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Experimental determination of generalized stress intensity factors from

full-field measurements.
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Abstract

Unidirectional tensile tests of PMMA square hole specimens result in mixed mode crack initiation at the

square hole corners, highlighted by inclined cracks with respect to the V-notch bisector. Generalized

stress intensity factors (GSIF) of the opening and shear modes at a V-notch are derived experimentally

in a direct manner from digital image correlation (DIC) displacement and strain fields by means of

a path independent integral. With increasing square hole side, the opening mode GSIF increases

whereas the shear mode one decreases so that the mode mixity globally decreases, together with the

crack deflection with respect to the V-notch bisector. GSIFs predictions obtained by means of finite

element calculations are in good agreement with those determined experimentally.

Keywords: Generalized stress intensity factors, Digital Image Correlation, Square hole, Mode mixity

1. Nomenclature

A : scaling coefficient

c : square hole side

C : rigid translation constant
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E : Young’s modulus

Gc : fracture toughness

I : identity operator

k : generalized stress intensity factor

kI , kII : opening and shear mode generalized stress intensity factor

l : crack length

Lmat : characteristic length

n : normal to the integral contour

P : polar to cartesian coordinate transformation matrix

Q : DIC to V-notch frame transformation matrix

r : polar coordinate

u : singular mode

u+, u− : primal and dual modes

uI : opening mode displacement vector in the V-notch axis system

uIr, u
I
ϕ : opening mode displacement components in the V-notch axis system

uII : shear mode displacement vector in the V-notch axis system

uIIr , u
II
ϕ : shear mode displacement components in the V-notch axis system

uJt , u
J
n : cartesian displacement components in the V-notch axis system

uDICx , uDICy : DIC displacement vector in the global frame

uDICt , uDICn : DIC displacement vector in the V-notch frame

U, V : displacement vectors

UDIC : DIC displacement vector

UFE : FE displacement vector
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w : specimen width

W : potential energy

γ : angle between DIC and V-notch frames

Γ : integral contour

λ, α, β : singularity exponent

λI : opening mode singularity exponent

λII : shear mode singularity exponent

λL, µL : Lamé’s coefficients

ν : Poisson’s ratio

ϕ : polar coordinate

ψ : mode mixity

Ψ : contour integral

ω : V-notch angle

ρ : notch radius

σc : strength

σ0 : prescribed stress

σI , σII : opening and shear mode stress in the V-notch axis system

σIrr, σ
I
ϕϕ, σ

I
rϕ : opening mode stress components in the V-notch axis system

σJtt, σ
J
tn, σ

J
nn : cartesian stress components in the V-notch axis system

σIIrr , σ
II
ϕϕ, σ

II
rϕ : shear mode stress components in the V-notch axis system

σDICxx , σDICxy , σDICyy : cartesian stress components in the global frame

σDICtt , σDICtn , σDICnn : DIC stress components in the V-notch frame

σ : stress tensor
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σyy : stress tensor component

ε : strain tensor

εxx, εyy : strain tensor components

θc : crack deflection

DIC : Digital Image Correlation

FE : Finite Element

FFE : Full Finite Element

FFM : Finite Fracture Mechanics

GSIF : Generalized Stress Intensity Factors

MA : Matched Asymptotic SIF : Stress Intensity Factors

2. Introduction

The displacement and stress fields in the vicinity of a singular point can be described by a char-

acteristic exponent λ and a coefficient representing the intensity of the field: the generalized stress

intensity factor (GSIF). The GSIF of a singularity is a relevant parameter for failure prediction. In the

well-known particular case of a crack in isotropic homogeneous media, λ=0.5 and the GSIF corresponds

to the usual stress intensity factor (SIF). The SIF can be computed using J-integral [31]. However,

this method is specifically dedicated to cracks and cannot be extended to compute the GSIF of other

singularities such as, for instance, a corner, a V-notch in a homogeneous material. Therefore, alterna-

tive approaches have to be employed to compute the GSIF. The numerical computation of 2D GSIF

can be performed using a least-squares fitting procedure of Finite Element (FE) nodal displacements

to the asymptotic fields in the vicinity of the singular point [3, 12, 19]. Lazzarin et al. [20] extracted
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the 2D opening and shear mode GSIFs of a V-notch based on the strain energy density computed

considering the leading order terms of the William’s solution [45]. They highlighted the possibility of

using relatively coarse meshes since this approach involves the mean value of the strain energy density

that can be obtained from the nodal displacements. The most accurate method for GSIF computation

is based on a path independent integral [17, 18, 21]. Although it can be employed to compute the SIF

in the case of a crack (even in anisotropic media), this method differs significantly from J-integral which

is strictly dedicated to SIF calculation for a crack. The GSIF use is particularly employed in Finite

Fracture Mechanics (FFM) framework for crack initiation prediction in the vicinity of a singularity or

a stress concentrator based on the matched asymptotic (MA) approach of the coupled criterion (CC)

[9, 23, 24, 44]. This method has recently been extended to 3D [10], which was the missing tool for

applying the MA approach of the CC in 3D [7, 26].

Although some methods exist to compute from experimental data the stress intensity factors at

a crack tip in 2D or in 3D [27, 29, 33, 34, 36, 37], few authors estimated GSIFs from experimental

data: Based on a least-squares fitting of the asymptotic displacement fields approach (called the over-

deterministic method [2]), Torabi et al. recently determined the GSIF at a sharp [40] or blunt [41]

V-notch. Dunn et al. [12] carried out experiments on V-notch PMMA specimens with various opening

angles and depths. They computed numerically 2D V-notch GSIFs for the critical loads measured

experimentally and showed that the GSIF of the corner singularity was the relevant parameter to

predict crack initiation. The GSIF was computed by least square fitting of the nodal displacements

along the V-notch flanks from FE calculations. The critical GSIF was determined to be constant for a

given V-notch angle whatever the notch depth, except may be for large V-notch angles. Labossiere and

Dunn [19] performed four point bending tests on bimaterial specimens in order to study crack initiation

occurring at the bimaterial interface corner under an opening mode. They obtained the 3D interface
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corner GSIF by means of a least-squares fitting procedure of the FE displacements fields computed on

the whole structure in the vicinity of the singular point to the asymptotic displacement fields. Vicentini

et al. [43] determined the opening and shear mode GSIFs at a bimaterial closed corner in Brazilian

disk specimens by means of FE calculations based on the failure load measured experimentally. It

can be noted that the previously cited work proposed indirect GSIF estimates based on experimental

data, since these approaches rely on a FE model. Their main limitation is the representativeness

of the FE model with respect to the experimental test in terms of specimen geometry or boundary

conditions for instance. Moreover, these works only concerned pure opening mode configurations but

such approaches would not allow identifying the GSIFs corresponding to different modes in a mixed

mode loading configuration.

The objective of this work is the direct experimental determination of GSIFs from digital image

correlation (DIC) displacement and strain fields. Tensile tests on PMMA square hole specimens are

presented in Section 3. Section 4 describes the GSIF calculation method that is employed as a post-

processing of either FE calculations or DIC fields. In Section 5, the coupled criterion for crack initiation

prediction is recalled. Finally, GSIFs obtained from DIC or FE calculations are compared in Section 6.

3. Experiments

The material under investigation is a commercial extruded PMMA. Several rectangular specimens

were manufactured using laser cutting to obtain square holes which sides are parallel to the specimen

sides. The specimens were tested under uniaxial tension on a 20kN Zwick machine. The choice of such

a configuration is motivated by the fact that it leads to a mixed mode crack initiation, the mode mixity

depending on the square hole size c. It is assumed here that c is small compared to the specimen width

w. Experimental tests were performed on a total of 10 configurations with square hole sizes varying
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from 1.2 to 15.2 mm, with 5.76+0.05 mm thick and 150+0.2 mm long specimens. The other dimensions

are reported in Table 1. A speckle pattern, obtained using a white and black paint air spray, was applied

on the specimens prior to the tests. The prescribed displacement rate is 0.5 mm/min, which is small

enough to ensure an overall quasi-static loading. The test is optically recorded at 1 Hz frequency

with 1 s exposure time using a 29M Pixels Allied Vision Prosilica GX camera. Specimens without

hole were also tested to measure the material Young’s modulus (E =2.7+0.1 GPa) and Poisson’s ratio

(ν =0.39+0.005) by averaging the longitudinal and transverse strain fields obtained by DIC (Fig. 1).

All DIC computations presented in this work have been performed using UFreckles software [35]. They

are based on a global DIC method [4, 32], which requires the definition of a mesh on the reference

image. The displacement field minimizing the gray level difference norm between the reference image

and the deformed image corrected by this displacement field is computed at the mesh nodes. A regular

mesh with 4-node elements is adopted and the mesh size is chosen so that the integration contour

radius is larger than five elements.

For each specimen under investigation, cracking occurs at two square hole corners being located at

each side of the square. It can be noted that the two cracks on both sides of the square hole initiate

quasi-simultaneously. However, it has been observed for some specimen that one crack initiates slightly

earlier than the second one which leads to the specimen immediately breaking into two parts. Figs.

2 and 3 depict the specimens with different square hole sizes respectively before the tests and after

failure. The crack orientation, measured from microscope observations of the square hole V-notches

after failure, indicates that failure occurs under mixed mode loading. Indeed, in the case of a pure

Square hole side c (+0.05mm) 1.23 1.60 2.35 2.70 3.60 5.05 6.16 9.23 12.28 15.2
Specimen width w (+0.2 mm) 9.80 14.80 19.80 24.80 29.80 29.80 29.80 49.80 49.80 49.80

Table 1: Dimensions of the tested specimens.
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Figure 1: Stress-Strain curves of the material under investigation.
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10mm

Figure 2: Photographs of the tested specimens with square hole size from (a) 15.2mm to (j) 1.23mm before the tests.

opening mode loading the crack would initiate along the square hole V-notch bisector, which is not

observed. Moreover, the smaller the hole size, the larger the angle between the V-notch bisector and the

crack, which reveals that the smaller the hole size, the smaller the amount of opening mode relatively to
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direction

Figure 3: Photographs of the tested specimens with square hole size from (a) 15.2mm to (j) 1.23mm after failure.

shear mode. Note that, to avoid any ambiguities, mixed mode crack initiation means that the loading

in the vicinity of the corner is a mixture of opening and shear. But, the material being homogeneous,

the crack selects the direction where it is in only opening mode.

4. GSIF computation

4.1. Singularity exponent, primal and dual fields

First, let us recall the generic form of Williams’ expansion in the vicinity of a V-notch [45]

U(r, ϕ) = C + krλu(ϕ) + ... (1)

where U is the solution to an elastic problem, C holds for the rigid translation, r and ϕ are the polar

coordinates emanating from the root of the V-notch. The exponent λ and its associated mode u(ϕ)

9



depend only on the local geometry and possibly local elastic properties while the GSIF k is a function

of the global geometry of the specimen and the intensity of the applied load as well as the way it is

applied. In this approach, it is assumed that the local geometry and material properties around the

singular point depend only on the polar angle ϕ.

Solutions of the form rλu(ϕ) are sought under the assumption that there is locally no body forces and

that the neighbouring faces undergo vanishing conditions (expressed either in terms of displacement

or traction) but disregarding remote boundary conditions. Non homogeneous conditions can be added

afterward. the elasticity problem. The analytical and numerical resolution of the eigenvalue problem,

of which λ and u are solution, have been widely developed in [21] and more recently in [9] dedicated

to the implementation of the CC in a commercial code. It is not explained again herein. The primal

opening (I) and shear (II) modes displacement and stress fields in polar coordinates in the V-notch

frame (Fig. 4) are given by:

uI(r, ϕ) = rλ1


uI
r(ϕ)

uI
ϕ(ϕ)

 and uII(r, ϕ) = rλ2


uII
r (ϕ)

uII
ϕ(ϕ)

 (2)

with (cf., e.g., [39, 42])

uI
r(ϕ) = [cos((1 + λ1)ϕ∗) + λL+3µL−λ1(λL+µL)

(λL+µL)(1−λ1)
sin(ω(1+λ1)/2)
sin(ω)(1−λ1)/2)

cos((1− λ1)ϕ∗)]/(2µLλ1γ
I−0
ϕϕ )

uI
ϕ(ϕ) = [−sin((1 + λ1)ϕ∗)− λL+3µL+λ1(λL+µL)

(λL+µL)(1−λ1)
sin(ω(1+λ1)/2)
sin(ω)(1−λ1)/2)

sin((1− λ1)ϕ∗)]/(2µLλ1γ
I−0
ϕϕ )

uII
r (ϕ) = [sin((1 + λ2)ϕ∗) + λL+3µL−λ2(λL+µL)

(λL+µL)(1+λ2)
sin(ω(1+λ2)/2)
sin(ω)(1−λ2)/2)

sin((1− λ2)ϕ∗)]/(2µLλ2γ
II−0
rϕ )

uII
ϕ(ϕ) = [cos((1 + λ2)ϕ∗) + λL+3µL+λ2(λL+µL)

(λL+µL)(1+λ2)
sin(ω(1+λ2)/2)
sin(ω)(1−λ2)/2)

cos((1− λ2)ϕ∗)]/(2µLλ2γ
II−0
rϕ )

(3)
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with

γI−0
ϕϕ = (1+λ1)sin(ω(1+λ1)/2)

(1−λ1)sin(ω(1−λ1)/2)
− 1

γII−0
rϕ = 1− (1−λ2)sin(ω(1+λ2)/2)

(1+λ2)sin(ω(1−λ2)/2)

(4)

where λL, µL are the material Lamé coefficients, ϕ∗ = ϕ − π/2, ω = 3π
2

. The singularity exponents

corresponding to primal opening and shear modes, which can be obtained by solving a transcendent

equation, are λ1=0.545 and λ2=0.908. The opening (I) and shear (II) primal stress fields in the vicinity

of the V-notch can be expressed in polar coordinates as:

σI(r, ϕ) =


σrr

σϕϕ

σrϕ


= rλ1−1


σI
rr(ϕ)

σI
ϕϕ(ϕ)

σI
rϕ(ϕ)


and σII(r, ϕ) = rλ2−1


σII
rr(ϕ)

σII
ϕϕ(ϕ)

σII
rϕ(ϕ)


(5)

with

σI
rr(ϕ) = [cos((1 + λ1)ϕ∗) + 3−λ1

1−λ1
sin(ω(1+λ1)/2)
sin(ω)(1−λ1)/2)

cos((1− λ1)ϕ∗)]/γI−0
ϕϕ

σI
ϕϕ(ϕ) = [−cos((1 + λ1)ϕ∗) + 1+λ1

1−λ1
sin(ω(1+λ1)/2)
sin(ω(1−λ1)/2)

cos((1− λ1)ϕ∗)]/γI−0
ϕϕ

σI
rϕ(ϕ) = [−sin((1 + λ1)ϕ∗) + sin(ω(1+λ1)/2)

sin(ω(1−λ1)/2)
sin((1− λ1)ϕ∗)]/γI−0

ϕϕ

σII
rr(ϕ) = [sin((1 + λ2)ϕ∗) + 3−λ2

1+λ2

sin(ω(1+λ2)/2)
sin(ω(1−λ2)/2)

sin((1− λ2)ϕ∗)]/γII−0
ϕϕ

σII
ϕϕ(ϕ) = [−sin((1 + λ2)ϕ∗) + sin(ω(1+λ2)/2)

sin(ω(1−λ2)/2)
sin((1− λ1)ϕ∗)]/γII−0

ϕϕ

σII
rϕ(ϕ) = [cos((1 + λ2)ϕ∗)− 1−λ2

1+λ2

sin(ω(1+λ2)/2)
sin(ω(1−λ2)/2)

cos((1− λ2)ϕ∗)]/γII−0
rϕ

(6)

The primal displacements and stresses corresponding to opening (J = I) or shear (J = II) modes

can finally be expressed using Cartesian coordinates in the V-notch frame (O
′
, t, n) (cf. Fig. 4, O′
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Figure 4: Photograph of the square hole specimen indicating the local V-notch frames (blue, red, black and green) and
the DIC frame (purple).

corresponds to the V-notch corner) as:


uJ
t

uJ
n

 = P


uJ
r(ϕ)

uJ
ϕ(ϕ)

 (7)

and σJ
tt σJ

tn

σJ
tn σJ

nn

 = P

σJ
rr σJ

rϕ

σJ
rϕ σJ

ϕϕ

PT (8)

where

P =

cos ϕ −sin ϕ

sin ϕ cos ϕ

 (9)

P is the matrix that allows transforming polar to Cartesian coordinates in the V-notch frame.

Moreover, it is emphasized that the dual displacement and stress fields can be obtained by replacing

λ1 by −λ1 and λ2 by −λ2 in the expressions given for the primal displacement and stress fields.

The contour integral calculation (cf. Section 4.2) requires that the DIC fields together with the primal

and dual fields are expressed in the same frame. In practice, we choose to transfer the DIC fields to the

V-notch frame. Denoting γ the angle between the DIC frame (O, x, y) and the V-notch frame (O
′
, t, n),
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we can express the DIC displacement and stress fields in the V-notch frame as:


uDICt

uDICn

 = Q


uDIC
x

uDIC
y

 (10)

and σDIC
tt σDIC

tn

σDIC
tn σDIC

nn

 = Q

σDIC
xx σDIC

xy

σDIC
xy σDIC

yy

QT (11)

where

Q =

 cos γ sin γ

−sin γ cos γ

 (12)

Q is the rotation matrix between the DIC frame and the V-notch frame. In case of an isotropic

homogeneous material (as PMMA in the present case), λ is independent of the elastic coefficients of

the material. The exponent and the discretized values of the primal and dual modes (displacements

and stresses) are tabulated to be used in the calculations described in the sequel.

4.2. The contour integral for GSIF calculation

SIF computation for a crack can be performed using, for instance, J-integral, which is not applicable

in the case of other singularities such as V-notches, which require an alternative approach for GSIF

calculation. The goal of this section is to propose a method to extract the GSIF k from U or more

likely from a known approximation, a measured DIC field UDIC or a computed FE field UFE. To this

aim, let us consider the following contour integral for two elastic solutions U and V fulfilling locally

the homogeneous equilibrium equations and boundary conditions

Ψ(U, V ) =

∫
Γ

[σ(U).n.V − σ(V ).n.U ]dl, (13)
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where Γ is any contours encompassing the singular point and finishing on the neighbouring traction

free (or vanishing displacements) faces, σ(U) is the stress field associated to the displacement field U

through Hooke’s law, n is the normal to Γ pointing towards the origin (the singular point). It can be

proved that the integral (13) is path independent.

Remark : Two important properties are recalled here (demonstrations can be found in [9] and [21]).

(i) If λ is a solution to the eigenvalue problem mentioned in Section 4.2, then −λ is a solution too. The

condition λ > 0 is necessary to have a solution with a finite energy, nevertheless, −λ is a mathematical

solution with its own eigenvector u−(ϕ). The functions u(ϕ) and u−(ϕ) are called respectively primal

and dual modes. This property plays an essential role in the calculation of the 2D GSIFs.

(ii) If α and β are two singular exponents with their eigenmodes uα(ϕ) and uβ(ϕ) then

β 6= −α =⇒ Ψ(rαuα, r
βuβ) = 0 (14)

The above integral vanishes except for β = −α, i.e. if β is the dual exponent to α. Then, noting

UDIC =
∑

i kir
αiuαi

(ϕ), we obtain:

Ψ(UDIC, r−αu−α) =
∑
i

kiΨ(rαiuαi
(ϕ), r−αu−α) = kαΨ(rαuα(ϕ), r−αu−α) (15)

Then, from this property and (1), it comes:

kλ =
Ψ(UDIC, r−λu−)

Ψ(rλu, r−λu−)
(16)

Note that the denominator in (16) can be calculated once and for all independently of the contours as

a consequence of (14).
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Remark : The proposed approach for GSIF calculation can be applied for any singular point, including

V-notches in the present analysis. The particular case of SIF calculation for a crack can thus be assessed

employing the proposed approach.

4.3. Implementation of GSIF calculation from DIC fields

The computation of the GSIF is based on a post-processing of displacement and stress fields. On

the one hand, in the case of FE calculations, it is straightforward to compute both quantities. On the

other hand, DIC allows the measurement of displacement and strain full fields. It is thus necessary to

assume a constitutive law in order to determine the missing stress field. Herein, we assume a linear

elastic isotropic material behavior so as to compute the stresses σ from the strains ε using Hooke’s law:

σ =
E

1 + ν
(ε+

ν

1− 2ν
tr(ε)I) (17)

where E is the Young modulus, ν the Poisson ratio of the material and I the identity operator. Then,

computing the integral (16) requires the definition of a contour Γ. We choose to discretize a circular

contour that ends on the V-notch flanks. Of course, it is ensured that all the integration points of the

contour lies within the zone where the DIC fields are computed from full field measurements. Once the

contour geometry is defined, the second step consists in extracting the quantities of interest along the

contour (displacements and stresses). DIC displacements and stresses along the contour are obtained

through interpolating the calculated quantities at the contour integration points and primal and dual

modes are obtained from expressions given in Section 4.1.

Finally, the integral Ψ(uDIC, uJ−) (where uJ− denotes the dual displacement field, J = I for opening

mode and J = II for shear mode) is computed on the discrete basis of the chosen contour, which allows

determining the corresponding GSIF (Eqn. (16)). The proposed approach is used in next sections to
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compute the square hole V-notch GSIFs from displacement and stress fields obtained by FE calculations

and from displacement and strain fields obtained by DIC (Section 6).

4.4. FE implementation of GSIF calculation

A 2D FE model of square hole specimens is set-up using AbaqusTM. Both plain stress and plain

strain calculations have been performed, its influence on GSIF calculation is discussed in Section 6.

Linear elastic isotropic material behavior with E=2.7GPa Young’s modulus and ν =0.39 Poisson’s

ratio is used. The material strength and fracture toughness, determined by inverse identification on

circular hole specimens [11], are σc =43MPa and Gc =90J/m2. As stated in introduction, the studied

material is extruded PMMA, which presents lower strength and toughness than cast PMMA. It can

be noted that the material under investigation exhibits a nonlinear behavior for stress levels larger

than 20 MPa (Fig. 1). Nevertheless, the imposed stress levels do not exceed 15MPa for the specimen

containing the smallest hole and are even smaller for larger holes. The stress is expected to be higher

than 20 MPa in a localized zone in the vicinity of the V-notch singular point. Indeed, from theoretical

considerations based on the coupled criterion, the size of this zone is of the same order of magnitude

as EGc

σ2
c

=130µm [28]. In practice, we checked from numerical simulations that the size of the zone for

which the stresses are larger than 20MPa for the maximum imposed stress levels lies between 100 and

200 µm for holes comprised between 1.2mm and 15.2mm. It is much smaller than the contour integral

path radius. Therefore, It can be concluded that we compute the contour integral on a path for which

the material behavior remains linear elastic.

A unit displacement is imposed on top and bottom faces of the specimen. Opening and shear

mode GSIFs are computed according to the method presented in previous section for ten different

circular contours with radius lying between c/10 and c/3. Maximum differences of 1% are obtained
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Figure 5: GSIF variations obtained from FE calculations (for a +1mm imposed displacement on the top and bottom
edges of the specimen) for the top right corner as a function of the square hole size in the presence of (a) no crack or
(b-c) one crack located at the (b) top left or (c) bottom left corner.

using different contours, which demonstrates the path independence of the integral (13) and thus the

GSIF path independence (16). Fig. 5a shows the opening (kI) and shear (kII) mode GSIF variations

as a function of the square hole size obtained numerically as well as the mode mixity defined as

ψ = tan−1(kII
kI
LλII−λImat ) [6], where the characteristic length Lmat is defined as Lmat = EGc

σ2
c

. It can be

seen that a mixed mode configuration is obtained whatever the hole size. Moreover, the mode mixity

is decreasing with increasing hole size, which is consistent with experimental observations of crack

deflection with respect to the V-notch bisector. As explained in Section 3, for some specimens the

initiation of the second crack occurred slightly after the first one. The presence of a first crack may

have an influence on second crack initiation. As a matter of example, and since we did not quantify
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the first crack length when the second crack initiates, we study numerically the extreme case of a

second crack initiating when the first crack already fully propagated to the specimen side (Fig. 5b-c).

Fig. 5b-c shows the GSIF and mode mixity variations as a function of the square hole side. It is

clearly observed that the presence of a first fully propagated crack tends to decrease the mode mixity

at the opposite corner, hence resulting in a lower crack deflection. Note that the experiments actually

corresponds to an intermediate situation between the simultaneous initiation of both cracks and the

initiation of the second crack when the first crack has fully propagated.

5. The coupled criterion

5.1. The criterion

The coupled criterion (CC) aims at filling the gap of crack nucleation prediction in brittle material

[23], which is not covered by classical Linear Elastic Fracture Mechanics [13, 14]. This approach,

which allows the determination of the initiation loading level, crack length and crack angle, is briefly

recalled here. A detailed description of this approach for mixed mode crack initiation can be found

in [38, 11]. Basically, it lies on the simultaneous fulfilment of a stress and an energy conditions. The

former states that prior to crack initiation, the tensile stress acting on the presupposed crack plane σnn

must overcome the material strength σc

σnn(r) ≥ σc for any points along the presupposed crack path. (18)

The latter requires that the potential energy change due to crack nucleation (−∆W = W (0) −W (l),

where l is the crack length) is larger than the energy required to create a crack surface Gcl (written
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here in 2D without ambiguity)

−∆W

l
≥ Gc. (19)

The CC can be applied either through the matched asymptotic (MA) expansions method which is

quasi-analytic or through a full finite element (FFE) approach. Both presented in detailed for instance

in [9] and recalled in the sequel are equivalent provided the initiation crack length is small with respect

to the other structural characteristic lengths (this is checked afterward). Under small deformations

and linear elastic framework, the stress and the potential energy are respectively proportional to the

applied load and the square of applied load, which allows both conditions to be combined into a single

equation. Solving this equation allows computing the initiation crack extension and loading level.

Under mixed mode loading, the crack angle is a priori unknown, thus this procedure can be repeated

for several crack angles. The initiation crack angle is obtained as the one minimizing the loading level

for crack initiation, this minimum loading actually being the critical loading level.

5.2. The full finite element (FFE) approach

It is the most straightforward way to implement the CC and there is no restriction on its use. A

first computation is carried out without a crack in order to determine the tensile stress acting on the

presupposed crack paths. The plural is used because the crack direction is not known initially, its

determination requires applying the CC for different directions and selecting the one minimizing the

load at initiation. Next, for each crack angle, the FE implementation of the CC requires to release

double nodes (sometimes called unbuttoning) in order to build the function W (l) and as a consequence

to check the inequality (19). Therefore, this procedure requires several linear FE calculations to be

executed. Nevertheless, it can be noted that these calculations can be carried out simultaneously so

that the approach remains efficient numerically.
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5.3. The matched asymptotic (MA) approach

This approach, described for instance in [9, 23, 24], can be carried out under the assumption that

the crack length at initiation remains small compared to any dimensions of the structure (here the

square hole size and the ligament width). It is based on a two scale modelling under the form of outer

(far field) and inner (near field) expansions that must match in an intermediate area. Outer means out

of a vicinity of the notch root and inner inside this vicinity. The elastic solution involving a crack with

length l is expanded in terms of this crack extension length

U l(x1, x2) = U0(x1, x2) + f1(l)U1(x1, x2) + ... (20)

where U0 is the solution to the unperturbed problem (i.e. without crack) and f1(l)→ 0 as l→ 0. Note

that the terms U0, U1, etc. of the expansion are defined on a simplified domain where the small crack

is not visible.

Similarly, after having stretched the space variables yi = xi/l and considered the limit as l → 0, the

inner expansion takes the form

U l(x1, x2) = U l(ly1, ly2)

= F0(l)V 0(y1, y2) + F1(l)V 1(y1, y2) + ...

(21)

where F1(l)/F0(l) → 0 as l → 0. Parallel to the outer expansion, the terms of the inner expansion

are defined on another kind of simplified domain, unbounded and where the remote boundaries have

disappear. The matching conditions impose to this expansion to match at infinity with the behavior

of the outer expansion when approaching 0 defined at the leading order by the Williams expansion (1)
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of U0, this leads to [21]

U l(ly1, ly2) = C + k lλ V 1(y1, y2) + ... (22)

Using a superposition principle, it is shown that V 1 is solution to a well-posed problem, it is

independent of the applied load and the global geometry of the specimen.

Thus, two descriptions are available prior to (l = 0) and following crack initiation (l > 0) and the

change in potential energy can be calculated

∆W = A k l2λ + ... (23)

where A is a scaling coefficient that depends on the crack direction (but not its length). It can be

calculated once and for all for each crack direction. Eqn. (23) together with the stress condition

derived from (1) and the Hooke’s law (17) give the crack length at initiation lc and the critical value

of the GSIF kc

lc =
Gc

A

1

σ2
c

and kc =

(
Gc

A

)1−λ

σ2λ−1
c (24)

The selected crack direction corresponds to the one maximizing A, i.e. minimizing kc.

6. Results and discussion

The method presented in Section 4 is now applied to the experimental determination of GSIFs from

displacement and strain fields measured by DIC.
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(a) (b)

Figure 6: Experimentally derived (a) opening ∆kI

kI
and (b) shear ∆kII

kII
mode GSIF relative variation as a function of the

square hole size.

6.1. Integral path independence

The GSIFs are calculated for all square hole configurations tested experimentally using ten different

circular contours for a prescribed stress σ0 =5 MPa (the ratio between the applied force and the initial

surface of the specimen cross section). Fig. 6 depicts the relative variation (i.e. the GSIF range to

mean value ratio obtained for the ten contours) of the calculated GSIF at each corner as a function of

the square hole size. It can be observed that for square hole sizes c ≥ 2 mm, the opening mode GSIF

is computed within less than 20% uncertainty in the worst case. The uncertainty on shear mode GSIF

calculation is slightly larger than for the opening mode. For smaller holes, the uncertainty drastically

increases, which can be explained by the fact that similar speckle patterns were used for all specimens.

The smaller the hole, the smaller the DIC mesh size and hence the higher the uncertainties in the

calculation of the displacement fields [4].
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6.2. GSIF variation during the test

A practical interest of the proposed approach is the ability to compute the GSIF variations during

the test. Figs. 7a-c and 8a-c show the opening and shear mode and mode mixity variations at each

corner as a function of the prescribed stress σ0 for c = 6.16 mm and c = 1.6 mm hole size. For each

(a) (b)

(c)

(d)

(e)

10mm

12
34

Figure 7: (a) Opening (kI) and (b) shear (kII) mode GSIFs and (c) mode mixity ψ at the four square hole corners
(c=6.16mm) as a function of the prescribed stress σ0. Photograph of the square hole (d) before (highlighting the corners
with corresponding colors in (a-c)) and (e) after failure.

corner (depicted with the same color as the corresponding lines on Figs. 7d-e and 8d-e), the mean,
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(a) (b)

(c)

(d)

(e)

10mm

Figure 8: (a) Opening (kI) and (b) shear (kII) mode GSIFs and (c) mode mixity ψ of the four square hole corners
(c=1.6mm) as a function of the imposed stress σ0. Photograph of the square hole (d) before (highlighting the corre-
sponding corners in (a-c)) and (e) after failure.

minimum and maximum GSIF obtained on 10 different contours are presented. It can be observed that

opening and shear mode GSIFs vary in an almost linear way, the shear mode sign changing depending

on the square hole corner. As shown in Fig. 6, it can be seen that the uncertainties on GSIFs calculation

are larger for smaller square hole size, and also larger for shear than opening mode. Moreover, from

a sufficiently high load level (σ0 = 2MPa for c = 6.16mm and σ0 = 5MPa for c = 1.6mm), the mode
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FFE

FFE

FFE

FFE

FFE

FFE

Figure 9: Failure (a) Opening (kI) and (b) shear (kII) mode GSIFs and (c) mode mixity ψ of the four square hole corners
as a function of the square hole side.

mixity reaches a constant value until crack initiation. As explained in the previous section, we are not

able to quantify the GSIF change in the case where one cracks initiates slightly before the other, which

could possibly be undertaken using a rapid camera in order to catch the very first crack initiation.

6.3. Critical GSIF

From Figs. 7 and 8, it can be seen that at least one of the initiated cracks correspond to the

larger opening mode GSIF among the four square corners, which supports crack initiation prediction

based on GSIF. Fig. 9 shows the failure opening and shear mode GSIFs as well as the mode mixity

as a function of the square hole size obtained experimentally and numerically (employing either plane

strain or plane stress conditions) for the loading level predicting using either FFE or MA approaches of

the CC (the reader is referred to Section 5, [6] and [11] for details about the CC theory and numerical

implementation in the case of square holes).

First, it can be observed that both MA and FFE approaches of the CC give similar opening and

shear failure GSIF predictions, which could be expected since the material characteristic length Lmat

is small with respect to any other structural dimensions [9]. It can be noted that both opening and
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shear mode GSIFs as well as mode mixity predicted employing plane stress conditions are slightly

smaller than those obtained with plane strain conditions. A slight better agreement with experimental

data is obtained employing plain stress conditions, which can be explained by the fact that the GSIF

are computed based on displacement and strain fields obtained on the specimen surface. Qualitative

trends of increasing opening mode and decreasing shear mode GSIF are well captured by the numerical

predictions, a satisfying agreement between numerical and experimental GSIF being obtained.

Note that the agreement between the failure GSIFs determined experimentally and computed nu-

merically was not expected to be perfect since the proposed approach relies on several assumptions:

(i) The FE (either FFE or MA) approach assumes a perfectly sharp notch whereas this cannot be

physically achieved, there is a small rounding and this increases the apparent critical GSIFs. Following

an identical procedure to that developed in [25], it can be shown that the apparent GSIFs k1 and k2

vary respectively with ρ2λ1 and ρ2λ2 where ρ is the root radius (assumed to be small) that blunts the

V-notch.

(ii) More difficult to control, flaws due to machining inevitably exist at the root of the notch which

tend, unlike the previous case, to decrease the apparent critical GSIFs. The laser cut also induces a

thermal treatment at the very surface of the specimen hole, which may affect the material properties

in a localized layer around the hole.

(iii) We considered 2D displacements and strain fields obtained by DIC on the surface of the specimens.

Therefore, a source of uncertainties comes from the fact that the plane in which the displacement fields

are measured is the specimen surface whereas the 2D FE model is more inline with the middle plane of

the specimen [8]. In practice, we observed the specimen surface where the singularity of the V-notch

tip is slightly different than along the notch edge (this one actually corresponds to the 2D singularity).

It is the singularity of a V-notch reaching a free surface. Computing the exponents and the associated
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modes of such a singularity can be carried out, but would require 3D DIC fields in order to compute

experimentally the corresponding GSIFs (using the approach described in [10, 22]). The 2D contour

integral allows computing 2D opening and shear mode GSIFs from 2D displacement fields. It has to be

noted that there also exist an out of plane mode which magnitude may be significant for a long crack

loaded in shear [16] and depends on the plate thickness [15], which we do not consider since it has only

a weak influence on the initiation crack direction. This mode corresponds to mode III in the case of a

crack, which leads to a fragmentation of its front [7, 30] which orientation is determined by mode I and

II [5]. At interior points along the straight V-notch (i.e. except at the two surface ends), the leading

terms of the William’s expansion are the 2D plane strain singularities [1, 46]. It is not the case at the

two surface ends where the singularity is not the same as for interior points. Indeed, for the 3D corner,

there are two singular modes: a symmetric one that extend the 2D symmetric (opening) mode and a

second mode which is a mixture of the two 2D shear modes. 2D and 3D modes have slightly different

singular exponents (for instance for opening mode, the singularity exponent is 0.545 in 2D and 0.669

in 3D). Moreover, it can be shown that the trace of the 3D modes on the free surface is similar to

the 2D modes. Therefore, the error made in exploiting information extracted from the surface remains

acceptable. We also checked based on 3D FE calculations that there is a small difference (less than 3%)

between the 2D GSIFs computed based on the specimen surface or middle plane displacement fields.

Fig. 10 depicts the initiation crack deflection with respect to the V-notch bisector measured ex-

perimentally and obtained numerically using either MA or FFE approach. Similarly to the GSIF

prediction, the crack deflection predictions obtained using either one or the other approach are similar

and are in good agreement with the crack deflection measured experimentally. The crack deflection

of a second crack in presence of a first crack that would have fully propagated to the specimen edge

predicted using FFE approach of the CC is also reported. As explained in a previous section, it is
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FFE
FFE

Figure 10: Crack deflection with respect to the square hole V-notch bisector as a function of the square hole size measured
experimentally (error bars) and obtained numerically in presence of (red square) or without (blue circles) an initial crack.

obviously an extreme case that does not occur experimentally, which however gives a lower bound of

the mode mixity and of the crack deflection with respect to the V-notch bisector.

7. Conclusion

Mixed mode failure is observed in PMMA specimens containing square holes under uniaxial tensile

loading. The larger the hole size, the smaller the mode mixity defined as a normalized ratio between

the GSIFs of the shear and opening modes. By means of DIC, we compute the displacement and strain

fields around the square hole corners and determine the corresponding stress fields assuming a linear

elastic isotropic material behavior which properties are also determined using DIC. By means of a path

independent integral, the square hole corner GSIFs are determined experimentally without relying on

any FE models. The uncertainty on the GSIF calculation is lower than 20 % in most cases, except

for too small holes for which the uncertainty linked to the displacement field measurements using DIC

are higher. Opening and shear mode GSIFs variations as a function of the imposed stress are recorded
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during the test, which allows determining the mode mixity variation on the fly, it reaches a constant

value from a certain imposed loading level. Crack initiation occurs at one of the corners exhibiting

the largest GSIFs. Numerical predictions of the GSIF based on the same path independent integral

and on crack initiation prediction obtained using the CC are in reasonable agreement with the GSIFs

determined experimentally. Future work will cover the extension of the proposed approach to case

of 3D singularities, which will require DIC fields obtained by Digital Volume Correlation in order to

compute the GSIF of a 3D singularity experimentally.
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[3] A. Barroso, E. Graciani, V. Mantič, F. Paŕıs, 2012. A least squares procedure for the evaluation

of multiple generalized stress intensity factors at 2D multimaterial corners by BEM. Eng. Anal.

Bound. El. 36, 458–470.

[4] G., Besnard, F., Hild, S., Roux, 2006. Finite-element displacement fields analysis from digital

images: application to Portevin-Le Chatelier bands. Exp. Mech., 46(6), 789-803.

[5] F.B. Buchholz, A. Chergui, H.A. Richard, 2004. Fracture analyses and experimental results of

crack growth under general mixed mode loading conditions. Engng. Fract. Mech. 71, 455-468.

[6] P., Cornetti, A., Sapora, A., Carpinteri, 2013. Mode mixity and size effect in V-notched structures.

Int. J. Sol.Struct. 50(10), 1562-1582.

[7] A. Doitrand, D. Leguillon, 2018. Numerical modeling of the nucleation of facets ahead of a primary

crack under mode I+III loading. Int. J. Fract. 213, 37-50.

[8] A., Doitrand, R., Estevez, D., Leguillon, 2019. Experimental characterization and numerical mod-

eling of crack initiation in rhombus hole PMMA specimens under compression. Eur. J. Mech. Sol.

76, 290-299.

30



[9] A., Doitrand, E., Martin, D., Leguillon, 2020. Finite element procedure implementation of the

coupled criterion: matched asymptotic and full finite element approaches. Fin. Elem. Anal. Des.

168, 103344.

[10] A., Doitrand, D., Leguillon, E., Martin, 2020. Computation of generalized stress intensity factors

of 3D singularities. Int. J. Sol. Struct. doi:10.1016/j.ijsolstr.2019.11.019.

[11] A., Doitrand, P., Cornetti, A., Sapora, R., Estevez. Experimental characterization of mixed mode

failure of square hole specimens. Under review in Int. J. Fract.

[12] M.L. Dunn, W. Suwito, S. Cunningham, 1997, Fracture initiation at sharp notches: correlation

using critical stress intensities. Int. J. Sol. Struct. 34(29), 3873-3883.

[13] A.A. Griffith, 1920, The phenomenon of rupture and flow in solids, Phil. Trans. Roy. Soc. London

Series A, 163-198.

[14] G.R. Irwin, 1957, Analysis of stresses and strains near the end of a crack traversing a plate. J.

Appl. Mech. 24, 361-364.

[15] A. Kotousov, 2010. Effect of plate thickness on stress state at sharp notches and the strength

paradox of thick plates Int. J. Sol. Struct. 47, 1916-1923.

[16] A. Kotousov, P. Lazzarin, F. Berto, L.P. Pook, 2013. Three-dimensional stress states at crack tip

induced by shear and anti-plane loading. Engng Fract. Mech. 108, 65–74.

[17] P.E.W. Labossiere, M.L. Dunn, 1998, Calculation of stress intensities at sharp notches in

anisotropic media, Eng. Fract. mech. 61, 635-654.

31



[18] P.E.W. Labossiere, M.L. Dunn, 1999, Stress intensities at interface corners in anisotropic bimate-

rials, Eng. Fract. Mech. 62, 555-575.

[19] P.E.W. Labossiere, M.L. Dunn, 2001. Fracture initiation at three-dimensional bimaterial interface

corners. J. Mech. Phys. Sol. 49 (3), 609-634.

[20] P. Lazzarin, F.Berto, M.Zappalorto, 2010, Rapid calculations of notch stress intensity factors

based on averaged strain energy density from coarse meshes: Theoretical bases and applications,

Int. J. Fatigue 32(10), 1559-1567.

[21] D. Leguillon, E. Sanchez-Palencia, 1987. Computation of singular solutions in elliptic problems

and elasticity, John Wiley, New York.

[22] D. Leguillon, 1995. Computation of 3D-singularities in elasticity, in: M. Costabel, M. Dauge, S.

Nicaise (Eds.), Boundary Value Problems and Integral Equations on Non-Smooth Domains, Lect.

Notes in Pure and Applied Math., vol. 167, Marcel Dekker, New York (1995), pp. 161-170.

[23] D., Leguillon, 2002, Strength or toughness ? A criterion for crack onset at a notch, Eur. J. Mech.

Sol. 21, 61-72.

[24] D., Leguillon, D., Quesada, C., Putot, E., Martin, 2007. Size effects for crack initiation at blunt

notches or cavities. Engng. Fract. Mech. 74, 2420-2436.

[25] D., Leguillon, 2011. Determination of the length of a short crack at a v-notch from a full field

measurement, Int. J. Sol. Struct. 48, 884-892.

[26] D., Leguillon, 2014, An attempt to extend the 2D coupled criterion for crack nucleation in brittle

materials to the 3D case. Theor. Appl. Fract. Mech. 74, 7-17.

32
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[29] F. Paŕıs, R. Picón, J. Maŕın, J. Cañas, 1997. Photoelastic determination of KI and KII : A

numerical study on experimental data. Exp. Mech. 37(1), 45–55.

[30] K.H. Pham, K Ravi-Chandar, 2016. On the growth of cracks under mixed-mode I + III loading.

Int. J. Fract. 199, 105-134.

[31] J.R., Rice, ”A Path Independent Integral and the Approximate Analysis of Strain Concentration

by Notches and Cracks”, Journal of Applied Mechanics, 35, 1968, pp. 379–386
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