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Fast Joint Multiband Reconstruction from Wideband
Images Based on Low-Rank Approximation

M. Amine Hadj-Youcef, Fraņcois Orieux, Alain Abergel, Aurélia Fraysse

Abstract—Multispectral imaging systems are increasingly used
in many scientific fields. However multispectral images generally
present spectral and spatial limitations: the spectral information
within each band is lacking because of spectral integration over
the band, and the spatial resolution is limited due to the spatial
convolution by spectrally variant Point Spread Functions which
introduce a spatial variant blur. To address the ill-posed inverse
problem of reconstruction from wideband images, we propose
a new approach combining a precise instrument model for the
degraded multispectral images together with a spectral approxi-
mation on a low-rank subspace of the object. The reconstruction
is based on the minimization of a convex objective function
composed of a data fidelity and an edge-preserving regularization
term. The proposed half-quadratic algorithm alternates between
the minimization of a quadratic and a separable problem, and we
show that both closed-form solutions are available and tractable.
Therefore, even with a non-stationary data model, the algorithm
is very fast and results are obtained in a few seconds.

Several tests are performed for multispectral data to be taken
by MIRI, the mid-infrared imager of the future James Webb
Space Telescope (JWST). The reconstruction results show a
significant increase in spatial and spectral resolutions compared
to state-of-the-art methods. Our proposed algorithm allows us to
recover the spectroscopic information contained in the wideband
multispectral images and to provide hyperspectral images with
a homogenized spatial resolution over the entire spectral range.

Index Terms—Inverse Problems. Multispectral Imaging. Hy-
perspectral Imaging. Deconvolution. Image Reconstruction

I. INTRODUCTION

MULTISPECTRAL imaging systems are used in many
fields, e.g., astrophysics [1], remote sensing [2],

medicine [3] or microscopy [4]. These imaging systems
produce integrated multispectral images by observing a two
spatial and one spectral dimensions, that is a 2D+λ object.
Multispectral images have the benefits over hyperspectral
images to have much larger field of view, better spatial
resolution and higher sensitivity. However, they suffer from
several undesirable spatial and spectral degradations. Firstly,
spectral information is lacking because of the detector inte-
gration over wide spectral bands, resulting in an important
subsampling. Secondly, the spatial resolution is limited by a
2D convolution of the 2D+λ object with the spectrally varying
optical response or PSF (Point Spread Function). Generally,
due to the diffraction theory [5], the longer the wavelength
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the wider the PSF. Moreover, the spectral content of the input
object depends on the pixel position in general. As a result,
the blurring of multispectral images, which are integrated over
a wide spectral range, is spatially varying. Furthermore the
observations are made on wide bands, increasing the effect of
spatial varying PSF.

The state-of-the-art approach generally neglects spectral and
spatial variations of the PSF within a band [6] as well as
correlations between bands, the reconstruction becoming an
independent 2D deconvolution of each image [7]. In that
case, the approach remains limited to systems with narrow
spectral bands, which is generally not the case for multispec-
tral imaging systems. Also, each spectral image is processed
independently, and the spatial resolution is different for each
processed image.

Other works focus on the variability of the PSF, espe-
cially for image deconvolution (e.g., [8], [9]) where the shift-
variant PSF is approximated with a linearly interpolated PSF.
However, such a technique is generally not applicable to
multispectral images since the spatial variations of the blurring
are mainly due to the spatial variations of the spectral content
of the object.

Another technique commonly used for astronomical images
(e.g., [10], [11]) is the PSF homogenization between images
obtained from different spectral bands or instruments. It con-
sists of convolving images with appropriate kernels such that
they appear as if they were measured with the same band
or instrument. This approach is straightforward and simple,
however, it introduces an additional blur and does not allow
spectral reconstruction.

To address the problems of strong spectral subsampling and
limitations of the spatial resolution due to the 2D convolution
by a varying PSF, and to perform joint processing of all
wide spectral bands, we propose to consider a linear spectral
model together with a precise model of the multispectral
instrument. Our goal is to derive an estimate of the 2D+λ
object with the best spatial and spectral resolutions from the
multispectral images. The proposed spectral modeling allows
the description of the complexity of the input object spectra
with a small number of components. This is common for
hyperspectral images, in particular with a linear mixing model
[12]–[14]. It was first proposed in [15] for the analysis of
in-situ Mars surface images and, since then, has been used
in several applications and methods [14], [16]–[19], also
with spatial and spectral correlations and image enhancement
methods based on total variation [20], [21]. In the context of
multispectral imaging, the spectral modeling is less common
except in pansharpening techniques [22]. It also is not adapted
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to spectrally varying PSF. Therefore we combine spectral
modeling with an instrument model that correctly describes
the spectral dependence of the PSF (and the detector sampling)
to build a forward model of the data.

We show that all spectral and spatial information are
embedded in the forward model, without any additional ap-
proximation. We also propose a fast convex reconstruction
algorithm, where the two steps of the half-quadratic iterative
algorithm are closed-form expression and tractable, for the
joint processing of all wideband images. Our algorithm is very
fast and can restore spatial details with identical resolution
in all bands and better performances than the state-of-the-art
TV-based image restoration. The proposed algorithm is tested
for the reconstruction of three different hyperspectral objects
that cover most of the encountered cases, including a simu-
lated astrophysical object. The results clearly show a strong
improvement in spectral and spatial resolutions compared to
the state-of-the-art method [23]–[25]. The imaging system
considered for this application is the Mid-InfraRed Instrument
(MIRI) imager [26] on board the future James Webb Space
Telescope (JWST) [27], which will be from 2021 the most
ambitious telescope ever launched in space.

The paper is organized as follows. Section II presents the
proposed methodology, first the instrument model developed
for the imaging system (Section II-A), then the object rep-
resentation model based on the linear mixing model (Sec-
tion II-B) and finally the forward model (Section II-C). The
reconstruction algorithm based on regularization methods is
presented in Section III. Reconstruction results, including a
comparison with a state-of-the-art method, and a discussion
are presented in Section IV for the MIRI imager of the JWST.
Finally, we conclude our work and provide perspectives in
Section V.

II. DATA MODEL

A. Instrument Model

The hyperspectral object of interest is defined by

φ(x, y, λ) : R2 × R+ → R

where (x, y) ∈ R2 represent the spatial dimensions and λ ∈
R+ represents the spectral one.

The imaging system consists of an optical system, a spectral
filter, and a detector. Because of the optical diffraction theory,
the optical system response is carried out by a 2D convolu-
tion [5] between the hyperspectral object φ and the spectral-
variant PSF, h, assumed to be known, as

∫∫
R2 φ(x′, y′, λ)h(x−

x′, y−y′, λ) dx′dy′. Hence, the final 2D images are impacted
by a non-stationary spectrally integrated PSF that depends on
the unknown spectral content of the object and also limits the
spatial resolution of the images. Note that we assume that the
monochromatic PSFs are spatially invariant. This may not be
the case, but the amplitudes of the spatial variations of the
monochromatic PSFs over the detector are generally lower
than the amplitudes of the spectral variations of the PSF over
the wide spectral bands of multispectral images.

For wideband imaging, the blurred object is spectrally
filtered over P wide spectral bands ωp(λ), p = 1, . . . , P ,

where ωp is a spectral windowing, generally given by the
product of the filter transmission and the detector quantum
efficiency.

Then the object is integrated within each band and sampled
pixel-by-pixel on the detector matrix, thus forming a discrete
spectral image. Therefore, spectroscopic information of the
hyperspectral object is reduced to only P discrete values. This
represents a severe degradation of the hyperspectral object
since P is usually a small number.

Spatial integration at pixel (i, j) corresponds to multiplica-
tion by a square indicator function bd on a two-dimensional
sampling grid Gd = {iTx, jTy}Ni;Nj

i;j=1 where Ni, Nj and
Tx, Ty are the number of pixels and the spatial sampling
steps along x and y, respectively. An additive term npi,j is
added to the data to account for the detector noise. Finally,
the complete equation of the imaging system model is given
by

gpi,j =

∫∫∫ ∫∫
φ(x′, y′, λ)h(x− x′, y − y′, λ) dx′dy′

ωp(λ) bd(x− iTx, y − jTy) dxdydλ+ npi,j . (1)

The model in (1) establishes a relation between the contin-
uous hyperspectral object φ and the discrete images gp, p =
1, . . . , P through the instrument response. It includes a spec-
tral windowing and five integration for spatial convolution and
spatio-spectral sampling.

B. Object Model

The object model is critical since the spectral information
is seriously lacking in multispectral images. However it is
important to note that the spatial structure of multispectral
images depends on the spectral content of the object φ through
the spectral dependence of the PSF h. In a previous work,
[28] we proposed a spline model for spectral distribution
and introduced strong smoothing prior in order to overcome
the spectral subsampling, without the possibility of accurate
spectral retrieval.

Instead, in order to overcome the lack of spectral informa-
tion in the data, we propose here to model the hyperspectral
object with a low rank approximation thanks to the linear
mixing model of [15] considering a small number of com-
ponents while keeping high spectral resolution. Therefore, the
object is represented by a sum of M high-resolution known
spectral components, sm(λ),m = 1, . . . ,M , weighted by M
mixing coefficients fmk,l associated with each spatial position
(k, l). Hence the object is decomposed, thanks to an indicator
function bf , on a two-dimensional grid Gf =

{
kT ′x, lT

′
y

}
Nk;Nl
k;l=1 ,

where Nk, Nl, T ′x and T ′y are the number of samples and the
sampling steps according to dimensions x and y, respectively.
This yields

φ(x, y, λ) =

M,Nk,Nl∑

m,k,l=1

fmk,l bf(x− kT ′x, y − lT ′y)sm(λ). (2)

Since only multispectral data are available, the spectral compo-
nents sm(λ) are supposed known, because there is not enough
data to estimate them jointly. However, they can be extracted
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from previous hyperspectral measurements of similar objects
with a principal component analysis (PCA) [29], non-negative
matrix factorization (NMF) [30], or by elements of a given
dictionary if, for instance, a material is known to be present,
which is often the case. Nonetheless, we suppose that no
specific meaning is attached to sm except for their ability to
represent the spectral variability that lives in a low rank space.

C. Forward Model

The forward model is obtained by substituting (2) in (1)
yielding the linear model

gpi,j =

M∑

m=1

Nk∑

k=1

Nl∑

l=1

Hp,m
i;j,k;l f

m
k,l + npi,j (3)

with

Hp,m
i;j,k;l =

∫
ωp(λ)sm(λ)

∫∫ [
h(x′, y′, λ) ∗

x′,y′

bf(x
′ − kT ′x, y′ − lT ′y)

]
bd(x− iTx, y − jTy)dxdydλ, (4)

where ∗
x′,y′

indicates the 2D convolution. Combining integrals

leads to

Hpm
ijkl =

∫
ωp(λ)sm(λ)h̄ (kT ′x − iTx, lT ′x − jTx, λ) dλ (5)

with

h̄ (kT ′x − iTx, lT ′x − jTx, λ) =

∫∫
h(x′, y′, λ) ∗

x′,y′

bf(x
′ − kT ′x, y′ − lT ′y) bd(x− iTx, y − jTy) dxdy, (6)

that is a spatial super-resolution model since this model
computes the exact contribution of each pixel on each detector
element. However, the computation of each Hpm

ijkl element can
be computationally heavy. Nevertheless, taking T ′x = Tx and
T ′y = Ty simplify Eq. (5) as

Hpm
ijkl =

∫
ωp(λ)sm(λ)h̄ ((k − i)Tx, (l − j)Tx, λ) dλ

= Hpm
k−i,l−j

(7)

and in that case, the linear model becomes a numerical spatial
convolution.

By denoting gp the vector of data in the band p, the forward
model can be written as

gp =

M∑

m=1

Hp,m fm + np, p = 1, 2, . . . , P, (8)

where the p-th image gp ∈ RNiNj is a sum of M discrete spa-
tial convolutions of mixing coefficients fm ∈ RNkNl , m =
1, . . . ,M , with convolution matrix Hp,m ∈ RNiNj×NkNl ,
plus an additive noise np ∈ RNiNj . The convolution matrix
Hp,m models the spatial impact of the spectral distribution
m on the p-th image, describing the spatial variation of the
response.

We propose to process data from all the bands together in
order to reconstruct the total spectral information, instead of

a band per band separated processing [25], [31]. This has
the advantage of taking into account correlations between
bands. Therefore, by concatenating all images in one vector,
we obtain the following multi-observations forward model

g = Hf + n, (9)

where gT = [g1, . . . , gP ]
T , fT = [f1, . . . ,fM ]

T , and nT =

[n1, . . . ,nP ]
T .

The full system observation matrix

H =




H1,1 · · · H1,M

...
. . .

...
HP,1 · · · HP,M




is a non-square non-Tœplitz matrix with Tœplitz block com-
ponents Hp,m representing the contribution of templates m
to image p. For computational efficiency, the convolutions are
done in the Fourier domain [32].

III. RECONSTRUCTION ALGORITHM

A. Variational formulation

The problem of reconstructing f defined in Eq. (9) is ill-
posed because of the convolution, leading to noise amplifi-
cation. The common approach in this case is to add prior
information about the solution, as in the regularized least
square method [33]. Therefore, the solution f̂ is obtained as
a minimizer of an objective function J (f)

f̂ = argmin
f

{
J (f) = Q(f , g) + µR(f)

}
, (10)

where Q(f , g) is a data fidelity term, R(f) a regularization
term added to correct the ill-conditioning of the problem and
µ ≥ 0 a regularization parameter to tune the trade-off between
both these terms.

The noise is modeled by an identically independent Gaus-
sian distribution for the sake of clarity, leading to Q(f , g) =
‖g −Hf‖22. The proposed algorithm can be extended to
circulant spatially correlated Gaussian noise without restric-
tion. Concerning the regularization term, many possibilities
have been explored in the literature. For instance, one can
consider Tikhonov regularization [34], total variation [35],
wavelet-domain regularization [36], [37], or half-quadratic
regularization [38], [39]. Here we are interested in the recon-
struction of a spatially smooth hyperspectral object with sharp
edges. The prior information is then introduced by penalizing
the horizontal and vertical differences between neighboring
pixels of each mixing coefficient. In that case, a multichannel
regularization term is defined as

R(f) =

M,Nk,Nl∑

m,k,l=1

ϕ
(
fmk+1,l − fmk,l

)
︸ ︷︷ ︸

[Dvfm]k,l

+ϕ
(
fmk,l+1 − fmk,l

)
︸ ︷︷ ︸

[Dhfm]k,l

,

(11)
where ϕ is the penalty function. Dh and Dv are first-
order finite difference operators, with circularity conditions
fmNk+1,l = fm1,l and fmk,Nl+1 = fmk,1. A classical choice is
the quadratic function ϕ(x) = x2 that gives a differentiable
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objective function and an explicit solution. However, spatial
sharp edges are smoothed.

To overcome this limitation we propose to use a non-
quadratic penalty function. Several methods are found in the
literature such as methods based on partial differential equa-
tion [40], total variation (TV) (`1-norm of the gradient) [35],
[41] half-quadratic regularization (`2`1-norm) [38], [39], [42]
or majoration-minimization algorithm [43]. We use the method
developed in [39] for several reasons. Firstly, the minimization
of the objective function is done through alternating quadratic
and separable minimization problems. Secondly, the quadratic
solution is directly tractable thanks to the invertibility of the
Hessian matrix, leading to a very fast algorithm. Thirdly, a
variety of penalty functions can be used, such as the convex
Huber function

ϕ(x) =

{
x2, if |x| < s, s ∈ R
2s|x| − s2, otherwise,

(12)

which is used in the rest of this work to prevents the cartoon-
like effect given by TV penalization. The parameter s > 0 is a
threshold parameter that defines the transition from a quadratic
to a linear penalization. The half-quadratic regularization
proposed by Geman & Yang in [39] consists of introducing
Nk × Nl horizontal and vertical auxiliary variables, b, such
that the penalty function ϕ is expressed as the minimum wrt.
b of the sum of a quadratic function (x−b)2/2 and an auxiliary
function ξ(b) (that depends on ϕ)

ϕ(x) = inf
b
ψ(b) = inf

b

1

2
(x− b)2 + ξ(b), ∀x ∈ R. (13)

The construction relies on convex duality, with ξ(b) = 2s|b|
for Huber potential, as described in Appendix B. The practical
role of these auxiliary variables b can be seen as shifting the
quadratic function to a suitable position such as the cost at high
gradient values is lower compared to the cost of the quadratic
regularization. The auxiliary function relies on the convex
duality and Legendre-Fenchel transform [38], [39], [42], [44].
Consequently, an augmented objective function J ∗ is defined
such that

inf
bh,bv

J ∗(f , bh, bv) = J (f). (14)

Here bh and bv are vector representations of the stack of
auxiliary variables along the horizontal and vertical directions.
Therefore, the multichannel half-quadratic solution is obtained
by minimizing the augmented objective function

(
f̂ , b̂h, b̂v

)
= argmin

f ,bh,bv

J ∗(f , bh, bv). (15)

Since the criterion is globally convex [44], the computa-
tion of the joint minimizer of J ∗(f , bh, bv) with respect to
(f , bh, bv) is achieved by iterating the following two-stage
process until convergence





f̂ (k) = argmin
f

J ∗
(
f , b

(k−1)
h , b(k−1)v

)
, (16)

b̂
(k)
h , b̂(k)v = argmin

bh,bv

J ∗
(
f (k), bh, bv

)
. (17)

B. Fast mixing coefficients f̂ update

From (16) we have the quadratic criterion

f̂ = argmin
f

{
‖g −Hf‖22 +

µ

(∥∥Dhf − bh
∥∥2
2

+
∥∥Dvf − bv

∥∥2
2

)}
(18)

with Dh = diag {Dh, . . . ,Dh}. and Dv =
diag {Dv, . . . ,Dv}, two diagonal-block matrices. The
minimizer is explicit and is obtained by canceling the
gradient. This yields

f̂ =
(
HTH + µ

(
D
T

hDh + D
T

vDv

))

︸ ︷︷ ︸
Q

−1

(
HTg + µ

(
D
T

h bh + D
T

v bv

))

︸ ︷︷ ︸
q

, (19)

where the Hessian matrix Q ∈ RMNkNl×MNkNl is a block-
circulant matrix, and q ∈ RMNkNl is a multichannel vector.

A common computational approach of f̂ in Eq. (19) relies
on solving the linear system Qf = q without requiring the
inversion of Q thanks to iterative algorithms, e.g., conjugate
gradient. On the contrary, in this paper the closed form solution
is computed thanks to a fast and exact inversion of Q (see
Appendix A for details).

C. Auxiliary variables b̂h, b̂v update

From (17) we have

b̂h, b̂v = argmin
bh,bv

M,Nk,Nl∑

m,k,l=1

ψ
(

[bh]k,l

)
+ ψ

(
[bv]k,l

)
(20)

where ψ is a convex and differentiable function defined in
Appendix B. Moreover, the update equation for each auxiliary
variable is explicit and separable with

[
b̂m∗

]
k,l

= argmin
[bm
∗ ]

k,l

ψ
(

[bm∗ ]k,l

)
. (21)

The computation of the minimizers in (21) is straightforward
and it is detailed in Appendix B. Finally, we obtain

b̂∗ = D∗f −
1

2
ϕ′
(
D∗f

)
(22)

where ϕ′ is the first derivative of the Huber function given by

ϕ′(x) =

{
2x, if |x| < s,

2s sign(x), otherwise.

The proposed Fast Joint Multiband Reconstruction (FJMR)
algorithm is summarized in a pseudo-algorithm form in Algo-
rithm 1.

IV. EXPERIMENTAL RESULTS

In this section we present tests and comparisons of the pro-
posed algorithm for the reconstruction of three hyperspectral
objects having different spatial and spectral distributions. One
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Algorithm 1 The FJMR algorithm
1: procedure FJMR(H,Dh,Dv, g, µ)
2: Initialization: b̂h = b̂v = 0

3: F = diag {F , . . . ,F }
4: Dh = diag {Dh, . . . ,Dh}
5: Dv = diag {Dv, . . . ,Dv}

6: Compute the Hessian matrix
7: Q←HTH + µ

(
D
T

hDh + D
T

vDv

)

8: Compute the block diagonal matrix Υ

9: Υ← F
†
Q−1F

10: while criterion is not reached do
11: 1 — Compute the solution (mixing coefficients)

12: q ←HTg + µ
(
D
T

h b̂h + D
T

v b̂v

)

13: f̂ ← Q−1q = F
†
ΥFq

14: 2 — Update the auxiliary variables in parallel

15: b̂h ←Dh f̂ − 1
2ϕ
′
(
Dh f̂

)

16: b̂v ←Dv f̂ − 1
2ϕ
′
(
Dv f̂

)

17: end while
18: return f̂
19: end procedure

is the model of an astrophysical object and the other ones are
synthetic objects. The multispectral imaging system we are
considering is the MIRI imager [26] on board the JWST [27].
Note that we suppose the common case where the spectral
components sm are known and extracted from hyperspectral
measurements or within a dictionary. We compare our results
to the state-of-the-art TV deconvolution implemented with the
primal dual Chambolle-Pock algorithm [25] that minimizes

f̂
p

= argmin
fp

‖gp −Hpfp‖22 + µ‖∇fp‖1 (23)

for each band p, with ∇fp the spatial gradient of the image
band p. Here Hp is the PSF integrated over the spectral band
p assuming a flat spectrum. To complement the results we
compare also our algorithm to the l2 reconstruction defined as

f̂
p

= argmin
fp

‖gp −Hpfp‖22 + µ‖∇fp‖22 (24)

that is the classical regularized least-squares method, with a
conjugate-gradient as optimization algorithm.

The hyperparameter µ is hand tuned in order to minimize
the `2 reconstruction error. The algorithms are coded using
Python 2.7 and executed on a laptop machine with 16 GB of
RAM and a processor Intel Core i7 CPU working at 2.50 GHz.

A. The MIRI Imager of the JWST

The optical system of the JWST is equipped with a
6.5 meters primary mirror composed of 18-hexagonal seg-

ments. The analytic expression of the monochromatic PSF at
one wavelength can theoretically be obtained by computing
the Fourier transform of the transmittance of the telescope
aperture, in accordance with the diffraction theory [5]. How-
ever, it is also necessary to take into account misalignments
of the 18 segments and the optical path differences. Therefore
the monochromatic PSFs are computed with WebbPSF [45],
[46], the official PSF simulator for the JWST developed by
the Space Telescope Science Institute (STScI)1. No analytical
formula of the PSF h is available, therefore all calculations to
derive the convolution matrix Hp,m (Eq. (7)) are done numer-
ically. Fig. 1 displays a few monochromatic PSFs computed
at 6, 12, and 18µm. We clearly see the spectral dependence
of the PSF, i.e., the longer the wavelength the wider the PSF
as expected from the diffraction theory.

The multispectral images are integrated over P = 9 spectral
widebands covering a spectral range from 5 to 30 µm as shown
in Fig. 2. The MIRI imager provides images with a field of
view (FOV) of 74 × 113 arcsecond2 using a unique infrared
detector with a pixel scale of 0.11 arcsecond, i.e., a FOV per
pixel of 0.11× 0.11 arcsecond2. Spatial variations of the PSF
across the imager FOV have been measured on the flight model
of the MIRI imager [6] with a width variation of the PSF
across the field of view inferior to 5%. Thus the hypothesis
of spatially invariant monochromatic PSFs is justified.

−10 −3 3 10
−10

−3

3

10

ar
cs

ec
on

d

λ = 6 µm λ = 12 µm λ = 18 µm

10−7 10−5 10−3 10−1

Fig. 1. Monochromatic PSF of the JWST/MIRI imager simulated at 6, 12,
and 18µm using WebbPSF [45] and displayed in logarithmic scale.
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Fig. 2. Wide spectral bands ωp of the JWST/MIRI Imager [47], from [48].

1http://www.stsci.edu/
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B. Description of the hyperspectral objects

Our algorithm has been tested using three hyperspectral
objects which cover a significant range of spatial and spectral
structures expected for astrophysical observations.

The first one, denoted by Obj1, is an astrophysical sim-
ulation of the HorseHead nebula [49], modeling a cloud of
matter (dust and gas) illuminated by a bright star2, with
Nk = Nl = 256 spatial samples, and Nλ = 1000 spectral
samples uniformly distributed from 1 to 30 µm. Therefore,
Obj1 is a full 2D+λ cube that is not constructed with the
object model in Eq. (2), and original coefficients are not
available. For the reconstruction, M spectral components sm

are extracted with a PCA [29]. For that object only M = 3
components (shown in Fig. 3) are sufficient to explain 99.99%
of the variance of the spectra. Note that other extraction
techniques could be used such as the NMF [30], or blind
source separations [18], but this is not necessary in our case.

Two hyperspectral objects with more complex spatial and
spectral distributions, Obj2 and Obj3, are synthesized. Fig. 4
and Fig. 5 display the spectral components and the original
mixing coefficients used to synthesize Obj2 and Obj3, re-
spectively. For both objects, the spectral components are taken
from [18]. They have been computed from real data obtained
by the spectrometer of the Spitzer Space Telescope [50] which
covers the same spectral range as the MIRI imager. For the
mixing coefficients of Obj2 we take M = 3 rectangular
patterns of different size with sharp edges, each associated
to one of the three spectral components. For Obj3 we take
M = 2 mixing coefficients in order to create a complex high-
frequency spatial structure with a smooth horizontal gradient.

5 10 15 20 25 30
λ [micrometer]

−0.2

0.0

0.2
Spectral components

s1(λ )

s2(λ )

s3(λ )

Fig. 3. Three spectral components extracted from Obj1 with a PCA. The
third component is negative due to the PCA formalism. The curves are in
input sky unit.

C. Simulation of the multispectral data

The P = 9 images for Obj1, Obj2, and Obj3 are simulated
using the MIRI imager instrument model in (1), and not the
forward model with the mixing model in (9). We degrade the
images with an additive zero-mean, white, Gaussian noise of
different levels of Signal-to-Noise Ratio (SNR), that is 5, 10,
20, 30, and 40 dB, defined as SNR = 10 log10

(
‖g‖22 /Nσ2

n

)
,

where σn is the standard deviation of the noise, and N is the
total number of pixels in g.

2This 2D+λ object has been computed using state-of-the-art interstellar dust
models and radiative transfer codes.

5 10 15 20 25 30
λ [micrometer]

0.0

0.5

1.0
Spectral components

s1(λ )

s2(λ )

s3(λ )

1 256

1

256

f 1

0.20
0.47

0.73
1.00

f 2 f 3

Original mixing coefficients

Fig. 4. Spectral components and mixing coefficients for Obj2. The curves
are in input sky unit.
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0.0

0.5

1.0
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s1(λ )

s2(λ )

1 256

1

256

f 1

0.00
0.33

0.67
1.00

f 2
Original mixing coefficients

Fig. 5. Spectral components and mixing coefficients for Obj3. The curves
are in input sky unit.

The simulated multispectral images with SNR = 30 dB and
p = 1, 4, 7 are displayed in the first row of Figs. 8, 9, and 10,
for Obj1, Obj2 and Obj3, respectively. As expected, the blur
increases for increasing wavelengths due to the convolution
by a wavelength-variable PSF. The images have different
intensities due to the spectral distribution integrated within
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TABLE I
RECONSTRUCTION ERRORS WITH 50 ITERATIONS.

Object Error [%] Runtime [s] µ s

Ôbj1 0.67 4.34 5.99× 10−2 1.17
Ôbj2 1.91 4.26 4.64× 10−2 0.03
Ôbj3 4.91 3.08 5.99× 10−2 0.01

the spectral bands and the width of each band. In any case
these images are spatially degraded and contain poor spectral
information.

D. Estimation results for f̂ , b̂h and b̂v

For the reconstruction, the parameters µ and s are chosen in
order to minimize the reconstruction error (in %) on sampled
full 2D+λ cube (not coefficients)

Error(µ, s) = ‖φorig − φf (µ, s)‖2/‖φorig‖2 × 100, (25)

with values reported in Table I. The spatial distributions of the
estimated mixing coefficients f̂ are shown in Fig. 6 for Obj1
(top row), Obj2 (middle row) and Obj3 (bottom row). For
Obj1 we see that f̂1 has a higher intensity than f̂2 and f̂3,
due to the domination of the first spectral component in the
spectral distribution of Obj1. For Obj2 and Obj3, the mixing
coefficients appear properly unmixed and deconvolved.

The spatial distributions of the estimated auxiliary variables
(b̂h, b̂v), shown in Fig. 7 for Obj2 mimic the contours of
the mixing coefficients, as expected from the half-quadratic
minimization.

E. Hyperspectral Reconstruction Results

The reconstructed objects are computed using the linear
mixing model in (2) and using the estimated mixing coeffi-
cients presented above. In Table I we present the reconstruc-
tion errors for the three objects.

All reconstruction errors are below 5%. The smallest error
(0.67%) is obtained for Ôbj1 which contains neither sharp
edge nor complex spectral features. For Ôbj2 and Ôbj3, re-
construction errors are 1.91% and 4.91% respectively, because
of their more complex spatial and spectral contents.

For a better illustration of our reconstruction results and
a comparison to results obtained using the state-of-the-art
TV deconvolution algorithm, we discuss separately the spatial
distribution and the spectral distribution obtained for each
object.

a) Spatial distribution: The spatial distributions are il-
lustrated in Figs. 8, 9, and 10 by taking three monochromatic
images at wavelengths λ = 6, 12, 18µm, belonging to the
three spectral bands p = 1, 4 and 7, respectively. Figs. 9 and 10
are displayed with a spatial zoom to highlight details.

The proposed reconstructions show good performance. The
dynamic range and the spatial distribution of the monochro-
matic images are well reconstructed with errors around 0.62%
for Obj1, 2.20% for Obj2, and 5.75% for Obj3. This illus-
trates the efficiency of the proposed algorithm for reconstruc-
tion at all wavelengths. The comparison between the first three

lines of Figs. 9 and 10 illustrates the striking improvement
of the spatial resolution. Our algorithm correctly recovers
the sharp edges and small-scale gradients contained in the
original objects. Thanks to the mixing model, the spatial
resolution at all wavelengths is determined by the spatial
resolution of the estimated mixing coefficients. Therefore,
the reconstructed monochromatic images do not show any
increasing blur with increasing wavelengths, unlike the input
images and the images computed with the TV deconvolution.
Moreover, TV deconvolution (which takes between 70 and 100
seconds for one image and 500 iterations) can only be done
image by image and therefore cannot restore spatial details at
small scales and at long wavelengths. In addition, the color
bars show that the dynamic range is not properly restored
with TV deconvolution. This is due to the integration over
the wide spectral bands, and to the spectral dependence of
the PSF within each wideband image which is neglected. The
l2 approach suffer the same problems that TV deconvolution
with lesser quality results, as expected for this method.

f̂
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-2.33
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1027.66

1542.66

f̂
2

-15.66
2.63

20.92
39.22

f̂
3
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f̂
1

: Error = 4.26%

0.17
0.45

0.74
1.03

f̂
2

: Error = 3.32%

0.17
0.45

0.74
1.02

f̂
3

: Error = 1.74%

0.17
0.46

0.74
1.03

f̂
1

: Error = 3.06%

-0.01
0.33

0.67
1.02

f̂
2

: Error = 8.98%

-0.05
0.30

0.66
1.01

Fig. 6. Estimation results of the mixing coefficients associated to Ôbj1
(top), Ôbj2 (middle), and Ôbj3 (bottom). No error wrt. mixing coefficients
is available for Obj1 since the original ones do not exist.
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b̂
2
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2
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-0.71
-0.24

0.24
0.71

b̂
3
h

b̂
3
v

Fig. 7. Estimated auxiliary variables, horizontal and vertical, for Ôbj2.

Finally, the Fig. 12 shows the improvement of the spatial
resolution at different wavelength values. Figures show the
circular mean of the true Optical Transfer Function (OTF),
that is the Fourier transform of the PSF, wrt. the “equivalent”
OTF, which is the division between the true sky and the
reconstructed sky in Fourier domain (for Obj3 at 30 dB).
The figure shows that in addition to the deconvolution effect
and the high frequency restoration, the resolution is almost
identical at all wavelength.

b) Spectral distribution: The spectral distributions for
one spatial position are illustrated in Fig. 11, with a com-
parison between the spectrum of the original object and the
reconstructed ones using the proposed and the TV algorithms.
We see that the proposed algorithm produces spectra that cor-
respond very closely to the original spectra at all wavelengths.
This is due to:
• the linear mixing model with M known spectral compo-

nents which allow disentangling the spectral information
integrated within each wideband image,

• the spectral variant PSF to model the instrument response
accurately, hence the observation matrix H ,

• the spectral correlations between images exploited in joint
reconstruction.

In contrast, the TV deconvolution method produces a poor
spectral reconstruction since the spectral information within
each band is not modeled (and implicitly flat).

F. Influence of the Noise Level

The reconstruction errors wrt. the noise levels are shown in
Fig. 13. As expected, the proposed algorithm is sensitive to
the noise with a decrease of the reconstruction errors for an
increasing SNR. The reconstruction of Obj2 and Obj3 is very
sensitive to the noise since the noise corrupts the sharp edges
in the multispectral data, and make their restoration more
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Fig. 8. Reconstruction for Obj1 at 30 dB: [1st row] Simulated multispectral
images data at bands p = 1, 4, and 7 with a SNR = 30 dB. [2nd row]
Original monochromatic images at 6, 12 and 18µm, contained in bands p =
1, 4, 7. [3rd row] Reconstruction at 6, 12 and 18µm. [4th row] Residuals.
[5th row] Reconstruction with TV restoration.
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difficult. This is less the case for Obj1 which is dominated
by a smoother spatial distribution.
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Fig. 9. Same as in Fig. 8 for Obj2.

V. CONCLUSION

We present an efficient method for restoring from multi-
spectral images the spectral and spatial information which are
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Fig. 10. Same as in Fig.8 for the Obj3.
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degraded in the acquisition process because of the spectral
integration over wide bands, and the 2D convolution by the
PSF (whose width linearly increases with wavelengths), which
introduces a blur varying in space.

Our first contribution is a new data model that combines
(1) a low rank subspace approximation of the fully resolved
hyperspectral input object, and (2) a complete instrument
model that takes into account the spectral variations of the
PSF and the spectral response of the instrument. Then, a
linear multi-observation forward model is derived, where data
images appear as the sum of direct 2D convolutions of mixing
coefficients allowing fast computation.

Our second contribution is a Fast Joint Multiband Recon-
struction (FJMR) algorithm, an edge-preserving variational
algorithm to process the full multispectral wideband images
which are taken at a different spatial resolution. The proposed
half-quadratic algorithm is iterative but we show that each
sub-step is closed form and tractable with exact computation,
especially for the quadratic step, even if the forward model is
not stationary. Therefore, the algorithm is very fast with less
than 4 seconds to process 9 images of size 2562 on a standard
laptop.

The performance of the reconstruction algorithm is validated
for three hyperspectral objects, including an astrophysical
simulated object, having different spatial and spectral dis-
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0.0
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Fig. 11. Spectral distribution of the reconstruction results for one spatial
position (127,100) for Obj1 (top), Obj2 (middle) and Obj3 (bottom), with
TV deconvolution as state-of-the-art method. The curves are in input sky unit.
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Fig. 12. Circular mean of the OTFs and the “equivalent” OTFs at three
wavelengths, for Obj3 at 30 dB. The “equivalent” OTF is the ratio between the
true sky and the estimated sky at specified wavelengths. The three “equivalent”
OTFs are superposed, indicating that the resolution is almost identical at these
wavelengths.
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Ôbj2
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Fig. 13. Influence of the SNR on the reconstruction.

tributions that cover most of the encountered cases, in the
context of the MIRI infrared imager of the JWST. In all
experiments, the relative errors are below 5 % for SNR = 30
dB. In addition, the reconstruction results using the proposed
algorithm significantly outperform the TV deconvolution. The
sharp edges and small-scale gradients which are contained in
the original objects but blurred in the multispectral images
are correctly recovered. Thanks to our model where spatial
resolution is defined by mixing coefficient only, the spatial
resolution is homogenized at all wavelengths. Moreover, our
algorithm allows us to recover the spectroscopic information
contained within each band but lost in the data because of the
spectral integration over the bands.

It is generally impossible to acquire spectroscopic data
for large areas because the fields of view of spectrometers
are generally very limited and much smaller than those of
imagers. Moreover, the spectral coverage of observations be-
comes nowadays more and more extended. Therefore our algo-
rithm, which has demonstrated its effectiveness to recover the
spectroscopic information contained within wideband images
and to reconstruct hyperspectral images with a homogenized
spatial resolution at all wavelengths, appears a very promising
tool that could be used for many scientific fields.

Many perspectives are possible. First the hyper parameters
are fixed by hand, and their automatic estimation from data
is a challenging question. Secondly, the spectral components
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are not always available and data with more spectral details
must be used. Finally, the method supposes that all images
are acquired with the same spatial sampling step, and without
shifts between the images.

APPENDIX A
COMPUTATION OF THE MULTICHANNEL QUADRATIC

SOLUTION

In this section we present the computation of the multichan-
nel quadratic solution given by



f̂1

...
f̂M




︸ ︷︷ ︸
f̂

=



Q1,1 · · · Q1,M

...
. . .

...
QM,1 · · · QM,M




︸ ︷︷ ︸
Q

−1 

q1

...
qM




︸ ︷︷ ︸
q

,

where Q ∈ RMNkNl×MNkNl is a non-circulant block circulant
matrix and q ∈ RMNkNl is a multichannel vector. The
computation of f̂ relies on the inversion of the Hessian
matrix Q inspired from [7], [51]. Inverting Q and storage
of the inverse is possible by performing diagonalization of its
circulant blocks Qi,j , resulting in a set of diagonal blocks Λi,j

through the transfer equation

Qi,j = F †Λi,jF , i, j ∈ [1, . . . ,M ]2, (26)

where F and F † are the discrete Fourier matrix and its
conjugate, respectively. This yields

Q = F
†
ΛQF , and Q−1 = F

†
Λ−1Q F , (27)

with

ΛQ =



Λ1,1 · · · Λ1,M

...
. . .

...
ΛM,1 · · · ΛM,M


 , F =



F

. . .
F


 . (28)

The matrix ΛQ is a Non-Diagonal Block Diagonal (NDBD)
matrix. Thanks to the permutation matrices P , the NDBD
matrix can be written as

ΛQ = PRP , (29)

where R = diag (Rp) , p = 1, . . . , NkNl is a matrix with full
blocks on the diagonal. Each block Rp is an M × M full
matrix, invertible in our case, with permutations that writes

(Rp)i,j =
(
Λi,j

)
p,p

(30)

for i, j ∈ [1, . . . ,M ]2. Therefore, since the inversion of a block
diagonal matrix is also a block diagonal matrix, the inverse of
ΛQ can be written as

Υ := Λ−1Q = P TR−1P T (31)

where R−1 = diag
(

(Rp)
−1
)

, and Υ is also a NDBD matrix,

having a diagonal block Υi,j given by
(
Υi,j

)
p,p

=
(

(Rp)
−1
)
i,j
. (32)

In conclusion, Υ is tractable and sparse, allowing pre com-
putation and direct application in the iterative Algorithm 1.

Thanks to such properties, the multichannel quadratic solution
can be computed with the DFT and NkNl inversions of square
matrices of size M . In the context of this work, NkNl are the
number of pixels and M is the number of spectral components.
In addition, each block Rp can be inverted in parallel. Finally,
f̂ is computed just by applying the matrix Υ as

f̂ = F
†
Λ−1Q q̊ = F

†
ΥFq (33)

with q̊ = Fq.

APPENDIX B
UPDATE OF THE AUXILIARY VARIABLES

The update of all auxiliary variables is independent and
can be calculated in parallel. The solution is given by the
minimization

b̂m = argmin
bm

1

2

(
[Dfm]k,l − [bm]k,l

)2
+ ξ

(
[bm]k,l

)

︸ ︷︷ ︸
ψ([bm]k,l)

where ψ is a convex, differentiable, and separable function
with respect to the minimizer. For the Huber potential ϕ, the
auxiliary function is ξ(b) = 2s|b|. Since the criterion is convex

differentiable, a sufficient condition is ψ′
([

b̂m
]
k,l

)
= 0,

∀ k ∈ [1, Nk] and ∀ l ∈ [1, Nl]. The derivative function ψ′

is computed by substituting the auxiliary function in ψ. This
yields for the Huber potential

ψ′
([

b̂m
]
k,l

)
=

([
b̂m
]
k,l
− [Dfm]k,l

)
+s sign

([
b̂m
]
k,l

)
.

Thus, the obtained auxiliary variables are

[
b̂m
]
k,l

=





[Dfm]k,l − [Dfm]k,l , if
∣∣∣[Dfm]k,l

∣∣∣ < s,

[Dfm]k,l − s sign
(

[Dfm]k,l

)
, otherwise.

= [Dfm]k,l −
1

2
ϕ′
(

[Dfm]k,l

)
. (34)

Finally, we obtain

b̂ = Df − 1

2
ϕ′
(
Df

)
(35)

where ϕ′ is the first derivative of Huber function

ϕ′(x) =

{
2x, if |x| < s,

2s sign(x), otherwise.
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