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This work introduces a numerical fixed point method to approximate the solutions of a Vlasov-Poisson-Boltzmann boundary value problem which arises when modeling a bi-species collisional sheath. Our method relies on the exact integration of the transport equations by means of the characteristic curves. A special care is given about the choice of a suitable phase space discretization together with the use of adequate quadrature formulas so as to ensure that the numerical fixed point method is stable. Numerical experiments are carried out in order to illustrate the effects of the various physical parameters that are in the scope of the analysis. Some results going beyond the scope of the analysis are also given.

Introduction

Plasma interacting with material boundaries are ubiquitous in applications. A well-known physical feature of a plasma interacting with an isolated partially absorbing surface, is the development near the surface of a thin positively charged boundary layer called the Debye sheath. The Debye sheath can be mathematically described by a steady state regime where the flows of ions and electrons reaching the wall are equal [START_REF] Riemann | The bohm criterion and sheath formation[END_REF][START_REF] Chen | Introduction to Plasma Physics and controlled fusion[END_REF][START_REF] Stangeby | The Plasma Boundary of Magnetic Fusion Devices[END_REF]. The mathematical and physical foundations of plasma sheaths in the case where particles do not collide are now well-established [START_REF] Badsi | A minimization formulation of a bi kinetic sheath[END_REF][START_REF] Badsi | Linear electron stability for a bi-kinetic sheath model[END_REF][START_REF] Gérard-Varet | Quasineutral limit of the euler-poisson system for ions in a domain with boundaries[END_REF][START_REF] Feldman | A geometric level-set formulation of a plasma sheath interface[END_REF]. When particles suffer from collisions several models have been proposed in the literature [START_REF] Sheridan | Collisional plasma sheath model[END_REF][START_REF] Riemann | Kinetic analysis of the collisional plasma-sheath transition[END_REF][START_REF] Manfredi | Plasma-wall transition in weakly collisional plasmas[END_REF]. In this work we are interested in the numerical approximation of the bi-species Vlasov-Poisson-Boltzmann model studied in [START_REF] Badsi | Collisional sheath solutions of a bi-species vlasovpoisson-boltzmann boundary value problem[END_REF]. The model reads as follows:

       v∂ x f i -∂ x φ∂ v f i = -νQ(f i ), (x, v) ∈ (0, 1) × R, (1) 
v∂ x f e + 1 µ ∂ x φ∂ v f e = 0, (x, v) ∈ (0, 1) × R, (2) 
-ε 2 ∂ xx φ = n i (x) -n e (x), x ∈ (0, 1), (3) 
where the unknowns are the ions and electrons densities in the phase space

f i : (x, v) ∈ [0, 1]×R → f i (x, v) ∈ R + , f e : (x, v) ∈ [0, 1]×R → f e (x, v) ∈ R + ,
and the electrostatic potential φ : x ∈ [0, 1] → φ(x) ∈ R. In this model, ν > 0 is a normalized collision frequency between ions and a cold neutral gas, µ > 0 denotes the mass ratio between electrons and ions, ε > 0 is a normalized Debye length, Q(f i ) is a collision operator which takes the form of a linear relaxation operator towards a mono-kinetic distribution (see [START_REF] Abdallah | Relative entropies for kinetic equations in bounded domains[END_REF][START_REF] Tonks | A general theory of the plasma of an arc[END_REF][START_REF] Bostan | Boundary value problems for the stationary vlasov-boltzmann-poisson equation[END_REF][START_REF] Riemann | Kinetic analysis of the collisional plasma-sheath transition[END_REF] for more details):

∀(x, v) ∈ (0, 1) × R, Q(f i )(x, v) := f i (x, v) - R f i (x, v)dv δ v=0 , (4) 
where δ v=0 is the Dirac measure supported at the point v = 0. The macroscopic densities are defined by : ∀x ∈ [0, 1] n i (x) := R f i (x, v)dv, n e (x) := R f e (x, v)dv.

(5)

The system (1)-( 3) is supplemented with the following boundary conditions:

     f i (0, v > 0) = f inc i (v), f i (1, v < 0) = 0, (6) 
f e (0, v > 0) = n 0 f inc e (v), f e (1, v < 0) = αf e (1, -v), (7) 
φ(0) = 0, φ(1) = φ wall , (8) 
where f inc i : (0, +∞) → R + , f inc e : (0, +∞) → R + stand for incoming particles densities that model the flows of particles that come from the plasma (x = 0). Since electrons are usually well described by Maxwellian distributions in the core plasma (see [START_REF] Stangeby | The Plasma Boundary of Magnetic Fusion Devices[END_REF] for a physical justification), the incoming electrons density to be considered here is a normalized semi-Maxwellian

f inc e (v) = 2µ π e -µv 2 2 , ∀v > 0. ( 9 
)
At the wall (x = 1), ions particles are absorbed while for the electrons a fraction α ∈ [0, 1] of the particles is re-emitted from the wall specularly. The pair (n 0 , φ wall ) ∈ (0, +∞) × (-∞, 0) plays the role of an unknown which has to be determined in such a way that the solutions f i , f e , φ to (1)-( 8) satisfy the additional equations

n i (0) = n e (0), (10) 
J i = J e ( 11 
)
where the current densities are defined by

∀x ∈ [0, 1] J i := R f i (x, v)vdv, J e := R f e (x, v)vdv. ( 12 
)
Note that an integration in velocity of the equations ( 1)-( 2) yields that the current densities are constant in space. The existence of weak solutions for the system (1)- [START_REF] Degond | Asymptotic-preserving methods and multiscale models for plasma physics[END_REF] has been proven in [START_REF] Badsi | Collisional sheath solutions of a bi-species vlasovpoisson-boltzmann boundary value problem[END_REF]. We refer to Theorem 3.1 of the aforementioned reference for a precise statement of the existence result. To briefly summarize the result, it is shown that there is a critical re-emission coefficient α c ≈ 1 such that for any 0 ≤ α ≤ α c < 1 and for any incoming ions density f inc i that belongs to a standard class of regularity and additionally satisfies -the admissibility condition +∞ 0

f inc i (v)vdv +∞ 0 f inc i (v)dv < (1 -α) (1 + α) 2 µπ , (13) 
-the Bohm criterion

B α (f inc i ) := m α (0) + m α (0) m α (0) - +∞ 0 f inc i (v) v 2 dv +∞ 0 f inc i (v)dv > 0, (14) 
where

∀u ∈ [φ wall , 0], m α (u) := 2 -(1 -α)erfc( u -φ wall ), (15) 
then for all 0 < ν < ν c where

ν c := -φ wall B α (f inc i )   +∞ 0 f inc i (v)dv +∞ 0 f inc i (v) v dv   > 0 ( 16 
)
there exists ε * > 0 such that for all ε ≥ ε * the weak solutions to (1)- [START_REF] Crouseilles | A forward semilagragian method for the numerical solution of the vlasov equation[END_REF] have the following properties:

-a non negative charge density:

∀x ∈ [0, 1], n i (x) ≥ n e (x) > 0, (17) 
-a sufficiently decreasing electric potential:

∀x ∈ [0, 1], ∂ x φ(x) ≤ - ν B α (f inc i )   +∞ 0 f inc i (v) v dv +∞ 0 f inc i (v)dv   < 0. ( 18 
)
When the collision frequency vanishes, that is ν = 0, it is proven in [START_REF] Badsi | A minimization formulation of a bi kinetic sheath[END_REF] that provided the inequalities ( 13) and ( 14) still hold, the system (1)-( 12) has for any ε > 0 a unique weak solution which again satisfies the inequalities [START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF] and [START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF]. The proof relies on a equivalent reformulation of the system as a minimization problem. This approach additionally yields quantitative estimates as ε → 0 for both the electric field ∂ x φ and the charge density n i -n e which mathematically pertains to the presence so called Debye sheath [START_REF] Riemann | The bohm criterion and sheath formation[END_REF] .

A very exhaustive literature about numerical methods to approximate kinetic plasma models is available. We refer for example to [START_REF] Beale | Vortex methods. ii. high order accuracy in two and three dimensions[END_REF][START_REF] Raviart | An analysis of particle methods[END_REF][START_REF] Crouseilles | A forward semilagragian method for the numerical solution of the vlasov equation[END_REF][START_REF] Campos-Pinto | Uniforme convergence of a linearly transformed particle method for the vlasov-poisson system[END_REF][START_REF] Heth | A discontinuous galerkin method for the vlasov-poisson system[END_REF][START_REF] Dubroca | Analysis of a high order finite volume scheme for the vlasov-poisson-system[END_REF][START_REF] Cottet | Particle methods for the onedimensional vlasov-poisson equations[END_REF][START_REF] Cohen | Optimal approximations of transport equations by particle and pseudoparticle methods[END_REF] for Particle-In-Cell methods, Semi-Lagragian methods and Galerkin type methods. Convergence and stability analysis of these methods can be found in the mentioned references. In the specific context of plasma sheaths, some of these numerical methods have been used [START_REF] Valsaque | Numerical study of plasma wall transition in an obligque magnetic field[END_REF][START_REF] Manfredi | Kinetic simulations of the chodura debye sheath for magnetic fields with grazing incidence[END_REF][START_REF] Badsi | Numerical stability of plasma sheath[END_REF][START_REF] Sheridan | Solution of the plasma sheath equation with a cool maxwellian ion source[END_REF] with their own specificity according to the model under consideration. We mention that non stationary based numerical methods are often more generic in a sense, and enable to avoid dealing with the delicate problem of selecting the boundary conditions that reproduce the physics of sheaths. They are however more time consuming and less robust since they may not reach the desired stationary solution. As far as the numerical difficulties are concerned, they are all related to the multi-scale nature of the plasma sheath formation. The main observed numerical difficulties are threefold. The first one stems from the need of a high spatial resolution due to the boundary layer that forms in the different regimes ε 1 and ν 1. The second one comes from the relative difference in velocities between electrons and ions due to the small mass ratio µ

1. The third one is related to the numerical treatment of the boundary conditions ( 6)- [START_REF] Campos-Pinto | Uniforme convergence of a linearly transformed particle method for the vlasov-poisson system[END_REF] which need a specific interpolation procedure with ghost points outside the computational domain. These three numerical difficulties bring stringent stability conditions and prohibitive computational effort. We refer to [START_REF] Badsi | Numerical stability of plasma sheath[END_REF][START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF] for numerical studies with physical parameters taken from the literature. Some cures are likely possible by following the so called Asymptotic-Preserving approach [START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF][START_REF] Degond | Asymptotic-preserving methods and multiscale models for plasma physics[END_REF] except for the numerical difficulties related to the presence of boundary layer which are not well-suited for this approach. Specific numerical methods must therefore be implemented in the context of plasma sheaths. The strategy followed in this work relies on the a priori knowledge of the mathematical structure of the solution. It is based on the analysis of the phase space by means of the characteristic curves. It is somehow very specific but it yields an exact integration of the transport equations ( 1)-(2) and thus no numerical error related to the transport equations is introduced. It provides a numerical method which has a strong analytical background.

The present work thus proposes a simple fixed point method to approximate the weak solutions of the boundary value problem ( 1)- [START_REF] Crouseilles | A forward semilagragian method for the numerical solution of the vlasov equation[END_REF]. Our method takes fully advantage of the one dimensional structure of the model and follows closely the analysis developed in [START_REF] Badsi | Collisional sheath solutions of a bi-species vlasovpoisson-boltzmann boundary value problem[END_REF]. An exact integration of the transport equations ( 1)-( 2) with the method of characteristics enables to have an exact representation of the densities f i , f e up to an error of approximation on φ. These exact formula are then used to compute the macroscopic densities and currents. It enables to reduce the two algebraic equations ( 10)- [START_REF] Crouseilles | A forward semilagragian method for the numerical solution of the vlasov equation[END_REF] to one single non linear equation to be solved for φ wall . Once the couple (n 0 , φ wall ) is computed, the core of the method then consists in solving the non linear Poisson problem (3) with the boundary conditions (8) by a fixed point algorithm using a finite difference scheme. A suitable choice of the ions phase space discretization based on the geometry of the characteristics and convenient quadrature formulas for velocity integrals are proposed in order to ensure that the inequalities [START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF] and [START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF] are easily preserved at the discrete level which yields the stability of the method.

Summary of the numerical method

We now briefly summarize our method, it consists in the three following steps.

Step I -The method of characteristics for the Vlasov-Boltzmann equations. Following Section 4 of [START_REF] Badsi | Collisional sheath solutions of a bi-species vlasovpoisson-boltzmann boundary value problem[END_REF], provided φ ∈ W 2,∞ (0, 1) is decreasing with φ(0) = 0, the method of characteristics yields an explicit representation of the particles densities f i and f e as functions of the potential φ. Namely, integrating the Vlasov-Boltzmann equations (1)-(2) along the characteristics curves and using the boundary conditions ( 6)- [START_REF] Campos-Pinto | Uniforme convergence of a linearly transformed particle method for the vlasov-poisson system[END_REF], one obtains

f i (x, v) = 1 {v> √ -2φ(x)} (x, v)f inc i v 2 + 2φ(x) e νt inc (x,v) + 1 {0<v< √ -2φ(x)} (x, v) -νe νs 0 (x,v) n i φ -1 (φ(x) + v 2 /2) ∂ x φ (φ -1 (φ(x) + v 2 /2)) . ( 19 
)
f e (x, v) = n 0 1 {v> 2 µ (φ(x)-φ(1))} (x, v)f inc e v 2 - 2 µ φ(x) + n 0 α1 {v< 2 µ (φ(x)-φ(1))} (x, v)f inc e v 2 - 2 µ φ(x) . (20) 
In [START_REF] Manfredi | Kinetic simulations of the chodura debye sheath for magnetic fields with grazing incidence[END_REF], t inc and s 0 are negative times given respectively by

t inc (x, v) = - x 0 du v 2 + 2(φ(x) -φ(u)) , (21) 
s 0 (x, v) = - x φ -1 (φ(x)+v 2 /2) du 2(φ(x) + v 2 /2 -φ(u)) . (22) 
Integrating with respect to the velocity v ∈ R both ( 19) and [START_REF] Manfredi | Plasma-wall transition in weakly collisional plasmas[END_REF], one then obtains the following formulas for the macroscopic densities n i ≡ n i [φ] and n e ≡ n e [φ]:

n i [φ](x) = +∞ √ -2φ(x)
f inc i v 2 + 2φ(x) e νt inc (x,v) dv - √ -2φ(x) 0 νe νs 0 (x,v) n i [φ](φ -1 (φ(x) + v 2 /2)) ∂ x φ(φ -1 (φ(x) + v 2 /2)) dv, (23) 
n e [φ](x) = n 0 e φ(x) m α (φ(x)) , (24) 
where m α is given by [START_REF] Gérard-Varet | Quasineutral limit of the euler-poisson system for ions in a domain with boundaries[END_REF]. The ions density n i solves an integral equation while the electrons density n e is given explicitly. As for the current densities, they are given by

J i = +∞ 0 f inc i (v)vdv, (25) 
J e = n 0 (1 -α) 2 πµ e φ wall . (26) 
Step II-Determination of the wall potential. Assuming φ(1) = φ wall , the two algebraic equations [START_REF] Cottet | Particle methods for the onedimensional vlasov-poisson equations[END_REF] and (11) yields the equivalent system of unknown

(n 0 , φ wall ) +∞ 0 f inc i (v)dv = n 0 m α (0), ( 27 
) +∞ 0 f inc i (v)vdv = n 0 (1 -α) 2 πµ e φ wall , (28) 
where we remind that m α (0) is given by

m α (0) = 2 -(1 -α)erfc( -φ wall )
and thus also depends on φ wall . Eliminating n 0 yields that φ wall is the unique negative solution of the non linear equation

W(φ wall ) = 0 ( 29 
)
where the function W is defined for ϕ ≤ 0 by

W(ϕ) = 2 -(1 -α)erfc( √ -ϕ) +∞ 0 f inc i (v)v dv -(1 -α) 2 πµ +∞ 0 f inc i (v) dve ϕ . (30) 
The function W is continuous, decreasing and has a limit as ϕ → -∞ which is such that lim ϕ→-∞ W(φ) > 0. Therefore the equation ( 29) has a unique negative solution if and only W(0) < 0 which is the inequality [START_REF] Dubroca | Analysis of a high order finite volume scheme for the vlasov-poisson-system[END_REF]. The equation ( 29) is then solved using a standard Newton method.

Step III-Solving the non linear Poisson problem. The non linear Poisson problem consists in finding a decreasing potential φ satisfying [START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF] such that

-ε 2 ∂ xx φ(x) = n i [φ](x) -n e [φ](x), x ∈ [0, 1], (31) 
φ(0) = 0 and φ(1) = φ wall < 0, ( 32 
)
where n i [φ] > 0 solves the integral equation [START_REF] Riemann | The bohm criterion and sheath formation[END_REF], n e [φ] > 0 is given explicitly on φ by [START_REF] Riemann | Kinetic analysis of the collisional plasma-sheath transition[END_REF] and the solution φ must ensure the inequality [START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF]. We note that in the case ν = 0, the Poisson problem (31)-(32) reformulates as a minimization problem [START_REF] Badsi | A minimization formulation of a bi kinetic sheath[END_REF]. Since ν > 0, n i [φ] solves a non trivial integral equation [START_REF] Riemann | The bohm criterion and sheath formation[END_REF]. The Poisson problem (31)-(32) is a strongly non linear integro-differential equation. Our numerical method consists in solving (31) with a fixed point method. The stability of the method is ensured by the inequalities [START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF] and [START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF]. Our main concern in the rest of the paper is the preservation of these inequalities at the discrete level.

Organization

The outline of the paper is as follows. In the next section, we define the numerical scheme to solve the non linear Poisson problem ( 23)-( 24)-(31)-(32). We detail the discretization, paying a particular attention to the ions phase space discretization in order to avoid the computation of φ -1 involved in the definition of n i [φ], given by [START_REF] Riemann | The bohm criterion and sheath formation[END_REF] and in s 0 defined by [START_REF] Raviart | An analysis of particle methods[END_REF]. Then in Section 3 we establish the stability properties to be satisfied by the numerical scheme, namely the discrete analogue of inequalities [START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF] and [START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF]. In Section 4, several numerical experiments that are performed in the scope of the analysis and an interpretation of the results is proposed. Some results going beyond our analysis are also given. Eventually, a short conclusion is given in Section 5.

The numerical scheme

In all the sequel, we shall assume that the incoming ions density f inc i : (0, +∞) → R + is at least piecewise continuous so that the upcoming quadrature formulas make sense. Moreover, we assume φ wall < 0 to solve exactly or approximately the equation [START_REF] Valsaque | Numerical study of plasma wall transition in an obligque magnetic field[END_REF]. We begin with introducing a uniform discretization of the interval [0, 1] of size ∆x = 1/(N + 1) where N + 1 denotes the number of intervals of discretization so that x j = j∆x for 0 ≤ j ≤ N +1. We denote φ j the approximation of φ(x j ) while n i [φ] j and n e [φ] j respectively denote the approximations of n i [φ](x j ) and n e [φ](x j ).

To approximate the sequence (φ j ) 0≤j≤N +1 with the boundary conditions given by φ 0 = 0 and φ N +1 = φ wall , we use the following fixed point numerical procedure:

- ε 2 ∆x 2 φ n+1 j+1 -2φ n+1 j + φ n+1 j-1 = n i [φ n ] j -n e [φ n ] j , (33) 
where the initial sequence (φ 0 j ) 0≤j≤N +1 must satisfy the boundary conditions

φ 0 0 = 0 and φ 0 N +1 = φ wall .
In view of the inequality [START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF], we also impose this initial sequence to verify for all 0

≤ j ≤ N 1 ∆x φ 0 j+1 -φ 0 j ≤ M φ < 0, ( 34 
)
where M φ will be defined as an approximation of the right hand side in the inequality [START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF].

Regarding the definition of n i [φ] j , to approximate n i [φ](x j ) defined by ( 23), we shall introduce a suitable discretization of half the phase space (0, 1) × [0, +∞) that avoid the computation of φ -1 involved in [START_REF] Riemann | The bohm criterion and sheath formation[END_REF]. As in [START_REF] Badsi | Collisional sheath solutions of a bi-species vlasovpoisson-boltzmann boundary value problem[END_REF], one uses the characteristic curves. These are the curves of algebraic equation v 2 2 + φ(x) = const. They span the domain (0, 1) × [0, +∞) so that one has the natural decomposition

(0, 1) × [0, +∞) = D 1 ∪ D 2 , with D 1 = (x, v) ∈ (0, 1) × [0, +∞) : v > -2φ(x) , (35) 
D 2 = (x, v) ∈ (0, 1) × [0, +∞) : 0 ≤ v ≤ -2φ(x) . (36) 
The domain D 1 corresponds to characteristic curves that originate from x = 0 with positive velocities, namely

∀(x, v) ∈ D 1 , ∃v 0 > 0, v 2 0 2 = v 2 2 + φ(x). (37) 
The domain D 2 corresponds to characteristic curves that crosses v = 0, namely

∀(x, v) ∈ D 2 , ∃ 0 ≤ x 0 < 1, φ(x 0 ) = v 2 2 + φ(x). (38) 
In particular for a given pair (x j , v) where x j ∈ (0, 1) is a grid point and v ∈ [0, -2φ(x j )), the corresponding x 0 in (38) is solution of the equation

φ(x 0 ) = v 2 2 + φ(x j ). ( 39 
)
From a numerical perspective, the equation ( 39) is not convenient since φ may be replaced by an approximation which is only known on a discrete set.

If one wants to solve (39), then one needs somehow an ad hoc reconstruction of φ. A way to circumvent this issue is to choose v in such a way that x 0 belongs to the grid (x k ) 0≤k≤N +1 so that the equation ( 39) is trivially solved. Namely, we define a discretization of the velocity interval which depends on the grid (x k ) 0≤k≤N +1 using the equation of the characteristics (39) (see Fig 1). In this regard, for 0 ≤ v ≤ -2φ j with a given j, we set where φ k -φ j ≥ 0 for all 0 ≤ k ≤ j provided (φ j ) 0≤j≤N +1 satisfies

v j j-k = 2(φ k -φ j ), 0 ≤ k ≤ j, (40) 
v x vj k v j j-k v j 0 -2φ j x j x k 0 vj 0 v j j 1 - 6 
1 ∆x (φ j+1 -φ j ) ≤ M φ < 0. ( 41 
)
For v ≥ -2φ j , we consider a uniform discretization of size ∆v > 0 such that we set vj k = -2φ j + k∆v, k ≥ 0.

To avoid some possible confusion in the velocity discretization, we have denoted v j the discretization of v in [0, -2φ j ] while vj denotes the discretization of v in [ -2φ j , +∞).

We need now to define an approximation of n i [φ](x j ) for all 0 ≤ j ≤ N + 1. To do so, the integrals involved in [START_REF] Riemann | The bohm criterion and sheath formation[END_REF] are approximated using the trapezoidal rules. More precisely, the first integral in ( 23) is approximated by I ∞ [φ] j for all 0 ≤ j ≤ N + 1 defined by

I ∞ [φ] j = k≥0 ∆v 2 f inc i vj k 2 + 2φ j e ν tinc [φ](x j ,v j k ) + f inc i vj k+1 2 + 2φ j e ν tinc [φ](x j ,v j k+1 ) (42) 
where tinc [φ] x j , vj k is an approximation of the time t inc (x j , vj k ) given in [START_REF] Badsi | Numerical stability of plasma sheath[END_REF]. It is defined by tinc [φ] x 0 , v0 k = 0 and for 1 ≤ j ≤ N + 1 a midpoint rule is used:

tinc [φ] x j , vj k = - j-1 =0 ∆x vj k 2 + 2φ j -(φ + φ +1 ) . ( 43 
)
The second integral is approximated by I 0 [φ] j with I 0 [φ] 0 = 0 and for 1 ≤ j ≤ N + 1

I 0 [φ] j = j-1 k=0 v j j-(k+1) -v j j-k 2 νe ν s0 (x j ,v j j-k ) n i [φ](φ -1 (φ j + (v j j-k ) 2 /2)) ∂ x φ(φ -1 (φ j + (v j j-k ) 2 /2)) +νe ν s0 (x j ,v j j-(k+1) ) n i [φ](φ -1 (φ j + (v j j-(k+1) ) 2 /2)) ∂ x φ(φ -1 (φ j + (v j j-(k+1) ) 2 /2))
where

n i [φ](φ -1 (φ j + (v j j-k ) 2 /2)), ∂ x φ(φ -1 (φ j + (v j j-k ) 2 /2)) and s0 (x j , v j j-k ) are approximations of n i [φ](φ -1 (φ j + (v j j-k ) 2 /2)), ∂ x φ(φ -1 (φ j + (v j j-k ) 2 /2)
) and s 0 (x j , v j j-k ) given by [START_REF] Raviart | An analysis of particle methods[END_REF]. They are constructed using the velocity discretization defined by (40). Indeed, we have

φ j + (v j j-k ) 2 2 = φ k .
One therefore naturally defines,

n i [φ](φ -1 (φ j + (v j j-k ) 2 /2)) = n i [φ] k , (44) 
∂ x φ(φ -1 (φ j + (v j j-k ) 2 /2)) = ∂ x φ k , (45) s0 
(x j , v j j-k ) = - j-1 =k ∆x 2 (φ k -φ +1 ) , (46) 
where ∂ x φ k denotes an approximation of ∂ x φ(x k ) such that the control of the variations of (φ j ) 0≤j≤N +1 through the inequality (41) also implies

∂ x φ k ≤ M φ < 0. ( 47 
)
As a consequence, I 0 [φ] j rewrites I 0 [φ] 0 = 0 and for 1 ≤ j ≤ N + 1

I 0 [φ] j = ν 2 j-1 k=0 φ k+1 -φ j -φ k -φ j × e ν s0 (x j ,v j j-k ) n i [φ] k ∂ x φ k + e ν s0 (x j ,v j j-(k+1) ) n i [φ] k+1 ∂ x φ k+1 . (48) 
The approximation n i [φ] j is then defined by

n i [φ] j = I ∞ [φ] j + I 0 [φ] j . ( 49 
)
For the proof of the stability properties ( 17) and ( 18), it is convenient to define several consistent approximations of the constant n 0 which is given according to equation [START_REF] Stangeby | The Plasma Boundary of Magnetic Fusion Devices[END_REF] by

n 0 = 1 m α (0) +∞ 0 f inc i (v)dv.
The trick is to remark that for all ϕ < 0 we have +∞ 0

f inc i (v) dv = +∞ √ -2ϕ f inc i ( v 2 + 2ϕ) v v 2 + 2ϕ dv,
so that n 0 can also be expressed in terms of the sequence (φ j ) 0≤j≤N +1 as

n 0 = 1 m α (0) +∞ √ -2φ j f inc i ( v 2 + 2φ j ) v v 2 + 2φ j dv.
One can thus define an approximation of n 0 for each φ j by

n j 0 m α (0) = k≥0 ∆v 2   f inc i ( (v j k ) 2 + 2φ j ) vj k (v j k ) 2 + 2φ j +f inc i ( (v j k+1 ) 2 + 2φ j ) vj k+1 (v j k+1 ) 2 + 2φ j   . (50) 
The full sequence (n j 0 ) 0≤j≤N +1 is of course consistent with the constant n 0 defined by [START_REF] Stangeby | The Plasma Boundary of Magnetic Fusion Devices[END_REF].

As for n e [φ] j , we simply define

n e [φ] j = n j 0 e φ j m α (φ j ). ( 51 
)
The definition of the scheme is now achieved. Before we turn to the study of the stability properties satisfied by this scheme, it is worth noticing that n i [φ] j is solution of a (N + 2) × (N + 2) triangular linear system in the form

n i [φ] = I ∞ + M • n i [φ], (52) 
where

n i [φ] ∈ R N +2 is the unknown vector made of (n i [φ] j ) 0≤j≤N +1 , I ∞ ∈ R N +2 is the vector with components (I ∞ [φ] j ) 0≤j≤N +1
and M is a triangular matrix of size N + 2 such that for 0

≤ j ≤ N + 1 (M • n i [φ]) i = I 0 [φ] j . (53) 

Stability properties

We consider the scheme (33),( 49),(51) to approximate the solutions of (1)- [START_REF] Degond | Asymptotic-preserving methods and multiscale models for plasma physics[END_REF]. One has to prove the discrete analogue of the inequalities ( 17) and ( 18) that reads

1 ∆x φ n j+1 -φ n j ≤ M φ < 0, n i [φ n ] j -n e [φ n ] j ≥ 0,
during all the fixed point iterations n ∈ N where M φ will be defined as an approximation of the right hand side in the inequality [START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF]. In this regard, we introduce the critical re-emission coefficient

α c := 1 -πµ 2 1 + πµ 2 (54)
which for all the physical mass ratio µ such that 0 < α c < 1. Then our main result is the following.

Theorem 3.1. Let α ∈ [0, α c ]. Assume f inc i satisfies ( 
13) so that the pair (n 0 , φ wall ) ∈ (0, +∞)×(-∞, 0) is uniquely determined by ( 27)- [START_REF] Tonks | A general theory of the plasma of an arc[END_REF]. Assume moreover the following discrete Bohm criterion : for all 0

≤ j ≤ N + 1 Bj α (f inc i ) = m α (0) + m α (0) m α (0) - I j 2 I j 0 > 0 ( 55 
)
where I j 0 and I j 1 are given by (63). Let (φ 0 ) 0≤ ≤N +1 be a given sequence such that φ 0 0 = 0, φ 0 N +1 = φ wall < 0 and (φ 0 +1 -φ 0 )/∆x ≤ M φ < 0 for all 0 ≤ ≤ N where M φ is given by (64). Then for all ν > 0 such that

-φ wall > max 0≤j≤N +1 νI j 1 Bj α (f inc i )I j 0 , (56) 
there exists ε > 0, such that for all ε ≥ ε , the updated sequence (φ n+1 ) 0≤ ≤N +1 defined by the scheme (33),( 49),(51) with the boundary conditions

φ n+1 0 = 0 and φ n+1 N +1 = φ wall < 0. ( 57 
)
verifies during all the iterations n ∈ N:

n i [φ n ] j -n e [φ n ] j ≥ 0, 0 ≤ j ≤ N + 1, (58) 1 ∆x (φ n j+1 -φ n j ) ≤ M φ , 0 ≤ j ≤ N. (59) 
To prove this result, we shall need several discrete a priori estimates that are the focus of the next section.

A priori estimates

The first one is an estimate of tinc [φ]. Lemma 3.2. Let (φ ) 0≤ ≤N +1 be a given sequence such that

φ 0 = 0 and 1 ∆x (φ +1 -φ ) ≤ M φ , (60) 
where M φ < 0 is a given constant which may eventually depend on the parameters of the model and φ wall . Then for 0 ≤ j ≤ N + 1, we have

tinc [φ](x j , vj k ) ≥ 1 M φ vj k -(v j k ) 2 + 2φ j , ( 61 
)
where tinc is defined by (43).

Proof. With tinc [φ](x j , vj k ) given by (43), we write

tinc [φ](x j , vj k ) = j-1 =0 1 (φ +1 -φ )/∆x 1 (v j k ) 2 + 2φ j -(φ + φ +1 ) (φ -φ +1 ).
Since (φ ) 0≤ ≤N +1 is imposed to satisfy (60), we get

tinc [φ](x j , vj k ) ≥ 1 M φ j-1 =0 1 (v j k ) 2 + 2φ j -(φ + φ +1 ) (φ -φ +1 ).
Let us emphasize that the function ϕ ≤ 0 → g(ϕ) = 1/ (v j k ) 2 + 2φ j -2ϕ is well defined since (v j k ) 2 + 2φ j ≥ 0 and convex. As a consequence, for all φ +1 < ϕ < φ we have

g φ + φ +1 2 + ϕ - φ + φ +1 2 g φ + φ +1 2 ≤ g(ϕ)
.

By integrating the above relation with respect of ϕ over [φ +1

, φ ], we obtain

(φ -φ +1 )g φ + φ +1 2 ≤ φ φ +1 g(ϕ) dϕ, that re-writes φ -φ +1 (v j k ) 2 + 2φ j -(φ + φ +1 ) ≤ φ φ +1 dϕ (v j k ) 2 + 2φ j -2ϕ
.

As a consequence, we have the following sequence of inequalities (M φ being negative):

tinc [φ](x j , vj k ) ≥ 1 M φ j-1 =0 φ φ +1 dϕ (v j k ) 2 + 2φ j -2ϕ ≥ 1 M φ 0 φ j dϕ (v j k ) 2 + 2φ j -2ϕ ≥ 1 M φ vj k -(v j k ) 2 + 2ϕ j .
Using the estimate of tinc , given by (61), we now establish that n i [φ] jn e [φ] j stays non-negative. 

wj k = (v j k ) 2 + 2φ j , (62) 
so that vj k = ( wj k ) 2 -2φ j . Let us set for 0 ≤ j ≤ N + 1

I j δ = k≥0 ∆v 2 f inc i ( wj k ) vj k ( wj k ) δ+1 + f inc i ( wj k+1 ) vj k+1 ( wj k+1 ) δ+1 . ( 63 
)
Assume the discrete Bohm criterion (55). Let (φ ) 0≤ ≤N +1 be a given sequence such that (60) holds for a constant M φ defined as follows:

M φ = -max 0≤j≤N +1 ν Bj α (f inc i ) I j 1 I j 0 . (64) 
With ∆x small enough, we have for all 0 ≤ j ≤ N + 1

n i [φ] j -n e [φ] j ≥ 0, ( 65 
)
where n i [φ] j and n e [φ] j are defined by ( 49) and (51).

We underline that Bj α (f inc i ), defined by (55), is nothing but the discrete version of the Bohm number given by [START_REF] Feldman | A geometric level-set formulation of a plasma sheath interface[END_REF]. Indeed, for all 0 ≤ j ≤ N + 1, the quantities I j δ are easily shown to be consistent with

+∞ √ -2φ j f inc i ( v 2 + 2φ j ) v ( v 2 + 2φ j ) δ+1 dv = +∞ 0 f inc i (w) dw w δ ,
so that the consistency with B α (f inc i ) holds. We now prove the Lemma 3.3.

Proof. First, we notice that n i [φ] j for all 0 ≤ j ≤ N + 1 is non-negative provided ∆x is small enough. Indeed, n i [φ] j is defined by (49) which reformulates as a triangular linear system (52) in the form

(I d -M ) • n i [φ] = I ∞ ,
where I d stands for the identity matrix in R N +2 × R N +2 . We easily remark that all the non-diagonal components of the triangular matrix I d -M are non-positive. Moreover, the diagonal components of M are negative defined by

M jj = - φ j-1 -φ j ∂ x φ j e ν s0 (x j ,v j 0 ) , so that M jj = O( √ ∆x).
Then, 1 -M jj > 0 provided ∆x is small enough. As a consequence, we deduce that n i [φ] j ≥ 0 for all 0 ≤ j ≤ N + 1. Now, since n i [φ] j ≥ 0, we immediately obtain I 0 [φ] j ≥ 0 for all 0 ≤ j ≤ N + 1. Then, it is sufficient to establish I ∞ [φ] j -n e [φ] j ≥ 0 for all 0 ≤ j ≤ N + 1 to get the estimate (65). One remarks that with I ∞ [φ] j defined by (42) and n e [φ] j by (51), we have for all 0 ≤ j ≤ N + 1

I ∞ [φ] j -n e [φ] j = e φ j   k≥0 ∆v 2 f inc i ( wj k )e -φ j +ν tinc (x j ,v j k ) + f inc i ( wj k+1 )e -φ j +ν tinc (x j ,v j k+1 ) -n j 0 m α (φ j ) ,
where wj k are defined by (62). Because of the estimate (61), we get

I ∞ [φ] j -n e [φ] j ≥ e φ j   k≥0 ∆v 2 f inc i ( wj k )e -φ j + ν M φ (v j k -wj k ) + f inc i ( wj k+1 )e -φ j + ν M φ (v j k+1 -wj k+1 )
-n j 0 m α (φ j ) .

(66)

We now use the following convexity inequality which is a consequence of the inequality (61) of Lemma 6.2 of [START_REF] Badsi | Collisional sheath solutions of a bi-species vlasovpoisson-boltzmann boundary value problem[END_REF] :

e -φ j + ν M φ (v j k -wj k ) ≥ vj k wj k + φ j vj k 1 ( wj k ) 3 - 1 wj k - ν M φ 1 ( wj k ) 2 . ( 67 
)
Since the function ϕ ∈ (-∞, 0] → m α (ϕ) is a concave function, we have

m α (φ j ) ≤ m α (0) + φ j m α (0).
Gathering the above inequality and (67), we glean from (66) the following estimate:

I ∞ [φ] j -n e [φ] j ≥ e φ j   k≥0 ∆v 2 f inc i ( wj k ) vj k wj k α j k + f inc i ( wj k+1 ) vj k+1 wj k+1 α j k+1 -n j 0 m α (0) -n j 0 φ j m α (0) ,
where we have set

α j k = 1 + φ j 1 ( wj k ) 2 -1 - ν M φ 1 wj k .
Using the definition of n j 0 given by (50), we obtain

I ∞ [φ] j -n e [φ] j ≥ φ j e φ j   k≥0 ∆v 2 f inc i ( wj k ) vj k wj k β j k + f inc i ( wj k+1 ) vj k+1 wj k+1 β j k+1 -n j 0 (m α (0) + m α (0)) ,
where we have set

β j k = 1 ( wj k ) 2 - ν M φ 1 wj k .
With I j 0 , I j 1 and I j 2 defined by (63), we have

I ∞ [φ] j -n e [φ] j ≥ φ j e φ j I j 2 - ν M φ I j 1 -n j 0 (m α (0) + m α (0)) .
According to (50), we have n j 0 = I j 0 /m α (0) so that I ∞ [φ] j -n e [φ] j ≥ 0 if M φ satisfies (64). The proof is thus completed.

In order to establish the control of the discrete variation of the sequence (φ j ) 0≤j≤N +1 [START_REF] Laguna | An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasma applications[END_REF], we have to establish a uniform (with respect to φ j ) upperbound for n i [φ] j . Lemma 3.4. Let (φ ) 0≤ ≤N +1 be a given sequence such that φ 0 = 0, φ N +1 = φ wall < 0 and (φ +1 -φ )/∆x ≤ M φ < 0 for all 0 ≤ ≤ N where M φ verifies (64). Then, there exists a constant τ > 0 independent of M φ such that the following estimate holds for all 0 ≤ j ≤ N :

1 2 (n i [φ] j + n i [φ] j+1 ) ≤ 2e -τ φ j +φ j+1 2 min 0≤j≤N +1 I j 0 , (68) 
where n i [φ] j is given by (49) and I j 0 is defined by (63).

Proof. We use the triangular linear system (52), given by

(Id -M ) • n i [φ] = I ∞ ,
to determine the unknown vector n i [φ] ∈ R N +2 . We consider a vectorial norm in R N +2 as follows:

V τ := max 0≤j≤N 1 2 (|V j | + |V j+1 |)e τ φ j +φ j+1 2 ,
where τ > 0 is a constant to be defined. First, we establish that there exists τ > 0, large enough and independent of M φ , such that we have for all

V ∈ R N +2 1 2 (|(M • V ) j | + |(M • V ) j+1 |) e τ φ j +φ j+1 2 ≤ 1 2 V τ , 0 ≤ j ≤ N. ( 69 
)
To address such an issue, we need a suitable estimate of |(M • V ) j |. Since we have (53), with (M • V ) 0 = 0 we easily get for 1

≤ j ≤ N + 1 |(M • V ) j | ≤ ν √ 2 j-1 k=0 φ k+1 -φ j -φ k -φ j × e ν s0 (x j ,v j j-k ) |V k | |∂ x φ k | + e ν s0 (x j ,v j j-(k+1) ) |V k+1 | |∂ x φ k+1 | ,
where s0 (x j , v j j-k ), given by ( 46) is negative. As a consequence, the above inequality rewrites

|(M • V ) j | ≤ ν √ 2 j-1 k=0 φ k+1 -φ j -φ k -φ j × |V k | |∂ x φ k | + |V k+1 | |∂ x φ k+1 | .
According to (47), with (φ ) 0≤ ≤N +1 a decreasing sequence, we obtain

|(M • V ) j | ≤ ν 2|M φ | j-1 k=0 2(φ k -φ j ) -2(φ k+1 -φ j ) (|V k | + |V k+1 |) ≤ ν 2|M φ | j-1 k=0 2(φ k -φ j ) -2(φ k+1 -φ j ) (|V k | + |V k+1 |)e τ φ k +φ k+1 2 e -τ φ k +φ k+1 2 ≤ ν |M φ | V τ j-1 k=0 2(φ k -φ j ) -2(φ k+1 -φ j ) e -τ φ k +φ k+1 2 
, so that we get for 1

≤ j ≤ N |(M • V ) j | ≤ ν |M φ | V τ S j , (70) 
where we have set for 1 ≤ j ≤ N + 1

S j = j-1 k=0 2(φ k -φ j ) -2(φ k+1 -φ j ) e -τ φ k +φ k+1 2 .
In order to obtain the expected inequality (69), we give an estimate satisfied by S j . Indeed, we have for 1 ≤ j ≤ N + 1

S j = j-1 k=0 2(φ k -φ j ) -2(φ k+1 -φ j ) φ k -φ k+1 e -τ φ k +φ k+1 2 (φ k -φ k+1 ).
Let consider p > 0 and q > 0 such that 1 p + 1 q = 1. Then using the Holder inequality, we get

S j ≤ j-1 k=0 e -qτ φ k +φ k+1 2 (φ k -φ k+1 ) 1 q × j-1 k=0 2(φ k -φ j ) -2(φ k+1 -φ j ) φ k -φ k+1 p (φ k -φ k+1 ) 1 p . Notice that e -qτ φ k +φ k+1 2 (φ k -φ k+1 ) ≤ φ k φ k+1
e -qτ ϕ dϕ, so that we have, since φ 0 = 0,

j-1 k=0 e -qτ φ k +φ k+1 2 (φ k -φ k+1 ) ≤ 0 φ j e -qτ ϕ dϕ ≤ 1 qτ e -qτ φ j -1 . (71) 
Moreover, we have

2(φ k -φ j ) -2(φ k+1 -φ j ) φ k -φ k+1 = 1 φ k -φ k+1 φ k φ k+1 dϕ 2(ϕ -φ j )
.

Using Jensen's inequality, we then obtain

2(φ k -φ j ) -2(φ k+1 -φ j ) φ k -φ k+1 p ≤ 1 φ k -φ k+1 φ k φ k+1 (2(ϕ -φ j )) -p 2 dϕ, so that for p < 2, j-1 k=0 2(φ k -φ j ) -2(φ k+1 -φ j ) φ k -φ k+1 p (φ k -φ k+1 ) ≤ φ 0 φ j (2(ϕ -φ j )) -p 2 dϕ ≤ 1 2 -p (-2φ j ) 1-p 2 . (72) 
Now, from (71) and (72), it results the following estimate of S j for 1 ≤ j ≤ N + 1:

S j ≤ e -qτ φ j -1 qτ 1 q (-2φ j ) 1 p -1 2 (2 -p) 1 p 
.

Since we have φ wall ≤ φ j+1 ≤ φ j ≤ 0, then we get

1 2 (S j + S j+1 ) e τ φ j +φ j+1 2 ≤ 1 (qτ ) 1 q (-2φ wall ) 1-p 2 2 -p 1 p .
As a consequence, it suffices to consider

τ > 1 q   2 (-2φ wall ) 1-p 2 2 -p 1 p max 0≤j≤N +1 Bj α (f inc i ) I j 0 I j 1   q ,
where Bj α (f inc i ) is given by (55) and I j 0,1 are defined by (63), to obtain for 0

≤ j ≤ N 1 2 (S j + S j+1 ) e τ φ j +φ j+1 2 ≤ 1 2 min 0≤j≤N +1 1 Bj α (f inc i ) I j 1 I j 0 .
Involving (70) and the condition (64), we deduce the required estimate (69) where τ does not depend on M φ . The proof is easily completed since, from (69), we immediately obtain

M τ ≤ 1 2 so that n i [φ] = ≥0 M I ∞ , to write n i [φ] τ ≤ I ∞ τ ≥0 M τ ≤ 2 I ∞ τ .
Next, with I ∞ [φ] j given by (42) and tinc [φ](x j , vj k ) < 0, we directly obtain I ∞ [φ] j ≤ I j 0 for all 0 ≤ j ≤ N + 1 where I j 0 is given by (63). Moreover, since φ j+1 ≤ φ j ≤ 0 then we have

1 2 I ∞ j + I ∞ j+1 e τ φ j +φ j+1 2 ≤ min 0≤j≤N +1 I j 0 , so that I ∞ τ ≤ min 0≤j≤N +1 I j 0 .
As a consequence, n i [φ] τ ≤ 2 min 0≤j≤N +1 I j 0 and we have 1 2

(n i [φ] j + n i [φ] j+1 ) ≤ 1 2 (n i [φ] j + n i [φ] j+1 ) e τ φ j +φ j+1 2 e -τ φ j +φ j+1 2 ≤ e -τ φ +φ j+1 2 n i [φ τ .
The proof is thus achieved.

The proof of stability

We are now able to prove the Theorem 3.1.

Proof. By induction, both inequalities (58) and (59) are established provided that for a given sequence (φ ) 0≤ ≤N +1 such that φ n 0 = 0, φ n N +1 = φ wall and (φ 0 +1 -φ 0 )/∆x ≤ M φ for all 0 ≤ ≤ N , we prove (58) for φ n and (59) for φ n+1 . The first estimate (58) for φ n immediately comes from Lemma 3.3. Now, we have to show

1 ∆x (φ n+1 j+1 -φ n+1 j ) ≤ M φ . (73) 
To address such an issue, let us consider the summation of (33) from j equals one to , to write

- ε 2 ∆x φ n+1 +1 -φ n+1 -φ n+1 1 + φ n+1 0 = j=1 (n i [φ n ] j -n e [φ n ] j ) ∆x. (74) By Lemma 3.3, we have n i [φ n ] j -n e [φ n ] j ≥ 0 so that φ n+1 +1 -φ n+1 ≤ φ n+1 1 - φ n+1 0 . As a consequence, the required estimate (73) is established provided we prove 1 ∆x (φ n+1 1 -φ n+1 0 ) ≤ M φ , (75) 
where we remind that

M φ = -max 0≤j≤N +1 νI j 1 Bj α (f inc i )I j 0 with Bj α (f inc i )
given by (55) and I j 0,1 by (63). In order to derive the above inequality, we sum (74) from equals from 0 to N , we then obtain

-ε 2 (φ n+1 N +1 -φ n+1 0 ) -(N + 1)(φ n+1 1 -φ n+1 0 ) = N =0 j=1 (n i [φ] j -n e [φ] j ) ∆x 2 .
Since ∆x = 1/(N + 1), φ n+1 0 = and φ n+1 N +1 = φ wall , the above relation reformulates as follows:

1 ∆x φ n+1 1 -φ n+1 0 = φ wall + 1 ε 2 N =0 j=1 (n i [φ] j -n e [φ] j ) ∆x 2 .
Now, the definition of n e [φ] j and the estimate (68) can be applied to get an upper bound of n i [φ] j -n e [φ] j . Indeed, we have for all 0 ≤ j ≤ N

n i [φ] j -n e [φ] j = 1 2 (n i [φ] j + n i [φ] j+1 ) -n e [φ] j + 1 2 (n i [φ] j -n i [φ] j+1 ) ≤ 2e -τ φ j +φ j+1 2 min 0≤j≤N +1
(I j 0 ) -

I j 0 m α (0) m α (φ j )e φ j + 1 2 (n i [φ] j -n i [φ] j+1 ) ≤ C wall + 1 2 (n i [φ] j -n i [φ] j+1 ),
where we have set

C wall = 2e -τ φ wall - m α (φ wall ) m α (0) e φ wall min 0≤j≤N +1 I j 0 . Since n i [φ] j -n e [φ] j > 0 then C wall > 0.
As a consequence, we obtain

1 ∆x φ n+1 1 -φ n+1 0 ≤ φ wall + 1 ε 2   C wall 1 -∆x 2 + ∆x 2 2 N =0 j=1 (n i [φ] j -n i [φ] j+1 )   ≤ φ wall + 1 ε 2 C wall 1 -∆x 2 + ∆x 2 2 N =0 (n i [φ] 1 -n i [φ] +1 ) ≤ φ wall + 1 ε 2 C wall 1 -∆x 2 + ∆x 2 max 0≤j≤N |n i [φ] 1 -n i [φ] j+1 | .
The required inequality (75) is obtained for ε ≥ ε where ε is given by

ε = max 0≤j≤N +1    1 -φ wall - νI j 1 Bj α (f inc i )I j 0 × I j 0 e -τ φ wall - I j 0 2m α (0) m α (φ wall )e φ wall + O(∆x) 1 2 
. (76

)
The proof is then completed.

Numerical experiments

This section is devoted to the numerical simulation of problem ( 1)-( 12) in different regimes, using the numerical scheme presented in Section 2. Several studies are proposed. First, we consider a non collisional problem in Subsection 4.1 that is ν = 0. We are able to compare our results with those of [START_REF] Badsi | A minimization formulation of a bi kinetic sheath[END_REF], so that this regime is seen as a validating case for our approach. Then, we are interested in collisional regimes in order to observe the influence of the collision frequency on the electrostatic potential φ and on the ionic and electronic distribution functions. In Subsection 4.2, we propose different numerical simulations compatible with hypotheses ( 13)-( 14) and with a subcritical frequency 0 < ν < ν c . In this case, Theorem 3.1 holds (as well as its continuous version: Theorem 3.1 of [START_REF] Badsi | Collisional sheath solutions of a bi-species vlasovpoisson-boltzmann boundary value problem[END_REF]). Finally, we are interested in simulations that violate hypotheses of Theorem 3.1, in order to test our numerical scheme beyond the scope of this theorem. This numerical study is presented in Subsection 4.3.

In the simulations, we consider the following incoming functions

f inc e (v) = 2µ π e -µv 2 2 , ∀v > 0, (77) 
f inc i (v) = 2 π v 2 e -v 2 2 , ∀v > 0, (78) 
and the mass ratio of a Deuterium plasma µ = 1 3672 , so that the critical re-emission coefficient

α c = 1- √ (πµ)/2 1+ √ (πµ)/2
≈ 0.95. We take N + 1 = 1000 for the space discretization. The velocity domain for the computation of ion density is truncated to [-8, 8] and domain D 1 is divided into 100 intervals.

We stop the fixed point method when two successive iterates k and k + 1 are such that

φ (k) -φ (k+1) φ (k) ∞ + (n i -n e ) (k) -(n i -n e ) (k+1) (n i -n e ) (k) ∞ < 10 -8 . (79) 
Let us emphasize that the convergence of our fixed point method is not ensured for small values of ε. In practice, Theorem 3.1 implies the existence of ε > 0 such that our fixed point algorithm converges for all ε ≥ ε , where the bound (76) is not optimal.

The non collisional sheath

We are first interested in a non collisional problem, with parameters ν = 0, α = 0. Admissibility condition [START_REF] Dubroca | Analysis of a high order finite volume scheme for the vlasov-poisson-system[END_REF] and Bohm criterion ( 14) are satisfied. A Newton iterative method solving (29) up to 10 -16 gives φ wall ≈ -2.719 and a density reference n 0 ≈ 0.505. Here, we consider two values of ε: 1 and 0.2. We plot the electrostatic potential φ(x) in Figure 2 and the densities n i (x), n e (x) in Figure 3. Then, we represent distribution functions: f i in Figure 4 and f e in Figure 5, for both values of ε (we propose two different views for each figure). These figures show the influence of ε and can be compared to numerical results proposed in [START_REF] Badsi | A minimization formulation of a bi kinetic sheath[END_REF]. We did not obtain convergence of our fixed point method for smaller values of ε. Even if our approach prevents us from taking small values of ε, it presents the good behavior. The numerical scheme presented in [START_REF] Badsi | A minimization formulation of a bi kinetic sheath[END_REF] is valid for smaller values of ε, but is specific to the non collisional case ν = 0. It is based on the minimization formulation of the non linear Poisson problem. In the collisional case ν > 0, such an approach cannot be applied directly because the non linear Poisson problem (3) does not reformulate as a minimization problem. The difficulty stems from the integral equation satisfied by n i (23).

Collisional problems in the scope of Theorem 3.1

We are now interested in collisional problem staying in the scope of the numerical analysis done in this paper, and in particular 0 < ν < ν c where the critical collisional frequency is defined by [START_REF] Heth | A discontinuous galerkin method for the vlasov-poisson system[END_REF]. We study the influence of physical parameters ν, α and ε.

We point out that Theorem 3.1 ensures the existence of ε such that the numerical scheme preserves the physical properties (58) and ( 59) for all ε ≥ ε .The value of ε given by ( 76) is in practice not optimal. In the numerical approach, we define the minimal value ε min ≤ ε for which we are able to make the fixed point method converge. The convergence depends on the initial iterate, that is why we have implemented a numerical continuation method over ε. If the fixed point method converges for a value of ε, we use the obtained φ[ε] as initial guess for the algorithm with ε-0.001 and we continue until the fixed point method diverges. The smallest value for which we have convergence is denoted as ε min . The step 0.001 is chosen as a compromise between precision on ε min and computational time.

On the one hand, we fix α = 0, so that the theoretical critical collision frequency given by ( 16) is ν c ≈ 3.526, and present results for varying ν from 1 to 3.5 and two values of ε: 1 and ε min . We plot the electrostatic potential φ(x), resp. densities n i (x) and n e (x), in Figure 6, resp. in Figure 7. Then, ionic distribution function is presented in Figure 8 and the electronic one in Figure 9. On the other hand, we fix ν = 0.2 and present results for varying α from 0 to 0.9 < α c and two values of ε: 1 and ε min . Figures 10, 11, 12 and 13 represent respectively the electrostatic potential, the densities, the ionic distribution function and the electronic one. Interpretation. For the ions distribution function f i , we observe on Figures 8 and 12 that increasing the collision frequency ν or diminishing the normalized Debye length ε results in in a stronger diffusion effect. Moreover, whatever the value of ν > 0 is, f i is non zero near the line v = 0 which is the expected effect of the collision operator (4). On Figure 8, we observe that for a near critical collision frequency ν ≈ ν c , there is some concentration of the ions distribution function in the vicinity of the line v = 0 while we can still observe low values of f i for v > -2φ(x). These results evidence the competition between the collision operator (4) which tends to relax the ions density f i towards the mono kinetic density n i (x)δ v=0 and the transport of the incoming boundary condition f inc i (78) from x = 0 to x = 1 with a damping effect. As for the electrons distribution function f e , since it does not experience collisions, there is no change as compared to the non collisional case [START_REF] Badsi | A minimization formulation of a bi kinetic sheath[END_REF].

Increasing the re-emission coefficient α increases the values of the potential at the wall (x = 1) as it is observed on Figure 10. It results in a charge separation at x = 1 which is increasing with α as observed in Figure 11. As for the charge density n i -n e , we see on Figure 11 that it remains non negative and that it vanishes at x = 0 (as expected). We also see that increasing ν tends to increase the local charge n i near x = 0. The macroscopic ions density n i does not seem to be C 1 at x = 0. It is not suprising since it satisfies the weakly singular Volterra integral equation [START_REF] Riemann | The bohm criterion and sheath formation[END_REF].

To conclude this study, we plot ε min as a function of ν νc ∈ [0, 1[ for the three values of α considered previously (note that ν c ≈ 3.526 for α = 0, ν c ≈ 2.644 for α = 0.5 and ν c ≈ 0.583 for α = 0.9). Results are presented in Figure 14. Finally, we are interested in simulations beyond the scope of Theorem 3.1. We notice that when taking ν > ν c , the fixed point method hardly converges. In practice, we only have convergence for very large values of the normalized Debye length ε. The obtained densities are in this case a zoom on the space scale of the previous results. Specifically, we see the same behavior as in a window near x = 0 of Figures 7 or 11.

Our last numerical experiment, concerns an other physical scenario when considering an ionic incoming function f inc i for which the Bohm criterion ( 14) is not satisfied. We thus consider,

f inc i (v) = 1 √ 2π e -v 2 2 , ∀v > 0.
This leads to B α (f inc i ) = -∞. We set the following physical parameters: α = 0, ν = 0 or 1, and ε = 1. We plot densities n i (x) and n e (x) in Figure 15. We can see that the inequality n i (x) -n e (x) ≥ 0 (17) is not verified for x near zero. It seems to show that even in the collisional case the Bohm criterion ( 14) is a sharp condition to ensure the non negativity of the charge density. 

Conclusion

In this work we proposed a numerical method to capture kinetic collisional sheaths. The method is based on the exact integrations of the transport equations by means of the characteristics curves and the numerical resolution of a non linear Poisson problem that has the form of an integrodifferential equation. According to [START_REF] Badsi | A minimization formulation of a bi kinetic sheath[END_REF], this problem has a solution provided the inequalities ( 14),( 17) and ( 18) are ensured. We thus designed a suitable discretization of the phase space together with adequate quadrature formulas that ensure easily the discrete analogue of these inequalities. We then presented some numerical experiments to assess mainly two physical scenarios. The first one was in the scope of our main result (Theorem 3.1) : when the Bohm criterion ( 14) holds and the different physical parameters are varied within appropriate bounds, we essentially observe that decreasing the Debye length or increasing the collision frequency results in a stronger diffusion effect on the ions distribution function. We also see some concentration of the distribution function near the line v = 0. There is a competition between the transport operator and the collision operator which yields in the extreme case some boundary layer near x = 0. Some parametric study between the Debye length and the collision frequency was carried out in order to assess a possible scaling between these two parameters. The second physical scenario mainly showed that when the Bohm criterion ( 14) is violated the charge density becomes negative near x = 0. It seems to show that the Bohm criterion ( 14) is a sharp condition to ensure the non negativity of the charge density. This work is up to our knowledge the very first one to propose a detailed numerical study of a fully kinetic collisional sheath model by means of a numerical method that strongly relies on a detailed analysis of the model under concern. It provided a range of physical parameters that is mathematically relevant. A possible perspective among others is to investigate asymptotic regimes ε → 0 or ν → +∞ though the model under concern may degenerate.

Figure 1 :

 1 Figure1: Schematic characteristics associated to the ions phase-space (0, 1) × [0, +∞) and its discretization. Solide lines represent some characteristic curves. For each grid point 0 < xj < 1, the velocity interval [0, +∞) is decomposed as [0, +∞) = [0, -2φ(xj)] ∪ ( -2φ(xj), +∞). The interval [0, -2φ(xj)] is discretized with the grid (v j j-k ) 0≤k≤j and the interval ( -2φ(xj), +∞) is discretized with the grid (v j k ) k≥0 .
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Figure 2 :

 2 Figure 2: Electrostatic potential φ(x) for two values of ε: 1 and 0.2, in the non collisional regime ν = 0, α = 0.

Figure 3 :

 3 Figure 3: Ionic ni(x) and electronic ne(x) densities for two values of ε: 1 (left) and 0.2 (right), in the non collisional regime ν = 0, α = 0.

Figure 4 :

 4 Figure 4: Ionic distribution function fi(x, v) for two values of ε: 1 (left) and 0.2 (right), in the non collisional regime ν = 0, α = 0. Two differents views on top and bottom.

Figure 5 :

 5 Figure 5: Electronic distribution function fe(x, v) for two values of ε: 1 (left) and 0.2 (right), in the non collisional regime ν = 0, α = 0. Two differents views on top and bottom.

Figure 6 :

 6 Figure 6: Electrostatic potential φ(x) for α = 0, three values of ν: 1, 3 and 3.5. On the left: ε = 1, on the right: ε = ε min .

Figure 7 :

 7 Figure 7: Ionic ni(x) and electronic ne(x) densities for α = 0, three values of ν: 1, 3 and 3.5 (from top to bottom). On the left: ε = 1, on the right: ε = ε min .

Figure 8 :

 8 Figure 8: Ionic distribution function fi(x, v) for α = 0, two values of ν: 1 and 3.5 (from top to bottom). On the left: ε = 1, on the right: ε = ε min .

Figure 9 :

 9 Figure 9: Electronic distribution function fe(x, v) for α = 0, two values of ν: 1 and 3.5 (from top to bottom). On the left: ε = 1, on the right: ε = ε min .

Figure 10 :

 10 Figure 10: Electrostatic potential φ(x) for ν = 0.2, three values of α: 0, 0.5 and 0.9. On the left: ε = 1, on the right: ε = ε min .

Figure 11 :

 11 Figure 11: Ionic ni(x) and electronic ne(x) densities for ν = 0.2, three values of α: 0, 0.5 and 0.9 (from top to bottom). On the left: ε = 1, on the right: ε = ε min .

Figure 12 :

 12 Figure 12: Ionic distribution function fi(x, v) for ν = 0.2, two values of α: 0 and 0.9 (from top to bottom). On the left: ε = 1, on the right: ε = ε min .

Figure 13 :

 13 Figure 13: Electronic distribution function fe(x, v) for ν = 0.2, two values of α: 0 and 0.9 (from top to bottom). On the left: ε = 1, on the right: ε = ε min .

Figure 14 :

 14 Figure 14: Minimal numerical value ε min as a function of ν/νc for different values of α.

4. 3 .

 3 Collisional problems beyond the scope of Theorem 3.1

Figure 15 :

 15 Figure 15: Ionic ni(x) and electronic ne(x) densities for α = 0, two values of ν: 0 (on the left) and 1 (on the right).
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