant under f and g;
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(b) or the group generated by f and g is solvable and virtually cyclic; in particular, there exists
pn,mq P Z2ztp0, 0qu such that fn “ gm.

Proof. We briefly explain the modifications required to adapt the proof of Theorem 12.1, and
leave the details to the reader. We freely use standard facts from the dynamics of automorphisms
of C2. Let f and g be as in the statement of the theorem, and set Γ “ xf, gy.

Since its entropy is positive, f is of Hénon type in the sense of [85]: this means that f is
conjugate to a composition of generalized Hénon maps, as in [65], Theorem 2.6. Thus, the
support of µ is a compact subset of C2, because the basins of attraction of the line at infinity
for f and f´1 cover the complement of a compact set; moreover, as in Theorem 12.1, µ cannot
charge any proper Zariski closed subset.

Let γ be an arbitrary element of Γ; then h :“ γ´1fγ is also of Hénon type. We run through
Cases 1, 2 and 3 as in the proof of Theorem 12.1. Case 3 is treated exactly in the same way as
above and implies that µ is absolutely continuous. This in turn implies that the Jacobian of f , a
constant Jacpfq P C˚ since f P AutpC2q, is equal to ˘1; and since µ is ergodic for f , it must
be the restriction of LebR2 to some Γ-invariant subset. In Cases 1 and 2, arguing as before and
keeping the same notation, we arrive at W sph, xq “ W spf, xq or W upf, xq on a set of positive
measure. For a Hénon type automorphism of C2, the closure of any stable manifold is equal to
the forward Julia set J`, and J` carries a unique positive closed current T` of mass 1 relative
to the Fubini Study form in P2pCq (see [112]). So we infer that T`h “ T`f or T`h “ T´f ; as a
consequence, the Green functions of f and h satisfy G`h “ G`f or G`h “ G´f , respectively.

Automorphisms of C2 act on the Bass-Serre tree of AutpC2q, each automorphism u P AutpC2q

giving rise to an isometry u˚ of the tree. Hénon type automorphisms act as loxodromic isome-
tries; the axis of such an isometry u˚ will be denoted Geopu˚q: it is the unique u˚-invariant
geodesic, and u˚ acts as a translation along its axis. Theorem 5.4 of [85] shows that G`h “ G`f
implies Geoph˚q “ Geopf˚q; changing f into f´1, G`h “ G´f gives Geoph˚q “ Geopf´1

˚ q “

Geopf˚q because the axis of f˚ and f´1
˚ coincide. Since γ˚ maps Geopf˚q onto Geoph˚q, we

deduce that Γ preserves the axis of f ; so, all elements u of Γ of Hénon type satisfy Geopu˚q “
Geopf˚q. From [85, Prop. 4.10], we conclude that Γ is solvable and virtually cyclic. �

Remark 12.7. With the techniques developed in [29], the same result applies to the dynamics
of OutpF2q acting on the real part of the character surfaces of the once punctured torus.
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APPENDIX A. GENERAL COMPACT COMPLEX SURFACES

Here, we study the concept of non-elementary groups of automorphisms on (non Kähler)
compact complex surfaces. We show that the two possible definitions of non-elementary group
are equivalent and force the surface to be Kähler.

Let M be a compact manifold. We say that a group Γ of homeomorphisms of M is coho-
mologically non-elementary if its image Γ˚ in GLpH˚pM ;Zqq contains a non-Abelian free
subgroup, and that Γ is dynamically non-elementary if it contains a non-Abelian free group Γ0

such that the topological entropy of every f P Γ0ztidu is positive. When M is a compact Kähler
surface and Γ Ă AutpMq, Theorem 3.2 of [30] and the fact that parabolic automorphisms have
zero entropy imply that Γ is non-elementary (in the sense of Section 2.3.3) if and only if it is
cohomologically non-elementary, if and only if it is dynamically non-elementary.

Lemma A.1. Let M be a compact manifold, and Γ be a subgroup of Diff8pMq. If Γ is coho-
mologically non-elementary, then Γ is dynamically non-elementary.

Proof. We split the proof in two steps, the first one concerning groups of matrices, and the
second one concerning topological entropy.

Step 1.- Γ˚ contains a free subgroup Γ˚1 , all of whose non-trivial elements have spectral
radius larger than 1.

The proof uses basic ideas involved in Tits’s alternative, here in the simple case of subgroups
of GLnpZq. Let N be the rank of H˚t.f.pM ;Zq, where t.f. stands for “torsion free”. Fix a basis of
this free Z-module. Then Γ˚ determines a subgroup of GLN pZq. Our assumption implies that
the derived subgroup of Γ˚ contains a non-Abelian free group Γ˚0 of rank 2.

If all (complex) eigenvalues of all elements of Γ˚0 have modulus ď 1, then by Kronecker’s
lemma all of them are roots of unity. This implies that Γ˚0 contains a finite index nilpotent
subgroup (see Proposition 2.2 and Corollary 2.4 of [9]), contradicting the existence of a non-
Abelian free subgroup. Thus, there is an element f˚ in Γ˚0 with a complex eigenvalue of modulus
α ą 1. Let m be the number of eigenvalues of f˚ of modulus α, counted with multiplicities.
Consider the linear representation of Γ˚0 on

ŹmH˚pM ;Cq; the action of f˚ on this space
has a unique dominant eigenvalue, of modulus αm; the corresponding eigenline determines an
attracting fixed point for f˚ in the projective space Pp

ŹmH˚pM ;Cqq; the action of f˚ on this
topological space is proximal.

Let

(A.1) t0u “W0 ĂW1 Ă ¨ ¨ ¨ ĂWk ĂWk`1 “

m
ľ

H˚pM ;Cq

be a Jordan-Hölder sequence for the representation of Γ˚: the subspacesWi are invariant, and the
induced representation of Γ˚ onWi`1{Wi is irreducible for all 0 ď i ď k. Let V be the quotient
space Wi`1{Wi in which the eigenvalue of f˚ of modulus αm appears. Since Γ˚0 is contained
in the derived subgroup of Γ, the linear transformation of V induced by f˚ has determinant 1;
thus, dimpV q ě 2. Now, we can apply Lemma 3.9 of [9] to (a finite index, Zariski connected
subgroup of) Γ˚0 |V : changing f is necessary, both f˚|V and pf´1q˚|V are proximal, and there
is an element g˚ in Γ˚ that maps the attracting fixed points a`f and a´f P PpV q of f˚|V and
pf˚|V q´1 to two distinct points (i.e. ta`f , a

´
f u X tgpa

`
f q, gpa

´
f qu “ H) ; then, by the ping-pong

lemma, large powers of f˚ and g˚ ˝ f˚ ˝ pg˚q´1 generate a non-Abelian free group Γ˚1 Ă Γ˚
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such that each element h˚ P Γ˚1ztidu has an attracting fixed point in PpV q. This implies that
every element of Γ˚1ztidu has an eigenvalue of modulus ą 1 in H˚pM ;Cq.

Step 2.- Since Γ˚1 is free, there is a free subgroup Γ1 Ă Γ such that the homomorphism
Γ1 ÞÑ Γ˚1 is an isomorphism. By Yomdin’s theorem [118], all elements of Γ1ztidu have positive
entropy, and we are done. �

Theorem A.2. Let M be a compact complex surface, and Γ be a subgroup of AutpMq. Then,
Γ is cohomologically non-elementary if and only if it is dynamically non-elementary. If such a
subgroup exists, then M is a projective surface.

Proof. Indeed it was shown in [26] that every compact complex surface possessing an auto-
morphism of positive entropy is Kähler. Thus, the first assertion follows from Lemma A.1 and
Theorem 3.2 of [30], and the second one follows from Theorem E. �

APPENDIX B. STRONG LAMINARITY OF AHLFORS CURRENTS

In this appendix, we sketch the proof of Lemma 8.8, explaining how to adapt arguments of
[8, 55, 56], written for X “ P2pCq, to our context.

Proof of Lemma 8.8. Let p∆nq be a sequence of unions of disks, as in the definition of injective
Ahlfors currents, such that 1

Mp∆nq
t∆nu converges to T . Since X is projective we can choose a

finite family of meromorphic fibrations $i : X 99K P1 such that

– the general fibers of $i are smooth curves of genus ě 2;
– for every x P X , there are at least two of the fibrations $i, denoted for simplicity by $1

and $2, which are well defined in some neighborhood Ux of x (x is not a base point of
the corresponding pencils), satisfy pd$1 ^ d$2qpxq ‰ 0 (the fibrations are transverse),
and for which the fibers $´1

k p$kpxqq containing x are smooth.

If we blow-up the base points of $k, k “ 1, 2, we obtain a new surface X 1 Ñ X on which each
$k lifts to a regular fibration $1k; the open neighborhood Ux is isomorphic to its preimage in
X 1 so, when working on Ux, we can do as if the two fibrations $k were local submersions with
smooth fibers of genus ě 2.

To construct Tr, we follow the proof of [56, Proposition 4.4] (see also [55, Proposition 3.4]).
The construction will work as follows: we fix a sequence prjq converging to zero, and for every
j we extract from 1

Mp∆nq
t∆nu a current Tn,rj made of disks of size « rj which are obtained

from ∆n by only keeping graphs of size rj over one of the projections $i.
By a covering argument, it is enough to work locally near a point x, with two projections $1

and $2 as above. Let S Ă C be the unit square tx` iy ; 0 ď x ď 1, 0 ď y ď 1u » r0, 1s2. To
simplify the exposition, we may assume that

(B.1) $kpUxq “ S Ă C Ă P1pCq pfor k “ 1, 2q.

Set rj “ 2´j and consider the subdivision Qj of S » r0, 1s2 into 4j squares Q of size rj .
A connected component of ∆n X $´1

k pQq, for such a small square Q, is called a graph (with
respect to $k) if it lifts to a local section of the fibration $1k : X 1 Ñ P1pCq above Q. Then,
we fix j, intersect ∆n with $´1

k pQq, and keep only the components of $´1
k pQX∆nq, Q P Qj
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which are graphs with respect to $k. Such a family of graphs is normal because the fibers of $1k
have genus ě 2 (compare to Lemma 3.5 of [55]).

This being done, we can copy the proof of [56, Proposition 4.4]. Letting n go to `8 and
extracting a converging subsequence, we obtain a uniformly laminar current TQj ,k ď T . Away
from the base points of $k, TQj ,k is made of disks of size — rj which are limits of disks
contained in the ∆n. Combining the two currents TQj ,k, we get a current Trj ď T which is
uniformly laminar in every cube $´1

1 pQq X$´1
2 pQ1q, Q,Q1 P Qj , and such that

(B.2) xT ´ Trj , $
˚
1κP1 `$˚1κP1y ď xT ´ TQj ,1, $

˚
1κP1y ` xT ´ TQj ,2, $

˚
2κP1y,

where κP1 is the Fubini-Study form. By definition, T will be strongly approximable if locally
MpT ´ Trj q ď Opr2

j q. Using the fact that $˚1κP1 ` $˚1κP1 ě Cκ0 and the Inequality (B.2),
it will be enough to show that xT ´ TQj ,k, $

˚
kκP1y “ Opr2

j q for k “ 1, 2. This itself reduces
to counting (with multiplicity) the number of “good components” of ∆n for the projections
$k : ∆n Ñ Qj that is, the components above the squares Q of Qj that are kept in the above
contruction of TQj ,k (the graphs relative to $k).

The counting argument is identical to [8, §7], except that we apply the Ahlfors theory of
covering surfaces to a union of disks, not just one. For notational ease, set $ “ $k, r “ rj
and Q “ Qj ; Q is a subdivision of S » r0, 1s2 by squares of size 2´j . We decompose Q as a
union of four non-overlapping subdivisions Q`, ` “ 1, 2, 3, 4; by this we mean that for each `,
the squares Q P Q` have disjoint closures Q. Fix such an ` and let q “ #Q` “ 4j´1. Applying
Ahlfors’ theorem to each of the disks constituting ∆n and summing over these disks, we deduce
that the number of good components NpQ`q satisfies (9)

(B.3) NpQ`q ě pq ´ 4q areaP1p∆nq ´ h lengthP1pB∆nq,

where areaP1 (resp. lengthP1) is the area of the projection $p∆nq (resp. length of $pB∆nq),
counted with multiplicity, and h is a constant that depends only on the geometry of Q`. Divid-
ing by areaP1p∆nq, using lengthP1pB∆nq “ opareaP1p∆nqq, which is guaranteed by Ahlfors’
construction, and letting n go to `8, we obtain

(B.4) xTQ|Q` , $˚κP1y ě pq ´ 4qr2 “ areaP1

´

ď

SPQ`
S
¯

´ 4r2.

Finally, summing from ` “ 1 to 4, we see that, relative to $˚κP1 , the mass lost by discarding
the bad components of size r in T is of order Opr2q: this is precisely the required estimate.

Let us now justify the geometric intersection statement, following step by step the proof of
[56, Thm. 4.2]: let S be a current with continuous normalized potential on X; we have to
show that S ^ Tr increases to S ^ T as r decreases to 0. Again the result is local so we work
near x, use the projections $1 and $2, and keep notation as above. Given squares Q,Q1 P Q
and a real number λ ă 1, we denote by λQ the homothetic of Q of factor λ with respect to
its center, and by CpQ,Q1q the cube $´1

1 pQq X $´1
2 pQ1q. Fix ε ą 0. We want to show that

for r ď rpεq, the mass of pT ´ Trq ^ S is smaller than ε. The first observation is that there
exists λpεq P p0, 1q, independent of r, such that translating Q if necessary, the mass of T ^ S
concentrated in

Ť

Q,Q1 CpQ,Q
1qzCpλQ, λQ1q is smaller than ε{2 (see [56, Lem. 4.5]). Fix such

a λ. It only remains to estimate the mass of pT ´ Trq ^ S in
Ť

Q,Q1 CpλQ, λQ
1q. In such a

9The term pq ´ 4q instead of pq ´ 2q in [8] is due to the fact that we are projecting on P1 and not on C.
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cube CpλQ, λQ1q the argument presented in [56, pp. 123-124], based on an integration by parts,
gives the estimate

(B.5)
ż

CpλQ,λQ1q
pT ´ Trq ^ S ď CpλqmodcpuS , rq

1

r2
M

`

pT ´ Trq|CpQ,Q1q
˘

,

where modcpuS , rq is the modulus of continuity of the potential uS of S. To conclude, we sum
over all squares Q,Q1 and use the estimate MpT ´ Trq “ Opr2q to get that

(B.6) M
´

pT ´ Trq|Ť
Q,Q1 CpλQ,λQ

1q

¯

ď CωpuS , rq.

This is smaller than ε{2 if r ď rpεq. �

APPENDIX C. PROOF OF THEOREM 11.11

Let us consider a random dynamical system pX, νq and µ an ergodic stationary measure, as
in Theorem 11.11. We keep the notation from §11.4.

We say that a sequence of real numbers punqně0 almost converges towards `8 if for every
K P R, the set LK “ tn P N ; un ď Ku has an asymptotic lower density

(C.1) denspLKq :“ lim inf
nÑ`8

ˆ

7pLK X r0, nsq

n` 1

˙

which is equal to 0: denspLKq “ 0 for all K.

Lemma C.1. The set of points x “ pω, xq in X` such that JDxf
n
ω K almost converges towards

`8 on PpTxMq is F`-invariant. In particular, by ergodicity,

(a) either JDxf
n
ω K almost converges towards `8 for pνN ˆ µq-almost every pω, xq;

(b) or, for pνN ˆ µq-almost every pω, xq, there is a sequence pniq with positive lower density
along which JDxf

ni
ω K is bounded.

The proof is straightforward. We are now ready for the proof of Theorem 11.11. Let us
first emphasize one delicate issue: in Conclusion (1) of the theorem, it is important that the
directions E (resp. E1 and E2) only depend on x P X (and not on x “ px, ωq P X`). Likewise
in Conclusion (2), the trivialization Px should depend only on x. This justifies the inclusion of
a detailed proof of Theorem 11.11, since in the slightly different setting of [6], the authors did
not have to check this point carefully.

We fix a measurable trivialization P : TX Ñ XˆC2, given by linear isometries Px : TxX Ñ

C2, where TxX is endowed with the hermitian form pκ0qx, and C2 with its standard hermitian
form. This trivialization conjugates the action of DF` to that of a cocycle A : X` ˆ C2 Ñ

X` ˆ C2 over F`. We denote by Ax : txu ˆ C2 Ñ tF`px qu ˆ C2 the induced linear map;
observe that Ax “ Apω,xq depends only on x and on the first coordinate f1

ω “ f0 of ω. Using P
we transport the measure µ̂ to a measure, still denoted by µ̂, on the product spaceXˆP1pCq. By
our invariance assumption, its disintegrations µ̂x “ µ̂x satisfy pPAx q˚µ̂x “ µ̂F`px q “ µ̂f1

ωpxq
.

The bounded case. – In this paragraph we show that in the essentially bounded case (b) of
Lemma C.1, Conclusion (2) of Theorem 11.11 holds. We streamline the argument following
the proof of [6, Prop. 4.7] which deals with the more general case of GLpd,Rq-cocycles, and is
itself a variation on previously known ideas (see e.g. [1, 119]).
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Set G “ PGLp2,Cq, and define the G-extension rF` of F` on X` ˆG by

(C.2) rF`px , gq “ pF`px q,PpAx qgq “ ppσpωq, f
1
ωpxqq,PpApω,xqqgq

for every x “ pω, xq in X` and g in G; thus rF` is given by F` on X` and is the multiplication
by PpAx q on G. Since PpApω,xqq depends on ω only through its first coordinate, rF` can be
interpreted as the skew product map associated to a random dynamical system onXˆG. Denote
by P the convolution operator associated to this random dynamical system; thus P acts on
probability measures on X ˆG. Let ProbµpX ˆGq the set of probability measures on X ˆG
projecting to µ under the natural mapXˆGÑ X . Since µ is stationary, P maps ProbµpXˆGq
to itself.

Recall that by assumption there is a set E of positive measure in X`, a compact subset KG

of G, and a positive real number ε0 such that

(C.3) dens
!

n ; PpApnqx q P KG

)

ě ε0

for all x in E.

Lemma C.2. There exists an ergodic, stationary, Borel probability measure rµG on X ˆG with
marginal measure µ on X .

Proof. (See [6, Prop. 4.13] for details). Let rµG be any cluster value of the sequence of proba-
bility measures

(C.4)
1

N

N´1
ÿ

i“0

P ipµˆ δ1Gq.

By the boundedness assumption, rµG has mass M ě ε0 and is stationary (i.e. P-invariant).
Standard arguments show that its projection on the first factor is equal to Mµ. We renormalize
it to get a probability measure and using the ergodic decomposition and the ergodicity of µ, we
may replace it by an ergodic stationary measure in ProbµpX ˆGq. �

Denote by rmG “ νN ˆ rµG the rF`-invariant measure associated to rµG. The action of rF` on
X` ˆG (resp. of the induced random dynamical system on X ˆG) commutes to the action of
G by right multiplication, i.e. to the diffeomorphisms Rh, h P G, defined by

(C.5) Rhpx , gq “ px , ghq.

Slightly abusing notation we also denote by Rh the analogous map on X ˆG. The next lemma
combines classical arguments due to Furstenberg and Zimmer.

Lemma C.3. Let rµG be a Borel stationary measure on X ˆG with marginal µ on X . Set

H “ th P G ; pRhq˚rµG “ rµGu “ th P G ; pRhq˚ rmG “ rmGu .

Then H is a compact subgroup of G and there is a measurable function Q : X Ñ G such that
the cocycle Bx “ Q´1

f1
ωpxq

ˆ PpAx q ˆQx takes its values in H for pνN ˆ µq-almost every x .

Proof. Clearly, H is a closed subgroup of G. If H were not bounded then, given any compact
subset C of G, we could find a sequence phnq of elements of H such that the subsets RhnpCq
are pairwise disjoint. Choosing C such that X ˆ C has positive rµG-measure, we would get a
contradiction with the finiteness of rµG. So H is a compact subgroup of G.
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We say that a point px, gq in X ˆG is generic if for νN -almost every ω,

(C.6)
1

N

N´1
ÿ

n“0

ϕ
´

rFn`pω, x, gq
¯

ÝÑ
NÑ8

ż

X`ˆG
ϕ d rmG

for every compactly supported continuous function on X` ˆ G. The Birkhoff ergodic theorem
provides a Borel set E of full rµG-measure made of generic points. Now if px, g1q and px, g2q

belong to E , writing g2 “ g1h “ Rhpg1q for h “ g´1
1 g2, we get that h is an element of H .

Given g P G, define Ex Ă G to be the set of elements g P G such that px, gq is generic.
Then there exists a measurable section X Q x ÞÑ Qx P G such that Qx P Ex for almost all x.
By definition of Ex, pω, x,Qxq satisfies (C.6) for νN -almost every ω. Then for ν-almost every
f0 “ f1

ω, by rF`-invariance of the set of Birkhoff generic points we infer that pf1
ωpxq,PpAx qQxq

belongs to E . Since pf1
ωpxq, Qf1

ωpxq
q belongs to E as well, it follows that Q´1

f1
ωpxq

PpAx qQx is in

H . We conclude that the cocycle Bx “ Q´1
f1
ωpxq

ˆ PpAx q ˆQx takes its values in H for almost
all x , as claimed. �

Note that the map x ÞÑ Qx lifts to a measurable map x ÞÑ Q1x P GL2pCq. ConjugatingH to a
subgroup of PU2 by some element g0 P G, we can now readily conclude from the two previous
lemmas that when JDxf

n
ω K is essentially bounded, Conclusion (2) of Theorem 11.11 holds (the

Px are obtained by composing the Q1x with a lift of g0 to GL2pCq).

The unbounded case. – Now, we suppose that JDxf
n
ω K is essentially unbounded (alternative

(a) of Lemma C.1), and adapt the results of [6, §4.1] to the complex setting to arrive at one of
the Conclusions (1.a) or (1.b) of Theorem 11.11. The main step of the proof is the following
lemma.

Lemma C.4. Let A be a measurable GLp2,Cq cocycle over pX`, F`, νN ˆ µq admitting a
projectively invariant family of probability measures pµ̂xqxPX such that almost surely JApnqx K
almost converges to infinity. Then for almost every x, µ̂x possesses an atom of mass at least 1{2;
more precisely:

– either µ̂x has a unique atom rwpxqs of mass ě 1{2, that depends measurably on x P X;
– or µ̂x has a unique pair of atoms of mass 1{2, and this (unordered) pair depends mea-

surably on x P X .

For the moment, we take this result for granted and proceed with the proof. By ergodicity,
the number of atoms of µ̂x and the list of their masses are constant on a set of full measure.
A first possibility is that µ̂x is almost surely the single point mass δrwpxqs; this corresponds to
(1.a). A second possibility is that µ̂x is the sum of two point masses of mass 1{2; this corresponds
to (1.b). In the remaining cases, there is exactly one atom of mass 1{2 ď α ă 1 at a point rwpxqs.
Changing the trivialization Px, we can suppose that rwpxqs “ rws “ r1 : 0s. Then we write
µ̂x “ αδr1:0s`µ̂

1
x, and apply Lemma C.4 to the family of measures µ̂1x (after normalization to get

a probability measure). We deduce that almost surely µ̂1x admits an atom of mass ě p1´ αq{2.
Two cases may occur:

– µ̂1x has a unique atom of mass β ě p1´ αq{2,
– µ̂1x has two atoms of mass p1´ αq{2.
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The second one is impossible, because changing the trivialization, we would have µ̂x “ αδr1:0s`
1´α

2 pδr´1:1s ` δr1:1sq, and the invariance of the finite set tr1 : 0s, r´1 : 1s, r1 : 1su would imply
that the cocycle PpAx q stays in a finite subgroup of PGL2pCq, contradicting the unboundedness
assumption.

If µ̂1x has a unique atom of mass β ě p1 ´ αq{2, we change Px to put it at r0 : 1s (the
trivialization Px is not an isometry anymore). We repeat the argument with µ̂x “ αδr1:0s `

βδr0:1s ` µ̂2x. If β “ 1´ α, i.e. µ̂2x “ 0, then we are done. Otherwise µ̂2x has one or two atoms
of mass γ ě p1 ´ α ´ βq{2, and we change Px to assume that one of them is r1 : 1s and the
second one –provided it exists– is rτpxq : 1s; here, x ÞÑ τpxq is a complex valued measurable
function. Endow the projective line P1pCq with the coordinate rz : 1s; then PpAx q is of the form
z ÞÑ apx qz. Since PpAx q pt1, τpxquq “ pt1, τpF`px qquq, we infer that:

– either apx q1 “ 1 and PpAx q is the identity;
– or apx q1 “ τpπXpF`px qqq and apx qτpxq “ 1 in which case τpπXpF`px qqq “ τpxq´1.

Thus we see that along the orbit of x , apFn`px qq takes at most two values τpπXpFn`px qqq˘1, and
JApnqx K is bounded, which is contradictory. This concludes the proof. �

Proof of Lemma C.4. Let r and ε be small positive real numbers. Let Probr,εpP1pCqq be the
set of probability measures m on P1pCq such that supxPP1 mpBpx, rqq ď 1{2 ´ ε, where the
ball is with respect to some fixed Fubini-Study metric. This is a compact subset of the space of
probability measures on P1. The set

(C.7) Gr,ε “
 

γ P PGLp2,Cq, Dm1,m2 P Probr,εpP1pCqq, γ˚m1 “ m2

(

is a bounded subset of PGLp2,Cq. Indeed otherwise there would be an unbounded sequence
γn together with sequences pm1,nq and pm2,nq in Probr,εpP1pCqq such that pγnq˚m1,n “

m2,n. Denote by γn “ knank
1
n the KAK decomposition of γn in PGLp2,Cq, with kn and

k1n two isometries for the Fubini-Study metric; since γn is unbounded, we can extract a sub-
sequence such that the measures pk1nq˚m1,n and pk´1

n q˚m2,n converge in Probr,εpP1pCqq to
two measures m1 and m2, while the diagonal transformations an converge locally uniformly on
P1pCqz tr0 : 1su to the constant map γ : P1pCqz tr0 : 1su ÞÑ tr1 : 0su. Then

(C.8) γ˚
`

m1|P1pCqztr0:1su

˘

“ m1pP1pCqz tr0 : 1suqδa ď m2;

sincem1 belongs to Probr,εpP1pCqq,m1pP1pCqz tr0 : 1suq ě 1{2`ε, hencem2 ě p1{2`εqδa,
in contradiction with m2 P Probr,εpP1pCqq. This proves that Gr,ε is bounded.

To prove the lemma, let us consider the ergodic dynamical system PDF`, and the family of
conditional probability measures µ̂x for the projection pω, x, vq ÞÑ x “ pω, xq. If there exist
r, ε ą 0 such that µ̂x belongs to Probr,εpP1pCqq for x in some positive measure subset B then,
by ergodicity, for almost every x P X` there exists a set of integers Lpx q of positive density
such that for n P Lpx q, Fn`px q belongs to B, hence Apnqx belongs to Gr,ε (10). From the above
claim we deduce that JApnqx K is uniformly bounded for n P Lpx q, a contradiction. Therefore
for every r, ε ą 0, the measure of

 

x , µ̂x P Probr,εpP1pCqq
(

is equal to 0; it follows that for
almost every x , µ̂x possesses an atom of mass at least 1{2.

10We are slightly abusing here when the Fubini-Study metric depends on x, for instance when Px is not an
isometry; however restricting to subset of large positive measure the metric pPxq˚pκ0qx is uniformly comparable to
a fixed Fubini-Study metric.
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If there is a unique atom of mass ě 1{2, this atom determines a measurable map x ÞÑ

rwpx qs P PTxX; since µ̂x does not depend on ω, rwpx qs depends only on x, not on ω. If there
are generically two atoms of mass ě 1{2, then both of them has mass 1{2, and the pair of points
determined by these atoms depends only on x. �
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SERGE CANTAT, IRMAR, CAMPUS DE BEAULIEU, BÂTIMENTS 22-23 263 AVENUE DU GÉNÉRAL LECLERC,
CS 74205 35042 RENNES CÉDEX
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