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aUniversité Lyon, INSA-Lyon, MATEIS UMR CNRS 5510, F-69621 Villeurbanne Cedex, France

Abstract

Individual platelets in nacre-like ceramics are able to locally withstand stress levels many

times larger than the strength of larger specimens made of the same materials. This size

effect, usually reported as being relative to the size of pre-existing defects, is described by

considering both stress and energy failure conditions. We show that there is a characteristic

length, defined by the material Young’s modulus, fracture energy and strength, above which

failure is governed by a stress criterion and below which energy considerations are dominant.

Applying the coupled criterion to three-point bending of a single alumina platelet allows the

identification of the platelet strength and fracture energy. The proposed approach also allows

capturing the decrease in failure stress due to a surface defect accounting for its shape and

size.
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1. Introduction

The interest towards nacre and nacre-like ceramics has been increasingly growing over

the past years [1, 2, 3]. These bioinspired materials, generally manufactured from brittle

constituents, combine high stiffness, strength and fracture toughness [2]. They consist of a

dense packing of ordered and oriented micron-scale platelets [2, 4, 5, 6, 7, 8]. The orientation

of the platelets along a specific direction can be achieved during the material manufacturing

process by ice templating [2] or by adding ferro-magnetic particles that are sensitive to mag-

netic fields [5, 9]. Other manufacturing approaches can also be employed, such as ceramic

layer gluing [10], or 3D printing [11]. The platelets are sintered and a secondary phase acts



like an interface that can consist of polymer [4, 5, 8], metal, ceramic [7], or also a glassy

phase [2]. Bouville et al. [2] showed that varying the constituents of the secondary phase

could lead to either brittle or non-brittle macroscopic mechanical behavior. The apparent

non-brittle macroscopic mechanical behavior is mainly due to fracture mechanisms related to

the material microstructure. Rather than propagating directly through the platelets, a crack

is more likely to propagate in the secondary phase at the interface between the platelets,

which causes crack deflection and branching [2, 11, 12]. Energy dissipation occurs through

these mechanisms since larger crack surfaces are created than in the case of a straight crack

that would penetrate through the platelets. An additional energy dissipation may also occur

by means of local friction, thus resulting in a non-brittle macroscopic behavior.

The mechanical properties of the platelet and of the interface play a major role in the me-

chanical response of the material. Controlling the material microstructure is of primary

importance in order to obtain mechanical properties that allow an optimal energy dissipa-

tion at the macroscopic scale, which could be achieved for instance by varying the platelet

size or geometry. To this end, modeling interface and platelet failure may help to obtain

guidelines to optimize the manufacturing process [13]. In particular, numerical simulation

can be used to set up inverse approaches for the determination of interface strength and frac-

ture toughness [14, 15]. Such approaches require the knowledge of the platelet mechanical

behavior and properties used in fracture models such as, for instance, cohesive zone models

[16, 17] phase field approach to fracture [18, 19, 20] or approaches based on Finite Fracture

Mechanics (FFM) [21, 22].

The experimental determination of the platelet mechanical properties requires to (i) be able

to perform micromechanical tests and (ii) set up post-processing approaches of these tests

that provide the properties required as input in the models. Focused ion beam (FIB) al-

lows manufacturing micron-scale specimens which can be mechanically tested thanks to

micro-mechanical devices such as nano-indenters [23]. For instance, Pejchal et al. [24]

performed flexural tests on microscopic alumina particle C-shaped and cantilever beam spec-

imens. Based on the fracture location observed experimentally, they determined the maxi-

mum stress at this location from the finite element (FE) analyses, which was thus considered

as the material strength. Maximum stress values as large as 10 GPa were obtained, decreasing
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to 2 GPa in presence of defects. Similar tests were performed by Mueller et al. [28] in order

to determine the strength of silicon particles in an aluminum alloy. Maximum stress levels

between 7 and 15 GPa were obtained without apparent defects, and between 2 to 6 GPa in

presence of defects. Following the same reasoning, Feilden et al. [3] determined that a single

alumina platelet could locally sustain 5 GPa maximum stress under three-point bending.

In the three approaches mentioned above, the strength is defined as the maximum stress

that the material can locally sustain before failure. It is obtained based on analytical or

FE models that does not account for the possible flaws. In presence of a sharp flaw (crack,

V-notch), the stress theoretically tends towards infinity, or at least reaches large values in the

vicinity of the flaw. It is thus clear that this given definition of the strength does not allow

characterizing a property that is specific to the material, since it depends on features such

as, for instance, the specimen geometry or the presence of defects. Size effects in quasibrittle

materials have been extensively investigated over the past decades to try to make a link

between the strength of large and small structures [25, 26, 27]. .

The objective of this work is to provide insight regarding the high values of failure stress

measured for single platelet by employing a framework in which the strength is considered as

a characteristic of the material and does not depend on the geometry of the studied specimen.

Section 2 is dedicated to the description of a failure prediction approach that combines stress

and energy conditions. In Section 3, this approach is applied to obtain the failure stress of a

single alumina platelet containing no flaws under tensile loading. Failure of a single platelet

under three-point bending is modeled by FE in Section 4 in order to identify the platelet

strength and toughness by confrontation to experimental measurements [3]. The influence of

a flaw on the failure stress is also studied.

2. A criterion for crack initiation prediction

2.1. Stress and energy failure conditions

Following the approach proposed by Leguillon [21], we consider that the nucleation of a

crack requires the simultaneous fulfillment of two conditions. The first condition describes

the need for a sufficiently large local stress state to trigger crack initiation. It states that the

stress normal to the crack path σnn must overcome the material strength σc over the entire
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crack path before its nucleation. The second condition describes the need for a sufficiently

large stored potential energy prior to crack initiation. It is derived from an energy balance

between the energy dissipated by the crack nucleation (−∆W = W (0)−W (S), where W (S)

is the potential energy corresponding to a crack of surface S) and the energy for new crack

surface creation (GcS, where S is the surface of the crack andGc the material fracture energy).

Both conditions can be expressed as non-dimensional expressions involving the crack surface

S:






σnn

σc
> 1 along the presupposed crack path,

Ginc(S)
Gc

= −∆W (S)
GcS

> 1.
(1)

Ginc is the incremental energy release rate, which is usually an increasing function of the

crack surface. Therefore, the second condition in Eqn. (1) provides a lower bound for the

admissible crack surfaces at initiation. On the other side, the stress is generally a decreasing

function of the distance to a stress concentrator in its vicinity, therefore the first condition

in Eqn. (1) defines an upper bound for the admissible initiation crack surfaces. For a too

small imposed loading, the stress criterion can be fulfilled for crack surfaces for which the

incremental energy release rates are smaller than Gc. Moreover, the energy criterion can be

fulfilled for crack surfaces for which the stress is smaller than σc. Therefore, the admissible

crack initiation ranges provided by both criteria do not match and no crack surfaces satisfy

both criteria simultaneously, as illustrated in Fig. 1a). Increasing the loading allows (i)

increasing the crack surface upper bound provided by the stress criterion and (ii) decreasing

the crack surface lower bound provided by the energy criterion, both bounds matching for

a sufficiently large imposed loading which corresponds to the initiation loading (Fig. 1b)).

The initiation loading is thus obtained as the minimum loading for which both criteria are

simultaneously fulfilled for a given crack surface.

2.2. Application of the coupled criterion

The application of the coupled criterion (CC) for failure prediction requires several fea-

tures. The stress state must be calculated for the configuration prior to crack initiation.

This can be performed either based on analytical solutions [29, 30, 31] or employing Finite

Element (FE) calculations (cf. Section 4). Thus, the stress condition can be computed,

which allows determining the minimum loading required to fulfill the stress condition Ps(S)
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as a function of the crack surface. The energy condition can be obtained by calculating the

potential energy variation as a function of the crack surface, which allows determining the

minimum loading required to fulfill this condition Pe(S). The loading required to initiate a

crack of a given surface S is determined as P (S) = max(Ps(S), Pe(S)). The initiation surface

S∗ minimizes the loading required to fulfill both conditions:

S∗ = argmin
S

(P (S)) = argmin
S

(max(Ps(S), Pe(S))) (2)

The initiation loading P ∗ can finally be determined as P ∗ = P (S∗) = max(Ps(S
∗), Pe(S

∗)).

The input parameters required to apply the CC are the material constitutive behavior

(Young’s modulus and Poisson’s ration for a linear elastic isotropic behavior) and its fracture

energy Gc and strength σc. Therefore, it raises the question of a strength definition that is

specific to the material, and does not depends on features such as the specimen geometry or

the presence of external defects.

2.3. The strength to be used in the coupled criterion

The CC requires the material strength as an input to predict failure, which rises the

question of defining the ceramic platelet strength, since it is well know that ceramic failure

1

Stress criterion fulfilled

Energy criterion fulfilled

1

𝐺 𝑖𝑛𝑐 𝐺 𝑐,σ 𝑛
𝑛 σ 𝑐

𝑆

𝐺 𝑖𝑛𝑐 𝐺 𝑐,σ 𝑛
𝑛 σ 𝑐

1

𝑆𝑐
(a) (b)

P=P*P<P*

Figure 1: Stress to strength σ
σc

(solid red line) and incremental energy release rate to fracture energy Ginc

Gc

(solid blue line) ratios as a function of the crack surface S for an imposed loading P (a) lower than or (b) equal
to the inititation load P ∗. The filled area represents configurations for which the corresponding criterion is
fulfilled.
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stress strongly depends on the presence of flaws. Based on experimental work by Usami et

al. [34] and Chantikul et al. [35], Leguillon et al. [32] recently proposed a definition for

the strength to be used in the CC in the case of polycrystalline ceramics and studied the

influence of a surface defect on the failure stress under tensile loading [33]. By studying the

influence of an extrinsic (surface) flaw on the ceramic failure, they showed that (illustration

of the results are given in Fig. 2):

❼ For a given grain size, the failure stress is governed by the flaw size for flaws larger than

the grain size (Fig. 2a). However, a constant failure stress is obtained for extrinsic flaws

smaller than the grain size, which allows defining an ”intrinsic strength”, i.e a material

property that does not depends on the extrinsic flaw size. The intrinsic strength is

however governed by the grain size and the instrinsic flaws such as, e.g., porosities

(which size is, in first approximation, in the same order of magnitude as the grain size).

❼ For large grains in the absence of extrinsic flaws, the intrinsic strength follows a Hall-

Petch-like law, i.e. the instrinsic strength varies as 1√
ΦG

, where ΦG is the grain size

(Fig. 2b).

❼ The intrinsic strength does not follow Hall-Petch for small grains (which would lead

to high strength values) but reaches a plateau towards a value (called the ”intrinsic

(a) (b)

ϕ1ϕ
2

ϕ
3

𝜎ଵ𝑖𝑛௧௥𝑖𝑛௦𝑖𝑐𝜎ଶ𝑖𝑛௧௥𝑖𝑛௦𝑖𝑐𝜎ଷ𝑖𝑛௧௥𝑖𝑛௦𝑖𝑐
failurestress

Externalflaw size

intrinsic strength

Grainsize

𝜎ଷ𝑖𝑛௧௥𝑖𝑛௦𝑖𝑐𝜎ଶ𝑖𝑛௧௥𝑖𝑛௦𝑖𝑐𝜎ଵ𝑖𝑛௧௥𝑖𝑛௦𝑖𝑐
ϕ1ϕ

2
ϕ
3

ϕ1

ϕ
2

ϕ
3

grain size: "intrinsicintrinsic strength"

Figure 2: Log-log diagram of (a) failure stress of polycrystalline ceramics as a function of external flaw size
for several grain sizes and (b) intrinsic strength as a function of the grain size.
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intrinsic strength” [32]), which corresponds to the failure stress for a ceramic containing

very small grains and flaws.

The ceramic platelet in nacre-like ceramics is a micron scale object containing relatively small

(nanometric) intrinsic flaws. Hence, based on the abovementionned considerations, it appears

that the strength value of a ceramic platelet that must be employed for the CC should be

at least equal to the ”intrinsic intrinsic strength”, i.e. the failure stress corresponding to the

smallest possible grain size and intrinsic flaws. In the following, the influence of the strength

on platelet failure prediction with the CC is studied and an estimate of both the platelet

strength and fracture energy are identified by confrontation to experimental results available

in the literature.

3. Failure of a single alumina platelet containing no flaws

Let us consider a single platelet subjected to uniaxial tensile loading (with a stress inten-

sity σ0). For the sake of simplicity, we consider a parallepipedic platelet of length 2L and

section S = wt with a linear elastic behavior, cf Fig. 3. We first consider a platelet that does

not contain any flaw (Fig. 3a). The stress state in the platelet is homogeneous and equal

to the imposed stress σ0. Applying the stress conditions described in Section 2, we obtain a

first necessary condition for the platelet failure:

σ0 ≥ σc (3)

a

t w

2L

(a) (b)

σ
0

Figure 3: Schematic feature and dimensions of a platelet (a) without or (b) with a surface flaw.
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where σc is the strength of the platelet constitutive material. Since the stress is homogeneous

in the whole platelet, there is no preferential location for a crack to nucleate, such as in

presence of a stress raiser (e.g hole) or a singularity (e.g crack, V-notch). Therefore, we

assume that the platelet fails by suddenly breaking into two parts. It means that the potential

energy after failure W (S) is zero, thus the potential energy difference ∆W can be obtained

from the potential energy of the platelet before failure W (0):

−∆W = W (0)−W (S) = W (0) =
1

2

∫

V

σ : εdV =
1

2

σ2
0

E
2LS, (4)

where E is the platelet Young’s modulus in the loading direction. Therefore, the energy

condition given in Section 2 reads:

1

2

σ2
0

E
2LS ≥ GcS (5)

which leads to a second condition for the platelet failure:

σ0 ≥

√

EGc

L
(6)

Fig. 4 shows the variation of the imposed stresses required to fulfill both criteria as a function

of the platelet length. For a given platelet length, the failure stress σf is thus the maximum

between both values, which corresponds to the minimum loading for which both criteria are

simultaneously fulfilled. For long enough platelets, it can be seen that the platelet failure

stress is equal to its constitutive material strength because there is more available energy than

that necessary to fulfill the energy criterion. Therefore, the platelet breaks into two parts and

the energy not consumed for the platelet failure is dissipated, for instance as kinetic energy

(projection of the broken parts) or for supplementary crack surface creation (the platelet

breaking into several parts). On the contrary, for small enough platelets, the platelet failure

stress depends both on the platelet length and its constitutive material fracture energy. In

this case, when the stress inside the platelet reaches the material strength, there is not

enough stored energy to break the platelet so that it is necessary to increase the loading in

order to fulfill the energy requirement. A sufficiently high imposed stress allowing the energy
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criterion to be satisfied triggers the platelet failure, all the available energy being dissipated

into crack surface creation. Combining both stress and energy requirements leads to defining

a characteristic material length Lmat =
EGc

σ2
c

for which the transition between both regimes

occurs. For 2L < Lmat, the energy criterion governs the platelet failure and the failure stress

varies as 1√
L
whereas for 2L > Lmat the platelet failure is governed by the material strength

σc.

As a matter of example, let us consider 5 ➭m long Al2O3 platelets (corresponding to the

average measured length for Ronaflair➤ White Sapphire (Merck)). The platelet width and

thickness are considered respectively as 5 ➭m and 1 ➭m. Typical mechanical properties of

the constitutive material are E =300 GPa, ν =0.21, Gc =27 J/m2 and σc = 750 MPa [32].

The strength is first chosen equal to the ”intrinsic intrinsic strength” described in previous

Section for illustrative purpose, an inverse identification approach for its determination is

then proposed in Section 4. The corresponding material characteristic length is Lmat =

14 ➭m. Therefore, the failure stress of platelets larger than 14 ➭m would be equal to the

strength σc. Since we consider platelets smaller than this characteristic length, failure is

governed by the energy condition and thus depends on the platelet Young’s modulus and

Stress criterion fulfilled

Energy criterion fulfilled

Coupled criterion fulfilled

L
mat5x10-3

Figure 4: Failure stress σf as a function of the platelet length 2L predicted using (i) a stress criterion (solid
red line), (ii) an energy criterion (solid blue line) and the coupled criterion (dashed black line). The filled
area corresponds to couples (2L,σ) for which the corresponding criterion is fulfilled.
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fracture energy. The corresponding failure stress is given by Eqn. (6): σf = 1.27 GPa. It

can be noted that this value is almost twice the material strength. This is not only due to

the fact that the smaller the platelet, the lower the number and the size of flaws within it,

which is a classical explanation to the outstanding platelet (apparent) strength measured

experimentally. Indeed, we show here that the sole consideration of the platelet size allows

explaining the increase in the failure stress, considering the same material properties for the

platelet independently of its size. It can be noted that the platelet can locally withstand

stress levels larger than its material constitutive strength. Indeed, in this case, failure cannot

occur for stress levels corresponding to the characteristic strength because not enough energy

is stored in the material.

4. Finite element model of platelet three-point bending

This section is dedicated to the platelet failure prediction under three-point bending using

the criterion presented in Section 2.

4.1. FE model without flaws

A 2D plane strain FE model of three-point bending of a rectangular platelet is set up

using AbaqusTM . Due to the specimen and test symmetry, we model only one half of the

platelet. Boundary conditions are depicted in Fig. 5a. A point load is imposed on the

platelet top node lying in the symmetry plane. The mesh consisting of 4-node linear elements

a a

a

(a) (b)

(c) (d)
x

y

u0

Figure 5: Typical FE mesh of half platelet containing (a) no flaws or a (b) crack, (c) V-notch or (d) semi
circular surface flaw.
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is refined in the vicinity of the specimen center, near the crack path corresponding to the

location where the stress variation is computed in order to determine the stress criterion.

This mesh refinement is required in order to catch the crack initiation length, which is not

known a priori. Nevertheless, it can be shown that this length is a fraction of the material

characteristic length Lmat =
EGc

σ2
c

[33]. We consider herein a simplified linear elastic isotropic

behavior for the platelets, with E =300 GPa and ν =0.21. First, typical fracture energy

values for isotropic alumina is used: Gc=27 J/m2 [32]. Then, an approach is proposed to

identify this value as well as the platelet strength. The influence of the strength on the

platelet failure is studied in the following. The minimum element size is defined as Lmat

30

in order to ensure that the crack initiation length is captured by the proposed simulations.

Typical meshes used for the simulations contain around 5000 degrees of freedom. The coupled

criterion application is first based on the calculation of the energy criterion, which requires

the calculation of the potential energy variation to be computed for several crack lengths.

The meshes containing cracks with different lengths are obtained by successively removing

the symmetry condition for the nodes lying on the crack path. Then, the stress condition

can be calculated by computing the tensile stress variation along the presupposed crack path

based on a mesh without crack. Once the tensile stress σnn and potential energy W variations

are obtained, only a post-processing is required to determine the minimum loading for which

both the stress and the energy conditions are satisfied, i.e. the initiation load.

4.2. Numerical prediction of failure stress

The FE model presented in Section 4.1 is now used in order to predict single alumina

platelet failure under three-point bending. Experimental measurements taken from [3] are

considered herein. The dimensions of ten tested platelets are given in Tab. 1 as well as the

measured failure forces. Local stress levels as large as 5 GPa may be reached at the platelet

surface, which is consistent with the results obtained in [3]. Of course, since the upper half

of the platelet undergoes compression, the stress is null in the platelet center in the thickness

direction.

Fig. 6 displays the variation of the stress to strength and incremental energy release rate

to fracture energy ratios as a function of the crack length corresponding to specimen #10
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Specimen 1 2 3 4 5 6 7 8 9 10
2L (➭m) 5.30 5.65 5.65 5.57 5.57 5.57 5.57 5.57 5.57 5.57
t (➭m) 0.41 0.60 0.87 0.94 0.43 0.51 0.44 0.51 0.50 0.79
w (➭m) 2.58 2.12 2.76 3.18 2.78 2.15 5.02 3.82 3.30 3.35

F e
c (➭N) - experiments 0.34 0.65 1.14 1.07 0.39 0.24 0.67 0.63 0.38 1.61
F n
c (➭N) - predictions 0.29 0.45 1.10 1.46 0.34 0.35 0.69 0.62 0.52 1.15

Table 1: Platelet dimensions and failure force (i) measured experimentally under three-point bending [3] and
(ii) predicted numerically with the coupled criterion.

σc=2 GPa
F
c
=1.35 µN

𝐺 𝑖𝑛𝑐 𝐺 𝑐,σ 𝑛
𝑛 σ 𝑐𝐺 𝑖𝑛𝑐 𝐺 𝑐,σ 𝑛
𝑛 σ 𝑐

σc=900 MPa
F
c
=1.24 µN

𝐺 𝑖𝑛𝑐 𝐺 𝑐,σ 𝑛
𝑛 σ 𝑐

σc=750 MPa
F
c
=1.23 µN

(a) (b) (c)

Figure 6: Incremental energy release rate to fracture energy (blue curve) and normal stress to strength ratios
(red curve) as a function of the crack length for specimen #10 for Gc = 27 J/m2 a) σc = 750 MPa, b)
σc = 900 MPa and c) σc = 2 GPa.

with a 0.79mm thickness for different intrinsic strength. Depending on the strength value,

two failure regimes can be distinguished (Fig. 6):

❼ For small enough strength values (σc ≤900 MPa, Fig. 6a-b), it can be seen that

the stress state in the platelet overcomes the material strength over almost all the

area undergoing tension (i.e. for l < t
2
≈ 0.4 µm). Therefore, failure is driven by the

energy condition since the stress criterion could be fulfilled for smaller imposed loadings,

however the energy criterion would not be fulfilled and hence failure would not occur.

Such a configuration has already been encountered in other situations, such as, for

instance, in the case of transverse cracking in composite materials [36, 37]. In this case,

the failure load Fc corresponds to the loading required to fulfill the energy criterion,

which is larger than that required to fulfill the stress criterion. The failure load thus

mainly depends on the fracture energy and almost does not depend on the strength.

In this case, micromechanical tests such as three-point bending of micron-scale platelet
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allows determining the material fracture energy rather than its strength.

❼ For larger strength values (e.g σc =2 GPa, Fig. 6c), the failure load predicted by the

CC both depends on the material fracture energy and strength. This is consistent with

results obtained in Section 3 since larger strength value leads to smaller values of Lmat

and hence smaller ranges of platelet length for which the failure is only driven by the

energy condition.

In both cases, stress levels larger than σc are locally attained. Nevertheless, it is shown

herein that this local stress level does not define the platelet strength. Such stress levels are

reached because the imposed loading must be sufficiently high so that there is enough stored

elastic energy available to be dissipated for the platelet failure. Therefore, the platelet failure

is not only driven by its strength but also by its fracture energy.

4.3. Fracture energy and strength identification

The CC allows the prediction of the failure force providing the knowledge of the material

strength and fracture energy. If these parameters are not known, it can also be used as a way

to determine it by indirect confrontation to experimental measurements. The identification

approach consists in determining the parameter couple (Gc,σc) that minimizes the residuals

R quantifying the difference between predicted and measured failure forces obtained for N

specimens:

R2(Gc, σc) =
N
∑

i=1

(F n
i (Gc, σc)− F e

i )
2, (7)

where F n
i (Gc,σc) is the failure force predicted numerically with the coupled criterion for the

specimen #i employing the strength σc and fracture energy Gc, and F e
i is the force at failure

measured experimentally for the same specimen. The minimization problem that must be

solved writes:

Find (G∗
c, σ

∗
c ), R(G∗

c , σ
∗
c ) = min

Gc,σc

R(Gc, σc). (8)

Solving this minimization problem requires the calculation of the failure force corresponding

to each specimens for several couples (Gc, σc) either to set up a gradient descend approach or

to compute the residuals variation for a priori chosen couples of parameters. The failure force

calculation is obtained employing the coupled criterion, which requires some FE calculations
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(a) (b)

σc = 1.1 GPa
Gc= 22 J/m²

Figure 7: Residuals as a function of (a) fracture energy and strength and (b) strength corresponding to the
residuals minimum obtained for a fixed strength value (black dots in b) corresponds to those depicted in a)).

to compute the incremental energy release rate and the stress variation (cf. Section 4.1). It

can be noted that a major advantage of the CC is the possibly to vary (Gc,σc) without any

extra FE calculations since these parameters are only implemented during the post-processing

step. The minimization procedure thus only require post-processing FE calculations, which

is computationally very efficient compared to other approaches such as, e.g., cohesive zone

modeling [16, 17] or phase field [18, 19, 20], which would require as many FE calculations as

the number of chosen (Gc, σc) couples. Fig. 7a displays the residuals variation as a function of

Gc and σc. The black dots indicate the residuals minimum for a fixed strength (corresponding

to the fracture energy that minimize the difference between predicted and measured failure

stress for this strength), which are also reported in Fig. 7b. It can be observed first that

for small enough strength value (below around 2 GPa), the residuals minimum is reached for

the same value of Gc. As already explained previously (cf., e.g. Fig. 6a-b), it corresponds to

a regime for which failure is mainly driven by the fracture energy, therefore similar fracture

energy (Gc between 20 and 25 J/m2) is obtained regardless the strength. For larger strengths,

it appears that failure is driven both by fracture energy and strength, thus the fracture

energy corresponding to the residuals minimum obtained for a given strength decreases with

increasing strength (Fig 7a). As observed in Fig. 7b, the residuals increase with increasing

strength above 2 GPa, which indicates that such strength values lead to a worse agreement
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between predicted and measured failure forces. The parameter couple that leads to the

best agreement with experimental data is (Gc=22 J/m2,σc=1.1 GPa). It can be noted that

a similar agreement is obtained for strength values between 500MPa and 1.5GPa, which

is traduced by relatively flat residuals for this strength range. The corresponding fracture

energy range is 20-25 J/m2.

It can be seen that the identified strength value is a slightly larger than the alumina ”intrinsic

intrinsic strength”. This is not surprising since the latter corresponds to a configuration

with very small grains and flaws, however still possibly including intrinsic microstructural

features such as grain boundaries, small porosities that could be privileged locations for crack

initiation. The forces at failure predicted numerically employing the coupled criterion F n
c for

the ten specimens are summarized in Table 1 for (Gc=22 J/m2,σc=1.1 GPa). It can be seen

that a good estimate of the failure force is obtained employing the proposed approach. The

deviation between numerically predicted and experimentally measured failure force is within

20% for all the considered specimens.

4.4. Possible surface flaws

The common explanation for the large measured platelet failure stress is based on the

fact that the smaller the platelet the smaller the flaws, that may be privileged locations for

crack initiation. We demonstrated in the previous sections that due to its small dimensions,

according to the CC, the platelet failure stress is actually driven by both its strength and

fracture energy and reaches large values because of its size that is smaller than the material

characteristic length. This section is dedicated to the influence of a surface flaw on platelet

failure. We consider three possible kinds of flaws: a crack, a V-notch or a semi-circular flaw.

The same method as described in Section 4.1 can be employed in order to predict failure in

presence of a flaw. The stress along the presupposed crack path and the potential energy

for several crack lengths are computed, which allows applying the coupled criterion so as to

determine the failure load. Fig. 8 displays the force at failure ratio in presence of and without

a surface flaw as a function of flaw size to platelet thickness ratio for V-notch, semi-circular

or crack-like flaw. It can be first seen that the larger the surface flaws, the smaller the failure

force independently of the flaw shape. Moreover, for small enough flaw sizes, the influence of

the flaw shape on the force at failure is not marked. For large enough flaws, the influence of
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Figure 8: Ratio between force at failure in presence of (Fc) and without (F 0

c ) a surface flaw of different kind
(V-notch, half-hole or crack). The grey dashed line corresponds to the failure force predicted based on linear
elastic fracture mechanics.

the flaw shape is highlighted since the failure force is smaller in the case of a crack than for a

V-notch or for a semi-circular hole. It is consistent with the conclusions drawn by Martin et

al. [33] who highlighted the small influence of flaw shape for flaws smaller than Lmat

2
under

tensile loading. We also display on Fig. 8 the force at failure obtained using the classical

explanation based on linear elastic fracture mechanics that the smaller the defects, the higher

the failure stress (gray dashed line). This failure stress is computed as σf = KIc√
πa
. Then, the

failure force is estimated as the force for which the maximum stress reached locally in the

platelet is σf , following the approach described for instance in [3, 24, 28]. This approach

provides failure forces in the same order of magnitude as those obtained with the CC for

large enough flaw size. However, the predicted failure force deviates from that obtained with

the CC for small flaws since it tends towards infinity for infinitesimal flaws.

The order of magnitude of the flaw size estimated based on experimental data in alumina

platelets is around 30 nm [3]. For the platelets under investigation, it leads to a flaw size to

platelet thickness ratio between 0.032 and 0.073, which corresponds to a maximum failure

force decrease predicted by the CC smaller than 10% compared to the failure force obtained

for a platelet containing no flaw.
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5. Conclusion

The high failure stress of a single alumina platelet results from its dimensions compared

to its constitutive material characteristic length. Considering both energy and stress fail-

ure conditions allows predicting the platelet failure loading under three-point bending. The

proposed approach requires the knowledge of the platelet Young’s modulus, fracture energy

and strength, these parameters being considered as intrinsic to the constitutive material and

independent from the studied structure size or the possible presence of external flaws. The

platelet failure is driven either by only the material fracture energy, or by both its strength

and fracture energy. In the case of specimens smaller than the material characteristic length,

the energy condition requires substantially high loading to be met compared to the loading

required to fulfill the stress condition. The platelet can thus undergo local stress levels several

times larger than its constitutive material strength.

The coupled criterion allows the inverse identification of a single alumina platelet strength

and fracture energy by confrontation of predicted and measured failure stress under three-

point bending. The proposed approach also allows evaluating the influence of a surface defect

on the failure force. It is worth pointing out that the proposed approach is not inconsistent

with statistical approaches to failure, such as Weibull theory. Both approaches can even be

combined so as to predict failure [38].

It finally appears that micromechanical tests, such as three-point bending of a single ceramic

platelet, can be employed in order to determine the platelet fracture energy and possibly

its strength. The platelet smallness allows it to withstand high local stress levels compared

to the strength of their constitutive material because failure requires a sufficient amount of

energy to be stored so that it can be released into crack surface creation energy.
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[26] Bažant ZP. Size effect in blunt fracture: concrete, rock, metal. J engng mech

1984;110(4):518-535.
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