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Ferromagnetic materials are used in a wide range of applications such as sensors,
actuators, motors or transformers. Their main property of interest is their capa-
bility to reach high magnetisation levels when subjected to an external magnetic
field of relatively low intensity. This property originates in the complex mag-
netic domain microstructure and its evolution under the application of external
loading. In that sense, magnetic behaviour is a very good example of multiscale
phenomena, and a natural playground for multiscale modelling approaches. Of
course the magnetisation curve can be described using macroscopic approaches
[1], and such macroscopic approaches are necessary when it comes to numerical
design of engineering parts or devices. However, because magnetic behaviour
is very sensitive to many external influences - such as temperature, chemical en-
vironment, or mechanical stress - macroscopic approaches can quickly become
inoperative to describe these coupled phenomena intricately related to the mi-
crostructure and its evolution. On the other hand, if the objective is to understand
with more precision the formation and evolution of domain microstructures, mi-
cromagnetic approaches [2], which consider the energetic equilibrium at the
scale of a set of atoms, can provide a very powerful insight into the mechanisms
of ferromagnetism. Their implementation for the design of electromagnetic
devices remains however most of the time out of reach.

This chapter is dedicated to multiscale approaches for the modelling of mag-
netic behaviour. These approaches stand between micromagnetic and macro-
scopic approaches. The objective is to link the basic mechanisms responsible
for magnetic behaviour to the macroscopic response of ferromagnetic materials
to external loadings. An emphasis will be given on the possible ways to make
use of these multiscale approaches for the numerical modelling of practical en-
gineering devices. The approach will be illustrated on applications involving

1



222

magneto-mechanical coupling effects.

1.1 MULTISCALEMODELFORANHYSTERETICMAGNETICBEHAVIOUR
OF FERROMAGNETIC MATERIALS

This section gives an overview of a multiscale modelling approach to describe
the anhysteretic magnetic behaviour of ferromagnetic materials. The focus is
made on the reversible part of the magnetisation process, leading to an absolute
equilibrium configuration. Hysteresis will be treated in a second step as a super-
imposition of dissipation effects to this reversible contribution to magnetisation.

1.1.1 Energy equilibrium at the local scale

Magnetisation originates from the existence of intragranular microstructure or-
ganised in domains and separated by domain walls. At the microscopic scale, the
local magnetisationm = Ms αi ei (with αi the direction cosines of themagnetisa-
tion, Ms the saturationmagnetisation, and using Einstein summation convention)
is almost uniform in each domain and changes abruptly in the thickness of do-
main walls. The division into domains results from the energy balance between
different elementary contributions [2]. Three contributions in particular are at
the origin of this division: the exchange energy, the magnetocrystalline energy
and the dipole interaction. A continuous description of the physical fields is
chosen for the following developments.

The exchange energy Eex expresses the local ferromagnetic coupling. It is
described, in a medium Ω with a potential of the following form with exchange
constant A:

Eex =

∫
Ω

A ‖ grad m‖2 dΩ (1.1)

The magneto-crystalline energy Ea expresses the coupling between the mag-
netic moment orientation and crystal axes d. This interaction is the reason for the
existence of easy axes in crystalline materials and takes the form of a function
Ψ(d,m). For a cubic symmetry and considering the crystal axes d parallel to
the basis vectors ei , magnetocrystalline energy developed at the 6th order (see
chapter "Multi-scale modelling of magnetostrictive materials") is given by:

Ea =

∫
Ω

Ψ(d,m) dΩ =
∫
Ω
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(1.2)
with Ki the magneto-crystalline anisotropy constants.

The dipolar interaction plays a fundamental role in the formation of domains.
It is related to the mutual interaction of the magnetic moments at position r with
the others and to the geometry of Ω. The so-called demagnetizing field Hd(m)
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satisfies Maxwell equations ( rot Hd(m)) = 0) and hence derives from a scalar
potential ζ satisfying the following equations:

Hd(m) = − grad ζ (1.3)

∆ζ(r) = divm(r) ∀ r ∈ Ω
∆ζ(r) = 0 ∀ r ∈ R3 −Ω

(1.4)

µ0 is the vacuum permeability and ζ is the solution of a Poisson problem (1.4)
and reflects the non local form of the demagnetizing field. The calculation of
this quantity is usually very time-consuming. The demagnetizing energy Ed is
usually associated to a potential of the form:

Ed = −
µ0
2

∫
Ω

Hd(m).m dΩ (1.5)

The effect of the applied field Hext on the magnetic moments is reflected by
Zeeman energy Eh:

Eh = −µ0

∫
Ω

Hext .m dΩ (1.6)

In addition to these terms, other contributions can be considered in the mag-
netic equilibrium. Mechanical effects in particular can be very significant. The
mechanical contribution can partly originate from the possible application of
external stress, but even in the absence of external stress, the mechanical equi-
librium needs to be considered due to magnetostriction. Indeed, at a given
magnetisation direction m is associated a free strain (eigenstrain) called mag-
netostriction. It is described by a second-rank tensor εµ. In the case of cubic
symmetry, and assuming isochoric strain, εµ is usually written as a quadratic
form of m depending on two magnetostriction constants. This deformation is
usually incompatible (i.e. not deriving from a displacement field). The elastic
deformation εe of the magnetic medium must then accommodate this incom-
patibility. It results in a stress field even in absence of any external mechanical
loading. The total deformation is then defined by summation of elastic and
magnetostriction strain (ε = εµ + εe) since small perturbations assumption can
usually be applied. The total deformation ε derives from a displacement field
u (1.7) and the stress field σ associated to elastic deformation obeys to the
equilibrium equation and constitutive law (1.8) with C the stiffness tensor of the
medium.

ε =
1
2

(
grad u + t grad u

)
= grads u in Ω (1.7)

divσ = 0 in Ω

σ = C : (ε − εµ) in Ω
(1.8)
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The mechanical problem can also be reduced to an optimization problem
where the displacement field minimises the elastic energy Eσ given by the
application of a variational formulation of the problem.

The elastic energy Eσ is defined as:

Eσ =

∫
Ω

(
1
2
ε(u) : C : ε(u) − ε(u) : C : εµ

)
dΩ (1.9)

Micromagnetism is a theoretical approach to describe the process of mag-
netisation at a scale large enough to replace the atomic magnetic moments by
continuous functions, and small enough to account for the transition zones be-
tween magnetic domains [3, 4]. The local free energy Etot (Helmholtz) is then
expressed as the sum over the volume Ω of internal and external contributions
mentioned above.

Etot (m,u) = Eh + Eex + Ea + Ed + Eσ (1.10)

The stability condition of the energy is obtained if and only if the magneti-
sation and displacement fields minimise the total free energy simultaneously.
A condition of minimisation is the cancellation of all the partial derivatives
independently. The following system needs to be solved:

∂Etot
∂m

= 0 ∀ x ∈ Ω (1.11)

∂Etot
∂u

= 0 ∀ x ∈ Ω (1.12)

under the constraint:
‖m‖ = Ms ∀x ∈ Ω (1.13)

and mechanical boundary conditions (known displacements ud or surface
forces fd at surfaces of normal n)

u = ud in ∂Ωu

σ.n = fd in ∂Ω f
(1.14)

Numerical techniques such as finite element method can be used for the res-
olution of such a problem.

Micromagnetic approaches are very informative to understand the evolutions
of domain microstructures under given magneto-mechanical loading. However
the computation can be very costly, mostly due to the calculation of the demag-
netising field. The element size, which has to be chosen in connection with
the exchange length, representative for domain wall width can also lead to pro-
hibitive size for the calculations. As a consequencemicromagnetic computations
cannot be used, to date, to describe the heterogeneous configurations in terms of
materials and field distribution in practical electromagnetic systems. But they
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can be helpful to build simplifiedmodels for the description of magnetic material
behaviour, as will be seen in next section.

1.1.2 A model for single crystal behaviour

The previous section emphasized that the complex energetic equilibrium at the
atomistic scale is the reason for the formation of the domain microstructure
typical of ferromagnetic materials. If the existence of the domain microstructure
is now taken as an initial assumption, simplified models can be built, following
the approach of Néel phase model [5]. With the objective to describe the
behaviour of single crystals, the Gibbs free energy1 can be decomposed as the
sum of the Gibbs free energy of different domains [6, 7] (see chapter "Multi-scale
modelling of magnetostrictive materials" for more details). The contribution of
the exchange energy, localized in domain walls, is neglected. In a single crystal,
due to magneto-crystalline energy, only a limited number of orientations are
encountered for the magnetisation m. For instance, depending on the sign of
the magneto-crystalline anisotropy constants, cubic materials exhibit six or eight
easy magnetisation directions. A cubic crystal can then be divided into six
or eight domain families α. Thus, a domain family α is treated as a region
with uniform magnetisation mα. Since magnetostriction strain is defined by the
magnetisation direction, magnetostriction strain at domain scale εµα is uniform
too. Magnetisation at domain scale can be written:

mα = Ms α = Ms
t [α1 α2 α3] (1.15)

In the case of a material with cubic crystallographic symmetry, the magnetostric-
tion strain at domain scale is given by:

εµα =
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where λ100 and λ111 are the saturation magnetostriction constants of the crystal
along directions < 100 > and < 111 >, respectively. Homogeneous stress and
magnetic field hypotheses (σα = σg and Hα = Hg)2. The main contributions to
the Gibbs free energy of a domain family α are the magnetostatic energyWmag

α ,
the magneto-crystalline anisotropy energyWan

α , and the elastic energyWσ
α . In

order to consider a possible bias term, introduced for instance by residual stresses
or shape anisotropy, it can be convenient to introduce a configuration energy
W

conf
α (see chapter "Multi-scale modelling of magnetostrictive materials").

1. Gibbs free energy is also defined as free enthalpy whose associated variable is stress and not
deformation as for Helmholtz free energy.

2. Index α refers to the domain family scale and index g refers to the crystal scale.
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The free energyWα of a domain family α is then uniform and written as:

Wα =W
mag
α +Wan

α +W
σ
α +W

conf
α (1.17)

Due toWmag
α , the magnetisation mα tends to align along the magnetic field

Hg (Eq.(1.18)). µ0 is the vacuum permeability.

W
mag
α = −µ0 Hg .mα (1.18)

Due toWan
α , the magnetisation mα tends to align along the easy axes. It is

given by Eq.(1.19) in the case of a cubic symmetry material. K1 and K2 denote
the magnetocrystalline anisotropy constants of the material.

Wan
α = K1(α
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Wσ
α is the magnet-elastic elastic energy [6]. It can be written as a function

of magnetostriction strain εµα and stress tensor σg (see chapter "Multi-scale
modelling of magnetostrictive materials"):

Wσ
α = −σg : εµα (1.20)

The orientation α of the magnetisation in a domain family α is obtained by
minimisation of the local free energy:

α = arg min
(α∈R3 , ‖α ‖=1)

(Wα) (1.21)

This procedure allows defining the orientation of the magnetisation in each
domain family α.

Once the free energyWα is known for all domain families α, the volume
fractions fα of domain families α are introduced as internal variables. These
internal variables can be calculated according to an explicit Boltzmann-type
relation:

fα =
exp (−AsWα)∑
β

exp (−AsWβ)
(1.22)

where As is an adjustable material parameter. It can be shown [6] that As is
proportional to the initial slope χo of the unstressed anhysteretic magnetisation
curve:

As =
3χo

µ0M2
s

(1.23)

From the magnetisation orientation and the volume fraction of each domain
family α, the magnetisation Mg and the magnetostriction strain εµg at the single
crystal scale are obtained with a volume average over the single crystal.

Mg = 〈mα〉g =
∑
α

fα mα (1.24)

εµg = 〈ε
µ
α〉g =

∑
α

fα ε
µ
α (1.25)
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1.1.3 Polycrystal behaviour

In order to define the behaviour of a polycrystalline material, it is necessary
to assemble the behaviour of a large number of single crystals. This can be
done by using a self-consistent polycrystalline scheme. The purpose is to define
the local magneto-mechanical loading - local stress σg and magnetic field Hg -
from the macroscopic magneto-mechanical loading - macroscopic stressσm and
magnetic field Hm - using so-called localisation equations. This can be written
in the general form3:

σg = B
σ
g : σm + L

σ
g : (εµm − ε

µ
g) (1.26)

Hg = A
H
g .Hm +M

H
g .(Mm −Mg) (1.27)

Mm and εµm are the macroscopic (average) magnetisation and magnetostric-
tion strain, respectively. Bσg and AH

g are the elastic and magnetic localisation
operators and Lσg andMH

g are the elastic and magnetic incompatibility tensors
defining the incompatibilities raised by the difference of behaviour between an
individual grain and the surrounding medium. These tensors depend on the
crystallographic orientation of the considered grain so that texture effects can be
included in the modelling. The practical calculation of the localisation operators
is detailed in [8, 9]. They notably depend on the elastic stiffness coefficients Ci j

of the single crystal. Eq.(1.26) and (1.27) make use of the macroscopic magne-
tostriction strain εµm and magnetisation Mm so that the scheme is self-consistent.
Once the local magneto-mechanical loading (σg, Hg) is known, the single crys-
tal model is applied to obtain the strain and magnetisation at the single crystal
scale. The macroscopic magnetisation Mm and magnetostriction strain εµm are
then obtained with a volume average over the polycrystal.

Mm = 〈
tAH

g .Mg〉m (1.28)

εµm = 〈
tBσg : εµg〉m (1.29)

The macroscopic elastic strain εelm (obtained using the standard macroscopic
Hooke law) can be added to the magnetostriction strain to obtain the total
macroscopic strain εm.

1.1.4 Summary for the multiscale modelling of anhysteretic mag-
netic behaviour

The modelling process can be summarised as presented in Fig.1.1.
The input data for the multiscale model (MSM) are the material parameters

(including the crystallographic texture) and the applied macroscopic loading in

3. Index g refers to the crystal scale and index m refers to the polycrystal scale (Representative
Volume Element).
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FIGURE 1.1 Calculation principle

terms of stress σm and magnetic field Hm. An initial guess for the solution
(macroscopic magnetisation Mm and magnetostriction strain εµm) is also needed
to start the process. The use of the solution under uniform stress and uniform
magnetic field assumptions is usually convenient for this initial guess. For each
element of the orientation distribution function, the localisation rules (1.26) and
(1.27) are applied to define the local stress σg and magnetic field Hg. The local
anhysteretic constitutive law is then applied according to the model presented in
section 1.1.2 to obtain the localmagnetisationMg andmagnetostriction strain εµg .
These local responses are then averaged over the crystallographic orientations to
obtain the macroscopic magnetisation Mm and magnetostriction εµm (Eq.(1.28)
and (1.29)). This solution replaces the initial guess, and the process is repeated
until convergence. In order to ensure the convergence, a relaxation method can
be used just after the homogenisation step. This process, noted by the symbol
rO in Fig.1.1, consists in defining the new value of Mm and εµm at step k as a
weighted average between the result of the homogenisation step and the previous
result at step k −1. The final solution is given by the macroscopic magnetisation
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Mm and the macroscopic magnetostriction strain εµm.

1.2 DESCRIPTION OF HYSTERESIS

The presentation has been limited so far to anhysteretic behaviour of ferromag-
netic materials, which describes, for a given level of external loading, the optimal
equilibrium that can be reached by the material. The magnetisation process how-
ever is associated to very significant dissipation processes that prevent the domain
microstructure to reach this optimal equilibrium. These dissipation processes
are mainly related to the defects in the materials and to the development of eddy
currents at different scales [10]. They result in a strong hysteresis in the magneti-
sation process. It is important to be able to describe this hysteresis in order to
model practical devices based on ferromagnetic materials. To date however, and
apart from statistical approaches justifying the loss separation approach, there is
no model available to accurately describe the macroscopic hysteretic response
of a material from the description of the local dissipation mechanisms. This is
the reason why it is often proposed to consider hysteresis in a phenomenological
way, complementing the anhysteretic description of the material. These phe-
nomenological ways should however fulfill the second law of thermodynamics
(positive dissipation) to be acceptable. This point is shortly addressed in the
chapter "Multi-scale modelling of magnetostrictive materials". Two approaches
will be described here, the first one based on the Hauser hysteresis model, and
the second one based on the Jiles-Atherton model.

1.2.1 Approach based on Hauser hysteresis model

Hauser model [11] considers that a magnetic material can be seen as a bi-
domain structure: one magnetic domain along the direction of the applied field,
and the other in the opposite direction. The hysteresis effect can be described
by the motion of the domain wall inside this bi-domain structure. The domain
wall position is defined through the use of macroscopic reduced magnetisation
m = | |M| |/Ms . The motion of the domain wall is represented by the variation
of m. This leads to the description of an irreversible field Hirr as follows:

Hirr = sgn (m −m0)

(
kr

µ0Ms
+ crHrev

) [
1 − κ exp

(
−

q
κ
|m −m0 |

)]
(1.30)

where q, kr , cr , and κ are material parameters. Hrev is the reversible magnetic
field (used in the MSM to get the magnetisation M). m0 is the starting value of
m at the last field reversal. The term |m −m0 | varies from 0 to 2, describing the
wall displacements from a macroscopic scale. sgn (m − m0) is equal to +1 or
−1 depending on the direction of the magnetic loading variation. The term kr
controls the coercivity of the hysteresis cycle. κ changes each time at the field is
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reversed in order to maintain the continuity of irreversible field:

κ = 2 − κ0

[
1 − exp

(
−

q
κ0
|m −m0 |

)]
(1.31)

where κ0 is the recorded value of κ at the previous reversal.

Although this formulation is able to describe the hysteresis effects correctly,
including remanence, coercivity and static losses, Hirr and Hrev remain uni-
directional. The irreversible field is always in the direction of the reversible
magnetic field. This strongly limits the use of the original Hauser model, espe-
cially for rotational field loadings. However, the bi-domain assumption inHauser
model shows a good consistence with theMSM,where a set of bi-domains can be
considered in each grain (a single crystal is composed of 6 or 8 domain families
depending on the sign of K1, i.e. 3 or 4 bi-domains).

Hauser model can be adapted in order to be combined with the MSM. We
consider a bi-domain β formed by a domain family α+ and the opposite domain
family α− Following Hauser proposal, the contribution of the irreversible field
of a bi-domain β can be defined as follows:

Hβ
irr = sgn (mβ −mβ

0 )

(
kr

µ0Ms
+ crHβ

rev

) [
1 − κβ exp

(
−

q
κβ
|mβ −mβ

0 |
)]
γα+

(1.32)
The reduced magnetisation mβ , between 0 and 1, is defined from the volume

fractions of the domain families α+ and α−:

mβ =
f +α

f +α + f −α
(1.33)

and kr , q and cr are material parameters defined uniformly within the mate-
rial. mβ

0 is the starting value of mβ at the previous field reversal, representing
the previous position of the domain wall in the bi-domain β. γα+ is defined as
the positive direction of the bi-domain β, or the direction of domain α+. Hβ

rev

is the projection of local reversible field Hg
rev along the direction of bi-domain

β (Hβ
rev = |H

g
rev .γ

α+ |). An inversion of loading direction is defined as a change
of direction of the wall motion. From a practical point of view, this inversion
is detected at instant t when ∆mβ

t ∆m
β
t−1 < 0. At each inversion, κβ is updated

to maintain the continuity of irreversible field of the bi-domain β, shown in
equation (1.34). κβ0 is the value of κβ at the previous field inversion.

κβ = κ
β
0

[
1 − exp

(
−

q

κ
β
0

|mβ −mβ
0 |

)]
(1.34)

The initial value of κβ controls the first magnetisation curve. Finally, the
irreversible field at the grain scale is obtained by an averaging operation over all
bi-domains:
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Hg
irr =

∑
β

Hβ
irr f β (1.35)

Unlike many hysteresis models, this modelling gives a physical description
of the local and global hysteresis behaviour, possessing numerous advantages.
It uses local internal variable mβ to describe 180◦ domain walls motion, which
is assumed to be the main physical source of hysteresis. The application of
modified Hauser model for each bi-domain forms local hysterons, analogous to
the idea of Preisach model. The volume fraction of domains oriented along
different directions is given by multiscale model and material texture data. This
also allows the description of material anisotropy and stress dependency. With
the application of the external magnetic field, the volume fraction of the domains
varies, leading to the computation of the local 180◦ domain walls motion, and
hence hysteresis effect.
Although irreversible field Hβ

irr is defined in the direction of reversible field
Hβ

rev and magnetisation Mβ in each bi-domain, the macroscopic irreversible
field Hirr does not necessarily lie in the direction of reversible field Hrev . This
forms an angular offset between the effective field H and reversible field Hrev .

1.2.2 Approach based on Jiles-Atherton hysteresis model

The Jiles-Atherton (JA) approach [12] is another approach that can be advan-
tageously combined with the MSM and, hence, be used to include anisotropy,
texture and mechanical stress effects in the description of the behaviour of
magnetic materials. The vector extension of JA model [13] is defined by the
macroscopic magnetisation increment which can be expressed as

dMhys = χ f .dHe + c dMan (1.36)

H is the applied magnetic field. He = H + αJAMhys is the effective magnetic
field which includes a contribution from the rest of the material as a fraction
αJA of the magnetisation. Man represents the anhysteretic component of the
magnetisation and is a function of He. χ f is a tensor defined by:

if X f .dHe > 0,
χ f = ‖X f ‖

−1X f ⊗ X f (1.37)

else,
χ f = 0 (1.38)

where X f =
1
k (Man −Mhys) and k is the so-called pinning parameter, strongly

related to hysteresis losses. An explicit expression of the hysteretic differential
susceptibility can be written:

χ =
dMhys

dH
=

(
I − αJA

(
χ f + cχan

))−1 (
χ f + cχan

)
(1.39)
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From this, the direct JA model can be built by numerical integration. Similarly,
the inverse JA model (based on the magnetic flux density) can be built from

ξ = µ0
dMhys

dB
=

(
I − (αJA − 1)

(
χ f + cχan

))−1 (
χ f + cχan

)
. (1.40)

It can be noticed that, if c and αJA are scalar, then

χ−1 =
(
χ f + cχan

)−1
− αJAI (1.41)

and this tensor is symmetrical if χan is also symmetrical. This property on the
differential susceptibility is not a necessary condition when hysteresis is involved
but can be interesting for numerical implementation.

The anhysteretic magnetisation and differential susceptibility can be obtained
from a multiscale approach instead of the Langevin function classically used in
JA model. Considering the effective field He and the constant applied stress σ0
as input parameters for the MSM:

Man =M (He,σ0) (1.42)

χan =
dM
dHe
(He,σ0) (1.43)

The introduction of a multiscale representation of the anhysteretic behaviour
in JA model allows accounting for the effect of multiaxial stress, anisotropy
and texture effects on the steepness of the hysteresis loop. However, it may not
be sufficient to describe the effects on the loop shape and losses. One possible
solution consists in considering variations of the pinning parameter k, depending
on the domain configuration given by the multiscale approach [14].

The magnetostriciton hysteresis under a constant applied stress (σ0) can also
be calculated by defining an anhysteretic magnetic field (Han) such that:

Mhys (H,σ0) =M (Han,σ0) (1.44)

The associated magnetostriction is then given by the MSM as

εµ
hys
(H,σ0) = ε

µ(Han,σ0) (1.45)

Dropping the constant parameter σ0 in equation (1.44), the differential of the
magnetisation is:

dMhys (H) =
dM
dHan

(Han) .dHan (H) (1.46)

In this equation dM
dHan

(Han) = χan is the anhysteretic differential susceptibility
calculated from the MSM at the current value of Han. Han can then be obtained
by integration of

dHan = χ
−1
an.dMhys . (1.47)

This approach (multiscale with JA model) results in a relatively light hys-
teresis model. In particular, using simplified multiscale approaches, this kind of
model can be used for numerical device simulation (see sections 1.4 and 1.6).
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1.3 COMBINATION OF MULTISCALE ANHYSTERETIC APPROACH
AND HYSTERESIS MODELS

The anhysteretic multiscale approach presented in this section allows describing
naturally the effect of crystallographic texture by introducing grain orientations.
It also allows describing the effects of a multiaxial applied stress. The hysteresis
models can then be combined with the anhysteretic modelling, either at the sin-
gle crystal scale or, in a macroscopic way, at the polycrystal scale. It is usually
necessary to incorporate the effect of stress on the hysteresis contribution since,
for most materials, dissipation is also affected by stress. It is notably seen in the
effect of stress on the coercive field of ferromagnetic materials. Such a combina-
tion of anhysteretic multiscale approach and hysteresis contribution provides a
powerful tool to predict the behaviour of ferromagnetic materials under various
external loadings, with limited input data.

However when structural analysis needs to be performed, the practical imple-
mentation of such an approach into a numerical calculation can be cumbersome.
In that context, it is necessary to develop methodologies in order to apply the
multiscale approach on complex structures while maintaining its main physical
features. In the next section, a few simplification strategies will be presented.

1.4 POSSIBLE SIMPLIFICATIONS FOR NUMERICAL MODELLING

1.4.1 Simplification for the definition of the magnetisation orienta-
tion

At the single crystal scale, the minimisation (1.21) of the Gibbs free energy to
obtain themagnetisation orientation in a domain family α can be a costly process.
Instead of performing this minimisation, the space of all possible magnetisation
orientations can be discretized (considering a mesh of the unit sphere) which
defines a set of domain families on which the Gibbs free energy can be evaluated.
Instead of considering only domains along (or close to) easy axes, all directions
are considered. The volume fraction can then be evaluated on this mesh using
the same formula (1.22). The volume fraction will naturally be higher in the
directions with lower energy. Using this method a minimisation on 6 or 8
orientations is replaced by the evaluation of the volume fraction on the mesh of
the unit sphere. The process to evaluate the magnetisation and magnetostriction
at the single crystal scale is then unchanged. In order to avoid bias anisotropy
effects due to a coarse mesh of the unit sphere, the set of orientations should
be as dense and uniform as possible. To this purpose the nodes of an icosphere
can be used (Fig. 1.2). An icosphere is a triangular mesh of the sphere built by
regular subdivision of the triangular faces of an icosahedron. The set density is
then determined by the icosphere order (number of subdivisions) and presents
a central symmetry which ensures the existence of opposite orientation domain
families and hence zero magnetisation and magnetostriction when no magnetic
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(a) (b)

FIGURE 1.2 Icospheres with (a) 162 and (b) 10242 nodes.

field or stress is applied.

1.4.2 Uniform stress and magnetic field assumption

Another computational complexity lies at the polycrystal scale when using the
self-consistent scheme to define localisation operations. This process involves
an iterative evaluation of the behaviour until convergence, as illustrated in figure
1.1. A classical simplification is to neglect the fluctuations of stress andmagnetic
field within the material. This means that stress and magnetic field are treated
as uniform:

H = Hg = Hm and σ = σg = σm (1.48)

This is equivalent to neglect a part of grain to grain interactions in the mod-
elling. While the main features of the model will be maintained, the quantitative
predictions can be altered by such an assumption.

1.4.3 Macroscopically equivalent simplified texture

Another assumption can deal with the crystallographic texture of the material.
A typical number of 500 different orientations as input for the MSM is needed to
describe the crystallographic texture of a non-oriented electrical steel. It is pos-
sible to reduce this number by the use of equivalent simplified crystallographic
textures. It is usually possible to find a set of one or two fibre textures that
describes the measured texture of the material from a macroscopic perspective.

As an example, the anhysteretic magneto-elastic behaviour of a non-oriented
Fe-3%Si laminated material [15] is modelled using this approach. The measured
texture data are presented as pole figures (Fig. 1.3). This texture is reasonably
similar to the one of a perfect < 111 > fibre with its axis perpendicular to the
sheet plane (Fig. 1.4). Such a texture can be obtained (for modelling) starting
from a crystal with a < 111 > direction perpendicular to the sheet plane and
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FIGURE 1.3 Pole figures (stereographic projection) for non-oriented Fe-3%Si.

FIGURE 1.4 Pole figures for a perfect <111> fibre with the axis perpendicular to the sheet plane
from [16].

generating a set of crystals by rotations, with respect to this axis, of angles
uniformly distributed between 0 and 2π/3 (because of the periodicity of this
configuration).

A simplified fibre made of only 4 crystals, in equal proportion, which pole
figures are presented in Fig. 1.4 by rhombi dots, is analysed here. The model
parameters and their values are given in Table 1.1. In the simplified approach,
an optimization of these parameters could be done within a reasonable range
and could help in fitting with experimental results. However, the model is also
able to reproduce the main characteristics of the material behaviour without such
adjustments, using a small set of tabulated values.

TABLE 1.1 Parameters for Fe-3%Si from [16].

Parameter As Ms λ100 λ111 K1 K2

Unit m3/J A/m ppm ppm kJ/m3 kJ/m3

Value 3·10−3 1.6 ·106 23 -4.5 38 0

As an illustration, the effect of uniaxial stress (parallel to the magnetic field)
on the magneto-elastic behaviour is presented in figures 1.5, 1.6 and 1.7: results
from the model are on the left, experimental data from [15] are on the right
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
-10

-5

0

5

10

ε hh
(1

0-6
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-10

-5

0

5

10
ε hh

(1
0-6

)

M (106 A/m) M (106 A/m)

100

10050

50

15 15

0 0

-15
-15

-50

-50

-100

-100

FIGURE 1.6 Parallel magnetostriction (εhh ) in the sheet plane as a function of magnetisation,
for different values of the uniaxial stress (in MPa): MSM with simplified texture (left) from [16],
measurements (right) from [15].

(Magnetostriction curves are plotted using the saturation value as reference).
The model reproduces the inflexion of the magnetisation curve which can be
observed under strong compressive stress (−100 MPa). The change of sign of
the slope of magnetostriction curves observed when reaching saturation is also
represented by the model and results from magnetisation rotation.

1.4.4 Equivalent single crystal model

Further simplification for the multiscale approach consists in diluting the poly-
crystalline nature of the material and considering it as a single - equivalent -
crystal. In other words the material is considered as a collection of magnetic
domains, independently of the grain structure.

Strongly textured materials (e.g. Goss texture materials) can be naturally
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FIGURE 1.7 Perpendicular magnetostriction (εpp ) in the sheet plane as a function of magnetisa-
tion, for different values of the uniaxial stress (in MPa): MSM with simplified texture (left) from
[16], measurements (right) from [15].

treated as single crystal, and can be represented by this kind of simplified MSM
[17]. Magnetostriction anisotropic tensor and anisotropy energy of the crys-
tal can be used as a basis for the macroscopically equivalent single crystal.
Some corrections can be applied in order to get a better representation of the
macroscopic behaviour, in particular if structure induced anisotropy has to be
accounted for (demagnetizing field effects, see chapter "Multi-scale modelling
of magnetostrictive materials").

Weakly textured materials can also be treated considering this approach. The
material is considered as a collection of magnetic domains, represented by a sin-
gle crystal with a large number of easy directions. The local magnetostriction
tensor is considered as isotropic (λ100 = λ111 = λs) and the anisotropy energy
is adjusted in order to fit the macroscopic behaviour. The choice of an isotropic
magnetostriction tensor implies that the material exhibits the same saturation
magnetostriction for all directions. The macroscopic anisotropy might come
from texture or structure effects. It can take different forms, e.g., K(α.β)2 for a
uniaxial anisotropy where β is the anisotropy direction and K is the anisotropy
constant, or Kα.(Nα) for a multiaxial anisotropy where N is a normalized di-
agonal matrix (in the coordinate system associated with the principal anisotropy
axes). In this approach, because magnetocrystalline anisotropy is not considered
as such, the effects of domain rotations are not represented and the magnetisation
process can be interpreted in terms of domain wall motion only. In particular,
inflexions of the magnetisation curve or changes of the slope sign of magne-
tostriction curve at saturation are not represented.
Another way of simplification is to consider a polycrystalline material as an
anisotropic single crystal loaded in a specific crystallographic direction. This
specific direction has then to be defined for each given macroscopic loading
configuration.
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1.4.5 Analytical model

By applying the equivalent single crystal approach and restricting the set of
possible domain orientations to 6, analytical expressions for the macroscopic
magnetisation and strain can be found:

M =
Ahsinh (κH)

Ahcosh (κH) + Ap + Az
Msh (1.49)

εµ = λ

(
h ⊗ h −

1
2
(p ⊗ p + z ⊗ z)

)
(1.50)

with

λ = λs

(
1 −

3
2

Ap + Az

Ahcosh (κH) + Ap + Az

)
(1.51)

and
Ai = exp (τσii) (1.52)

for i ∈ {h, p, z}, where σii is the ii-component of the applied stress tensor. The
unit vector h represents the direction of the magnetic field, z is an arbitrary unit
vector perpendicular to the magnetic field and p = z × h completes the basis.
Two constants are defined as κ = µ0 AsMs and τ = (3/2)Asλs . The analytical
model offers simple expressions for themagneto-elastic behaviour and retains the
effects of multiaxial stress (normal stresses with respect to the chosen basis). The
variation of domain volume fractions with the magnetic field can be interpreted
as a consequence of domain wall motion only. No domain rotation effect can be
represented since crystal anisotropy is not considered. The effect of shear stress
with respect to the chosen basis cannot be modelled either. The model does not
incorporate intrinsic anisotropy, and magnetisation and magnetostriction always
follow the magnetic field orientation. However induced anisotropy is accounted
for as the behaviour depends on the relative orientation of the magnetic field and
mechanical stress tensor.

1.5 PRACTICAL IMPLEMENTATION INTO NUMERICAL FINITE ELE-
MENT TOOLS

Multiscale approaches provide fully multiaxial magnetoelastic modelling: the
state variables are the magnetic field vector and the mechanical stress tensor
and the outputs are the magnetisation vector and the magnetostriction tensor.
This multiaxiality makes it very attractive for use in field analysis and device
simulations where the variety of magnetomechanical loadings is high and where
uniaxial models or lookup tables are not sufficient to represent the material be-
haviour. However, the use of constitutive models based onmultiscale approaches
faces some difficulties related to the high computational cost of the numerical
evaluation and the choice of state variables for the nonlinear problem resolution.
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Nonlinear problem resolution methods such as the Newton-Raphson method
or the modified fixed point method require the use of the same state variables
for the material behaviour model and for the field analysis model. The natural
state variables of multiscale models are the magnetic field and the mechanical
stress. Unfortunately, usual formulations for the field analysis problems are based
on the magnetic flux density (or magnetic vector potential) and on mechanical
strain (or displacement) and then need an inverse material behaviour model.
The inversion of multiscale models may be done numerically applying an inner
Newton-Raphson procedure. However, the calculation of derivatives and the
iteration process contribute to the increase of the computational cost. As a
consequence, it may be interesting to choose less classical formulations based
on the magnetic field (or magnetic scalar potential) and the stress together with
a direct multiscale model. For both direct and inverse approaches, it is often
necessary to apply some simplifying assumptions for the MSM in order to
reduce computational costs. These assumptions lead to a variety of simplified
multiscale models, as presented in section 1.4, the complexity and physical
representativeness of which can be adapted to a particular field analysis problem.

In this section, weak formulations are presented for fully or partially coupled
magnetomechanical static problems in order to show how the magnetoelastic
behaviour of ferromagneticmaterials is incorporated. Some details are also given
on the integration, derivation and inversion of simplified multiscale models.

1.5.1 Weak formulations for field analysis

The weak formulation for magnetostatics in terms of magnetic vector potential
A (such that the magnetic flux density is B = rot A) can be written as:

∫
Ωmag

H. rot A′dΩ +
∫
ΓH
(n ×H) .A′dΓ =

∫
Ωmag

J.A′dΩ

∀A′ ∈ H
(
rot ,Ωmag

)
= {A′ ∈ L2 (

Ωmag

)
, rot A′ ∈ L2 (

Ωmag

)
,n×A′ |ΓA = 0}

(1.53)

Ωmag is the considered domain with complementary boundaries ΓH (for Neu-
mann conditions) and ΓA (for Dirichlet conditions), and J is the conduction cur-
rent density. A′ is a test function that belongs to theHilbert spaceH

(
rot ,Ωmag

)
and L2 (Ω) is the space of square integrable vector functions on Ωmag. The
magnetoelastic coupling enters this formulation through the constitutive law
H = 1

µ0
B −M (B,ε).

The static elasticity formulation, considering small strains, can be written in
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terms of displacement u (such that the total strain is ε = grads u) as:

∫
Ωmec

(C : grads u) : grads u′dΩ +
∫
Ωmec

(σM − C : εµ) : grads u′dΩ

−

∫
Γσ

(σn) .u′dΓ −
∫
Γmec

[σMn] .u′dΓ

=

∫
Ωmec

fext .u′dΩ

∀u′,u′i ∈ H ( grad ,Ω) = {u′i ∈ L
2 (Ω) , grad u′i ∈ L2 (Ω) ,u′i |Γε = 0} (1.54)

Ωmec is the considered domain with complementary boundaries Γσ (for Neu-
mann conditions) and Γu (for Dirichlet conditions), fext is the eventual external
force density (of non magnetic origin), and C is the fourth-rank stiffness ten-
sor. u′ is a test function the components (u′i) of which belong to the Hilbert
space H ( grad ,Ωmec). σM is a Maxwell tensor such that divσM is the local
magnetic force density (including Laplace forces on conduction currents and
forces on magnetic material). If hysteresis is neglected, the following symmetric
Maxwell tensor can be used [18]:

σM =
1
2
(H ⊗ B + B ⊗ H) − wcoI (1.55)

where ⊗ is the tensor product (or dyadic product here), wco =
∫ H
0 B.dh is the

magnetic co-energy density, and I is the second rank identity tensor. A surface
magnetic force density might need to be accounted for on the boundary Γmec

where a discontinuity [σMn] exists. The surface force term can be avoided, in the
weak formulation, by including an air layer around the considered solid. Mag-
netostriction εµ (B,ε) enters the formulation through the total strain expression
ε = εe + εµ, where εe is the elastic strain such that σ = C : εe.

The weak formulation for magnetostatics based on the scalar potential (φ)
is less popular than the one based on the vector potential. In three-dimensional
finite element problems, nodal elements can be used for the scalar potential
which may reduce the size of the system compared to the one obtained with
edge elements and vector potential. However the representation of conduction
currents J is made more difficult because it requires the determination of a
vector field T such that J = rot T. Scalar potential formulations may also suffer
some numerical difficulties in systems with airgaps, where strong variations of
the potential are concentrated in a small region. Despite these difficulties, these
formulations can be interesting in amagnetoelastic coupling context because they
avoid the inversion of the material constitutive behaviour. The weak formulation
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can be written as:∫
Ωmag

B. grad φ′dΩ −
∫
ΓB

B.n φ′dΓ = 0

∀φ′ ∈ H
(
grad ,Ωmag

)
= {φ′ ∈ L2 (

Ωmag

)
, grad φ′ ∈ L2 (

Ωmag

)
, φ′ |Γφ = 0}

(1.56)

with complementary boundaries ΓB (for Neumann conditions) and Γφ (for
Dirichlet conditions). The constitutive law is B = µ0 (H +M (H,σ)) and the
magnetic field is H = T − grad φ.

Finally, formulations based on the mechanical stress for elasticity are unusual
and much more complex than displacement based formulations. This kind of
formulation can be found, for example, in applications close to the incompressible
limit, but has not been investigate yet for magneto-elastic coupling problems.

1.5.2 Integration, differentiation and inversion of simplified multi-
scale models

In order to enable the use of simplified multiscale models in device simulation
tools, some important properties are detailed in this section. Integration of the
model gives access to the energy stored in the material. Differentiation allows
the application of differential time-stepping schemes and non-linear Newton-
Raphson algorithms for the resolution. Finally, inverse models are needed for
the implementation in the commonly used strain and magnetic flux density
based formulations (such as the displacement and magnetic vector potential
formulations).

For the sake of simplicity, the case of the numerical equivalent single crystal
model is considered. All results can be straightforwardly extended to the equiv-
alent simplified texture model by calculating mean values over the set of grain
orientations. The case of the analytical model is not fully treated but its speci-
ficities, which come from its magnetic field dependent local magneto-elastic
energy, are highlighted in a separate section.

1.5.2.1 Integration
The total magneto-elastic co-energy density wco of an anhysteretic material can
be defined as

wco =

∫
B.dH +

∫
ε : dσ (1.57)

where B and dH are vectors, and ε and dσ are second rank tensors. The
integrals on H and σ are calculated between a reference state, which might be
(H = 0,σ = 0), and the current state, independently of the path between these
two states. The magnetic flux density is B = µ0(H +M) and the total strain is
ε = (εe + εµ), where εe is the elastic strain tensor. The part of the co-energy
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relative to the magneto-elastic behaviour is then∫
µ0M.dH +

∫
εµ : dσ =

1
As

ln

(∑
α

exp (−AsWα)

)
(1.58)

which can be verified by partial differentiation with respect to the magnetic field
or the mechanical stress. The co-energy can then be calculated for any loading
from the energy associated with each domain family. It can be noticed that
the total energy density is not the mean value of the energies associated with
each domain family (

∑
α fαWα), which means that the model implicitly includes

interactions between domains. The energy density may be calculated from the
co-energy density by

w = B.H + ε : σ − wco . (1.59)

1.5.2.2 Differentiation
Magnetisation (M) and magnetostriction (ε) can be differentiated with respect
to the input variables, i.e. the magnetic field (H) and the mechanical stress (σ).
The differential susceptibility tensor can be written as:

∂M
∂H
=

∑
α

mα ⊗
∂ fα
∂H

(1.60)

because mα and α do not depend on the magnetic field. It can be shown [14]
that the partial derivative of fα with respect to H is:

∂ fα
∂H
= As fα

((∑
α

fα
∂Wα

∂H

)
−
∂Wα

∂H

)
(1.61)

From equation (1.17) to (1.20), and considering that the anisotropy energy does
not depend on magnetic field and stress:

∂Wα

∂H
= −µ0mα (1.62)

Finally, the analytical expression for the differential susceptibility is obtained as:

∂M
∂H
= µ0 As

((∑
α

fαmα ⊗ mα

)
−M ⊗M

)
(1.63)

From equation (1.63), the differential susceptibility tensor appears to be propor-
tional to the difference between the tensor product of the macroscopic magneti-
sation by itself and the volume fraction weighted average of the tensor product
of the local magnetisation by itself. The other components of the differential
model can be obtained in the same way:

∂εµ

∂σ
= As

((∑
α

fαε
µ
α ⊗ ε

µ
α

)
− εµ ⊗ εµ

)
(1.64)
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∂M
∂σ
= As

((∑
α

fαmα ⊗ ε
µ
α

)
−M ⊗ εµ

)
(1.65)

∂εµ

∂H
= µ0 As

((∑
α

fαε
µ
α ⊗ mα

)
− εµ ⊗M

)
(1.66)

where ∂εµ

∂σ is a fourth rank tensor, ∂Man

∂σ and ∂εµ

∂H are third rank tensors. The

last two tensors verify µ0

(
∂M
∂σ

)
i jk
=

(
∂εµ

∂H
)
jki

as they should, considering that
they derive from the same co-energy and applying Schwarz theorem. The set
of equations (1.63) to (1.66) constitutes the output of the differential simplified
MSM.

1.5.2.3 Inversion
Full inversion of the model consists in allowing the magnetic flux density (B) and
the mechanical total strain (ε) to be the input parameters (state variables) [16].
From the differential model, the inverse model can be obtained numerically.
Using Voigt notation for the stress and strain tensors, the differential model can
be written in matrix form as:[

µ0dM
dεµ

]
=


µ0

∂M
∂H µ0

∂M
∂σ

∂εµ

∂H
∂εµ

∂σ


[
dH
dσ

]
= F

[
dH
dσ

]
(1.67)

The inversion consists in finding (H,σ) such that:

B = µ0 (H +M) (1.68)

and
ε = S : σ + εµ (1.69)

where S represents the elastic compliance tensor (S = C−1). Using Newton-
Raphson method, an approximate solution is found by solving iteratively:[

δH
δσ

]
= −G−1

[
δB
δε

]
(1.70)

where

G =

[
µ0I 0
0 S

]
+ F (1.71)

and
[
δB
δε

]
is the residual. Some convergence properties of the simplifiedMSM

inversion can be found in [16].
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1.5.2.4 Inversion of the analytical SMSM
The magnetisation of the analytical SMSM can be differentiated with respect
to the magnetic field from equation (1.49). The calculation of the full dif-
ferential susceptibility tensor is relatively complex as shown in [16]. As the
set of possible domain orientations follows the magnetic field and as only the
diagonal components of the stress are considered in the associated basis, the
local magneto-elastic energy depends on the applied magnetic field. The dif-
ferentiation and integration of the analytical model are then more conveniently
performed numerically. The inversion may also be performed using algorithms
that do not need the evaluation of derivatives.

1.6 APPLICATIONS

1.6.1 Effect of mechanical stress on a Switched Reluctance Motor

A significant source of stress in electrical machines comes from assembling
processes. Shrink-fittingmethod of the stator core into themotor frame and of the
shaft into the rotor core generates a constant stress distribution that may impact
the machine performance. As an example, considering a switched reluctance
motor with a stator external diameter of 6.8 cm and a shrink-fitting equivalent
to a radial displacement of 2.5 µm, tangential tensile stress in the rotor and
compressive stress in the stator can reach 20 MPa and −10 MPa, respectively
(Fig. 1.8). Using an hysteretic Jiles-Atherton model including the multiscale
approach as presented in section 1.2.2, and considering a pinning parameter
depending on the domain configuration [14], the effect of stress on hysteresis
loops and on losses can be quantified for any applied field (Fig. 1.9). Neglecting
the stress induced by magnetostriction, the stress distribution obtained with an
elastostatic formulation can be introduced in the magnetostatic formulation as
a constant tensor parameter for the material constitutive model. This partially
coupled magneto-mechanical approach allows quantifying the distribution of
hysteresis losses for the device in operation (Fig. 1.10). The stress can locally
change the hysteresis loss density by a factor of −60 to 80%. This results in a
overall hysteresis loss increase of more than 5% [14].

1.6.2 Magnetostriction induced deformations in a transformer

Magnetostriction strain induces deformations of the magnetic core of transform-
ers which may result in loud noise in operation. A three-phase transformer made
of an alternate arrangement of grain-oriented (GO) silicon steel sheets can be
analysed in two dimensions using homogenization techniques and a multiscale
approach for the evaluation of the magnetostriction tensor distribution [17]. GO
iron silicon presents strong magnetostriction strain (Fig. 1.11) and anisotropy
which makes it sensitive to the local magnetic field intensity and direction. The
distribution of magnetostriction strain can be calculated as a function of time (or



Multiscale modelling of magnetic materials Chapter | 1 25Multiscale modelling of magnetic materials Chapter | 1 25Multiscale modelling of magnetic materials Chapter | 1 25

(a) (b)

FIGURE 1.8 (a) radial and (b) tangential principal components of stress (MPa) from [14].
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FIGURE 1.9 (a) hysteresis loops under unixial stress and (b) hysteresis loss density under uniaxial,
biaxial and shear stress, for alternating (+) and circular (o) induction (Bmax = 1T ) from [14].
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FIGURE 1.10 (a) distribution of hysteresis loss density and (b) relative difference between stressed
and unstressed (reference) configurations (%) from [14].
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FIGURE 1.11 Parallel and transverse magnetostriction from MSM and experiment from [17].

P

FIGURE 1.12 Simulated deformed core shape (scale factor of 2×104) for 200At in the central coil
and displacement at point P as a function of time compared to measured displacement from [17].

applied current) using a magnetostatic formulation together with a multiscale
homogenized model and neglecting other sources of stress. The induced total
strain and the corresponding local displacement are computed in a second step
using a dynamic elastic formulation with the distribution of magnetostriction
strain as a source term. Local displacement obtained with this method compares
well with experiments (Fig.1.12) and can be readily used for noise generation
analysis.

1.7 CONCLUSION

This chapter was dedicated to the multiscale description of magnetic behaviour.
From thermodynamic considerations at the local scale, it is possible to define
a simplified modelling approach for magnetic single crystals, based on a statis-
tical description of domain microstructure. For that purpose the single crystal
is divided into domain families, each associated with an internal variable cor-
responding to its volume fraction. The evolution law of the internal variables
is given by a Boltzmann-like relation. Polycrystalline materials are then treated
as single crystals aggregates. The non-uniformity of magnetic field and stress
is taken into account using scale transition rules derived from homogenization
theory. Anhysteretic behaviour is first considered and hysteresis is then superim-



posed using two classical phenomenological approaches. In this chapter a focus
has been made on the description of magneto-mechanical problems, namely
the effect of stress on magnetisation and magnetostriction strain. A specific
emphasis was given on the requirements in order to implement these magneto-
mechanical constitutive equations into practical numerical tools for the design
of electromagnetic devices. It is worth noting that the approach is intrinsically
multiaxial and can naturally deal with any multiaxial stress state, whatever its
relative orientation with respect to the magnetic field. This is a crucial advantage
compared to many models used in computational magnetics that consider the
stress as a scalar quantity, which disqualifies them to deal with most of practical
electromagnetic devices.

The applicability of the proposed methodology is not restricted to the exam-
ples of magneto-elastic couplings presented in the chapter. It can be generalised
to other types of phenomenon, many of which remain open research issues.

An interesting application is for instance the coupling between multiaxial
stress and rotational magnetic field which is a great challenge for both modelling
and experimental characterisation. The effects of plasticity on the magnetic be-
haviour of ferromagnetic materials is also a critical issue. A better understand-
ing and description of the corresponding mechanisms and resulting behaviour
would allow the prediction of the effect of forming and assembly processes on
the nominal performance of electromagnetic devices. This is for example a great
challenge for the optimisation of electrical machines. Multiscale approaches
can be a great help in defining residual stresses related to these processes and
estimating their consequences on the material behaviour.

The multiscale approach can also serve as a producer of tools for electrical
engineers. A good example is the definition of equivalent stresses. The objective
in that case is to define a fictitious uniaxial stress that has the same effect on
the material - from a given perspective - as the real multiaxial stress state.
Such an equivalence is of course not universal and different equivalences can be
defined from the multiscale approach: equivalence in magneto-elastic energy, in
macroscopic magnetisation, in magnetostriction, etc. It provides a simple tool
for the quick assessment of a given external loading. Such approaches have been
instrumental in Mechanics (see Von Mises or Tresca equivalent stress for the
plasticity of metals or Rankine criterion for the fracture of ceramics) and can
also meet many applications in computational electromagnetics.
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