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INFINITE CLASS FIELD TOWERS OF NUMBER FIELDS

OF PRIME POWER DISCRIMINANT

by

Farshid Hajir, Christian Maire, Ravi Ramakrishna

Abstract. — For every prime number p, we show the existence of a solvable number field L
ramified only at tp, 8u whose p-Hilbert Class field tower is infinite.

Keywords: Hilbert class field tower, root discriminant

For a number field L of degree n over Q, the root discriminant is defined to be D
1{n
L

where DL is the absolute value of the discriminant of L. Given a finite set S of places
of Q, it is an old question as to whether there is an infinite sequence of number fields
unramified outside S with bounded root discriminant. This question is related to the
constants of Martinet [10] and Odlyzko’s bounds [12]. Since the root discriminant is
constant in unramified extensions, an approach to answering the previous question in
the positive is to find a number field L (of finite degree) unramified outside S having an
infinite class field tower. In the case of K{Q quadratic, it is a classical result of Golod
and Shafarevich that if K{Q is ramified at at least 8 places, then K has an infinite 2-
class field tower. On the other hand, if p is a prime, and S “ tp, 8u, this question
becomes whether there exist number fields with p-power discriminant having an infinite
unramified extension. Schmitals [13] and Schoof [14] produced a few isolated examples
of this type. See also [3], [9], etc. For p P t2, 3, 5u, Hoelscher [4] announced the existence
of number fields unramified outside tp, 8u and having an infinite Hilbert class field tower;
see remark 2.2. Here we prove:

Theorem. — For every prime number p, there exists a solvable extension L{Q, ramified

only at tp, 8u, having an infinite Hilbert p-class field tower. Consequently, there exists

an infinite nested sequence of number fields of p-power discriminant with bounded root

discriminant.

Our proof is based on the idea of "cutting" of wild towers introduced in [2]; in particular
it does not involve the usual technique of genus theory. The strategy begins by choosing s

such that Qpζpsq has large class group (always possible). We then let K be the Hilbert
class field of Qpζpsq. Clearly KS, the maximal pro-p extension of K ramified only at S, the
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places of K above p, is infinite. For each positive integer k, we define a Galois extension

K
rks
S {K contained inside KS{K such that all decomposition groups of GalpKrks

S {Kq are

finite and abelian. We then show that for all large enough k, K
rks
S {K is of infinite degree,

and that there exists a finite Galois extension L{K contained in K
rks
S , with the property

that the primes above p split completely from L to K
rks
S , and in particular are unramified,

leading to the desired result.

We do not know whether for every prime p, there is a totally real number field of p-
power discriminant having an infinite Hilbert class field tower. In [14, Corollary 4.4] it
is shown that Qp

?
39345017q (which is ramified only at the prime 39345017) has infinite

Hilbert class field tower. In [15], Shanks studied primes of the form p “ a2 ` 3a ` 9
and the corresponding totally real cubic subfields K Ă Qpµpq and showed the minimal
polynomials of K are x3 ´ ax2 ´ pa ` 3qx ´ 1. Taking a “ 17279 so p “ 298615687,
one can compute that the 2-part of the class group of K has rank 6. It is not hard to
see, using the Golod-Shafarevich criterion, that K has infinite 2-Hilbert class field tower.
Thus some examples exist in the totally real case.

Also in [5] Joshi and McLeman, using ideas and data of [15], showed that Qpζpq has
infinite Hilbert class field tower for sufficiently large primes p of the form a2 ` 3a ` 9.
Inasmuch as it specifies an explicit and easily constructed number field as base of the
tower, this result is stronger than ours for the primes for which it applies.

1. The results we need

Let p be a prime number. Let K{Q be a finite Galois extension. Assume µp Ă K and
moreover that K is totally imaginary when p “ 2. For a prime p of K dividing p denote
by e (resp. f) the ramification index (resp. the residue degree) of p in K{Q.

1.1. On the group GS. — Denote by S the set of places of K above p, and consider
KS the maximal pro-p extension of K unramified outside S; put GS “ GalpKS{Kq.
Theorem 1.1 below is well-known, see for example [11, Corollary 8.7.5 and Theorem
10.7.3].

Theorem 1.1. — Let K{Q be a totally imaginary Galois extension containing µp. Let

S “ tp, 8u. If p ∤ hK, the class number of K, then

dim H1pGS,Fpq “ g

ˆ

ef

2
` 1

˙

and dim H2pGS,Fpq “ g ´ 1

where ppq has the usual efg decomposition in K{Q.

1.2. The cutting towers strategy. —

1.2.1. The Golod-Shafarevich Theorem. — Let G be a finitely presented pro-p group.
Consider a minimal presentation 1 Ñ R Ñ F

ϕÑ G of G, where F is a free pro-p group
on d “ dpGq generators σ1, . . . , σd and r relations ρ1, . . . , ρr with normal closure R “
xρ1, ¨ ¨ ¨ , ρryNorm. We note that d “ dim H1pG,Fpq and r “ dim H2pG,Fpq. We recall the
depth function ω on F. See [8, Appendice A.3] or [7] for more details. The augmentation
ideal I of FpvFw is, by definition, generated by the set of elements tg ´ 1ugPF. Then for
1 ‰ g P F, define ωpgq “ maxtk ě 1 | g ´ 1 P Iku; we put ωp1q “ 8. It is not difficult to
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see that ωprg, g1sq ě 2 and that ωpgpkq ě pk for every g, g1 P F and k P Zą0. Observe also
that as the presentation ϕ is minimal, ωpρiq ě 2 for all the relations ρi.

The Golod-Shafarevich polynomial associated to the presentation ϕ of G is PGptq “
1 ´ dt ` ř

i tωpρiq.

Theorem 1.2 (Golod-Shafarevich, Vinberg [16]). — If G is finite then PGptq ą 0
for all t Ps0, 1r.
Of course in generic situations, we have no information about the ρi’s other than their
being elements of F of depth at least 2. With that in mind, let us note that if PGptq ď P ptq
for all t Ps0, 1r, for some polynomial P ptq which takes on a non-negative value somewhere
on the open unit interval, then G must be infinite. For example, for a pro-p group of
generator rank d and relation rank r, since all r relations have depth at least 2, we have
PGptq ď 1´dt` rt2 for all t Ps0, 1r. Theorem 1.2 then yields the usual Golod-Shafarevich
criterion: if G is a non-trivial finite p-group of generator rank d and relation rank r, then
r ą d2{4.

We can also define a depth function ωG on G associated to the augmentation ideal IG of
FpvGw by ωGpgq “ maxtk ě 1 | g ´ 1 P Ik

G
u, for 1 ‰ g P G; put ωGp1q “ 8. Then:

Proposition 1.3. — For every g P G, we have

ωGpgq “ maxtωpyq | ϕpyq “ gu.

Proof. — See [8, Appendice 3, Theorem 3.5].

We now study quotients Γ of G such that dpGq “ dpΓq. In this case, the initial minimal
presentation of G induces a minimal presentation of Γ

1 // R // F
ϕ

//

�� ��

G //

��
��

1

Γ

Suppose that Γ “ G{xx1, ¨ ¨ ¨ , xmyNorm. Lift the xi’s to yi P F such that ωGpxiq “ ωpyiq
for each i. Hence, Γ “ F{R1, where R1 “ Rxy1, ¨ ¨ ¨ , ymyNorm. In particular, if R “
xρ1, ¨ ¨ ¨ , ρryNorm, then R1 “ xρ1, ¨ ¨ ¨ , ρr, y1, ¨ ¨ ¨ , ymyNorm. In this situation, we say that
we have ‘cut’ the group G by the elements y1, . . . , ym. Even if we have no additional
information about the ρi’s, the estimate PΓptq ď 1 ´ dt ` rt2 ` ř

i tωpyiq is valid on the
open unit interval.

1.2.2. Cutting of GS. — Fixing a prime p and a number field K, we let S be the set
of primes of K above p. Recall that GS is the Galois group over K of the maximal p-
extension of K unramified outside S. We want to consider some special quotients Γ of GS

of the type that were introduced in [2]. In [2] tame ramification was allowed, and then a
quotient was taken. Here GS is wildly ramified and the quotient we take will have abelian
decomposition groups with wild but finite image, and hence finite image of inertia. This
quotient of course corresponds to a sub-extension so we will use the term ‘cut’ to apply
both to Galois groups and the corresponding tower of fields.

Each place v P S corresponds to (a conjugacy class of) a decomposition group and hence
to some extension Kv{Qp of degree ef (in fact these fields are isomorphic as K{Q is
Galois). Then, as µp Ă Kv, the Fp-vector space Kˆ

v {pKˆ
v qp has dimension ef ` 2, and
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local class field theory implies the Galois group of the maximal pro-p extension of Kv

is generated by ef ` 2 elements. Thus the decomposition subgroup Gv of v in KS{K is
generated by at most ef ` 2 elements zi,v. Consider now the commutators rzi,v, zj,vs of

all these elements; they clearly yield at most
`

ef`2

2

˘

distinct elements of GS. Now we cut
GS by the closed normal subgroup

R0 “ xrzi,v, zj,vs | 1 ď i, j ď ef ` 2; v P SyNorm

these elements generate, and denote by Γ0 the corresponding quotient. As ωGS
przi,v, zj,vsq ě

2, we have the following estimate for the Golod-Shafarevich polynomial of Γ0:

PΓ0
ptq ď 1 ´ dt ` rt2 ` g

ˆ

ef ` 2

2

˙

t2, @t Ps0, 1r.

Here d “ dim H1pGS,Fpq and r “ dim H2pGS,Fpq. We note that the kernel R0 of the
surjection GS ։ Γ0 fixes the maximal sub-extension Kloc´ab

S {K of KS{K with abelian
decomposition groups everywhere. Observe that Kloc´ab

S {K contains the compositum of
all Zp-extensions of K.

Next, we cut GS a little bit further as follows. For each integer k ě 1, define

Rk “ R0xzpk

i,v | 1 ď i ď ef ` 2, v P SyNorm.

Let Γk be the corresponding quotient of GS and denote the fixed field of Rk by K
rks
S , so

that Γk “ GalpKrks
S {Kq. Since ωΓpzpk

i,vq ě pk for all zi,v, we observe that for k ě 1,

PΓk
ptq ď PΓ0

ptq ` gpef ` 2qtpk @t Ps0, 1r.
Suppose that there exists some t0 Ps0, 1r such that PΓ0

pt0q ă 0. Then, evidently for all

sufficiently large k, PΓ0
pt0q ă 0 ùñ PΓk

pt0q ă 0 ùñ K
rks
S {K is infinite.

We now show there exists a finite Galois extension L{K such that the infinite extension

K
rks
S {L is unramified everywhere. We need a lemma.

Lemma 1.4. — With the notation as above, fix an integer k ě 1, set Kp0q “ K and for

i ě 1, define Kpi`1q to be the compositum of all Z{pZ-extensions of Kpiq contained in K
rks
S .

Set Nn “ GalpKrks
S {Kpnqq. Then

8
č

n“0

Nn “ t1u.

Proof. — It suffices to show
8
ď

n“0

Kpnq “ K
rks
S . Let α P K

rks
S . The Galois closure Mpαq

over K of Kpαq has Galois group a finite p-group. The solvability of finite p-groups
implies that α P Kprq for some r.

Proposition 1.5. — With the above notation, suppose K{Q is Galois and K
rks
S {K is

infinite. Then there exists a finite subextension L{K of K
rks
S {K which is Galois over Q,

has an infinite Hilbert p-class field tower, and has the property that all primes above p

split completely from L to K
rks
S .

Proof. — Since K{Q is Galois and S is GalpK{Qq-invariant, the fields KS, K
rks
S and Kpnq

are all Galois over Q.
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Let D be a (finite!) decomposition group above v|p in GalpKrks
S {Kq. Suppose now that

Nn X D is nontrivial for all n. As these intersections are finite and decreasing in n, if

they are all nontrivial, they stabilize at a finite nontrivial group, in which case
8
č

n“0

Nn is

nontrivial, contradicting Lemma 1.4. Thus there exists an m that Nm X D “ t1u.

Since Kpmq{Q is Galois, Nm intersects trivially with all GalpKrks
S {Qq-conjugates of D. We

can then take L “ Kpmq and all decomposition groups above p in GalpKrks
S {Lq are trivial

so primes above p split completely from L to K
rks
S .

2. Proof

In Proposition 2.1 below we give a general criterion for a number field L to exist satisfying
the conclusion of the Theorem. We then prove the Theorem by giving a fairly explicit
conditions under which the criterion of Proposition 2.1 holds.

Proposition 2.1. — Let K{Q be finite Galois and totally complex with µp Ă K. Let

S be the set of primes of K dividing p. Assume the cardinality of S, denoted gK, is at

least 8. Then there exists a finite extension L of K contained in KS which is Galois over

Q and has infinite Hilbert p-class field tower.

Proof. — Let H “ KH be the “top” of the p-Hilbert class field tower of K, i.e. the maximal
unramified p-extension of K. If H{K is infinite, we are done, so suppose rH : Ks ă 8.
Recall HS “ KS. Note that H has class number prime to p so by Theorem 1.1, working
over H,

dim H1pGalpHS{Hq,Fpq “ gH

ˆ

eHfH

2
` 1

˙

and dim H2pGalpHS{Hq,Fpq “ gH ´ 1.

As in §1.2.2, consider the quotient Γ0 of GalpHS{Hq by the normal subgroup generated by

the local commutators at each v P S (all commutators of generators of the decomposition
group at v); one has

`

eHfH`2

2

˘

such commutators. We have

PΓ0
ptq ď 1 ´ dim H1pΓ0,Fpqt ` dim H2pΓ0,Fpqt2 ď 1 ´ dt ` rt2 @t Ps0, 1r,

where d :“ gH

`

eHfH

2
` 1

˘

, and r :“ gH ´ 1 ` gH

peHfH`2qpeHfH`1q
2

. The first inequality we
have seen simply comes from the fact that all relations have depth at least 2. For the
second inequality, we note first that Γ0 and GalpHS{Hq have the same generator rank,
namely d; moreover, since Γ0 is constructed using a presentation on d generators using
at most r relations, we have dim H2pΓ0,Fpq ď r.

Clearly d{2r ă 1, and PΓ0
pd{2rq ď 1 ´ d2

4r
. If PΓ0

pd{2rq ă 0, then one has, as in §1.2.2,
room to cut by some large p-power of the generators of the abelian decomposition group
at v|p and obtain an infinite extension of K whose decomposition groups at p are finite.
Proposition 1.5 would then give the result.

It thus suffices to check that 4r ă d2, or equivalently

16pgH ´ 1q ` 8gHpeHfH ` 2qpeHfH ` 1q ?ă g2

H
peHfH ` 2q2.
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Replacing the 16pgH ´ 1q term on the left by 16gH and dividing by gH, and setting
x “ eHfH, it now suffices to verify

16 ` 8px ` 2qpx ` 1q ?ă gHpx ` 2q2

for all x ě 1. It is easy to see that this inequality holds as long as gH ě 8 . Since
gH ě gK, we have therefore checked that PΓ0

pd{2rq ă 0. By Proposition 1.5 we conclude

that K
rks
S {K is infinite for all sufficiently large k and the field L with the desired properties

exists.

Proof of Theorem : Recall that the principal prime p “ p1 ´ ζpsq of Qpζpsq is the unique
prime dividing p and by class field theory p splits completely in the Hilbert class field
H of Qpζpsq. Thus if the class group has order at least 8, Proposition 2.1 applied to the
solvable number field H gives the result.

In the proof of [17, Corollary 11.17], the class number of Qpζpsq is shown to be at least
109 for φppsq “ ps´1pp ´ 1q ą 220. Choosing s ě 9 for any p completes the proof of the
Theorem.

A slightly more detailed analysis using Table §3 of [17] shows the fields below suffice:

p K hKp“ gKq
p ą 23 K “ Qpζpq ě 8

7 ď p ď 23 K “ Qpζp2q ě 43
p “ 5 K “ Qpζ125q 57708445601
p “ 3 K “ Qpζ81q 2593
p “ 2 K “ Qpζ64q 17

˝

Remark 2.2. — In [4] a proof of the Theorem for p “ 2, 3 and 5 was announced. There
are two cases there: Case I, where the Hilbert class field tower is infinite; and Case II,
where ramification is allowed at one prime above p in the Hilbert class field H and a
Z{p-extension of H ramified at exactly this prime is used. Gras has given a criterion for
such an extension to exist: see [1, Chapter V, Corollary 2.4.4]. Gras’ criterion is not
verified in [4]. Given the size of the number fields H, it seems very difficult to do so. We
therefore we regard the results of [4] as incomplete. See [6] for a related description of
the same error.

Our proof is partially modeled on the ideas of [4], namely considering the Hilbert class
field of a cyclotomic field.
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