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A stable fixed point method for the numerical simulation1

of a kinetic collisional sheath2

Mehdi Badsi∗, Christophe Berthon, Anäıs Crestetto3

Université de Nantes, CNRS UMR 6629, Laboratoire de Mathématiques Jean Leray, 24

rue de la Houssinière, BP 92208, 44322 Nantes, France5

Abstract6

This work introduces a numerical fixed point method to approximate the so-7

lutions of a Vlasov-Poisson-Boltzmann boundary value problem which arises8

when modeling a bi-species collisional sheath. Our method relies on the ex-9

act integration of the transport equations by means of the characteristic10

curves. A special care is given about the choice of a suitable phase space11

discretization together with the use of adequate quadrature formulas so as12

to ensure that the numerical fixed point method is stable. Numerical exper-13

iments are carried out in order to illustrate the effects of the various physical14

parameters that are in the scope of the analysis. Some results going beyond15

the scope of the analysis are also given.16

Keywords: stationary transport problems, Vlasov-Poisson-Boltzmann17

boundary value problem, collisional sheaths, fixed point method,18

characteristic curves19

1. Introduction20

Plasma interacting with material boundaries are ubiquitous in applica-
tions. A well-known physical feature of a plasma interacting with an isolated
partially absorbing surface, is the development near the surface of a thin pos-
itively charged boundary layer called the Debye sheath. The Debye sheath
can be mathematically described by a steady state regime where the flows of
ions and electrons reaching the wall are equal [21, 6, 25]. The mathematical
and physical foundations of plasma sheaths in the case where particles do
not collide are now well-established [3, 1, 13, 12]. When particles suffer from
collisions several models have been proposed in the literature [24, 22, 18]. In
this work we are interested in the numerical approximation of the bi-species
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Vlasov-Poisson-Boltzmann model studied in [2]. The model reads as follows:
v∂xfi − ∂xφ∂vfi = −νQ(fi), (x, v) ∈ (0, 1)× R, (1)

v∂xfe +
1

µ
∂xφ∂vfe = 0, (x, v) ∈ (0, 1)× R, (2)

−ε2∂xxφ = ni(x)− ne(x), x ∈ (0, 1), (3)

where the unknowns are the ions and electrons densities in the phase space1

fi : (x, v) ∈ [0, 1]×R 7→ fi(x, v) ∈ R+, fe : (x, v) ∈ [0, 1]×R 7→ fe(x, v) ∈ R+,2

and the electrostatic potential φ : x ∈ [0, 1] 7→ φ(x) ∈ R. In this model,3

ν > 0 is a normalized collision frequency between ions and a cold neutral4

gas, µ > 0 denotes the mass ratio between electrons and ions, ε > 0 is a5

normalized Debye length, Q(fi) is a collision operator which takes the form6

of a linear relaxation operator towards a mono-kinetic distribution:7

∀(x, v) ∈ (0, 1)× R, Q(fi)(x, v) := fi(x, v)−
(∫

R
fi(x, v)dv

)
δv=0, (4)

where δv=0 is the Dirac measure supported at the point v = 0. The macro-8

scopic densities are defined by :9

∀x ∈ [0, 1] ni(x) :=

∫
R
fi(x, v)dv, ne(x) :=

∫
R
fe(x, v)dv. (5)

The system (1)-(3) is supplemented with the following boundary conditions:
fi(0, v > 0) = f inc

i (v), fi(1, v < 0) = 0, (6)

fe(0, v > 0) = n0f
inc
e (v), fe(1, v < 0) = αfe(1,−v), (7)

φ(0) = 0, φ(1) = φwall, (8)

where f inc
i : (0,+∞) → R+, f inc

e : (0,+∞) → R+ stand for incoming parti-10

cles densities that model the flows of particles that come from the plasma11

(x = 0). Since electrons are usually well described by Maxwellian distribu-12

tions in the core plasma (see [25] for a physical justification), the incoming13

electrons density to be considered here is a normalized semi-Maxwellian14

f inc
e (v) =

√
2µ

π
e−

µv2

2 , ∀v > 0. (9)

At the wall (x = 1), ions particles are absorbed while for the electrons a
fraction α ∈ [0, 1] of the particles is re-emitted from the wall specularly. The
pair (n0, φwall) ∈ (0,+∞)× (−∞, 0) plays the role of an unknown which has
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to be determined in such a way that the solutions fi, fe, φ to (1)-(8) satisfy
the additional equations {

ni(0) = ne(0), (10)

Ji = Je (11)

where the current densities are defined by1

∀x ∈ [0, 1] Ji :=

∫
R
fi(x, v)vdv, Je :=

∫
R
fe(x, v)vdv. (12)

Note that an integration in velocity of the equations (1)-(2) yields that2

the current densities are constant in space. The existence of weak solutions3

for the system (1)-(12) has been proven in [2]. We refer to Theorem 3.1 of the4

aforementioned reference for a precise statement of the existence result. To5

briefly summarize the result, it is shown that there is a critical re-emission6

coefficient αc ≈ 1 such that for any 0 ≤ α ≤ αc < 1 and for any incoming ions7

density f inc
i that belongs to a standard class of regularity and additionally8

satisfies9

- the admissibility condition10 ∫ +∞
0 f inc

i (v)vdv∫ +∞
0 f inc

i (v)dv
<

(1− α)

(1 + α)

√
2

µπ
, (13)

- the Bohm criterion11

Bα(f inc
i ) :=

mα(0) +m′α(0)

mα(0)
−
∫ +∞

0
f inci (v)

v2
dv∫ +∞

0 f inc
i (v)dv

> 0, (14)

where12

∀u ∈ [φwall, 0], mα(u) := 2− (1− α)erfc(
√
u− φwall), (15)

then for all 0 < ν < νc where13

νc := −φwallBα(f inc
i )

∫ +∞
0 f inc

i (v)dv∫ +∞
0

f inci (v)
v dv

 > 0 (16)

there exists ε∗ > 0 such that for all ε ≥ ε∗ the weak solutions to (1)-(11)14

have the following properties:15

3



- a non negative charge density:1

∀x ∈ [0, 1], ni(x) ≥ ne(x) > 0, (17)

- a sufficiently decreasing electric potential:2

∀x ∈ [0, 1], ∂xφ(x) ≤ − ν

Bα(f inc
i )

 ∫ +∞
0

f inci (v)
v dv∫ +∞

0 f inc
i (v)dv

 . (18)

A very exhaustive literature about numerical methods to approximate3

kinetic plasma models is available. We refer for example to [4, 20, 9, 5, 14,4

11, 8, 7] for Particle-In-Cell methods, Semi-Lagragian methods and Galerkin5

type methods. Convergence and stability analysis of these methods can be6

found in the mentioned references. In the specific context of plasma sheaths,7

some of these numerical methods have been used [26, 17, 19, 23] with their8

own specificity according to the model under consideration. We mention9

that non stationary based numerical methods are often more generic in a10

sense, and enable to avoid dealing with the delicate problem of selecting11

the boundary conditions that reproduce the physics of sheaths. They are12

however more time consuming and less robust since they may not reach13

the desired stationary solution. As far as the numerical difficulties are con-14

cerned, they are all related to the multi-scale nature of the plasma sheath15

formation. The main observed numerical difficulties are threefold. The first16

one stems from the need of a high spatial resolution due to the boundary17

layer that forms in the different regimes ε� 1 and ν � 1. The second one18

comes from the relative difference in velocities between electrons and ions19

due to the small mass ratio µ� 1. The third one is related to the numerical20

treatment of the boundary conditions (6)-(7) which need a specific inter-21

polation procedure with ghost points outside the computational domain.22

These three numerical difficulties bring stringent stability conditions and23

prohibitive computational effort. We refer to [19, 16] for numerical studies24

with physical parameters taken from the literature. Some cures are likely25

possible by following the so called Asymptotic-Preserving approach [15, 10]26

except for the numerical difficulties related to the presence of boundary27

layer which are not well-suited for this approach. Specific numerical meth-28

ods must therefore be implemented in the context of plasma sheaths. The29

strategy followed in this work relies on the a priori knowledge of the math-30

ematical structure of the solution. It is based on the analysis of the phase31

space by means of the characteristic curves. It is somehow very specific but32
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it yields an exact integration of the transport equations (1)-(2) and thus no1

numerical error related to the transport equations is introduced. It provides2

a numerical method which has a strong analytical background.3

The present work thus proposes a simple fixed point method to ap-4

proximate the weak solutions of the boundary value problem (1)-(11). Our5

method takes fully advantage of the one dimensional structure of the model6

and follows closely the analysis developed in [2]. An exact integration of the7

transport equations (1)-(2) with the method of characteristics enables to8

have an exact representation of the densities fi, fe up to an error of approxi-9

mation on φ. These exact formula are then used to compute the macroscopic10

densities and currents. It enables to reduce the two algebraic equations (10)-11

(11) to one single non linear equation to be solved for φwall. Once the couple12

(n0, φwall) is computed, the core of the method then consists in solving the13

non linear Poisson problem (3) with the boundary conditions (8) by a fixed14

point algorithm using a finite difference scheme. A suitable choice of the15

ions phase space discretization based on the geometry of the characteristics16

and convenient quadrature formulas for velocity integrals are proposed in17

order to ensure that the inequalities (17) and (18) are easily preserved at18

the discrete level which yields the stability of the method.19

1.1. Summary of the numerical method20

We now briefly summarize our method, it consists in the three following21

steps.22

Step I - The method of characteristics for the Vlasov-Boltzmann equations.23

Following [2], provided φ ∈ W 2,∞(0, 1) is decreasing with φ(0) = 0, the24

method of characteristics yields an explicit representation of the particles25

densities fi and fe as functions of the potential φ. Namely, they are given26

by27

fi(x, v) = 1{v>
√
−2φ(x)}(x, v)f inc

i

(√
v2 + 2φ(x)

)
eνtinc(x,v)

+ 1{0<v<
√
−2φ(x)}(x, v)

−νeνs0(x,v)ni
(
φ−1(φ(x) + v2/2)

)
∂xφ (φ−1(φ(x) + v2/2))

.
(19)

28

fe(x, v) = n01{v>
√

2
µ

(φ(x)−φ(1))}
(x, v)f inc

e

(√
v2 − 2

µ
φ(x)

)
+ n0α1{v<

√
2
µ

(φ(x)−φ(1))}
(x, v)f inc

e

(√
v2 − 2

µ
φ(x)

)
.

(20)
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In (19), tinc and s0 are negative times given respectively by

tinc(x, v) = −
∫ x

0

du√
v2 + 2φ(u)

, (21)

s0(x, v) = −
∫ x

φ−1(φ(x)+v2/2)

du√
2(φ(x) + v2/2− φ(u))

. (22)

Integrating with respect to the velocity v ∈ R both (19) and (20), one then
obtains the following formulas for the macroscopic densities ni ≡ ni[φ] and
ne ≡ ne[φ]:

ni[φ](x) =

∫ +∞

√
−2φ(x)

f inc
i

(√
v2 + 2φ(x)

)
eνtinc(x,v) dv

−
∫ √−2φ(x)

0

νeνs0(x,v)ni[φ](φ−1(φ(x) + v2/2))

∂xφ(φ−1(φ(x) + v2/2))
dv, (23)

ne[φ](x) = n0eφ(x)mα (φ(x)) , (24)

where mα is given by (15). The ions density ni solves an integral equation
while the electrons density ne is given explicitly. As for the current densities,
they are given by

Ji =

∫ +∞

0
f inc
i (v)vdv, (25)

Je = n0(1− α)

√
2

πµ
eφwall . (26)

Step II- Determination of the wall potential. Assuming φ(1) = φwall, the two
algebraic equations (10) and (11) yields the equivalent system of unknown
(n0, φwall) ∫ +∞

0
f inc
i (v)dv = n0mα(0), (27)∫ +∞

0
f inc
i (v)vdv = n0(1− α)

√
2

πµ
eφwall , (28)

where we remember that mα(0) is given by1

mα(0) = 2− (1− α)erfc(
√
−φwall)

and thus also depends on φwall. Eliminating n0 yields that φwall is the unique
negative solution of the non linear equation

mα(0)

∫ +∞

0
f inc
i (v)v dv − (1− α)

√
2

πµ

∫ +∞

0
f inc
i (v) dveφwall = 0.

(29)
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This equation has a unique negative solution if and only if the inequality1

(13) holds. It is solved using a standard Newton method.2

Step III-Solving the non linear Poisson problem. The non linear Poisson
problem consists in finding a decreasing potential φ satisfying (18) such
that

− ε2∂xxφ(x) = ni[φ](x)− ne[φ](x), x ∈ [0, 1], (30)

φ(0) = 0 and φ(1) = φwall < 0, (31)

where ni[φ] > 0 solves the integral equation (23), ne[φ] > 0 is given explic-3

itly on φ by (24) and the solution φ must ensure the inequality (17). We4

note that in the case ν = 0, the Poisson problem (30)-(31) reformulates as5

a minimization problem [3]. Since ν > 0, ni[φ] solves a non trivial inte-6

gral equation (23). The Poisson problem (30)-(31) is a strongly non linear7

integro-differential equation. Our numerical method consists in solving (30)8

with a fixed point method. The stability of the method is ensured by the9

inequalities (17) and (18). Our main concern in the rest of the paper is the10

preservation of these inequalities at the discrete level.11

1.2. Organization12

The outline of the paper is as follows. In the next section, we define13

the numerical scheme to solve the non linear Poisson problem (23)-(24)-14

(30)-(31). We detail the discretization, paying a particular attention to the15

ions phase space discretization in order to avoid the computation of φ−1
16

involved in the definition of ni[φ], given by (23) and in tinc defined by (21).17

Then in Section 3 we establish the stability properties to be satisfied by18

the numerical scheme, namely the discrete analogue of inequalities (17) and19

(18). In Section 4, several numerical experiments that are performed in20

the scope of the analysis and an interpretation of the results is proposed.21

Some results going beyond our analysis are also given. Eventually, a short22

conclusion is given in Section 5.23

2. The numerical scheme24

In all the sequel, we shall assume that the incoming ions density f inc
i :25

(0,+∞)→ R+ is at least piecewise continuous so that the upcoming quadra-26

ture formulas make sense. Moreover, we assume φwall < 0 to solve exactly or27

approximately the equation (29). We begin with introducing a uniform dis-28

cretization of the interval [0, 1] of size ∆x = 1/(N + 1) where N + 1 denotes29
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the number of intervals of discretization so that xj = j∆x for 0 ≤ j ≤ N+1.1

We denote φj the approximation of φ(xj) while ni[φ]j and ne[φ]j respectively2

denote the approximations of ni[φ](xj) and ne[φ](xj).3

To approximate the sequence (φj)0≤j≤N+1 with the boundary conditions
given by

φ0 = 0 and φN+1 = φwall,

we use the following fixed point numerical procedure:4

− ε2

∆x2

(
φn+1
j+1 − 2φn+1

j + φn+1
j−1

)
= ni[φ

n]j − ne[φn]j , (32)

where the initial sequence (φ0
j )0≤j≤N+1 must satisfy the boundary conditions

φ0
0 = 0 and φ0

N+1 = φwall.

In view of the inequality (18), we also impose this initial sequence to verify5

for all 0 ≤ j ≤ N6

1

∆x

(
φ0
j+1 − φ0

j

)
≤Mφ < 0, (33)

where Mφ will be defined as an approximation of the right hand side in the7

inequality (18).8

Regarding the definition of ni[φ]j , to approximate ni[φ](xj) defined by9

(23), we shall introduce a suitable discretization of half the phase space10

(0, 1) × [0,+∞) that avoid the computation of φ−1 involved in (23). As11

in [2], one uses the characteristic curves. These are the curves of algebraic12

equation v2

2 + φ(x) = const. They span the domain (0, 1)× [0,+∞) so that13

one has the natural decomposition14

(0, 1)× [0,+∞) = D1 ∪D2,

with

D1 =
{

(x, v) ∈ (0, 1)× [0,+∞) : v ≥
√
−2φ(x)

}
, (34)

D2 =
{

(x, v) ∈ (0, 1)× [0,+∞) : 0 ≤ v <
√
−2φ(x)

}
. (35)

The domain D1 corresponds to characteristic curves that originate from15

x = 0 with positive velocities, namely16

∀(x, v) ∈ D1, ∃v0 > 0,
v2

0

2
=
v2

2
+ φ(x). (36)
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The domain D2 corresponds to characteristic curves that crosses v = 0,1

namely2

∀(x, v) ∈ D2, ∃0 < x0 < 1, φ(x0) =
v2

2
+ φ(x). (37)

In particular for a pair (xj , v) where xj ∈ (0, 1) is a grid point and v ∈3

[0,
√
−2φ(xj)), the corresponding x0 is solution of the equation4

φ(x0) =
v2

2
+ φ(xj). (38)

From a numerical perspective, the equation (38) is not convenient since φ5

may be replaced by an approximation which is only known on a discrete set.6

We need somehow an ad hoc reconstruction of φ. A way to circumvent this7

issue is to choose v in such a way that x0 belongs to the grid (xk)0≤k≤N+18

so that the equation (38) does not need to be solved. Namely, we define9

a discretization of the velocity interval which depends both on the grid10

(xk)0≤k≤N+1 using the equation of the characteristics (38) (see Fig 1). In11

this regard, for 0 ≤ v ≤
√
−2φj with a given j, we set12

vjj−k =
√

2(φk − φj), 0 ≤ k ≤ j, (39)

where φk − φj ≥ 0 for all 0 ≤ k ≤ j provided (φj)0≤j≤N+1 satisfies13

1

∆x
(φj+1 − φj) ≤Mφ < 0. (40)

For v ≥
√
−2φj , we consider a uniform discretization of size ∆v > 0 such

that we set
v̄jk =

√
−2φj + k∆v, k ≥ 0.

To avoid some possible confusion in the velocity discretization, we have14

denoted vj` the discretization of v in [0,
√
−2φj ] while v̄j` denotes the dis-15

cretization of v in [
√
−2φj ,+∞).16

We need now to define an approximation of ni[φ](xj) for all 0 ≤ j ≤
N + 1. To do so, the integrals involved in (23) are approximated using the
trapezoidal rules. More precisely, the first integral in (23) is approximated
by I∞[φ]j for all 0 ≤ j ≤ N + 1 defined by

I∞[φ]j =
∑
k≥0

∆v

2

(
f inc
i

(√(
v̄jk

)2
+ 2φj

)
eνt̄inc[φ](xj ,v̄jk)

+ f inc
i

(√(
v̄jk+1

)2
+ 2φj

)
eνt̄inc[φ](xj ,v̄jk+1)

)
(41)
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Figure 1: Presentation of the velocity mesh.

where t̄inc[φ]
(
xj , v̄

j
k

)
is an approximation of the time tinc(xj , v̄

j
k) given in1

(21). It is defined by t̄inc[φ]
(
x0, v̄

0
k

)
= 0 and for 1 ≤ j ≤ N + 1 a midpoint2

rule is used:3

t̄inc[φ]
(
xj , v̄

j
k

)
= −

j−1∑
`=0

∆x√(
v̄jk

)2
+ φ` + φ`+1

. (42)

The second integral is approximated by I0[φ]j with I0[φ]0 = 0 and for
1 ≤ j ≤ N + 1

I0[φ]j =

j−1∑
k=0

vjj−(k+1) − v
j
j−k

2

(
νeνs̄0(xj ,v

j
j−k)

ni[φ](φ−1(φj + (vjj−k)
2/2))

∂xφ(φ−1(φj + (vjj−k)
2/2))

+νe
νs̄0(xj ,v

j
j−(k+1)

)
ni[φ](φ−1(φj + (vjj−(k+1))

2/2))

∂xφ(φ−1(φj + (vjj−(k+1))
2/2))

)

where ni[φ](φ−1(φj +(vjj−k)
2/2)), ∂xφ(φ−1(φj +(vjj−k)

2/2)) and s̄0(xj , v
j
j−k)

are approximations of ni[φ](φ−1(φj + (vjj−k)
2/2)), ∂xφ(φ−1(φj + (vjj−k)

2/2))
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and s0(xj , v
j
j−k) given by (22). They are constructed using the velocity

discretization defined by (39). Indeed, we have

φj +
(vjj−k)

2

2
= φk.

One therefore naturally defines,

ni[φ](φ−1(φj + (vjj−k)
2/2)) = ni[φ]k, (43)

∂xφ(φ−1(φj + (vjj−k)
2/2)) = ∂xφk, (44)

s̄0(xj , v
j
j−k) = −

j−1∑
`=k

∆x√
2 (φk − φ`+1)

, (45)

where ∂xφk denotes an approximation of ∂xφ(xk) such that the control of1

the variations of (φj)0≤j≤N+1 through the inequality (40) also implies2

∂xφk ≤Mφ < 0. (46)

As a consequence, I0[φ]j rewrites I0[φ]0 = 0 and for 1 ≤ j ≤ N + 1

I0[φ]j =
ν

2

j−1∑
k=0

(√
φk+1 − φj −

√
φk − φj

)
×(

eνs̄0(xj ,v
j
j−k)ni[φ]k

∂xφk
+ e

νs̄0(xj ,v
j
j−(k+1)

)ni[φ]k+1

∂xφk+1

)
. (47)

The approximation ni[φ]j is then defined by3

ni[φ]j = I∞[φ]j + I0[φ]j . (48)

For the proof of the stability properties (17) and (18), it is convenient to4

define several consistent approximations of the constant n0 which is given5

according to equation (27) by6

n0 =
1

mα(0)

∫ +∞

0
f inc
i (v)dv.

The trick is to remark that for all ϕ < 0 we have∫ +∞

0
f inc
i (v) dv =

∫ +∞

√
−2ϕ

f inc
i (
√
v2 + 2ϕ)

v√
v2 + 2ϕ

dv,

11



so that n0 can also be expressed in terms of the sequence (φj)0≤j≤N+1 as1

n0 =
1

mα(0)

∫ +∞

√
−2φj

f inc
i (
√
v2 + 2φj)

v√
v2 + 2φj

dv.

One can thus define an approximation of n0 for each φj by

nj0mα(0) =
∑
k≥0

∆v

2

f inc
i (

√
(v̄jk)

2 + 2φj)
v̄jk√

(v̄jk)
2 + 2φj

+f inc
i (
√

(v̄jk+1)2 + 2φj)
v̄jk+1√

(v̄jk+1)2 + 2φj

 . (49)

The full sequence (nj0)0≤j≤N+1 is of course consistent with the constant n02

defined by (27).3

As for ne[φ]j , we simply define4

ne[φ]j = nj0eφjmα(φj). (50)

The definition of the scheme is now achieved. Before we turn to the5

study of the stability properties satisfied by this scheme, it is worth noticing6

that ni[φ]j is solution of a (N + 2)× (N + 2) triangular linear system in the7

form8

ni[φ] = I∞ +M · ni[φ], (51)

where ni[φ] ∈ RN+2 is the unknown vector made of (ni[φ]j)0≤j≤N+1, I∞ ∈9

RN+2 is the vector with components (I∞[φ]j)0≤j≤N+1 and M is a triangular10

matrix of size N + 2 such that for 0 ≤ j ≤ N + 111

(M · ni[φ])i = I0[φ]j . (52)

3. Stability properties12

We consider the scheme (32)-(48)-(50) to approximate the solutions of
(1)-(12). One has to prove the discrete analogue of the inequalities (17) and
(18) that reads

1

∆x

(
φnj+1 − φnj

)
≤Mφ < 0,

ni[φ
n]j − ne[φn]j ≥ 0,

during all the fixed point iterations n ∈ N. Our main result is the following.13

12



Theorem 3.1. Let (φ0
` )0≤`≤N+1 be a given sequence such that φ0

0 = 0,1

φ0
N+1 = φwall < 0 and (φ0

`+1 − φ0
` )/∆x ≤ Mφ < 0 for all 0 ≤ ` ≤ N where2

Mφ verifies (61). Let the updated sequence (φn+1
` )0≤`≤N+1 be defined by the3

scheme (32)-(48)-(50) with the boundary conditions4

φn+1
0 = 0 and φn+1

N+1 = φwall < 0. (53)

Assume the parameters of the model are selected such that

−φwall > max
0≤j≤N+1

(
νIj1

B̄j
α(f inc

i )Ij0

)
,

where B̄j
α(f inc

i ) is given by (60) and Ij0,1 by (59). Then, there exists ε? > 0,
such that for all ε ≥ ε?, during all the iterations n ∈ N, we have

ni[φ
n]j − ne[φn]j ≥ 0, 0 ≤ j ≤ N + 1, (54)

1

∆x
(φnj+1 − φnj ) ≤Mφ, 0 ≤ j ≤ N. (55)

To prove this result, we shall need several discrete a priori estimates that5

are the focus of the next section.6

3.1. A priori estimates7

The first one is an estimate of t̄inc[φ].8

Lemma 3.2. Let (φ`)0≤`≤N+1 be a given sequence such that9

φ0 = 0 and
1

∆x
(φ`+1 − φ`) ≤Mφ, (56)

where Mφ < 0 is a given constant which may eventually depend on the10

parameters of the model and φwall. Then for 0 ≤ j ≤ N + 1, we have11

t̄inc[φ](xj , v̄
j
k) ≥

1

Mφ

(
v̄jk −

√
(v̄jk)

2 + 2φj

)
, (57)

where t̄inc is defined by (42).12

Proof. With t̄inc[φ](xj , v̄
j
k) given by (42), we write

t̄inc[φ](xj , v̄
j
k) =

j−1∑
`=0

1

(φ`+1 − φ`)/∆x
1√

(v̄jk)
2 + φ` + φ`+1

(φ` − φ`+1).

13



Since (φ`)0≤`≤N+1 is imposed to satisfy (56), we get

t̄inc[φ](xj , v̄
j
k) ≥

1

Mφ

j−1∑
`=0

1√
(v̄jk)

2 + φ` + φ`+1

(φ` − φ`+1).

Let us emphasize that the function g(ϕ) = 1/
√

(v̄jk)
2 + 2ϕ is decreasing and

convex. As a consequence, for all φ`+1 < ϕ < φ` with (v̄jk)
2 +φ` +φ`+1 ≥ 0,

we have

g

(
φ` + φ`+1

2

)
+

(
ϕ− φ` + φ`+1

2

)
g′
(
φ` + φ`+1

2

)
≤ g(ϕ).

By integrating the above relation with respect of ϕ over [φ`+1, φ`], we obtain

(φ` − φ`+1)g

(
φ` + φ`+1

2

)
≤
∫ φ`

φ`+1

g(ϕ) dϕ,

that re-writes

φ` − φ`+1√
(v̄jk)

2 + φ` + φ`+1

≤
∫ φ`

φ`+1

dϕ√
(v̄jk)

2 + 2ϕ
.

As a consequence, we have the following sequence of inequalities (Mφ being
negative):

t̄inc[φ](xj , v̄
j
k) ≥

1

Mφ

j−1∑
`=0

∫ φ`

φ`+1

dϕ√
(v̄jk)

2 + 2ϕ

≥ 1

Mφ

∫ 0

φj

dϕ√
(v̄jk)

2 + 2ϕ

≥ 1

Mφ

(
v̄jk −

√
(v̄jk)

2 + 2ϕj

)
.

1

Using the estimate of t̄inc, given by (57), we now establish that ni[φ]j −2

ne[φ]j stays non-negative.3

Lemma 3.3. Let us introduce4

w̄jk =

√
(v̄jk)

2 + 2φj , (58)

14



so that v̄jk =
√

(w̄jk)
2 − 2φj. Let us set for 0 ≤ j ≤ N + 11

Ijδ =
∑
k≥0

∆v

2

(
f inci (w̄jk)

v̄jk
(w̄jk)

δ+1
+ f inci (w̄jk+1)

v̄jk+1

(w̄jk+1)δ+1

)
. (59)

Let the parameters of the model, namely α and f inc
i , be defined such that2

B̄j
α(f inc

i ) > 0 for all 0 ≤ j ≤ N + 1 where we have set3

B̄j
α(f inc

i ) =
mα(0) +m′α(0)

mα(0)
− Ij2
Ij0
. (60)

Let (φ`)0≤`≤N+1 be a given sequence such that (56) holds for a constant Mφ4

defined as follows:5

Mφ = − max
0≤j≤N+1

(
ν

B̄j
α(f inc

i )

Ij1
Ij0

)
. (61)

With ∆x small enough, we have for all 0 ≤ j ≤ N + 16

ni[φ]j − ne[φ]j ≥ 0, (62)

where ni[φ]j and ne[φ]j are defined by (48) and (50).7

We underline that B̄j
α(f inc

i ), defined by (60), is nothing but the discrete
version of the Bohm number given by (14). Indeed, for all 0 ≤ j ≤ N + 1,
the quantities Ijδ are easily shown to be consistent with∫ +∞

√
−2φj

f inc
i (
√
v2 + 2φj)

v

(
√
v2 + 2φj)δ+1

dv =

∫ +∞

0
f inc
i (w)

dw

wδ
,

so that the consistency with Bα(f inc
i ) holds. We now prove the Lemma 3.3.8

Proof. First, we notice that ni[φ]j for all 0 ≤ j ≤ N + 1 is non-negative
provided ∆x is small enough. Indeed, ni[φ]j is defined by (48) which refor-
mulates as a triangular linear system (51) in the form

(Id −M) · ni[φ] = I∞,

where Id stands for the identity matrix in RN+2 ×RN+2. We easily remark9

that all the non-diagonal components of the triangular matrix Id −M are10

non-positive. Moreover, the diagonal components of M are negative defined11

by12
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Mjj = −
√
φj−1 − φj
∂xφj

eνs̄0(xj ,v
j
0),

so that Mjj = O(
√

∆x). Then, 1 −Mjj > 0 provided ∆x is small enough.1

As a consequence, we deduce that ni[φ]j ≥ 0 for all 0 ≤ j ≤ N + 1.2

Now, since ni[φ]j ≥ 0, we immediately obtain I0[φ]j ≥ 0 for all 0 ≤
j ≤ N + 1. Then, it is sufficient to establish I∞[φ]j − ne[φ]j ≥ 0 for all
0 ≤ j ≤ N + 1 to get the estimate (62). One remarks that with I∞[φ]j
defined by (41) and ne[φ]j by (50), we have for all 0 ≤ j ≤ N + 1

I∞[φ]j − ne[φ]j = eφj

∑
k≥0

∆v

2

(
f inc
i (w̄jk)e

−φj+νt̄inc(xj ,v̄
j
k)+

f inc
i (w̄jk+1)e−φj+νt̄inc(xj ,v̄

j
k+1)

)
− nj0mα(φj)

)
,

where w̄jk are defined by (58). Because of the estimate (57), we get

I∞[φ]j − ne[φ]j ≥ eφj

∑
k≥0

∆v

2

(
f inc
i (w̄jk)e

−φj+ ν
Mφ

(v̄jk−w̄
j
k)

+

f inc
i (w̄jk+1)e

−φj+ ν
Mφ

(v̄jk+1−w̄
j
k+1)

)
− nj0mα(φj)

)
.

(63)

We now use the following convexity inequality which is a consequence of the3

inequality (61) of Lemma 6.2 of [2] :4

e
−φj+ ν

Mφ
(v̄jk−w̄

j
k)
≥
v̄jk
w̄jk

+ φj v̄
j
k

(
1

(w̄jk)
3
− 1

w̄jk
− ν

Mφ

1

(w̄jk)
2

)
. (64)

Since the function ϕ ∈ (−∞, 0] 7→ mα(ϕ) is a concave function, we have

mα(φj) ≤ mα(0) + φjm
′
α(0).

Gathering the above inequality and (64), we glean from (63) the following

16



estimate:

I∞[φ]j − ne[φ]j ≥ eφj

∑
k≥0

∆v

2

(
f inc
i (w̄jk)

v̄jk
w̄jk
αjk + f inc

i (w̄jk+1)
v̄jk+1

w̄jk+1

αjk+1

)

− nj0mα(0)− nj0φjm
′
α(0)

)
,

where we have set

αjk = 1 + φj

(
1

(w̄jk)
2
− 1− ν

Mφ

1

w̄jk

)
.

Using the definition of nj0 given by (49), we obtain

I∞[φ]j − ne[φ]j ≥ φjeφj

∑
k≥0

∆v

2

(
f inc
i (w̄jk)

v̄jk
w̄jk
βjk + f inc

i (w̄jk+1)
v̄jk+1

w̄jk+1

βjk+1

)

− nj0(mα(0) +m′α(0))

)
,

where we have set

βjk =
1

(w̄jk)
2
− ν

Mφ

1

w̄jk
.

With Ij0 , Ij1 and Ij2 defined by (59), we have

I∞[φ]j − ne[φ]j ≥ φjeφj
(
Ij2 −

ν

Mφ
Ij1 − n

j
0(mα(0) +m′α(0))

)
.

According to (49), we have nj0 = Ij0/mα(0) so that I∞[φ]j − ne[φ]j ≥ 0 if1

Mφ satisfies (61). The proof is thus completed.2

In order to establish the control of the discrete variation of the sequence3

(φj)0≤j≤N+1 (18), we have to establish a uniform (with respect to φj) upper-4

bound for ni[φ]j .5

Lemma 3.4. Let (φ`)0≤`≤N+1 be a given sequence such that φ0 = 0, φN+1 =6

φwall < 0 and (φ`+1−φ`)/∆x ≤Mφ < 0 for all 0 ≤ ` ≤ N where Mφ verifies7

(61). Then, there exists a constant τ > 0 independent of Mφ such that the8

following estimate holds for all 0 ≤ j ≤ N :9

1

2
(ni[φ]j + ni[φ]j+1) ≤ 2e−τ

φj+φj+1
2 min

0≤j≤N+1
Ij0 , (65)

where ni[φ]j is given by (48) and Ij0 is defined by (59).10
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Proof. We use the triangular linear system (51), given by

(Id−M) · ni[φ] = I∞,

to determine the unknown vector ni[φ] ∈ RN+2. We consider a vectorial
norm in RN+2 as follows:

‖V ‖τ := max
0≤j≤N

(
1

2
(|Vj |+ |Vj+1|)eτ

φj+φj+1
2

)
,

where τ > 0 is a constant to be defined.1

First, we establish that there exists τ > 0, large enough and independent2

of Mφ, such that we have for all V ∈ RN+2
3

1

2
(|(M · V )j |+ |(M · V )j+1|) eτ

φj+φj+1
2 ≤ 1

2
‖V ‖τ , 0 ≤ j ≤ N. (66)

To address such an issue, we need a suitable estimate of |(M · V )j |. Since
we have (52), with (M · V )0 = 0 we easily get for 1 ≤ j ≤ N + 1

|(M · V )j | ≤
ν√
2

j−1∑
k=0

∣∣∣√φk+1 − φj −
√
φk − φj

∣∣∣×(
eνs̄0(xj ,v

j
j−k) |Vk|
|∂xφk|

+ e
νs̄0(xj ,v

j
j−(k+1)

) |Vk+1|
|∂xφk+1|

)
,

where s̄0(xj , v
j
j−k), given by (45) is negative. As a consequence, the above

inequality rewrites

|(M · V )j | ≤
ν√
2

j−1∑
k=0

∣∣∣√φk+1 − φj −
√
φk − φj

∣∣∣×( |Vk|
|∂xφk|

+
|Vk+1|
|∂xφk+1|

)
.

According to (46), with (φ`)0≤`≤N+1 a decreasing sequence, we obtain

|(M · V )j | ≤
ν

2|Mφ|

j−1∑
k=0

(√
2(φk − φj)−

√
2(φk+1 − φj)

)
(|Vk|+ |Vk+1|)

≤ ν

2|Mφ|

j−1∑
k=0

(√
2(φk − φj)−

√
2(φk+1 − φj)

)
(|Vk|+ |Vk+1|)eτ

φk+φk+1
2 e−τ

φk+φk+1
2

≤ ν

|Mφ|
‖V ‖τ

j−1∑
k=0

(√
2(φk − φj)−

√
2(φk+1 − φj)

)
e−τ

φk+φk+1
2 ,
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so that we get for 1 ≤ j ≤ N1

|(M · V )j | ≤
ν

|Mφ|
‖V ‖τSj , (67)

where we have set for 1 ≤ j ≤ N + 1

Sj =

j−1∑
k=0

(√
2(φk − φj)−

√
2(φk+1 − φj)

)
e−τ

φk+φk+1
2 .

In order to obtain the expected inequality (66), we give an estimate satisfied
by Sj . Indeed, we have for 1 ≤ j ≤ N + 1

Sj =

j−1∑
k=0

√
2(φk − φj)−

√
2(φk+1 − φj)

φk − φk+1
e−τ

φk+φk+1
2 (φk − φk+1).

Let consider p > 0 and q > 0 such that 1
p + 1

q = 1. Then using the Holder
inequality, we get

Sj ≤

(
j−1∑
k=0

e−qτ
φk+φk+1

2 (φk − φk+1)

) 1
q

×

(
j−1∑
k=0

(√
2(φk − φj)−

√
2(φk+1 − φj)

φk − φk+1

)p
(φk − φk+1)

) 1
p

.

Notice that

e−qτ
φk+φk+1

2 (φk − φk+1) ≤
∫ φk

φk+1

e−qτϕ dϕ,

so that we have, since φ0 = 0,

j−1∑
k=0

e−qτ
φk+φk+1

2 (φk − φk+1) ≤
∫ 0

φj

e−qτϕ dϕ

≤ 1

qτ

(
e−qτφj − 1

)
. (68)

Moreover, we have√
2(φk − φj)−

√
2(φk+1 − φj)

φk − φk+1
=

1

φk − φk+1

∫ φk

φk+1

dϕ√
2(ϕ− φj)

.
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Using Jensen’s inequality, we then obtain(√
2(φk − φj)−

√
2(φk+1 − φj)

φk − φk+1

)p
≤ 1

φk − φk+1

∫ φk

φk+1

(2(ϕ− φj))−
p
2 dϕ,

so that for p < 2,

j−1∑
k=0

(√
2(φk − φj)−

√
2(φk+1 − φj)

φk − φk+1

)p
(φk − φk+1) ≤

∫ φ0

φj

(2(ϕ− φj))−
p
2 dϕ

≤ 1

2− p
(−2φj)

1− p
2 .

(69)

Now, from (68) and (69), it results the following estimate of Sj for 1 ≤ j ≤
N + 1:

Sj ≤
(

e−qτφj − 1

qτ

) 1
q (−2φj)

1
p
− 1

2

(2− p)
1
p

.

Since we have φwall ≤ φj+1 ≤ φj ≤ 0, then we get

1

2
(Sj + Sj+1) eτ

φj+φj+1
2 ≤ 1

(qτ)
1
q

(
(−2φwall)

1− p
2

2− p

) 1
p

.

As a consequence, it suffices to consider

τ >
1

q

2

(
(−2φwall)

1− p
2

2− p

) 1
p

max
0≤j≤N+1

(
B̄j
α(f inc

i )
Ij0
Ij1

)q

,

where B̄j
α(f inc

i ) is given by (60) and Ij0,1 are defined by (59), to obtain for
0 ≤ j ≤ N

1

2
(Sj + Sj+1) eτ

φj+φj+1
2 ≤ 1

2
min

0≤j≤N+1

(
1

B̄j
α(f inc

i )

Ij1
Ij0

)
.

Involving (67) and the condition (61), we deduce the required estimate (66)1

where τ does not depend on Mφ.2

The proof is easily completed since, from (66), we immediately obtain
‖M‖τ ≤ 1

2 so that

ni[φ] =
∑
`≥0

M `I∞,
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to write
‖ni[φ]‖τ ≤ ‖I∞‖τ

∑
`≥0

‖M‖`τ ≤ 2‖I∞‖τ .

Next, with I∞[φ]j given by (41) and t̄inc[φ](xj , v̄
j
k) < 0, we directly obtain

I∞[φ]j ≤ Ij0 for all 0 ≤ j ≤ N +1 where Ij0 is given by (59). Moreover, since
φj+1 ≤ φj ≤ 0 then we have

1

2

(
I∞j + I∞j+1

)
eτ

φj+φj+1
2 ≤ min

0≤j≤N+1
Ij0 ,

so that
‖I∞‖τ ≤ min

0≤j≤N+1
Ij0 .

As a consequence, ‖ni[φ]‖τ ≤ 2 min0≤j≤N+1 I
j
0 and we have

1

2
(ni[φ]j + ni[φ]j+1) ≤ 1

2
(ni[φ]j + ni[φ]j+1) eτ

φj+φj+1
2 e−τ

φj+φj+1
2

≤ e−τ
φj+φj+1

2 ‖ni[φ‖τ .

The proof is thus achieved.1

3.2. The proof of stability2

We are now able to prove the Theorem 3.1.3

Proof. By induction, both inequalities (54) and (55) are established provided4

that for a given sequence (φ`)0≤`≤N+1 such that φn0 = 0, φnN+1 = φwall and5

(φ0
`+1 − φ0

` )/∆x ≤ Mφ for all 0 ≤ ` ≤ N , we prove (54) for φn and (55) for6

φn+1. The first estimate (54) for φn immediately comes from Lemma 3.3.7

Now, we have to show8

1

∆x
(φn+1
j+1 − φ

n+1
j ) ≤Mφ. (70)

To address such an issue, let us consider the summation of (32) from j equals9

one to `, to write10

− ε2

∆x

(
φn+1
`+1 − φ

n+1
` − φn+1

1 + φn+1
0

)
=
∑̀
j=1

(ni[φ
n]j − ne[φn]j) ∆x. (71)

By Lemma 3.3, we have ni[φ
n]j −ne[φn]j ≥ 0 so that φn+1

`+1 −φ
n+1
` ≤ φn+1

1 −11

φn+1
0 . As a consequence, the required estimate (70) is established provided12

we prove13

1

∆x
(φn+1

1 − φn+1
0 ) ≤Mφ, (72)
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where we remember that

Mφ = − max
0≤j≤N+1

(
νIj1

B̄j
α(f inc

i )Ij0

)

with B̄j
α(f inc

i ) given by (60) and Ij0,1 by (59).1

In order to derive the above inequality, we sum (71) from ` equals from
0 to N , we then obtain

−ε2
(
(φn+1
N+1 − φ

n+1
0 )− (N + 1)(φn+1

1 − φn+1
0 )

)
=

N∑
`=0

∑̀
j=1

(ni[φ]j − ne[φ]j) ∆x2.

Since ∆x = 1/(N + 1), φn+1
0 = 0 and φn+1

N+1 = φwall, the above relation
reformulates as follows:

1

∆x

(
φn+1

1 − φn+1
0

)
= φwall +

1

ε2

N∑
`=0

∑̀
j=1

(ni[φ]j − ne[φ]j) ∆x2.

Now, the definition of ne[φ]j and the estimate (65) can be applied to get
an upper bound of ni[φ]j − ne[φ]j . Indeed, we have for all 0 ≤ j ≤ N

ni[φ]j−ne[φ]j =
1

2
(ni[φ]j + ni[φ]j+1)− ne[φ]j +

1

2
(ni[φ]j − ni[φ]j+1)

≤ 2e−τ
φj+φj+1

2 min
0≤j≤N+1

(Ij0)− Ij0
mα(0)

mα(φj)e
φj +

1

2
(ni[φ]j − ni[φ]j+1)

≤ Cwall +
1

2
(ni[φ]j − ni[φ]j+1),

where we have set

Cwall =

(
2e−τφwall − mα(φwall)

mα(0)
eφwall

)
min

0≤j≤N+1
Ij0 .

Since ni[φ]j − ne[φ]j > 0 then Cwall > 0. As a consequence, we obtain

1

∆x

(
φn+1

1 − φn+1
0

)
≤ φwall +

1

ε2

Cwall 1−∆x

2
+

∆x2

2

N∑
`=0

∑̀
j=1

(ni[φ]j − ni[φ]j+1)


≤ φwall +

1

ε2

(
Cwall

1−∆x

2
+

∆x2

2

N∑
`=0

(ni[φ]1 − ni[φ]`+1)

)

≤ φwall +
1

ε2

(
Cwall

1−∆x

2
+

∆x

2
max

0≤j≤N
|ni[φ]1 − ni[φ]j+1|

)
.
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The required inequality (72) is obtained for ε ≥ ε? where ε? is given by1

ε? = max
0≤j≤N+1

 1

−φwall −
νIj1

B̄jα(f inci )Ij0

×

(
Ij0e−τφwall − Ij0

2mα(0)
mα(φwall)e

φwall +O(∆x)

)) 1
2

. (73)

The proof is then completed.2

4. Numerical experiments3

This section is devoted to the numerical simulation of problem (1)-(12)4

in different regimes, using the numerical scheme presented in Section 2. Sev-5

eral studies are proposed. First, we consider a non collisional problem in6

Subsection 4.1. We are able to compare our results with those of [3], so that7

this regime is seen as a validating case for our approach. Then, we are inter-8

ested in collisional regimes in order to observe the influence of the collision9

frequency on the electrostatic potential φ and on the ionic and electronic10

distribution functions. In Subsection 4.2, we propose different numerical11

simulations compatible with hypotheses (13)-(14) and with a subcritical fre-12

quency 0 < ν < νc. In this case, Theorem 3.1 holds (as well as its continuous13

version: Theorem 3.1 of [2]). Finally, we are interested in simulations that14

violate hypotheses of Theorem 3.1, in order to test our numerical scheme15

beyond the scope of this theorem. This numerical study is presented in16

Subsection 4.3.17

In the simulations, we consider the following incoming functions18

f ince (v) =

√
2µ

π
e−

µv2

2 , ∀v > 0, (74)

f inci (v) =

√
2

π
v2e−

v2

2 , ∀v > 0, (75)

and the mass ratio of a Deuterium plasma µ = 1
3672 , so that the critical19

re-emission coefficient αc =
1−
√

(πµ)/2

1+
√

(πµ)/2
≈ 0.95. We take N + 1 = 1000 for20

the space discretization. The velocity domain for the computation of ion21

density is truncated to [−8, 8] and domain D1 is divided into 100 intervals.22
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We stop the fixed point method when two successive iterates k and k + 11

are such that2 ∣∣∣∣∣
∣∣∣∣∣φ(k) − φ(k+1)

φ(k)

∣∣∣∣∣
∣∣∣∣∣
∞

+

∣∣∣∣∣
∣∣∣∣∣(ni − ne)(k) − (ni − ne)(k+1)

(ni − ne)(k)

∣∣∣∣∣
∣∣∣∣∣
∞

< 10−8. (76)

Let us emphasize that the convergence of our fixed point method is not3

ensured for small values of ε. In practice, Theorem 3.1 implies the existence4

of ε? > 0 such that our fixed point algorithm converges for all ε ≥ ε?, where5

the bound (73) is not optimal.6

4.1. The non collisional sheath7

We are first interested in a non collisional problem, with parameters ν =8

0, α = 0. Admissibility condition (13) and Bohm criterion (14) are satisfied.9

A Newton iterative method solving (29) up to 10−16 gives φwall ≈ −2.71910

and a density reference n0 ≈ 0.505. Here, we consider two values of ε: 1 and11

0.2. We did not obtain convergence of our fixed point method for smaller12

values. We plot the electrostatic potential φ(x) in Figure 2 and the densities13

ni(x), ne(x) in Figure 3.14

Figure 2: Electrostatic potential φ(x) for two values of ε: 1 and 0.2, in the non collisional
regime ν = 0, α = 0.
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Figure 3: Ionic ni(x) and electronic ne(x) densities for two values of ε: 1 (left) and 0.2
(right), in the non collisional regime ν = 0, α = 0.

Then, we represent distribution functions: fi in Figure 4 and fe in Figure1

5, for both values of ε (we propose two different views for each figure).2

Figure 4: Ionic distribution function fi(x, v) for two values of ε: 1 (left) and 0.2 (right),
in the non collisional regime ν = 0, α = 0. Two differents views on top and bottom.
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Figure 5: Electronic distribution function fe(x, v) for two values of ε: 1 (left) and 0.2
(right), in the non collisional regime ν = 0, α = 0. Two differents views on top and
bottom.

These figures show the influence of ε and can be compared to numerical1

results proposed in [3]. Even if our approach prevents us from taking small2

values of ε, it presents the good behavior. The numerical scheme presented3

in [3] is valid for smaller values of ε, but is specific to the non collisional case4

ν = 0. It is based on the minimization formulation of the non linear Poisson5

problem. In the collisional case ν > 0, such an approach cannot be applied6

directly because the non linear Poisson problem (3) does not reformulate7

as a minimization problem. The difficulty stems from the integral equation8

satisfied by ni (23).9

4.2. Collisional problems in the scope of Theorem 3.110

We are now interested in collisional problem staying in the scope of the11

numerical analysis done in this paper, and in particular 0 < ν < νc where12

the critical collisional frequency is defined by (16). We study the influence13

of physical parameters ν, α and ε.14
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We point out that Theorem 3.1 ensures the existence of ε? such that1

the numerical scheme preserves the physical properties (54) and (55) for2

all ε ≥ ε?.The value of ε? given by (73) is in practice not optimal. In3

the numerical approach, we define the minimal value εmin ≤ ε? for which4

we are able to make the fixed point method converge. The convergence5

depends on the initial iterate, that is why we have implemented a numerical6

continuation method over ε. If the fixed point method converges for a value7

of ε, we use the obtained φ[ε] as initial guess for the algorithm with ε−0.0018

and we continue until the fixed point method diverges. The smallest value9

for which we have convergence is denoted as εmin. The step 0.001 is chosen10

as a compromise between precision on εmin and computational time.11

On the one hand, we fix α = 0, so that νc ≈ 3.526, and present results12

for varying ν from 1 to 3.5 and two values of ε: 1 and εmin. We plot the13

electrostatic potential φ(x), resp. densities ni(x) and ne(x), in Figure 6,14

resp. in Figure 7.

Figure 6: Electrostatic potential φ(x) for α = 0, three values of ν: 1, 3 and 3.5. On the
left: ε = 1, on the right: ε = εmin.

15
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Figure 7: Ionic ni(x) and electronic ne(x) densities for α = 0, three values of ν: 1, 3 and
3.5 (from top to bottom). On the left: ε = 1, on the right: ε = εmin.

Then, ionic distribution function is presented in Figure 8 and the elec-1

tronic one in Figure 9.2
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Figure 8: Ionic distribution function fi(x, v) for α = 0, two values of ν: 1 and 3.5 (from
top to bottom). On the left: ε = 1, on the right: ε = εmin.
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Figure 9: Electronic distribution function fe(x, v) for α = 0, two values of ν: 1 and 3.5
(from top to bottom). On the left: ε = 1, on the right: ε = εmin.

On the other hand, we fix ν = 0.2 and present results for varying α1

from 0 to 0.9 < αc and two values of ε: 1 and εmin. Figures 10, 11, 12 and2

13 represent respectively the electrostatic potential, the densities, the ionic3

distribution function and the electronic one.4
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Figure 10: Electrostatic potential φ(x) for ν = 0.2, three values of α: 0, 0.5 and 0.9. On
the left: ε = 1, on the right: ε = εmin.
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Figure 11: Ionic ni(x) and electronic ne(x) densities for ν = 0.2, three values of α: 0, 0.5
and 0.9 (from top to bottom). On the left: ε = 1, on the right: ε = εmin.
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Figure 12: Ionic distribution function fi(x, v) for ν = 0.2, two values of α: 0 and 0.9 (from
top to bottom). On the left: ε = 1, on the right: ε = εmin.
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Figure 13: Electronic distribution function fe(x, v) for ν = 0.2, two values of α: 0 and 0.9
(from top to bottom). On the left: ε = 1, on the right: ε = εmin.

Interpretation. For the ions distribution function fi, we observe on Figures1

8 and 12 that increasing the collision frequency ν or diminishing the nor-2

malized Debye length ε results in in a stronger diffusion effect. Moreover,3

whatever the value of ν > 0 is, fi is non zero near the line v = 0 which is the4

expected effect of the collision operator (4). On Figure 8, we observe that5

for a near critical collision frequency ν ≈ νc, there is some concentration6

of the ions distribution function in the vicinity of the line v = 0 while we7

can still observe low values of fi for v >
√
−2φ(x). These results evidence8

the competition between the collision operator (4) which tends to relax the9

ions density fi towards the mono kinetic density ni(x)δv=0 and the trans-10

port of the incoming boundary condition f inc
i (75) from x = 0 to x = 111

with a damping effect. As for the electrons distribution function fe, since12

it does not experience collisions, there is no change as compared to the non13

collisional case [3].14

Increasing the re-emission coefficient α increases the values of the po-15

tential at the wall (x = 1) as it is observed on Figure 10. It results in a16
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charge separation at x = 1 which is increasing with α as observed in Figure1

11. As for the charge density ni − ne, we see on Figure 11 that it remains2

non negative and that it vanishes at x = 0 (as expected). We also see that3

increasing ν tends to increase the local charge ni near x = 0. The macro-4

scopic ions density ni does not seem to be C1 at x = 0. It is not suprising5

since it satisfies the weakly singular Volterra integral equation (23).6

To conclude this study, we plot εmin as a function of ν
νc
∈ [0, 1[ for the7

three values of α considered previously (note that νc ≈ 3.526 for α = 0,8

νc ≈ 2.644 for α = 0.5 and νc ≈ 0.583 for α = 0.9). Results are presented in9

Figure 14.10

Figure 14: Minimal numerical value εmin as a function of ν/νc for different values of α.

4.3. Collisional problems beyond the scope of Theorem 3.111

Finally, we are interested in simulations beyond the scope of Theorem12

3.1. We notice that when taking ν > νc, the fixed point method hardly13

converges. In practice, we only have convergence for very large values of14

the normalized Debye length ε. The obtained densities are in this case a15

zoom on the space scale of the previous results. Specifically, we see the same16

behavior as in a window near x = 0 of Figures 7 or 11.17

Our last numerical experiment, concerns an other physical scenario when
considering an ionic incoming function f inc

i for which the Bohm criterion (14)
is not satisfied. We thus consider,

f inc
i (v) =

1√
2π
e−

v2

2 , ∀v > 0.

This leads to Bα(f inc
i ) = −∞. We set the following physical parameters:18

α = 0, ν = 0 or 1, and ε = 1. We plot densities ni(x) and ne(x) in Figure19
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15. We can see that the inequality ni(x)− ne(x) ≥ 0 (17) is not verified for1

x near zero. It seems to show that even in the collisional case the Bohm2

criterion (14) is a sharp condition to ensure the non negativity of the charge3

density.4

Figure 15: Ionic ni(x) and electronic ne(x) densities for α = 0, two values of ν: 0 (on the
left) and 1 (on the right).

5. Conclusion5

In this work we proposed a numerical method to capture kinetic colli-6

sional sheaths. The method is based on the exact integrations of the trans-7

port equations by means of the characteristics curves and the numerical8

resolution of a non linear Poisson problem that has the form of an integro-9

differential equation. According to [3], this problem has a solution provided10

the inequalities (14),(17) and (18) are ensured. We thus designed a suitable11

discretisation of the phase space together with adequate quadrature formu-12

las that ensure easily the discrete analogue of these inequalities. We then13

presented some numerical experiments to assess mainly two physical scenar-14

ios. The first one was in the scope of our main result (Theorem 3.1) : when15

the Bohm criterion (14) holds and the different physical parameters are var-16

ied within appropriate bounds, we essentially observe that decreasing the17

Debye length or increasing the collision frequency results in a stronger diffu-18

sion effect on the ions distribution function. We also see some concentration19

of the distribution function near the line v = 0. There is a competition20

between the transport operator and the collision operator which yields in21

the extreme case some boundary layer near x = 0. Some parametric study22

between the Debye length and the collision frequency was carried out in23

order to assess a possible scaling between these two parameters. The second24
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physical scenario mainly showed that when the Bohm criterion (14) is vio-1

lated the charge density becomes negative near x = 0. It seems to show that2

the Bohm criterion (14) is a sharp condition to ensure the non negativity of3

the charge density. This work is up to our knowledge the very first one to4

propose a detailed numerical study of a fully kinetic collisional sheath model5

by means of a numerical method that strongly relies on a detailed analysis6

of the model under concern. It provided a range of physical parameters7

that is mathematically relevant. A possible perspective among others is to8

investigate asymptotic regimes ε → 0 or ν → +∞ though the model under9

concern may degenerate.10
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